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MASS GROWTH OF OBJECTS AND CATEGORICAL ENTROPY

AKISHI IKEDA

Abstract. In the pioneering work by Dimitrov–Haiden–Katzarkov–

Kontsevich, they introduced various categorical analogies from the classical

theory of dynamical systems. In particular, they defined the entropy of

an endofunctor on a triangulated category with a split generator. In the

connection between the categorical theory and the classical theory, a stability

condition on a triangulated category plays the role of a measured foliation so

that one can measure the “volume” of objects, called the mass, via the stability

condition. The aim of this paper is to establish fundamental properties of the

growth rate of mass of objects under the mapping by the endofunctor and to

clarify the relationship between it and the entropy. We also show that they

coincide under a certain condition.

§1. Introduction

In the pioneering work [11], Dimitrov–Haiden–Katzarkov–Kontsevich introduced various

categorical analogies of classical theory from dynamical systems. In particular, they defined

the entropy of an endofunctor on a triangulated category with a split generator. One of

their motivations comes from the connection between the theory of stability conditions on

triangulated categories and the Teichmüller theory of surfaces [10, 12]. In this connection,

a stability condition on a triangulated category corresponds to a measured foliation (a

quadratic differential) on a surface, and the mass of stable objects corresponds to the

length of geodesics. Thus the mass of objects plays the role of “volume” in some sense.

In [11], they also suggested that there is a connection between the growth rate of mass of

objects under the mapping by an endofunctor and the entropy of the endofunctor. In this

paper, we establish fundamental properties of the mass growth and clarify the relationship

between it and the entropy. We also show that they coincide under a certain condition.

The result in this paper is motivated by the well-known classical work “Volume growth and

entropy” by Yomdin [22] on classical dynamical systems.

1.1 Fundamental properties of mass growth

First, we introduce the mass growth with respect to endofunctors. Let D be a triangulated

category and K(D) be its Grothendieck group. A stability condition σ = (Z, P) on D [8]

is a pair of a linear map Z : K(D)→ C and a family of full subcategories P(φ)⊂D for

φ ∈ R satisfying some axioms (see Definition 2.8). A nonzero object in P(φ) is called a

semistable object of phase φ. One of the axioms implies that any nonzero object E ∈ D can
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be decomposed into semistable objects with decreasing phases, that is, there is a sequence

of exact triangles, called a Harder–Narasimhan filtration,

0 = E0
// E1

��

// E2

��

// · · · // Em−1 // Em

��
A1

\\

A2

\\

Am

__
= E

with Ai ∈ P(φi) and φ1 > φ2 > · · ·> φm. Through the Harder–Narasimhan filtration, the

mass of E with a parameter t ∈ R (see Definition 3.1) is defined by

mσ,t(E) :=

m∑
i=1

|Z(Ai)|eφit.

Thus, a given stability condition defines the “volume” of objects in some sense. Actually in

the connection between spaces of stability conditions and Teichmüller spaces, the mass of

stable objects gives the length of corresponding geodesics [10, 12, 14, 15]. For an endofunctor

F : D→D, we want to consider the growth rate of mass of objects under the mapping by

F . Therefore, we introduce the following quantity. The mass growth with respect to F is

the function hσ,t(F ) : R→ [−∞,∞] defined by

hσ,t(F ) := sup
E∈D

{
lim sup
n→∞

1

n
log(mσ,t(F

nE))

}
.

(As conventions, set mσ,t(0) = 0 and log 0 =−∞.) Fundamental properties of hσ,t(F ) are

stated as the main result of this paper. We also recall the space of stability conditions to

consider the behavior of hσ,t(F ) under the deformation of σ. In [8], it was shown that the

set of stability conditions Stab(D) has a natural topology and in addition, Stab(D) becomes

a complex manifold.

Next, we recall the entropy of endofunctors from [11]. Let D be a triangulated category

with a split generator and F : D→D be an endofunctor. In [11], they introduced the

function ht(F ) : R→ [−∞,∞), called the entropy of F (see Definition 2.4), and showed

various fundamental properties of ht(F ). In addition, they investigated the relationship

between the entropy ht(F ) and the mass growth hσ,t(F ) (see [11, Section 4.5]). Our result

is the following.

Theorem 1.1. (Theorem 3.5 and Proposition 3.10) Let D be a triangulated category,

F : D→D be an endofunctor, and σ be a stability condition on D. Assume that D has a

split generator G. Then the mass growth hσ,t(F ) satisfies the following.

(1) If a stability condition τ lies in the same connected component as σ in the space of

stability conditions Stab(D), then

hσ,t(F ) = hτ,t(F ).

(2) The mass growth of the generator G determines hσ,t(F ), that is,

hσ,t(F ) = lim sup
n→∞

1

n
log(mσ,t(F

nG)).

https://doi.org/10.1017/nmj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2020.9


138 A. IKEDA

(3) An inequality

hσ,t(F ) 6 ht(F )<∞

holds.

In the case t= 0, this result was stated in [11, Section 4.5] by using the triangle inequality

for mass (see Proposition 3.3). However, there are no literature to prove the triangle

inequality for mass even if t= 0. Therefore, we give a detailed proof of it with a parameter

t in Section 3.2, which is the most technical part of this paper.

1.2 Lower bound by the spectral radius

We consider the lower bound of the mass growth when t= 0. Since F : D→D preserves

exact triangles, F induces a linear transformation [F ] : K(D)→K(D). We extend [F ] on

K(D)⊗ C naturally. The spectral radius of [F ] is defined by

ρ([F ]) := max{|λ| | λ is an eigenvalue of [F ] on K(D)⊗ C}.

Theorem 1.2. (Proposition 3.11) In the case t= 0, we have an inequality

log ρ([F ]) 6 hσ,0(F ) 6 h0(F )

for any stability condition σ ∈ Stab(D).

As known results, ifD is saturated, then it was shown in [11, Theorem 2.9] that for a linear

map HH∗(F ) : HH∗(D)→HH∗(D) induced on the Hochschild homology of D, the inequality

log ρ(HH∗(F )) 6 h0(F ) holds under some condition for eigenvalues of HH∗(F ). They also

conjectured that the inequality holds without that condition. Our result, Theorem 1.2, holds

without any conditions for [F ]. However, we use the existence of stability conditions on D.

For many examples in [11, 17, 18], it was shown that the equality log ρ([F ]) = h0(F ) holds.

Kikuta–Takahashi gave a certain conjecture on the equality in [18, Conjecture 5.3].

1.3 Equality between mass growth and entropy

The remaining important question is to ask when the equality hσ,t(F ) = ht(F ) holds.

