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Abstract Through appropriate choices of elements in the underlying iterated function system, the
methodology of fractal interpolation enables us to associate a family of continuous self-referential func-
tions with a prescribed real-valued continuous function on a real compact interval. This procedure elicits
what is referred to as an α-fractal operator on C(I), the space of all real-valued continuous functions
defined on a compact interval I. With an eye towards connecting fractal functions with other branches
of mathematics, in this paper we continue to investigate the fractal operator in more general spaces such
as the space B(I) of all bounded functions and the Lebesgue space Lp(I), and in some standard spaces
of smooth functions such as the space Ck(I) of k-times continuously differentiable functions, Hölder
spaces Ck,σ(I) and Sobolev spaces Wk,p(I). Using properties of the α-fractal operator, the existence of
Schauder bases consisting of self-referential functions for these function spaces is established.
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1. Introduction

It is well known that the fractal interpolation function (FIF), a notion introduced by
Barnsley [1,2], provides an effective tool for the approximation of rough functions and
an alternative to the traditional nonrecursive approximation methods that generally use
smooth functions. The fractal function was originally introduced as a continuous function
interpolating a prescribed set of data points in the Cartesian plane. These fractal approx-
imants are constructed as attractors of appropriate iterated function systems (IFSs).
Furthermore, a fractal function is the fixed point of a suitable contraction map (a Read–
Bajraktarević operator) defined on a subset of the space of all continuous real-valued
functions (see § 2).
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Besides being a source of smooth and non-smooth approximants catering to the mod-
elling problem at hand, the notion of FIF provides a bounded linear operator, termed an
α-fractal operator, on the space C(I) of all continuous real-valued functions on a compact
interval I in R, the set of reals. In earlier papers [14–18], Navascués studied this fractal
operator in detail. This operator-theoretic formalism of fractal functions enables them to
interact with other traditional branches of pure and applied mathematics including func-
tional analysis, operator theory, complex analysis, harmonic analysis and approximation
theory.

In this paper we continue to explore the aforementioned fractal operator, but now
within the setting of function spaces such as the space of bounded functions B(I),
Lebesgue spaces Lp(I), the space of k-times continuously differentiable functions Ck(I),
Hölder spaces Ck,σ(I) and Sobolev spaces Wk,p(I), all of which are prevalent in modern
analysis and function theory. Hence, it is our view that the present work enriches the
theory of fractal functions and opens the door to them finding further applications in
various fields such as numerical analysis, functional analysis and harmonic analysis (in
connection with partial differential equations, for example). In particular, we expect that
the current study will pave the way for investigating shape-preserving fractal approx-
imation in the various function spaces considered herein. For shape-preserving fractal
approximation in the space of continuous functions, the reader is invited to refer to [22].

The research reported here is admittedly influenced to an extent by works by Mas-
sopust on fractal functions and local fractal functions: see [9–13]. However, it should
be noted that our exposition has a different goal. Our main observations are centred on
the α-fractal operator defined on some standard spaces of functions, in contrast to the
Read–Bajraktarević operator that defines fractal functions, and we find this link quite
intriguing.

Turning to the structure of our paper, in § 2 we assemble the requisite general material.
In § 3 we revisit the construction of α-fractal functions in various spaces of functions, and
this acts as a prelude to our main findings. The last section, § 4, concerns the development
of some foundational aspects of the associated fractal operator.

2. Notation and preliminaries

In this section we provide a brief introduction to various spaces of functions that we dis-
cuss in this paper. We then review the requisite background material on fractal functions.
We recommend that interested readers consult [1,14,20,21] for further details.

The set of natural numbers will be denoted by N and the set of real numbers by R.
For a fixed N ∈ N, we shall write NN for the set of the first N natural numbers. By
a self-map we mean a function whose domain and codomain are the same. For a given
compact interval I = [c, d] ⊂ R, let

B(I) := {g : I → R; g is bounded on I}.

