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Abstract

The modulational instability associated with propagation of an intense laser pulse through a transversely magnetized
plasma is investigated in the presence of collisional effects. The source-dependent expansion method for analyzing the
wave equation is employed. The dispersion relation is obtained and modulational instability and its growth rate are
studied. It is shown that in the absence of collisional effects the modulational instability is restricted to the small
wavenumber region and the constant magnetic field reduces the growth rate of the instability. In contrast, in the
collisional plasma, there is no upper limit of wavenumber for the existence of modulational instability. In addition, in
this case, the growth rate of instability increases as the collision frequency goes up.

Keywords: Collision frequency; Instability growth rate; Magnetized plasma; Modulational instability; Perturbation
method

1. INTRODUCTION

The nonlinear propagation of an intense electromagnetic
beam through a plasma has been an important area of
research in the last few decades and gives rise to a variety
of nonlinear effects, including self-focusing (Fuchs et al.,
2010; Niknam et al., 2011; Bokaei et al., 2013), self-
compression (Shorokhov et al., 2003; Couairon et al., 2006)
and parametric instabilities (Saini et al., 2006). These effects
have been investigated in the inertial confinement fusion,
X-ray generation (Deutsch et al., 1996), laser-driven acceler-
ation (Tajima et al., 1979) and optical harmonic generation
(Lin et al., 2002). The propagation of an intense electromag-
netic beam through plasma is also subject to many instabili-
ties such as stimulated Brillouin instability (Mauger et al.,
2010; Niknam et al., 2013), Raman instability (Pathak
et al., 2006) and self-modulational instability (Gill et al.,
2011). Stimulated Brillouin scattering is a three-wave para-
metric mixing process coupling two radiation fields with
an acoustic wave in a medium. In the plasma, this low fre-
quency instability occurs due to ion-acoustic wave excitation.
The Raman instability can be most simply characterized as

the resonant decay of an incident photon into a scattered
photon plus an electron plasma wave (or plasmon).

The modulational instability, that is the subject of this
paper, is one of the most important phenomenon in high in-
tensity laser–plasma interaction. In this process, the change
in local refraction index gradient due to nonlinear effects
such as relativistic and ponderomotive nonlinearities, induc-
es a change of local laser phase velocity, which modulates the
local laser frequency. As a consequence, the local group
velocity varies according to the modulated frequency and
causes the distortion of the pulse envelope. So the wave am-
plitude becomes spatially modulated and affects the propaga-
tion of laser energy in the plasma.

The modulational instability of electromagnetic waves in
the relativistic laser–plasma interaction (Sen, 1978; Guerin
et al., 1995) have been extensively studied. Quesnel et al.
(1997) have presented a general two-dimensional (2D) dis-
persion relation for circularly polarized electromagnetic
waves in a cold plasma and studied the electron parametric
instabilities such as the relativistic modulational instability.
Sprangle et al. (2000) have obtained a 3D wave equation for
intense laser beam propagating through a plasma channel
and discussed the modulational instability of electromagnetic
waves. Their analysis was based on a systematic approach that
includes finite-perturbation-length effects, nonlinearities,
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group velocity dispersion, and transverse effects. In most of
the mentioned works, the propagation of laser pulses are con-
sidered in un-magnetized plasmas. While the experiments as
well as simulations have confirmed that both quasi-static
transverse and axial magnetic fields can be generated in the
interaction of intense laser fields with plasmas. So the
interaction of intense laser pulses with magnetized plasma
is an important and relatively new area of study in the
laser–plasma interaction field. In this regard, Jha et al.
(2005) have investigated themodulation instability of a linearly
polarized electromagnetic wave in a collisionless magnetized
underdense plasma using a 1D model. They have observed
that the presence of uniform magnetic field leads to generation
of an additional perturbed transverse plasma current density
which affects the modulational interaction. Chen et al. (2010)
have used a generalizedmethod to investigate the modulational
instability of an intense right-hand elliptically polarized laser
beam in magnetized plasmas in the presence of the relativistic
and ponderomotive nonlinearities. In these works the effect
of collision has been simply ignored. However, in the cases
in which the laser pulse length is larger than the collision
time scale that is, τ> τcoll, the collision effect can play an im-
portant role in determining the propagation properties. Recent-
ly, the modulational instability of electromagnetic waves in a
collisional quantum magnetoplasma has been studied by
Niknam et al. (2014). They have shown that the increment of
modulational instability in a quantum plasma depends on the
Fermi electron temperature, plasma number density, collision
frequency, and the value of modulation wavenumber.
The present paper is devoted to the study of longitudinal