In the following, we give a sufficient condition for the equality. For a stability condition

σ = (Z, P), we can associate an abelian category, called the heart of P, as the extension-

closed subcategory generated by objects in P(φ) for φ ∈ (0, 1]. Denote it by P((0, 1]). A

stability condition σ = (Z, P) is called algebraic if the heart P((0, 1]) is a finite length

abelian category with finitely many simple objects (see Definitions 2.7 and 2.11).

Theorem 1.3. (Theorem 3.14) Let F : D→D be an endofunctor. If a connected com-

ponent Stab◦(D)⊂ Stab(D) contains an algebraic stability condition, then D has a split

generator G and for any σ ∈ Stab◦(D) we have

ht(F ) = hσ,t(F ) = lim
n→∞

1

n
log(mσ,t(F

nG)).

Note that in the above theorem, the stability condition σ is not necessarily an algebraic

stability condition.

We see a typical example, which satisfies the condition in Theorem 1.3 from Section

4.1. Let A=
⊕

k A
k be a dg-algebra such that H0(A) is a finite-dimensional algebra and

Hk(A) = 0 for k > 0. Denote by Dfd(A) the derived category of dg-modules over A with
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finite-dimensional total cohomology, that is,
∑

k dimHk(M)<∞. Then there is a bounded

t-structure whose heart is isomorphic to the abelian category of finite-dimensional modules

over H0(A). As a result, we can construct algebraic stability conditions on Dfd(A). Thus,

in the context of representation theory, Theorem 1.3 works well. As an application, we

compute the entropy of spherical twists in Section 4.2.

On the other hand, for derived categories coming from algebraic geometry, we cannot find

algebraic hearts in general. Only in special cases, for example in the case that the derived

category has a full strong exceptional collection, the work by Bondal [7] enables us to find

algebraic hearts. It is an important problem to answer whether the equality hσ,t(F ) = ht(F )

holds without the existence of algebraic stability conditions.

1.4 Categorical theory versus classical theory

We compare our result with the well-known classical result “Volume growth and entropy”

by Yomdin [22]. Let M be a compact smooth manifold and f : M →M be a smooth

map. The map f induces a linear map f∗ : H∗(M ; R)→H∗(M ; R) on the homology group

H∗(M ; R). For the map f , we can define the topological entropy htop(f) [1] and the

inequality log ρ(f∗) 6 htop(f) was conjectured in [21]. In [22], Yomdin introduced the volume

growth v(f) by using a Riemannian metric on M and showed that

log ρ(f∗) 6 v(f) 6 htop(f).

Our result Theorem 1.2 looks like the categorical analogue of this classical result. On

the other hand, the difference between categorical theory and classical theory is that

the categorical entropy ht(F ) and the mass growth hσ,t(F ) have the parameter t, which

measures the growth rate of degree shifts in a triangulated category. This point is an

essentially new feature of categorical theory.

Notations. We work over a field K. All triangulated categories in this paper are K-

linear and their Grothendieck groups are free of finite rank, that is, K(D)∼= Zn for some

n. An endofunctor F : D→D refers to an exact endofunctor, that is, F preserves all

exact triangles and commutes with degree shifts. The natural logarithm is extended to

log : [0,∞)→ [−∞,∞) by setting log 0 :=−∞.

§2. Preliminaries

In this section, we prepare basic terminologies mainly from [8, 11].

2.1 Complexity and entropy

First, we recall the notion of complexity and entropy from [11, Section 2].

Let D be a triangulated category. A triangulated subcategory is called thick if it is closed

under taking direct summands. For an object E ∈ D, we denote by 〈E〉 ⊂ D the smallest

thick triangulated subcategory containing E. An object G ∈ D is called a split generator if

〈G〉=D. This implies that for any object E ∈ D, there is some object E′ ∈ D such that we

have a sequence of exact triangles

0 = A0
// A1

��

// A2

��

// · · · // Ak−1 // Ak

��
G[n1]

^^

G[n2]

^^

G[nk]

``
= E ⊕ E′

with ni ∈ Z. We note that the object E′ and the above sequence are not unique.
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140 A. IKEDA

Definition 2.1. [11, Definition 2.1] Let E1 and E2 be objects in D. The complexity of

E2 relative to E1 is the function δt(E1, E2) : R→ [0,∞] defined by

δt(E1, E2) :=


0 if E2

∼= 0

inf

{ k∑
i=1

enit

∣∣∣∣ 0 A1 . . . Ak−1 E2 ⊕ E′2

E1[n1] . . . E1[nk]

//

��

__ //

��

__ }
if E2 ∈ 〈E1〉

∞ if E2 /∈ 〈E1〉.

By definition, we have an inequality 0< δt(G, E)<∞ for a split generator G ∈ D and a

nonzero object E ∈ D. We recall fundamental inequalities for complexity.

Proposition 2.2. [11, Proposition 2.3] For E1, E2, E3 ∈ D,

(1) δt(E1, E3) 6 δt(E1, E2)δt(E2, E3),

(2) δt(E1, E2 ⊕ E3) 6 δt(E1, E2) + δt(E1, E3),

(3) δt(F (E1), F (E2)) 6 δt(E1, E2) for an endofunctor F : D→D.

Similar to [11, Proposition 2.3], it is easy to check the following. This generalizes

Proposition 2.2(2) to the nonsplit case.

Lemma 2.3. For objects D, E1, E2, E3 ∈ D, if there is an exact triangle E1→ E2→
E3→ E1[1], then

δt(D, E2) 6 δt(D, E1) + δt(D, E3).

Now, we introduce the notion of the entropy of endofunctors. The entropy of an

endofunctor F measures the growth rate of complexity δt(G, F
nG) as n→∞.

Definition 2.4. [11, Definition 2.5] Let D be a triangulated category with a split

generator G and let F : D→D be an endofunctor. The entropy of F is the function

ht(F ) : R→ [−∞,∞) defined by

ht(F ) := lim
n→∞

1

n
log δt(G, F

nG).

By [11, Lemma 2.6], it follows that ht(F ) is well defined and ht(F )<∞.

2.2 Bounded t-structures and the associated cohomology

Definition 2.5. [6] A t-structure on D is a full subcategory F ⊂D satisfying the

following conditions:

(a) F [1]⊂F ;

(b) define F⊥ := {F ∈ D|Hom(D, F ) = 0 for allD ∈ F}, then for every object E ∈ D, there

is an exact triangle D→ E→ F →D[1] in D with D ∈ F and F ∈ F⊥.

In addition, the t-structure F ⊂D is said to be bounded if F satisfies the condition

D =
⋃
i,j∈Z

F⊥[i] ∩ F [j].

For a t-structure F ⊂D, we define the heart H⊂D by

H := F⊥[1] ∩ F .