The functional
‖g‖∞ := sup{|g(x)| : x ∈ I},
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termed the uniform norm, turns B(I) into a Banach space. For k ∈ N ∪{0}, consider the
space

Ck(I) := {g : I → R; g is k-times differentiable and g(k) ∈ C(I)}
endowed with the norm

‖g‖Ck := max{‖g(r)‖∞ : r ∈ Nk ∪ {0}}.

In addition to the Banach spaces B(I) and Ck(I), we require the following spaces that
have numerous applications in analysis.

For 0 < p � ∞, let

Lp(I) := {g : I → R; g is measurable and ‖g‖p < ∞},

where the ‘norm’ is given by

‖g‖p =

⎧⎪⎪⎨
⎪⎪⎩

[∫
I

|g(x)|p dx

]1/p

, 0 < p < ∞,

ess sup
x∈I

|g(x)|, p = ∞.

We recall that for 1 � p � ∞, ‖ · ‖p defines a norm on Lp(I), and (Lp(I), ‖ · ‖p) is a
Banach space. Note that for p = 2, the space L2(I) is a Hilbert space with respect to the
inner product

〈g1, g2〉 :=
∫

I

g1g2 dx.

For 0 < p < 1, ‖ · ‖p is not really a norm, only a quasi-norm, that is, in place of the
triangle inequality we have

‖g1 + g2‖p � 21/p(‖g1‖p + ‖g2‖p),

and Lp(I) is a quasi-Banach space.
Let u, v ∈ L1(I). We say that v is the kth weak derivative of u and write Dku = v,

provided ∫
I

u Dkϕ dx = (−1)k

∫
I

vϕ dx

for all infinitely differentiable functions ϕ with ϕ(c) = ϕ(d) = 0.
For 1 � p � ∞ and k ∈ N ∪ {0}, let Wk,p(I) denote the usual Sobolev space. That is,

Wk,p(I) := {g : I → R; Djg ∈ Lp(I), j = 0, 1, . . . , k},

where Djg denotes the jth weak or distributional derivative of g. The space Wk,p(I)
endowed with the norm

‖g‖Wk,p :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[ k∑
j=0

‖Djg‖p
p

]1/p

, for p ∈ [1,∞),

k∑
j=0

‖Djg‖∞, for p = ∞,
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is a Banach space. For p = 2, it is customary to denote Wk,p(I) by Hk(I), which is a
Hilbert space.

A function u : I → R is said to be Hölder continuous with exponent σ if

|u(x) − u(y)| � C|x − y|σ for all x, y ∈ I and for some C > 0.

For Hölder continuous functions u with exponent σ, let us define the σth Hölder seminorm
as

[u]σ = sup
x,y∈I, x �=y

|u(x) − u(y)|
|x − y|σ

and consider the Hölder space

Ck,σ(I) := {g ∈ Ck−1(I); g(k) is Hölder continuous with exponent σ}.

The space Ck,σ(I) is a Banach space when endowed with the norm

‖g‖Ck,σ :=
k∑

j=0

‖g(j)‖∞ + [g(k)]σ.

Having exposed the reader to function spaces that we will encounter in due course,
next we provide an overview of fractal interpolation and related ideas. Assume that
N ∈ N, N > 2. Let {(xi, yi) ∈ R

2 : i ∈ NN} denote the prescribed set of interpolation
data with strictly increasing abscissae. Set I = [x1, xN ] and Ii = [xi, xi+1] for i ∈ NN−1.
Fractal interpolation constructs a continuous function g : I → R satisfying g(xi) = yi

for all i ∈ NN and whose graph G(g) is a fractal in the sense that G(g) is a union of
transformed copies of itself (see (2.1)). Suppose that Li : I → Ii, i ∈ NN−1, are affinities
satisfying

Li(x1) = xi, Li(xN ) = xi+1.