modulational instability by considering the effects of relativ-
istic electron mass variation and ponderomotive force nonlin-
earity. We estimated the importance of considering collision
effect between electrons and ions in relativistic, magnetized
plasma. Calculation shows that the modulational instability
exists for full range of allowable unstable wavelengths in
the presence of collisional effects. It is also observed that
the growth rate of the modulational instability increases
with rising collisional effects. The equations solved using
the perturbative expansion technique and in all calculations
ω0≫ (ωp, ωc) is supposed, where ωp and ωc are the
plasma and cyclotron frequency, respectively. This work is
organized into four Sections and two Appendices. A wave
equation for the laser electric field is derived which includes
nonlinear effects and collisions effect in Section 2. In Section
3, the modulational instability is analyzed. Finally, a sum-
mary and conclusions are given in Section 4.

2. DERIVATION OF THE REDUCED WAVE
EQUATION

We assume an electromagnetic field propagating through
magnetized plasma along the z-direction. The electric field
along the x-axis is represented by

E(r, t) = âxE0(r, t) cos(k0z− ω0t), (1)

where E0, ω0, and k0 are the amplitude of radiation field,
wave frequency, and wavenumber, respectively. The
plasma is surrounded by a constant magnetic field along
y-direction, B0 = B0ây. The wave equation governing the
propagation of laser beam in the presence of current density
sources is

∇2 − 1
c2

∂2

∂t

( )
E = 4π

c2
∂J
∂t

, (2)

where J = −neV is the current density in the plasma and n,
−e, and V are the electron density, the electron’s charge and
its velocity. On the other hand, in the relativistic regime, the
momentum transfer equation in the presence of collisions is

d

dt
(mγV) = −eE− e

c
V × (B+ B0) − mγnV, (3)

wherem is the rest mass of electron, γ is the relativistic factor,
n is the collision frequency and B is the magnetic field of the
laser beam. Moreover, the continuity equation is as

∂n
∂t

+∇.(nV) = 0. (4)

It is assumed that the electron’s initial velocity in the absence
of laser field is zero that is, V0= 0. Considering the first three
terms of perturbation expansion, electron density, electron
velocity, and current density can be expanded in the orders
of the radiation field.
Using Eqs (3) and (4) and the perturbation method, the

first-order component of the electron velocity is given by

V1x = −eE0n

m(ω2
0 + n2) cos(k0z− ω0t)

+ eE0ω0

m(ω2
0 + n2) sin(k0z− ω0t),

(5)

V1z = 0 (6)

and the third-order velocity is as follows:

V3x = 3e3E3
0n

8m3c2(ω2
0 + n2)2

− e3B2
0E0n

m3c2(ω2
0 + n2)2

[ ]
cos(k0z− ω0t)

+ 3e3E3
0ω0(3n2 − ω2

0)
8m3c2(ω2

0 + n2)3
+ e3B2

0E0ω0

m3c2(ω2
0 + n2)2

[ ]

× sin(k0z− ω0t).

(7)

In the above equation, all harmonics have been neglected.
Eqn. (7) indicates that the third-order velocity is achieved
due to the influence of radiation field and external magnetic
field on electrons and the collision effect which modifies it.
On the other hand, the electron density is perturbed by the
high power laser field. One can obtain electron perturbations
using the continuity equation Eq. (4)

∂n1
∂t

+ n0(∇ · V1) = 0, (8)
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where n0 is unperturbed electron density. According to Eq.
(8) and transverse coulomb gauge, the first-order electron
density perturbation is zero (n1= 0) due to v1z= 0. The
second-order continuity equation is

∂n2
∂t

+∇ · (n0V2 + n1V1) = 0. (9)

Therefore the second-order electron density is obtained as
follows (see Appendix A for detailed discussion):

n2 = −e2k20n0E
2
0(2ω2

0 − n2)
2m2ω2

0(n2 + 4ω2
0)(ω2

0 + n2) cos 2(k0z− ω0t)

+ −3e2k20n0E
2
0n

2m2ω0(n2 + 4ω2
0)(ω2

0 + n2) sin 2(k0z− ω0t)

+ −k0e2E0B0n0(ω2
0 − n2)

m2cω0(ω2
0 + n2)2

cos(k0z− ω0t)

+ 2k0e2E0B0n0n

m2c(ω2
0 + n2)2

sin(k0z− ω0t).