It was proved in [6] that H becomes an abelian category. Bridgeland gave the characteri-

zation of the heart of a bounded t-structure as follows.
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Lemma 2.6. [8, Lemma 3.2] Let H⊂D be a full additive subcategory. Then H is the

heart of a bounded t-structure if and only if the following conditions hold:

(a) if k1 > k2 ∈ Z and Ai ∈H[ki] (i= 1, 2), then HomD(A1, A2) = 0;

(b) for 0 6= E ∈ D, there is a finite sequence of integers

k1 > k2 > · · ·> km

and a sequence of exact triangles

0 = E0
// E1

��

// E2

��

// · · · // Em−1 // Em

��
A1

\\

A2

\\

Am

__
= E

with Ai ∈H[ki] for all i.

The above filtration in the condition (b) defines the kth cohomology Hk(E) ∈H of the

object E by

Hk(E) :=

{
Ai[−ki] if k =−ki
0 otherwise.

This cohomology becomes a cohomological functor from D to H, that is, if there is an exact

triangle D→ E→ F → E[1], then we can obtain a long exact sequence

· · · →Hk−1(F )→Hk(D)→Hk(E)→Hk(F )→Hk+1(D)→ · · ·

in the abelian category H. In the last of this section, we introduce a special class of bounded

t-structures.

Definition 2.7. We say that the heart of a bounded t-structure is algebraic if it is a

finite length abelian category with finitely many isomorphism classes of.

If D has an algebraic heart H with simple objects S1, . . . , Sn, then it is easy to see that

the direct sum G :=
⊕n

i=1 Si becomes a split generator of D.

2.3 Bridgeland stability conditions

In [8], Bridgeland introduced the notion of a stability condition on a triangulated category

as follows.

Definition 2.8. Let D be a triangulated category and K(D) be its Grothendieck group.

A stability condition σ = (Z, P) on D consists of a group homomorphism Z : K(D)→ C,

called a central charge, and a family of full additive subcategories P(φ)⊂D for φ ∈ R
satisfying the following conditions:

(a) if 0 6= E ∈ P(φ), then Z(E) =m(E) exp(iπφ) for some m(E) ∈ R>0;

(b) for all φ ∈ R, P(φ+ 1) = P(φ)[1];

(c) if φ1 > φ2 and Ai ∈ P(φi) (i= 1, 2), then HomD(A1, A2) = 0;

(d) for 0 6= E ∈ D, there is a finite sequence of real numbers

φ1 > φ2 > · · ·> φm
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and a sequence of exact triangles

0 = E0
// E1

��

// E2

��

// · · · // Em−1 // Em

��
A1

\\

A2

\\

Am

__
= E

with Ai ∈ P(φi) for all i.

We write φ+σ (E) := φ1 and φ−σ (E) := φm. Nonzero objects in P(φ) are called σ-semistable

of phase φ in σ. The sequence of exact triangles in (d) is called a Harder–Narasimhan

filtration of E with semistable factors A1, . . . , Am of phases φ1 > · · ·> φm.

In addition to the above axioms, we always assume that our stability conditions have

the support property in [19]. Let ‖ · ‖ be some norm on K(D)⊗ R. A stability condition

σ = (Z, P) satisfies the support property if there is some constant C > 0 such that

|Z(E)|
‖[E]‖

>C

for all σ-semistable objects E ∈ D.

For an interval I ⊂ R, we denote by P(I) the extension-closed subcategory generated by

objects in P(φ) for φ ∈ I, namely

P(I) := {E ∈ D | φ±σ (E) ∈ I} ∪ {0}.

From a stability condition (Z, P), we can construct a bounded t-structure F := P((0,∞))

and its heart is given by H= P((0, 1]).

2.4 Algebraic stability conditions

In [8], Bridgeland gave the alternative description of a stability condition on D as a pair

of a bounded t-structure and a central charge on its heart. By using this description, we

construct algebraic stability conditions.

Definition 2.9. LetH be an abelian category and let K(H) be its Grothendieck group.

A central charge on H is a group homomorphism Z : K(H)→ C such that for any nonzero

object 0 6= E ∈H, the complex number Z(E) lies in the semiclosed upper half-plane H :=

{reiπφ ∈ C | r ∈ R>0, φ ∈ (0, 1]}.

For any nonzero object E ∈H, define the phase of E by

φ(E) :=
1

π
arg Z(E) ∈ (0, 1].

An object 0 6= E ∈H is called Z-semistable if every subobject 0 6=A⊂ E satisfies φ(A) 6
φ(E). A Harder–Narasimhan filtration of 0 6= E ∈H is the filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em−1 ⊂ Em = E,

whose extension factors Fi := Ei/Ei−1 are Z-semistable with decreasing phases

φ(F1)> · · ·> φ(Fm).

A central charge Z is said to have the Harder–Narasimhan property if any nonzero object of

H has a Harder–Narasimhan filtration. The following gives another definition of a stability

condition.
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Figure 1.

Harder–Narasimhan polygon.

Proposition 2.10. [8, Proposition 5.3] Giving a stability condition on D is equivalent

to giving a heart H of a bounded structure on D and a central charge on H with the Harder–

Narasimhan property.

In Proposition 2.10, the pair (Z,H) is constructed from a stability condition (Z, P) by

setting H := P((0, 1]).

Definition 2.11. A stability condition (Z, P) is called algebraic if the corresponding

heart H= P((0, 1]) is algebraic (for the definition of algebraic hearts, see Definition 2.7).

Algebraic stability conditions are constructed from algebraic hearts as follows. Let H⊂D
be an algebraic heart with simple objects S1, . . . , Sn. Then the Grothendieck group is given

by K(H)∼=
⊕n

i=1 Z[Si]. Take (z1, . . . , zn) ∈Hn and define the central charge Z : K(H)→ C
by the linear extension of Z(Si) := zi. Then Z has the Harder–Narasimhan property by

[8, Proposition 2.4]. Thus (Z,H) becomes an algebraic stability condition on D.

2.5 Harder–Narasimhan polygons

In this section, we discuss the Harder–Narasimhan polygon following [5]. This plays a

key role in showing the triangle inequality for mass in Section 3.2. The following is based

on [5, Section 3].

Definition 2.12. Let H be an abelian category and Z be a central charge on it. For

an object E ∈H, the Harder–Narasimhan polygon HNZ(E) of E is the convex hull of the

subset {Z(A) ∈ C |A⊂ E} ⊂ C in the complex plane.

It is clear from the definition that if F ⊂ E, then HNZ(F )⊂HNZ(E). The Harder–

Narasimhan polygon HNZ(E) is called polyhedral on the left if it has finitely many extremal

points 0 = z0, z1, . . . , zk = Z(E) such that HNZ(E) lies to the right of the path z0z1 . . . zk.