For i ∈ NN−1, let Fi : I × R → R be continuous functions staisfying

|Fi(x, y) − Fi(x, y∗)| � ci|y − y∗|, Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1

for y, y∗ ∈ R and 0 < ci < 1. Define

Cy1,yN
(I) = {h ∈ C(I); h(x1) = y1, h(xN ) = yN}.

It is readily observed that Cy1,yN
(I) is a closed (metric) subspace of the Banach space

(C(I), ‖ · ‖∞). Define the Read–Bajraktarević (RB) operator T : Cy1,yN
(I) → Cy1,yN

(I)
via

(Th)(x) = Fi(L−1
i (x), h ◦ L−1

i (x)), x ∈ Ii, i ∈ NN−1.

The nonlinear mapping T is a contraction with a contraction factor c := max{ci : i ∈
NN−1}. Consequently, by the Banach fixed-point theorem, T has a unique fixed point,
say g. Furthermore, g interpolates the data {(xi, yi) : i ∈ NN} and satisfies the functional
equation

g(Li(x)) = Fi(x, g(x)), x ∈ I, i ∈ NN−1.
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Let wi : I × R → Ii × R ⊂ I × R be defined by

wi(x, y) = (Li(x), Fi(x, y)), i ∈ NN−1.

Consider the IFS W = {I × R; wi, i ∈ NN−1}. The attractor G of the IFS W is then
the graph G(g) of the function g, that is,

G(g) =
⋃

i∈NN−1

wi(G(g)). (2.1)

Therefore, g is a self-referential function.
Navascués [14] observed that the theory of FIFs can be used to generate a family of

continuous functions having fractal characteristics from a prescribed continuous function.
To this end, for a given f ∈ C(I), consider a partition Δ := {x1, x2, . . . , xN} of I satisfying
x1 < x2 < · · · < xN , a continuous map b : I → R such that

b �= f, b(x1) = f(x1), b(xN ) = f(xN ),

and N − 1 real numbers αi satisfying |αi| < 1. Define an IFS through the maps

Li(x) = aix + di, Fi(x, y) = αiy + f ◦ Li(x) − αib(x), i ∈ NN−1. (2.2)

The corresponding FIF, denoted by fα
Δ,b = fα, is referred to as an α-fractal function

for f (a fractal perturbation of f) with respect to a scale vector α = (α1, α2, . . . , αN−1),
base function b and partition Δ. Here, the interpolation points are {(xi, f(xi)) : i ∈ NN}.
The fractal dimension (Minkowski dimension or Hausdorff dimension) of the function
fα depends on the parameter α ∈ (−1, 1)N−1. The function fα is the fixed point of the
operator Tα

Δ,b,f : Cf (I) → Cf (I) defined by

(Tα
Δ,b,fg)(x) = f(x) + αi(g − b) ◦ L−1

i (x), x ∈ Ii, i ∈ NN−1, (2.3)

where Cf (I) := {g ∈ C(I); g(x1) = f(x1), g(xN ) = f(xN )}. Consequently, the α-fractal
function corresponding to f satisfies the self-referential equation

fα
Δ,b(x) = f(x) + αi(fα

Δ,b − b)(L−1
i (x)), x ∈ Ii, i ∈ NN−1. (2.4)

Assume that the base function b depends linearly on f , say b = Lf , where L : C(I) → C(I)
is a bounded linear map. Then the map

Fα
Δ,b : C(I) → C(I), Fα

Δ,b(f) = fα
Δ,b,

which is referred to as an α-fractal operator, is a bounded linear operator.
To obtain fractal functions with more flexibility, iterated function systems in which

scaling factors are replaced by scaling functions have received attention in the recent
fractal functions literature [3,4,7,12]. That is, one may consider the IFS with maps

Li(x) = aix + di, Fi(x, y) = αi(x)y + f ◦ Li(x) − αi(x)b(x), i ∈ NN−1, (2.5)
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where the αi are continuous functions satisfying max{‖αi‖∞ : i ∈ NN−1} < 1, and b �= f

is a continuous function that agrees with f at the extremes of the interval I (see, for
example, [25]). The corresponding α-fractal function is the fixed point of the RB operator