(10)

The first two terms in Eq. (10) are due to the ponderomotive
force excited by the propagating laser pulse in the plasma, the
last two terms show the constant magnetic field effect and
collision parameter is emerged in all terms.

2.1. Linear source term

The linear part of the plasma current density is given by

J1x = −en0Vx1. (11)

Substituting Eq. (5) into Eq. (11) yields

J1 =
ω2
p

4π
n

ω2
0 + n2

E0 cos(k0z− ω0t)âx
[

− ω0

ω2
0 + n2

E0 sin(k0z− ω0.t)âx
]
,

(12)

where ωp= (4πe2n0/m)
1/2 is the plasma frequency.

To obtain an envelop equation describing the evolution of
E(r, t) it is convenient to first neglect the nonlinear contribu-
tion from the plasma current density. Taking a Fourier trans-
form of Eq. (2) without the nonlinear source terms gives

∇2 + 4

r20
+ ω2

c2
λ2L(ω)

( )
E(r,ω− ω0) exp(ik0z) = 0, (13)

where r0 is the minimum spot size and λL(ω) is the linear re-
fractive index in collisional plasma which is defined as

λL(ω) = 1− ω2
p(ω2 + inω)
ω2(ω2 + n2) − 4c2

ω2r20

[ ]1/2

. (14)

and the mode propagation constant (wavenumber) is β(ω)=
ωλL(ω)/c. Substituting β(ω) in Eq. (13) we get the following

equation

∇2 + 2k0 i
∂
∂z

+ β2(ω) − k20
2k0

+ 2

k0r20

( )[ ]
E(r,ω− ω0) = 0, (15)

where k0 is the unperturbed wavenumber. Since E(r,ω− ω0)
is the Fourier transform of the slowly varying amplitude
E(r, t) the propagation wave number β(ω) can be expanded
about ω0

β(ω) = β0 + (ω− ω0)β1 +
1
2
(ω− ω0)2β2 + ..., (16)

where βn = [dnβ(ω)/dωn]ω=ω0
. In Eq. (16) β0= k0 is the

wave number in the vacuum, β1 is the first-order dispersion
or inverse group velocity and β2 is the second-order disper-
sion and related to the group velocity dispersion (GVD).
Substituting Eq. (16) in Eq. (15) and using the approximation
of (β2 − k20)/2k0 ≈ β(ω) − k0 and taking the inverse Fourier
transform (Sprangle et al., 2000) one can obtain

∇2 + 2k0 i
∂
∂z

+ β0 − k0 + 2

k0r20
+ iβ1

∂
∂t

− β2
2

∂2

∂t2

( )[ ]

× E0(r, t) = 0,

(17)

where the GVD parameter β2 can be defined as follows:

β2 = − 1
ω0c

ω2
p(ω2

0 + inω0)
ω2
0(ω2

0 + n2) + 4c2

ω2
0r

2
0

[ ]
, (18)

and the higher order terms in β(ω) are neglected. It is also
supposed that the nonlinear effects and perturbed current
densities of collisional plasma are small.

2.2. Nonlinear source term

The nonlinear contribution to the plasma current density
originates from ponderomotive force, relativistic mass, and
represents perturbations due to effects of the constant mag-
netic field and collisions. The nonlinear part of the plasma
current density is given by

J3 = −e(n0V3 + n2V1), (19)

where V1 is the transverse quiver velocity and V3 is the third-
order velocity. Substituting Eqs (5), (7), and (10) into Eq.
(19) one obtains

J3 =
ω2
p

4π
d1
ω0

E0 cos(k0z− ω0t)âx − d2
ω0

E0 sin(k0z− ω0t)âx
[ ]

, (20)

in which all harmonics have been neglected. In addition, d1
and d2 are given, respectively, as follows:

d1 = −e2k20E
2
0n(2ω2

0 − n2)
4m2ω0(n2 + 4ω2

0)(ω2
0 + n2)2 +

3e2k20E
2
0nω0

4m2(n2 + 4ω2
0)(ω2

0 + n2)2

+ −3e2E2
0nω0

8m2c2(ω2
0 + n2)2

+ ω2
cω0n

(ω2
0 + n2)2

, (21)
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and

d2 = 3e2k20E
2
0n

2

4m2(n2 + 4ω2
0)(ω2

0 + n2)2 +
e2k20E

2
0(2ω2

0 − n2)
4m2(n2 + 4ω2

0)(ω2
0 + n2)2

+ 3e2E2
0ω

2
0(3n2 − ω2

0)
8m2c2(ω2

0 + n2)3
+ ω2

cω
2
0

(ω2
0 + n2)2

, (22)

where ωc= eB0/mc. The nonlinear current J3 contains the
contributions due to collision effect, magnetic field, and non-
linearities which are generated by radiation pressure.
Replacing the third-order derivative of current density, Eq.