This implies that the intersection of HNZ(E) and the closed half-plane to the left of the

line through 0 and Z(E) becomes a polygon with vertices z0, z1, . . . , zk (see Figure 1).

Proposition 2.13. [5, Proposition 3.3] The object E has a Harder–Narasimhan filtra-

tion if and only if HNZ(E) is polyhedral on the left. In particular, if the Harder–Narasimhan

filtration of E is given by

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · Ek = E,

then extremal points of HNZ(E) are given by zi = Z(Ei) for i= 0, 1, . . . , k.
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144 A. IKEDA

2.6 Topology on the space of stability conditions

In [8], Bridgeland introduced a natural topology on the space of stability conditions

and showed that this space becomes a complex manifold. In the following, we recall his

construction. Let Stab(D) be the set of stability conditions on a triangulated category D
with the support property. For stability conditions σ = (Z, P) and τ = (W,Q) in Stab(D),

set

d(P,Q) := sup
06=E∈D

{|φ−σ (E)− φ−τ (E)|, |φ+σ (E)− φ+τ (E)|} ∈ [0,∞]

and

‖Z −W‖σ := sup

{
|Z(E)−W (E)|
|Z(E)|

∣∣∣∣ E is σ-semistable

}
∈ [0,∞].

Define a subset Bε(σ)⊂ Stab(D) by

Bε(σ) := {τ = (W,Q) ∈ Stab(D) | d(P,Q)< ε, ‖Z −W‖σ < sin(πε)}

for 0< ε < 1
4 .

In [8, Section 6], it was shown that the family of subsets

{Bε(σ)⊂ Stab(D) | σ ∈ Stab(D), 0< ε < 1
4}

becomes an open basis of a topology on Stab(D). In [8], Bridgeland showed a crucial

theorem.

Theorem 2.14. [8, Theorem 1.2] The projection map of central charges

π : Stab(D)−→HomZ(K(D), C), (Z, P) 7→ Z

is a local isomorphism of topological spaces. In particular, π induces a complex structure on

Stab(D).

§3. Mass growth of objects and categorical entropy

3.1 Mass with a parameter and complexity

In this section, we introduce the mass growth of objects and show fundamental properties

of it.

Definition 3.1. [11, Section 4.5] Take a stability condition σ = (Z, P) on D. Let E ∈ D
be a nonzero object with semistable factors A1, . . . , Am of phases φ1 > · · ·> φm. The mass

of E with a parameter t ∈ R is the function mσ,t(E) : R→ R>0 defined by

mσ,t(E) :=

m∑
i=1

|Z(Ai)|eφit.

When t= 0, mσ,0(E) is called the mass of E and simply written as mσ(E) :=mσ,0(E). As

a convention, set mσ,t(E) := 0 if E ∼= 0.

In the following, if σ is clear in the context, we often drop it from the notation and write

mt(E). Similar to the growth rate of complexity of a generator with respect to endofunctors,

we consider the growth rate of mass of objects.
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Definition 3.2. [11, Section 4.5] Let σ be a stability condition on D and F : D→D be

an endofunctor. The mass growth with respect to F is the function hσ,t(F ) : R→ [−∞,∞]

defined by

hσ,t(F ) := sup
E∈D

{
lim sup
n→∞

1

n
log(mσ,t(F

nE))

}
.

In the rest of this section, we study fundamental properties of hσ,t(F ). The triangle

inequality for mσ,t plays an important role.

Proposition 3.3. For objects D, E, F ∈ D, if there is an exact triangle D→ E→ F →
D[1], then

mσ,t(E) 6mσ,t(D) +mσ,t(F ).

The proof of Proposition 3.3 is given in Section 3.2.

Proposition 3.4. Let σ be a stability condition on D. Then

mσ,t(E) 6mσ,t(D)δt(D, E)

for any objects D, E ∈ D.

Proof. It is sufficient to show the case E ∈ 〈D〉. Then by the definition of complexity

δt(D, E), for any ε > 0, there is a sequence of exact triangles

0 // A1

��

// A2

��

// · · · // Ak−1 // E ⊕ E′

}}
D[n1]

]]

D[n2]

^^

D[nk]

``

such that
k∑
i=1

enit < δt(D, E) + ε.

Note that mσ,t satisfies mσ,t(D[n]) =mσ,t(D) · ent for D ∈ D and n ∈ Z. By using the

inequality in Proposition 3.3 repeatedly, we have

mσ,t(E) 6mσ,t(E ⊕ E′) 6
k∑
i=1

mσ,t(D[ni]) 6mσ,t(D) ·
( k∑
i=1

enit

)
6 mσ,t(D)δt(D, E) + ε ·mσ,t(D)

for any ε > 0. This implies the result.

Now, we show fundamental properties of the mass growth.

Theorem 3.5. Let F : D→D be an endofunctor and σ be a stability condition on D.

Assume that D has a split generator G ∈ D. Then the mass growth hσ,t(F ) satisfies the

followings.

(1) hσ,t(F ) is given by

hσ,t(F ) = lim sup
n→∞

1

n
log(mσ,t(F

nG)).
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(2) We have an inequality

hσ,t(F ) 6 ht(F )<∞,

where ht(F ) is the entropy of F (see Definition 2.4).

Proof. By Proposition 2.2(3) and Proposition 3.4, we have

mt(F
nE) 6mt(F

nG)δt(F
nG, FnE) 6mt(F

nG)δt(G, E)

for any object E ∈ D. Hence

lim sup
n→∞

1

n
log mt(F

nE) 6 lim sup
n→∞

1

n
log mt(F

nG)

and this inequality implies (1). Again by Proposition 3.4, we have

mt(F
nG) 6mt(G)δt(G, F

nG).

Hence

lim sup
n→∞

1

n
log mt(F

nG) 6 lim
n→∞

1

n
log δt(G, F

nG)

and this inequality implies (2).

3.2 Triangle inequality for mass with a parameter

We prove Proposition 3.3. Recall the notation H = {reiπφ | r > 0, φ ∈ (0, 1]}. For a

complex number z ∈H, define a function of t ∈ R by

gt(z) := |z|eφ(z)t,

where φ(z) is the phase of z given by φ(z) := (1/π) arg z ∈ (0, 1]. We start by showing the

triangle inequality for gt(z).

Lemma 3.6. For z1, z2 ∈H, an inequality

gt(z1 + z2) 6 gt(z1) + gt(z2)

holds.

Proof. Set φ1 := φ(z1), φ2 := φ(z2) and φ3 := φ(z1 + z2). If φ1 = φ2, the result is trivial.