(Tα
Δ,b,fg)(x) = f(x) + αi(L−1

i (x))(g − b)(L−1
i (x)), x ∈ Ii, i ∈ NN−1, (2.6)

and hence obeys the functional equation

fα
Δ,b(x) = f(x) + αi(L−1

i (x))(fα
Δ,b − b)(L−1

i (x)), x ∈ Ii, i ∈ NN−1. (2.7)

3. α-fractal functions on various function spaces

The aim of this section is to equip the reader with constructions of α-fractal functions
in various function spaces, and as such it forms a prelude to our main results in the next
section. The said constructions can be obtained as particular cases of the constructions of
fractal functions and local fractal functions in the corresponding function spaces reported
in various places in the literature [9–13]. We will present the constructions in the form
of various theorems, the proofs of which can be found in the references just given unless
indicated otherwise.

Theorem 3.1. Let f ∈ B(I). Assume that Δ := {x1, x2, . . . , xN} is a partition of
I with strictly increasing abscissae, and let Ii = [xi, xi+1), for i ∈ NN−2, and IN−1 =
[xN−1, xN ] be the corresponding subintervals. Further assume that the maps Li : I → Ii

are affinities satisfying Li(x1) = xi, Li(x−
N ) = xi+1 for i ∈ NN−1, and the base function

b and scaling functions αi, i ∈ NN−1, are real-valued bounded functions on I. Then
the RB operator defined in (2.6) is a well-defined self-map on B(I). Furthermore, if
‖α‖∞ = max{‖αi‖∞ : i ∈ NN−1} < 1, then T is a contraction and has a unique fixed
point fα ∈ B(I).

Theorem 3.2. Let f ∈ Lp(I), 0 < p � ∞. Suppose that Δ = {x1, x2, . . . , xN} is
a partition of I satisfying x1 < x2 < · · · < xN , Ii := [xi, xi+1) for i ∈ NN−2, and
IN−1 := [xN−1, xN ]. Let Li : I → Ii be affine maps Li(x) = aix+di satisfying Li(x1) = xi

and Li(x−
N ) = xi+1 for i ∈ NN−1. Choose αi ∈ L∞(I) for all i ∈ NN−1 and b ∈ Lp(I).

Then the RB operator T given in (2.6) defines a self-map on Lp(I). Furthermore, for the
scaling functions αi, i ∈ NN−1, satisfying the following condition, T is a contraction map
on Lp(I):

[ ∑
i∈NN−1

ai‖αi‖p
∞

]1/p

< 1 for p ∈ [1,∞),

max
i∈NN−1

‖αi‖∞ < 1 for p = ∞,

∑
i∈NN−1

ai‖αi‖p
∞ < 1 for p ∈ (0, 1).

Consequently, the corresponding fixed point fα ∈ Lp(I) obeys the self-referential equa-
tion (2.7).
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Recall that, in most cases, the α-fractal function has non-integer Hausdorff and
Minkowski dimensions that depend on the scale vector α, and the map f �→ fα is there-
fore a ‘roughing’ operation. The following theorem provides appropriate choices of the
scaling functions and base function so that the order of continuity of f can be preserved
in fα (see [23,24]).

Theorem 3.3. Let f ∈ Ck(I), where k ∈ N. Suppose that Δ = {x1, x2, . . . , xN} is a
partition of I satisfying x1 < x2 < · · · < xN , Ii := [xi, xi+1] for i ∈ NN−1, and Li : I → Ii

are affine maps Li(x) = aix+di satisfying Li(x1) = xi and Li(xN ) = xi+1 for i ∈ NN−1.
Suppose that k-times continuously differentiable scaling functions and base function are
selected so that

‖αi‖Ck �
(

ai

2

)k

,

b(r)(x1) = f (r)(x1), b(r)(xN ) = f (r)(xN ), i ∈ NN−1, r ∈ Nk ∪ {0}.