(20) in the right hand side of the Eq. (17) gives a good ap-
proximation of nonlinear wave equation for the propagation
of laser beam in the collisional magnetized plasma as

∇2 + 2k0 i
∂
∂z

+ β0 − k0 + 2

k0r20
+ iβ1

∂
∂t

− β2
2

∂2

∂t2

( )[ ]
a(r, t)

= − ω2
p

4c2
|a(r, t)|2 c1 + ic2[ ]a(r, t), (23)

where a(r, t) = eE0(r, t)/mcω0 is the normalized amplitude
of the electric field and ωc= eB/m0c. In addition, c1 and c2
are given, respectively, as follows:

c1 = −3k20n
2c2ω2

0

(n2 + 4ω2
0)(ω2

o + n2)2 +
−k20(2ω2

0 − n2)c2ω2
0

(n2 + 4ω2
0)(ω2

o + n2)2

+−3ω4
0(3n2 − ω2

0)
2(ω2

0 + n2)3 + −4ω2
cω

2
0

b2s0(ω2
0 + n2)2

,

(24)

and

c2 = k20c
2nω0(2ω2

0 − n2)
(n2 + 4ω2

0)(n2 + ω2
0)2

+ −3k20nω
3
0c

2

(n2 + 4ω2
0)(n2 + ω2

0)2

+ 3nω3
0

2(ω2
0 + n2)2 +

−4ω2
cnω

2
0

b2s0(ω2
0 + n2)2

.

(25)

It is convenient here to change variables from (z, t) to coor-
dinate system in the pulse-stationary frame of reference (z, ξ),
where ξ= z− Vgt and Vg is the group velocity of the laser
pulse. So ∂/∂t=−Vg∂/∂ξ and ∂2/∂t2 = V2

g∂
2/∂ξ2 and the

Laplacian operator can be written as ∇2 = ∇2
⊥ + ∂2/∂z2

where its vertical component is ∇2
⊥ = (1/r)(∂/∂r)(r(∂/∂r)),

z is the axial propagation direction and r is the radial coordinate.
By neglecting 1/k0 in comparison with β2V

2
g (paraxial approx-

imation) and substituting β0= k0 and β1= 1/Vg, the Eq. (23)
reduces to

∇2
⊥ + 2k0 i

∂
∂z

+ 2

k0r20
− 1

2
β2V

2
g
∂2

∂ξ2

( )
+ 2

∂2

∂z∂ξ

[ ]
a(r, z, ξ)

= − ω2
p

4c2
|a(r, z, ξ)|2 c1 + ic2[ ]a(r, z, ξ).

(26)

In Eq. (26), the amplitude of radiation field is a slowly vary-
ing function of z so ∂2/∂z2 is negligible in comparison with
2k0∂/∂z.

3. 1D MODULATIONAL INSTABILITY

In this section, we study the longitudinal modulational insta-
bility in the interaction of laser pulse with collisional magne-
tized plasma. Ignoring the transverse variations of the
amplitude of the laser field in the limit of plane wave
(r0 →∞), the Eq. (26) reduces to

2k0 i
∂
∂z

− 1
2
β2V

2
g
∂2

∂ξ2

( )
+ 2

∂2

∂z∂ξ
+ ω2

p

4c2
c1 + ic2[ ]a2(r, z, ξ)

[ ]

× a(r, z, ξ) = 0.

(27)

In the long pulse limit, we get

a0(z) = as0 exp
2izP
ZR0

( )
, (28)

where as0 is the initial normalized peak amplitude and ZR0 =
k0r20/2 is the Rayleigh length. The normalized laser power P
is as

P = 1
8

ω2
p

4c2
c1 + ic2[ ]a2s0r20, (29)

and r0 is the minimum spot size. The first-order solution of
Eq. (27) depends on ξ variations and this perturbation results in
modulational instability, thus the total perturbed amplitude is

as(z, ξ) = as0 exp
2iPz
ZR0

( )
+ as1 exp

2iPz
ZR0

( )
, (30)

where as1 is the perturbed amplitude of the beam in collision-
al plasma and it is complex. Considering condition of |as1|≪
|as0| and substituting Eq. (30) in Eq. (27) we obtain

i
∂as1
∂z

− 1
2
β2V

2
g
∂2as1
∂ξ2

+ 1
k0

∂2as1
∂z∂ξ

+ 2iP
k0ZR0

∂as1
∂ξ

+ 4P
ZR0

as1 = 0, (31)

and as1 can be considered as follows:

as1(z, ξ) = exp[i(Kz+ kξ)] + exp[−i(Kz+ kξ)]. (32)