Without loss of generality, we reduce to the case φ1 > φ2. By applying the law of sine for

the triangle consisting of vertices 0, z1, z1 + z2 (see Figure 2), we obtain

|z1 + z2|= d sin(πa+ πb), |z1|= d sin πb, |z2|= d sin πa,

where a= φ1 − φ3, b= φ3 − φ2 and d is the diameter of the circumcircle of the triangle. By

inputting these parameters, the inequality gt(z1 + z2) 6 gt(z1) + gt(z2) becomes

sin(πa+ πb) 6 eat sin πb+ e−bt sin πa,

where 0< a, b < 1. Dividing by sin πa sin πb and applying the addition formula, we have

eat − cos πa

sin πa
+
e−bt − cos πb

sin πb
> 0.
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Figure 2.

Triangle consisting of vertices 0, z1, z1 + z2.

Figure 3.

Polygons and a triangulation of the encircled domain.

After setting c=−b, the above inequality is equivalent to f(a) > f(c) for−1< c < 0< a < 1,

where

f(x) =
ext − cos πx

sin πx
.

It is easy to check that f(x) is increasing in the intervals (−1, 0) and (0, 1), and the limit

of f(x) at the zero is given by limx→±0 f(x) = t/π.

The triangle inequality for gt(z) implies the following.

Lemma 3.7. Let z1, . . . , zk and w1, . . . , wl be the complex numbers in H with zk = wl
and set z0 = w0 = 0. If they satisfy the following conditions (see the left of Figure 3):

(a) φ(zi − zi−1)> φ(zi+1 − zi) and φ(wj − wj−1)> φ(wj+1 − wj) for i= 1, . . . , k and j =

1, . . . , l;

(b) the polygon w0w1w2 . . . wlw0 contains the polygon z0z1z2 . . . zkz0,

then
k∑
i=1

gt(zi − zi−1) 6
l∑

j=1

gt(wj − wj−1).

Proof. By the condition (b), there is a unique domain encircled by two paths z0z1z2 . . . zk
and w0w1w2 . . . wl. By the convexity condition (a), we can triangulate this domain
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as follows. First, we extend lines zizi+1 for i= 0, . . . , k − 2 to intersect w0w1w2 . . . wl.

Then we obtain polygons which contain exactly one zizi+1 for some i. Next, we triangulate

the polygon containing zizi+1 by drawing lines from zi to wj in the polygon. Then we can

obtain the triangulated domain as in the right of Figure 3. Applying the triangle inequality

for gt(z) (Lemma 3.2) repeatedly, we obtain the result.

Lemma 3.8. Let σ = (Z, P) be a stability condition and H= P((0, 1]) be the associated

heart. If there is a short exact sequence

0→A→B→ C→ 0

in H and C ∈ P(1), then

mt(A) 6mt(B) + e−tmt(C).

Proof. Let

0 =A0 ⊂A1 ⊂A2 ⊂ · · · ⊂Ak =A

0 =B0 ⊂B1 ⊂B2 ⊂ · · · ⊂Bl−1 =B

be Harder–Narasimhan filtrations of A and B. Set zi := Z(Ai) for i= 0, 1, . . . , k, wj :=

Z(Bj) for j = 0, 1, . . . , l − 1 and wl := Z(B)− Z(C) = Z(A). Then by definition of the

Harder–Narasimhan filtration, these complex numbers satisfy the condition (a) in Lemma

3.7. Consider the Harder–Narasimhan polygons HNZ(A) and HNZ(B) (see Definition 2.12).

By Proposition 2.13, complex numbers z0, z1, . . . , zk and w0, w1, . . . , wl−1 are extremal

points of HNZ(A) and HNZ(B), respectively. Thus, the intersection of HNZ(A) and

the left of the line through 0 and zk = Z(A) is the polygon z0z1z2 . . . zkz0 and the

intersection of HNZ(B) and the left of the line through 0 and wl = Z(A) is the polygon

w0w1w2 . . . wlw0. Since HNZ(A)⊂HNZ(B), the polygon w0w1w2 . . . wlw0 contains the

polygon z0z1z2 . . . zkz0 and this implies the condition (b) in Lemma 3.7. Since

mt(A) =

k∑
i=1

gt(zi − zi−1), mt(B) =

l−1∑
j=1

gt(wj − wj−1), e−tmt(C) = gt(wl − wl−1),

applying Lemma 3.7, we obtain the result.

Proof of Proposition 3.3. Assume that there is an exact triangle D→ E→ F →D[1].

From a Harder–Narasimhan filtration of D, we can construct the dual of it:

D = Dm
// Dm−1

��

// Dm−2

}}

// · · · // D1
// D0

��
Am

]]

Am−1

aa

A1

\\
= 0

with Ai ∈ P(φi) and φm > φm−1 > · · · φ1. Applying the octahedra axiom for the above

sequence together with the exact triangle D→ E→ F →D[1], we can construct a sequence

of exact triangles

E = Em // Em−1

��

// Em−2

}}

// · · · // E1
// F

��
Am

]]

Am−1

aa

A1

\\
.
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Since mt(D) =
∑m

i=1 |Z(Ai)|etφi and Ai is semistable, the problem is reduced to the case

that D is semistable. Without loss of generality, we can assume D ∈ P(1). By taking the

cohomology associated with the heart H= P((0, 1]) (see Section 2.2), we have a long exact

sequence

0→H−1(E)→H−1(F )→H0(D)→H0(E)→H0(F )→ 0

and isomorphisms H i(E)∼=H i(F ) for i 6=−1, 0 in H. If 1> φ+(H0(E)), then the map

f : H0(D)→H0(E) is zero. Hence, the long exact sequence splits into 0→H−1(E)→
H−1(F )→H0(D)→ 0 and H0(E)∼=H0(F ). From Lemma 3.8, we have

mt(H
−1(E))et 6mt(H

−1(F ))et +mt(D).

Thus, we obtain the result. If the map f : H0(D)→H0(E) is not zero, then the long exact

sequence splits into two short exact sequences

0→H−1(E)→H−1(F )→Ker f → 0

0→ Im f →H0(E)→H0(F )→ 0.

Let E+ ∈ P(1) be the semistable factor of E with phase one. Note that mt(D) =

mt(Ker f) +mt(Im f) since Ker f ⊂D ∈ P(1) and Im f ⊂ E+ ∈ P(1). Again by Lemma 3.8,

we have

mt(H
−1(E))et 6mt(H

−1(F ))et +mt(Ker f)

and it is easy to check that mt(H
0(E)) =mt(Im f) +mt(H

0(F )).

3.3 Mass growth and deformation of stability conditions

The aim of this section is to show that for a stability condition σ and an endofunctor

F , the mass growth hσ,t(F ) is stable under the continuous deformation of σ. The following

inequality was shown in [8, Proposition 8.1] when t= 0.