The RB operator defined in (2.6) is then a contraction on the complete metric space

Ck
f (I) := {g ∈ Ck(I); g(r)(x1) = f (r)(x1), g(r)(xN ) = f (r)(xN ), r ∈ Nk ∪ {0}}.

Furthermore, the derivative (fα)(r) of its unique fixed point fα satisfies the self-referential
equation

(fα)(r)(x) = f (r)(x) + a−r
i

[ r∑
j=0

(
r

j

)
α

(r−j)
i (L−1

i (x))(fα − b)(j)(L−1
i (x))

]
,

x ∈ Ii, i ∈ NN−1,

and, consequently, fα agrees with f at the knot points up to the kth derivative.

To simplify the exposition, we assume a constant scaling function αi(x) = αi for all
x ∈ I in the following theorem. However, we note in passing that one can handle the
setting of scaling functions in a similar manner by using the following Leibnitz formula
for weak derivatives [6].

Assume that u ∈ Wk,p(I) and that ϕ is infinitely differentiable. Then ϕu ∈ Wk,p(I)
and for j � k

Dj(ϕu) =
j∑

r=0

(
j

r

)
Drϕ Dj−ru.

Theorem 3.4. Let f ∈ Wk,p(I). Suppose that Δ = {x1, x2, . . . , xN} is a partition of
I with increasing abscissae, Ii := [xi, xi+1) for i ∈ NN−2, and IN−1 := [xN−1, xN ]. Let
Li : I → Ii be affine maps Li(x) = aix+ di satisfying Li(x1) = xi and Li(x−

N ) = xi+1 for
i ∈ NN−1. Assume that b ∈ Wk,p(I) and the scaling factors satisfy

[ ∑
i∈NN−1

|αi|p

akp−1
i

]1/p

< 1 for p ∈ [1,∞),

max
i∈NN−1

{
|αi|
ak

i

}
< 1 for p = ∞.
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The RB operator (2.3) is then a contraction map on Wk,p(I), and the unique fixed point
fα ∈ Wk,p(I) obeys the self-referential equation (2.4).

Theorem 3.5. Let f ∈ Ck,σ(I). Suppose that Δ = {x1, x2, . . . , xN} is a partition of
I satisfying x1 < x2 < · · · < xN , Ii := [xi, xi+1] for i ∈ NN−1, and Li : I → Ii are affine
maps Li(x) = aix + di satisfying Li(x1) = xi and Li(xN ) = xi+1 for i ∈ NN−1. Let the
base function b ∈ Ck,σ(I) and the scaling factors αi satisfy

max
{

|αi|
aσ+k

i

: i ∈ NN−1

}
< 1,

b(r)(x1) = f (r)(x1), b(r)(xN ) = f (r)(xN ), r ∈ Nk ∪ {0}.

The RB operator T defined in (2.3) is then a contraction map on Ck,σ
f (I) ⊂ Ck,σ(I) given

by

Ck,σ
f (I) := {g ∈ Ck,σ(I); g(r)(x1) = f (r)(x1), g(r)(xN ) = f (r)(xN ), 0 � r � k},

and the unique fixed point fα ∈ Ck,σ(I) obeys the self-referential equation (2.4).

Proof. Following the proof of Theorem 3.3 we assert that Tg ∈ Ck(I) whenever
g ∈ Ck,σ(I). Furthermore,

(Tg)(r)(x) = f (r)(x) +
αi

ar
i

(g − b)(r)(L−1
i (x)), x ∈ Ii, i ∈ NN−1, r ∈ Nk ∪ {0}. (3.1)