In the above equation K is the modulation wavenumber and
its imaginary part represents the spatial growth and K is the
propagation wave number of the perturbed wave amplitude.
In the following, we obtain the dispersion relation by substi-
tuting Eq. (32) in Eq. (31) as

(1− k̂2)K̂2 + 8(P+ β̂2k̂
2)k̂K̂ − 16 β̂2k̂

2 + Pβ̂2 −
P2

4

( )
k̂2 = 0.

(33)

The quantities of k̂ = k/k0, K̂ = ZR0K and β̂2 = 1/8(V2
g k

2
0

ZR0β2) are dimensionless. Replacing the expansion of β(ω),
we get β̂2 ≈ −1/4(1+ ω2

p(ω2
0 + inω0)r20/4(ω2

0 + n2)c2).

A. R. Niknam et al.708

https://doi.org/10.1017/S0263034615000889 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034615000889


Then the roots of dispersion relation, Eq. (33), are obtained
as follows:

K̂ = −4(P+ β̂2k̂
2)k̂

1− k̂
2

±
4

�������������������������������������������������
k̂
2(P+ β̂2k̂

2)2 + (1− k̂
2)(β̂22k̂

2 + Pβ̂2 −
P2

4
)k̂2

√
1− k̂

2 .

(34)

Since calculated quantities β̂2, P, and k̂ are complex, we can
choose β̂ = β̂r + iβ̂i, k̂ = k̂r + ik̂i, and P= Pr+ iPi. Substi-
tuting these quantities in Eq. (34) we can write K̂ = K̂r + iΓ,
which the modulational instability is associated with
the imaginary part that is, Γ (see Appendix B for detailed
discussion).
The spatial growth rate of modulational instability in a colli-

sional transverselymagnetized plasma is obtained by the imag-
inary part of the Eq. (34). In Figure 1, the imaginary part of k̂
is plotted as a function of normalized wavenumber k̂, for two
different values of ωc/ω0. It is shown that in the absence
of collisional effects the modulational instability is restricted
to small wavenumber region and the instability can occur
when k̂2 ≤ −P((3P/4) + β̂2)/((P/2) + β̂2

2). Moreover,
Figure 1 displays that spatial growth rate of modulational in-
stability in the collisionless plasma decreases by increasing
the external magnetic field. Since the perturbed transverse
plasma current density due to constant magnetic field results
in reducing the combined effects of relativistic and pondero-
motive nonlinearities. But in Figure 2, we show that in a col-
lisional magnetized plasma the modulational instability
exists for full range of unstable wavenumbers. This figure
represents the spatial growth rate of modulational instability
in a collisional magnetoactive plasma as a function of nor-
malized wavenumber k̂, for three different values of the

collision frequency. From this figure, it is observed that in
the large wavenumber region, there is a significant increase
in instability growth rate due to the collisional effects.
These effects tend to change the transverse plasma current
density in such a way that the combined effects of relativistic
and ponderomotive nonlinearities increase, consequently, the
instability growth rate increases. Figure 3 shows the modula-
tional instability growth rate for different values of magnetic
field in the presence of collisions. In contrary to the collision-
less case, the instability growth rate increases with increase in
magnetic field. This happens because the external magnetic
field enhances the collisional effects.

Fig. 1. The spatial growth rate of modulational instability as a function of
normalized wavenumber in a collisionless plasma for two different values
of ωc/ω0. The parameters are ω0= 1.88 × 1015s−1, as0= 0.271, r0=
15 μm, and ωp/ω0= 0.1.

Fig. 2. The spatial growth rate of modulational instability as a function of
normalized wavenumber in a collisional, magnetized plasma for three differ-
ent values of collision frequency, n. The parameters are ω0= 1.88 × 1015s−1,
as0= 0.271, r0= 15 μm, ωp/ω0= 0.1, and ωc/ω0= 0.1.