Proposition 3.9. Let σ = (Z, P) ∈ Stab(D) be a stability condition on D. If τ =

(W,Q) ∈Bε(σ) with small enough ε > 0, then there are functions C1, C2 : R→ R>0 such

that

C1(t)mτ,t(E)<mσ,t(E)<C2(t)mτ,t(E)

for all 0 6= E ∈ D.

Proof. We use an argument similar to the proof of [8, Proposition 8.1]. It is sufficient to

show that for τ = (W,Q) ∈Bε(σ) with small enough ε > 0, there are some constants C > 1

and r > 0 such that

mτ,t(E)<Cer|t|mσ,t(E)

for any nonzero object E ∈ D. We first consider the case φ+σ (E)− φ−σ (E)< η for 0< η < 1
4 .

In this case, it was shown in the proof of [8, Proposition 8.1] that there is a constant

C(ε, η)> 1 such that

mτ (E) 6 C(ε, η)mσ(E)

and C(ε, η)→ 1 as max{ε, η}→ 0. Note that φ+σ (E)− φ−σ (E)< η implies φ±σ (E) ∈ (ψ, ψ +

η) for some ψ ∈ R. Since d(P,Q)< ε, we have φ±τ (E) ∈ (ψ − ε, ψ + ε+ η). By definition of

mσ,t(E) and mτ,t(E), it follows that

mτ,t(E) 6mτ (E) exp(φ+τ (E)|t|), mσ(E) exp(φ−σ (E)|t|) 6mσ,t(E).
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Since ψ < φ−σ (E) and φ+τ (E)< ψ + ε+ η, we have an inequality

mτ,t(E) 6 C(ε, η)e(ε+η)|t|mσ,t(E).

Next, we consider a general nonzero object E. Take a real number φ and a positive integer

n. For k ∈ Z, define intervals

Ik := [φ+ knε, φ+ (k + 1)nε), Jk := [φ+ knε− ε, φ+ (k + 1)nε+ ε)

and let αk and βk be the truncation functors projecting into the subcategories Q(Ik) and

P(Jk), respectively. Then, as in the proof of [8, Proposition 8.1], we have αk ◦ βk = αk and

therefore mτ,t(αk(E)) 6mτ,t(βk(E)). As a result, for small enough nε, we have

mτ,t(E) =
∑
k

mτ,t(αk(E)) 6
∑
k

mτ,t(βk(E))<C(ε, (n+ 2)ε)e(n+3)ε|t|
∑
k

mσ,t(βk(E)).

On the other hand, we can choose φ so that∑
k

mσ,t(βk(E)) 6
n+ 2

n
mσ,t(E).

By taking the limits ε→ 0 and n→∞ in keeping with nε→ 0, the result follows.

From Proposition 3.9, we immediately have the following.

Proposition 3.10. Let F : D→D be an endofunctor, and σ and τ be stability

conditions on D. If σ and τ lie in the same connected component in Stab(D), then

hσ,t(F ) = hτ,t(F ).

Proof. Let σ, τ ∈ Stab(D) be stability conditions such that τ ∈Bε(σ) for small enough

ε > 0. Then Proposition 3.9 implies hσ,t(F ) = hτ,t(F ). Thus, hσ,t(F ) is locally constant on

the topological space Stab(D).

3.4 Lower bound of the mass growth by the spectral radius

Let F : D→D be an endofunctor. Since F preserves exact triangles in D, F induces

a linear transformation [F ] : K(D)→K(D). We extend [F ] on K(D)⊗ C naturally. The

spectral radius of [F ] is defined by

ρ([F ]) := max{|λ| | λ is an eigenvalue of [F ] on K(D)⊗ C}.

Proposition 3.11. For any stability condition σ ∈ Stab(D), we have an inequality

log ρ([F ]) 6 hσ,0(F ).

Proof. We recall the assumption K(D)∼= Z⊕n. Set K(D)C :=K(D)⊗ C. Let

A1, . . . , An ∈ D be objects whose classes [A1], . . . , [An] form a basis of K(D)C. Take an

eigenvector

v =

n∑
i=1

ai[Ai] ∈K(D)C (ai ∈ C)

for the eigenvalue λ ∈ C of [F ] satisfying |λ|= ρ([F ]). First, we consider the case that a sta-

bility condition σ = (Z, P) satisfies Z(v) 6= 0. Note that the mass satisfies |Z(E)|6mσ(E)
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and mσ(E ⊕ E′) =mσ(E) +mσ(E′) for any objects E, E′ ∈ D. Then

|λ|k|Z(v)|= |Z(λkv)|= |Z([F ]kv)| 6
n∑
i=1

|ai| · |Z(F kAi)|

6
n∑
i=1

limσ(F kAi) =mσ

(
F k
( n⊕
i=1

A⊕lii

))
,

where l1, . . . , ln are positive integers satisfying |ai|6 li. Since |Z(v)|> 0, we have

log ρ([F ]) = lim
k→∞

1

k
log(|λ|k|Z(v)|) 6 lim sup

k→∞

1

k
log(mσ(F kE)) 6 hσ,0(F ),

where E =
⊕n

i=1 A
⊕li
i . Next, consider the case Z(v) = 0. Then by Theorem 2.14, we can

deform σ = (Z, P) to σ′ = (Z ′, P ′) so that Z ′(v) 6= 0. Again we have log ρ([F ]) 6 hσ′,0(F )

and Proposition 3.10 implies hσ,0(F ) = hσ′,0(F ).

3.5 Mass growth via algebraic stability conditions

If a triangulated category has an algebraic stability condition, then we can show that

the mass growth coincides with the entropy. Let H⊂D be an algebraic heart with simple

objects S1, . . . , Sn. Then the Grothendieck group is given by

K(D)∼=
n⊕
i=1

Z[Si].

The class of an object E ∈H is written as [E] =
∑n

i=1 di[Si] with di ∈ Z>0. We define the

dimension of E by dim E :=
∑n

i=1 di ∈ Z>0. Then the dimension gives the upper bound of

the complexity for objects in H.

Lemma 3.12. Let H⊂D be an algebraic heart with simple objects S1, . . . , Sn. Then for

the split generator G :=
⊕n

i=1 Si, we have an inequality

δt(G, E) 6 dim E.

Proof. Since H is a finite length abelian category, for any object E ∈H there is a

Jordan–Hölder filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El = E

of length l = dim E with Ei/Ei−1 ∈ {S1, . . . , Sn}. As a result, we can construct a filtration

0 = E′0 ⊂ E′1 ⊂ E′2 ⊂ · · · ⊂ E′l = E ⊕ E′

of length l = dim E with E′i/E
′
i−1 =G and this implies the result.