The σth Hölder seminorm of (Tg)(k) is given by

[(Tg)(k)]σ = sup
x,y∈I, x �=y

|(Tg)(k)(x) − (Tg)(k)(y)|
|x − y|σ

= max
i∈NN−1

sup
x,y∈Ii, x �=y

|(αi/ak
i )[(g − b)(k)(L−1

i (x)) − (g − b)(k)(L−1
i (y))]|

|x − y|σ

� max
i∈NN−1

(
|αi|
ak

i

)
sup

x,y∈Ii, x �=y

[
|g(k)(L−1

i (x)) − g(k)(L−1
i (y))|

|x − y|σ

+
|b(k)(L−1

i (x)) − b(k)(L−1
i (y))|

|x − y|σ

]

= max
i∈NN−1

(
|αi|
ak

i

)
sup

x,y∈Ii, x �=y

[
|g(k)(L−1

i (x)) − g(k)(L−1
i (y))|

aσ
i |L−1

i (x) − L−1
i (y)|σ

+
|b(k)(L−1

i (x)) − b(k)(L−1
i (y))|

aσ
i |L−1

i (x) − L−1
i (y)|σ

]

= max
i∈NN−1

(
|αi|
ak+σ

i

)
sup

x̃,ỹ∈I, x̃�=ỹ

[
|g(k)(x̃) − g(k)(ỹ)|

|x̃ − ỹ|σ +
|b(k)(x̃) − b(k)(ỹ)|

|x̃ − ỹ|σ

]

= max
i∈NN−1

(
|αi|
ak+σ

i

)
([g(k)]σ + [b(k)]σ).
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Since b and g are in Ck,σ(I), the previous estimate ensures that [(Tg)(k)]σ < ∞ and hence
that Tg ∈ Ck,σ(I). Again from (3.1), for x ∈ Ii,

|(Tg1 − Tg2)(r)(x)| =
|αi|
ar

i

|(g1 − g2)(r)(L−1
i (x))|

� |αi|
ar

i

‖(g1 − g2)(r)‖∞,

and hence one readily obtains

‖(Tg1 − Tg2)(r)‖∞ � max
{

|αi|
ar

i

: i ∈ NN−1

}
‖(g1 − g2)(r)‖∞.

Along lines similar to the estimation of [(Tg)(k)]σ, we get

[(Tg1 − Tg2)(k)]σ � max
{

|αi|
ak+σ

i

: i ∈ NN−1

}
[(g1 − g2)(k)]σ.

From these computations we gather that

‖Tg1 − Tg2‖Ck,σ

=
k∑

r=0

‖(Tg1 − Tg2)(r)‖∞ + [(Tg1 − Tg2)(k)]σ

�
k∑

r=0

max
{

|αi|
ar

i

: i ∈ NN−1

}
‖(g1 − g2)(r)‖∞ + max

{
|αi|
ak+σ

i

: i ∈ NN−1

}
[(g1 − g2)(k)]σ

� max
r∈Nk∪{0}

max
i∈NN−1

{
|αi|
ar

i

} k∑
r=0

‖(g1 − g2)(r)‖∞ + max
i∈NN−1

{
|αi|
ak+σ

i

}
[(g1 − g2)(k)]σ

� max
{

|αi|
ak+σ

i

: i ∈ NN−1

}[ k∑
r=0

‖(g1 − g2)(r)‖∞ + [(g1 − g2)(k)]σ

]

= max
{

|αi|
ak+σ

i

: i ∈ NN−1

}
‖g1 − g2‖Ck,σ .

The assumption on scaling factors now yields that T is a contraction on Ck,σ
f (I), and the

theorem is therefore proved. �

4. Fractal operators on function spaces

Theorems 3.1–3.5 established in the previous section illustrate, albeit indirectly, the exis-
tence of an operator that assigns a function f to its self-referential (fractal) analogue fα.
To be precise, for a fixed set of scaling functions (factors) αi and for a suitable choice of
base function, there exists a map

Fα : X → X, Fα(f) = fα,
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where X is one of the Banach spaces B(I), Ck(I), Lp(I), Wk,p(I) or Ck,σ(I). In this section
we offer a couple of fundamental results on this fractal operator Fα. For definiteness, we
shall work with X = Wk,p(I); other cases can be dealt with similarly. Furthermore, we
assume that the base function b depends on f linearly and b = Lf , where L : X → X is
a linear operator that is bounded with respect to the norm in the corresponding space.