Fig. 3. The spatial growth rate of modulational instability as a function of
normalized wavenumber for three different values of ωc/ω0= 0.0, ωc/
ω0= 0.2 and ωc/ω0= 0.3. The parameters are ωp= 0.1ωp, n= 20 ×
1012s−1.
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The effect of plasma frequency on the spatial growth rate
of modulational instability in the collisionless and collision-
al magnetized plasmas are presented in Figures 4a and 4b,
respectively. It is observed that increasing plasma frequency
has a great effect on the modulational instability. In fact, by
increasing the plasma frequency, the effects of relativistic
and ponderomotive nonlinearities would be strengthened.
Therefore, the modulational instability growth rate is signif-
icantly enhanced over the range of unstable wavenumbers.

4. SUMMARY AND CONCLUSION

In the present paper, we applied the source dependent
expansion method to study the modulational instability of
a linear polarized laser pulse propagating in a collisional mag-
netoactive plasma. The longitudinal modulational instability,
in which the relativistic and ponderomotive nonlinearities are
taken into account, was obtained for the propagating wave in
the plasma. The nonlinear dispersion relation in the limit of

long pulse was obtained for the perturbed laser beam ampli-
tude. It is observed that in the absence of collisional effects
the modulational instability is restricted to the small wavenum-
ber region and the constant magnetic field reduces the growth
rate of the instability. In contrast, the spatial growth rate of
modulational instability exists for full range of allowablewave-
lengths of perturbed wave amplitude in the presence of colli-
sional effects. It was illustrated that the spatial growth rate is
greatly enhanced in the presence of collisional effects and
the applied magnetic field also increases the instability
growth rate in the case of collisional plasma. Moreover, the re-
sults show that the modulational instability growth rate is sig-
nificantly enhanced by increasing the plasma frequency due to
the nonlinearity reinforcement. Indeed, the modulational inter-
actions in collisional plasma make the important restriction on
laser-driven fusion mechanism and play significant role during
the laser thermonuclear synthesis.
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APPENDIX A

Perturbation approach to obtain Eq. (10)
In this section, application of perturbation method

to calculate Eq. (10) has been illustrated in more depth. Using
Eqs (3) and (4) the second-order electron velocity will be

V2x = −e2k0E2
0(2ω2

0 − n2)
2m2ω0(4ω2

0 + n2)(ω2
0 + n2) cos 2(k0z− ω0t)

+ 3e2k0E2
0n

2m2(4ω2
0 + n2)(ω2

0 + n2) sin 2(k0z− ω0t),
(A1)

V2z = e2E0B0(ω2
0 − n2)

m2c(ω2
0 + n2)2

cos(k0z− ω0t)

+ 2e2E0B0nω0

m2c(ω2
0 + n2)2

sin(k0z− ω0t).
(A2)

Substituting second-order velocity into Eq. (9), we get

∂n2
∂t

+ ∂
∂z

−n0e2k0E2
0(2ω2

0 − n2)
2m2ω0(4ω2

0 + n2)(ω2
0 + n2)

(
cos 2(k0z− ω0t)

+ 3n0e2k0E2
0n

2m2(4ω2
0 + n2)(ω2

0 + n2) sin 2(k0z− ω0t)

+ n0e2E0B0(ω2
0 − n2)

m2c(ω2
0 + n2)2

cos(k0z− ω0t)

+ 2n0e2E0B0nω0

m2c(ω2
0 + n2)2

sin(k0z− ω0t)
)
= 0.

(A3)

By differentiating and integrating Eq. (A3), one can obtain
Eq. (10).

APPENDIX B

Calculation of the instability growth rate
The instability growth rate which is acquired from the

imaginary part of Eq. (34), is written as

Γ = γ1 + 4γ2, (B1)

where γ1 and γ2 are the imaginary parts of first and second
terms on the right hand side of Eq. (34), respectively. The pa-
rameter γ1 is defined as follows:

γ1 = −4

k̂r Pi + β̂i(k̂2r − k̂2i ) + 2k̂ik̂rβ̂r

( )
+k̂i Pr + β̂r(k̂2r − k̂2i ) − 2β̂ik̂ik̂r)(1− k̂2r + k̂2i )
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2
i

+ 32
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2 + 4k̂2r k̂
2
i

, (B2)

and the parameter γ2 will be given as

γ2 =
1��
2

√
��������������������
−G1 +

����������
G2

1 + G2
2

√√
, (B3)

where parameters G1 and G2 are specified as follows:

G1 = g1g3 + g2g4
g23 + g24

, (B4)

G2 = g2g3 − g1g4
g23 + g24

, (B5)

in which g1, g2, g3, and g4 are
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g4 = 4(1− k̂2r + k̂2i )k̂r k̂i. (B9)
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