Following Section 2.4, we construct the special algebraic stability condition. For an

algebraic heart H⊂D with simple objects S1, . . . , Sn, define the central charge

Z0 : K(D)∼=
n⊕
i=1

Z[Si]→ C

by Z0(Si) := i. Then the pair σ0 := (Z0,H) becomes an algebraic stability condition. By

definition, the mass of an object E ∈H is given by

mσ0,t(E) = dim E · e(1/2)t.

Together with Lemma 3.12, we obtain the following inequality.
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Proposition 3.13. For any E ∈ D, the generator G=
⊕n

i=1 Si and the algebraic

stability condition σ0 = (Z0,H), we have an inequality

δt(G, E) 6 e−(1/2)tmσ0,t(E).

Proof. For an object E ∈ D, we denote by Hk(E) ∈H the cohomology associated with

the heart H (see Section 2.2). By using Lemmas 2.3 and 3.12, we have

δt(G, E) 6
∑
k

δt(G, H
k(E))e−kt 6

∑
k

dimHk(E)e−kt.

On the other hand, the definition of mσ0,t(E) implies

mσ0,t(E) =
∑
k

mσ0,t(H
k(E))e−kt =

∑
k

dimHk(E)e(1/2)te−kt.

Thus, we obtain the result.

We show the main result of this section.

Theorem 3.14. Let F : D→D be an endofunctor. If a connected component

Stab◦(D)⊂ Stab(D) contains an algebraic stability condition, then D has a split generator

G and for any σ ∈ Stab◦(D), we have

ht(F ) = hσ,t(F ) = lim
n→∞

1

n
log(mσ,t(F

nG)).

Proof. Let H be an algebraic heart with simple objects S1, . . . , Sn and set G=
⊕n

i=1 Si.

Then G is a split generator of D. Consider the special algebraic stability condition σ0 =

(Z0,H) which is constructed in this section. By Proposition 3.10, it is sufficient to show

that

hσ0,t(F ) = ht(F ).

By [11, Lemma 2.6], the limit

ht(F ) = lim
n→∞

1

n
log δt(G, F

nG)

converges. On the other hand, by Proposition 3.4 and Proposition 3.13, we have

e(1/2)tδt(G, F
nG) 6mσ0,t(F

nG) 6mσ0,t(G)δt(G, F
nG).

Hence the limit

lim
n→∞

1

n
log(mσ0,t(F

nG))

converges and coincides with ht(F ).

§4. Applications

4.1 Entropy on the derived categories of nonpositive dg-algebras

In this section, we discuss the entropy of endofunctors on the derived categories of

nonpositive dg-algebras. In this case, we can describe the entropy as the growth rate of

the Hilbert–Poincaré polynomial of a generator.

Let A=
⊕

k∈Z A
k be a dg-algebra over K satisfying the following conditions:

(a) Hk(A) = 0 for i > 0;

(b) H0(A) is a finite-dimensional algebra over K.
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Let D(A) be the derived category of dg-modules over A and Dfd(A) be the full

subcategory of D(A) consisting of dg-modules with finite-dimensional total cohomology,

that is,

Dfd(A) :=

{
M ∈ D(A)

∣∣∣∣∑
k

dimHk(M)<∞
}
.

Define the full subcategory F ⊂Dfd(A) by

F := {M ∈ Dfd(A) |Hk(M) = 0 for k > 0}.

Then F becomes a bounded t-structure on Dfd(A). The heart Hs of F is called the standard

heart. It is known that the 0th cohomology functor H0 : Dfd(A)→mod-H0(A) induces an

equivalence of abelian categories:

H0 : Hs
∼−→mod-H0(A),

where mod-H0(A) is the abelian category of finite-dimensional H0(A)-modules. (For

details, see [2, Section 2].) Since H0(A) is a finite-dimensional algebra, Hs is an algebraic

heart. Thus, we can construct an algebraic stability condition onDfd(A). Applying Theorem

3.14, we obtain the following.

Proposition 4.1. Let Stab◦(Dfd(A)) be the connected component which contains

stability conditions with the standard heart Hs. Then for any stability condition σ ∈
Stab◦(Dfd(A)) and an endofunctor F : Dfd(A)→Dfd(A), we have

ht(F ) = hσ,t(F ).

Next, we describe ht(F ) by using the Hilbert–Poincaré polynomial.

Definition 4.2. For a dg-module M ∈ Dfd(A), define the Hilbert–Poincaré polynomial

of M by

Pt(M) :=
∑
k∈Z

dimHk(M)e−kt ∈ Z[et, e−t].

As in Section 3.5, we construct the special stability condition σ0 = (Z0,Hs) by using the

standard heart Hs. Then by definition of σ0, we have

mσ0,t(M) = e(1/2)tPt(M)

for any dg-module M ∈ Dfd(A). As a result, the entropy is described as follows.

Proposition 4.3. Let F : Dfd(A)→Dfd(A) be an endofunctor and G ∈ Dfd(A) be a

split generator. Then the entropy of F is given by

ht(F ) = lim
n→∞

1

n
log Pt(F

nG).

4.2 Entropy of spherical twists

In this section, we compute the entropy of Seidel–Thomas spherical twists on the derived

categories of Calabi–Yau algebras associated with acyclic quivers. Let Q be an acyclic quiver

with vertices {1, . . . , n} and ΓNQ be the Ginzburg N -Calabi–Yau dg-algebra associated

with Q for N > 2. (For the definition of ΓNQ, see [13, Section 4.2] or [16, Section 6.2].)
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Set DNQ :=Dfd(ΓNQ). By [16, Theorem 6.3], the category DNQ is an N -Calabi–Yau category,

that is, there is a natural isomorphism

Hom(E, F )
∼−→Hom(F, E[N ])∗

for E, F ∈ DNQ . (Here V ∗ denotes the dual space of a K-linear space V .) In the Calabi–Yau

category, we can consider a certain class of objects, called spherical objects. An object

S ∈ DNQ is called N -spherical if

Hom(S, S[i]) =

{
K if i= 0, N

0 otherwise.

For a spherical object S ∈ DNQ , Seidel–Thomas [20] defined an exact autoequivalence ΦS ∈
Aut(DNQ ), called a spherical twist, by the exact triangle

Hom•(S, E)⊗ S −→ E −→ ΦS(E)

for any object E ∈ DNQ . The inverse functor Φ−1S ∈Aut(DNQ ) is given by

Φ−1S (E)−→ E −→ S ⊗Hom•(E, S)∗.