Proposition 4.1. For f ∈ Wk,p(I) and the scaling factors satisfying conditions pre-
scribed in Theorem 3.4, we have

‖fα − f‖Wk,p �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ ∑
i∈NN−1

|αi|p

akp−1
i

]1/p

‖fα − b‖Wk,p for p ∈ [1,∞),

max
{

|αi|
ak

i

: i ∈ NN−1

}
‖fα − b‖Wk,p for p = ∞.

Proof. We have the functional equation

fα(x) = f(x) + αi(fα − b)(L−1
i (x)), x ∈ Ii, i ∈ NN−1.

Therefore,

(Dk(fα − f))(x) =
αi

ak
i

(Dk(fα − b))(L−1
i (x)), x ∈ Ii, i ∈ NN−1.

Assume that 1 � p < ∞. By a series of self-evident steps,

‖Dk(fα − f)‖p
p =

∫
I

|Dk(fα − f)(x)|p dx

=
∑

i∈NN−1

(
|αi|
ak

i

)p ∫
Ii

|Dk(fα − b)(L−1
i (x))|p dx

=
∑

i∈NN−1

(
|αi|
ak

i

)p ∫
I

ai|Dk(fα − b)(x̃)|p dx̃

=
∑

i∈NN−1

|αi|p

akp−1
i

‖Dk(fα − b)‖p
p,

and, consequently,

‖Dk(fα − f)‖p =
[ ∑

i∈NN−1

|αi|p

akp−1
i

]1/p

‖Dk(fα − b)‖p.

Thus,

‖fα − f‖Wk,p = ‖fα − f‖p + ‖Dk(fα − f)‖p

=
[ ∑

i∈NN−1

ai|αi|p
]1/p

‖fα − b‖p +
[ ∑

i∈NN−1

|αi|p

akp−1
i

]1/p

‖Dk(fα − b)‖p
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� max
{[ ∑

i∈NN−1

ai|αi|p
]1/p

,

[ ∑
i∈NN−1

|αi|p

akp−1
i

]1/p}
‖fα − b‖Wk,p

=
[ ∑

i∈NN−1

|αi|p

akp−1
i

]1/p

‖fα − b‖Wk,p .

The proof for p = ∞ is similar. �

Theorem 4.2. Let Id be the identity operator on Wk,p(I), b = Lf , where L is a
bounded linear operator on Wk,p(I), and the scaling factors satisfy conditions prescribed
in Theorem 3.4. Then

‖fα − f‖Wk,p �
[
∑

i∈NN−1
|αi|p/akp−1

i ]1/p

1 − [
∑

i∈NN−1
|αi|p/akp−1

i ]1/p
‖Id − L‖ ‖f‖Wk,p for 1 � p < ∞,

‖fα − f‖Wk,p � max{|αi|/ak
i : i ∈ NN−1}

1 − max{|αi|/ak
i : i ∈ NN−1}

‖Id − L‖ ‖f‖Wk,p for p = ∞.

Proof. The previous proposition in conjunction with the triangle inequality yields

‖fα − f‖Wk,p � K‖fα − b‖Wk,p

� K[‖fα − f‖Wk,p + ‖f − Lf‖Wk,p ]

� K[‖fα − f‖Wk,p + ‖Id − L‖ ‖f‖Wk,p ],

where

K =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ ∑
i∈NN−1

|αi|p

akp−1
i

]1/p

for p ∈ [1,∞),

max
{

|αi|
ak

i

: i ∈ NN−1

}
for p = ∞,

from which the result follows at once. �

Theorem 4.3. For the scaling factors satisfying conditions prescribed in Theorem 3.4,
the self-referential operator Fα : Wk,p(I) → Wk,p(I) is a bounded linear operator that
reduces to the identity operator for α = 0.