The Ginzburg dg-algebra ΓNQ satisfies the conditions in Section 4.1 when N > 2. (In the

case N = 2, we need some modification.) Hence, the category DNQ has the standard algebraic

heart Hs ⊂DNQ generated by simple ΓNQ-modules S1, . . . , Sn corresponding to vertices

{1, . . . , n} of Q. In addition, these objects S1, . . . , Sn are N -spherical by [16, Lemma 4.4].

Thus, we can define spherical twists ΦS1 , . . . , ΦSn ∈Aut(DNQ ). In the following, we compute

the entropy of spherical twists ΦS1 , . . . , ΦSn by using Proposition 4.3. For simplicity, write

Φi := ΦSi .

Lemma 4.4. For a spherical twist Φi ∈Aut(DNQ ) and a spherical object Sj ∈ DNQ , the

Hilbert–Poincaré polynomial of Φk
i Sj (k > 0) is given by

Pt(Φ
k
i Sj) =


ek(1−N)t if i= j

1 + qij
∑k−1

l=0 e
l(1−N)t if qij > 0

1 + qjie
(2−N)t

∑k−1
l=0 e

l(1−N)t if qji > 0

1 otherwise,

where qij is the number of arrows from i to j in Q.

Proof. First, we note that

dim Hom(Si, Sj [m]) =


1 if i= j and m= 0, N

qij if qij > 0 and m= 1

qji if qji > 0 and m=N − 1

0 otherwise.

This follows by the definition of S1, . . . , Sn for m= 0, by [4, Lemma 2.12] for m= 1, and

the Serre duality for m=N − 1, N . By the definition of spherical twists, it is easy to see

that Φk
i Si = Si[k(1−N)] and hence Pt(Φ

k
i Si) = ek(1−N)t. If i 6= j and qij = qji = 0, then
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Φk
i Sj = Sj and hence Pt(Φ

k
i Sj) = 1. Consider the case qij > 0. Since

Hom•(Si, Sj)⊗ Si =
⊕
m∈Z

Hom(Si[m], Sj)⊗ Si[m]∼= S
⊕qij
i [−1],

we have an exact triangle

Sj → ΦiSj → S
⊕qij
i → Sj [1].

Applying the spherical twist Φi for the above exact triangle repeatedly, we obtain a sequence
of exact triangles

Sj
// ΦiSj

��

// Φ2
iSj

||

// · · · // Φk−1
i Sj

// Φk
i Sj .

yy

S
⊕qij
i

[[

S
⊕qij
i [1 −N ]

bb

S
⊕qij
i [(k − 1)(1 −N)]

ff

This implies the result in the case qij > 0 and a similar argument gives the result in the

case qji > 0.

Proposition 4.5. Let Q be a connected acyclic quiver and assume that Q is not a

quiver with one vertex and no arrows. Then the entropy of spherical twists Φ1, . . . , Φn is

given by

ht(Φi) =

{
0 if t> 0

(1−N)t if t < 0.

Proof. We use the generator G=
⊕n

j=1 Sj . Then Pt(Φ
k
iG) =

∑n
j=1 Pt(Φ

k
i Sj). Recall from

Proposition 4.4 that

Pt(Φ
k
i Sj) = 1 + qij

k−1∑
l=0

el(1−N)t = 1 + qij
1− ek(1−N)t

1− e(1−N)t

in the case qij > 0 and

Pt(Φ
k
i Sj) = 1 + qjie

(2−N)t
k−1∑
l=0

el(1−N)t = 1 + qjie
(2−N)t 1− ek(1−N)t

1− e(1−N)t

in the case qji > 0. First, we consider the case t > 0. Then the above two terms converge

to some positive real numbers as k→∞ since (1−N)t < 0. By the assumption on Q, the

sum
∑n

j=1 Pt(Φ
k
i Sj) contains at least one of the above two. As a result,

∑n
j=1 Pt(Φ

k
i Sj) also

converges to some positive real number as k→∞. Thus

ht(Φi) = lim
k→∞

1

k
log Pt(Φ

k
iG) = 0

when t > 0. Next, consider the case t < 0. Similarly, we can show that e−k(1−N)t
∑n

j=1

Pt(Φ
k
i Sj) converges to some positive real number as k→∞ since −(1−N)t < 0. Thus

ht(Φi) = lim
k→∞

1

k
log Pt(Φ

k
iG) = lim

k→∞

1

k
log ek(1−N)te−k(1−N)tPt(Φ

k
iG)

= (1−N)t+ lim
k→∞

1

k
log e−k(1−N)tPt(Φ

k
iG) = (1−N)t

when t < 0. Finally, we can easily check that ht(Φi) = 0 when t= 0.
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Remark 4.6. The subgroup of autoequivalences generated by spherical twists

Sph(DNQ ) := 〈Φ1, . . . , Φn〉 ⊂Aut(DNQ )

is called the Seidel–Thomas braid group. Here we only computed the entropy of generators

Φ1, . . . , Φn. It is an important problem to compute the entropy ht(Φ) for a general element

Φ ∈ Sph(DNQ ).

4.3 Lower bound of the entropy on the derived categories of surfaces

Let X be a smooth projective variety over C and denote by Db(X) the bounded derived

category of coherent sheaves on X. Define the Euler form χ : K(Db(X))×K(Db(X))→ Z
by

χ(E, F ) :=
∑
i∈Z

(−1)i dimC HomDb(X)(E, F [i]).

The numerical Grothendieck group N(X) is the quotient of K(Db(X)) by the radical of

the Euler form χ. Let EndFM (Db(X)) be the semigroup consisting of Fourier–Mukai type

endofunctors. Since these endofunctors preserve the radical of χ, they induce linear maps

on N(X), that is, the semigroup homomorphism

EndFM (Db(X))→ End(N(X)), F 7→ [F ]

is well defined (see [18, Section 5.1]). A stability condition σ = (Z, P) is called numerical if

Z : K(Db(X))→ C factors through the numerical Grothendieck group N(X).

In [3, 9], a numerical stability condition on Db(X) was constructed when dimC X = 2.

Applying Theorem 3.5 and Proposition 3.11, we obtain the following lower bound of the

entropy.

Proposition 4.7. Let X be a smooth projective surface over C and F : Db(X)→Db(X)

be a Fourier–Mukai type endofunctor. Then

log ρ([F ]) 6 h0(F ),

where ρ([F ]) is the spectral radius of the induced linear map [F ] : N(X)→N(X) and h0(F )

is the entropy of F at t= 0.

Remark 4.8. Let X be a smooth projective variety over C. In [18], they conjectured

that the equality log ρ([F ]) = h0(F ) holds for any autoequivalence F ∈Aut(Db(X)). This

conjecture was shown for a curve in [17] and for a variety with ample canonical bundle or

ample anticanonical bundle in [18].
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