Proof. Let f1 and f2 be in Wk,p(I) and let β1, β2 be reals. The functional equation
for fα

1 = Fα(f1) and fα
2 = Fα(f2) are given by

fα
1 (x) = f1(x) + αi(fα

1 − Lf1)(L−1
i (x)), x ∈ Ii, i ∈ NN−1,

fα
2 (x) = f2(x) + αi(fα

2 − Lf2)(L−1
i (x)), x ∈ Ii, i ∈ NN−1.

Therefore,

(β1f
α
1 + β2f

α
2 )(x) = (β1f1 + β2f2)(x) + αi[β1f

α
1 + β2f

α
2 − L(β1f1 + β2f2)](L−1

i (x)),
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from which it follows that β1f
α
1 + β2f

α
2 is a fixed point of the operator

(Tg)(x) = (β1f1 + β2f2)(x) + αi(g − L(β1f1 + β2f2))(L−1
i (x)).

By the uniqueness of the fixed point we see that

Fα(β1f1 + β2f2) = (β1f1 + β2f2)α = β1f
α
1 + β2f

α
2 = β1Fα(f1) + β2Fα(f2),

proving the linearity of Fα. In view of the previous theorem we have

‖Fα(f)‖Wk,p = ‖fα‖Wk,p � ‖fα − f‖Wk,p + ‖f‖Wk,p

� K

1 − K
‖Id − L‖ ‖f‖Wk,p + ‖f‖Wk,p

=
[
1 +

K

1 − K
‖Id − L‖

]
‖f‖Wk,p ,

which ensures that Fα is bounded and

‖Fα‖ � 1 +
K

1 − K
‖Id − L‖.

The last part of the theorem follows by noting that for α = 0, fα = f . �

Theorem 4.4. Consider a scale vector α ∈ R
N−1 whose components satisfy

[ ∑
i∈NN−1

|αi|p

akp−1
i

]1/p

< min{1, ‖L‖−1} for p ∈ [1,∞),

max
i∈NN−1

{
|αi|
ak

i

}
< min{1, ‖L‖−1} for p = ∞.

The corresponding fractal operator Fα is bounded below. In particular, Fα is injective
and has a closed range. In fact, Fα : Wk,p(I) → Fα(Wk,p(I)) is a topological isomor-
phism.

Proof. From Proposition 4.1,

‖f‖Wk,p − ‖fα‖Wk,p � ‖f − fα‖Wk,p � K‖fα − Lf‖Wk,p � K[‖fα‖Wk,p + ‖L‖ ‖f‖Wk,p ],

where K is as prescribed in Theorem 4.2. Also, by the stated assumption on the scale
vector, we have K < ‖L‖−1. Thus

‖f‖Wk,p � 1 + K

1 − K‖L‖‖fα‖Wk,p .

That is, the operator Fα is bounded below and hence, in particular, it is injective. To
prove that Fα(Wk,p(I)) is closed, let fα

n be a sequence in Fα(Wk,p(I)) such that fα
n → g.

In particular, {fα
n = Fα(fn)} is a Cauchy sequence in Fα(Wk,p(I)). Since

‖fn − fm‖Wk,p � 1 + K

1 − K‖L‖‖fα
n − fα

m‖Wk,p ,
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it follows that {fn} is a Cauchy sequence in Wk,p(I). Since Wk,p(I) is a complete space,
there exists an f ∈ Wk,p(I) such that fn → f , and, consequently, by the continu-
ity of the fractal operator Fα we conclude that g = Fα(f) = fα. From the bounded
inverse theorem (see, for example, [5]) it now follows that the inverse of the map
Fα : Wk,p(I) → Fα(Wk,p(I)) is a bounded linear operator, completing the proof. �

Theorem 4.5. For a scale vector α ∈ R
N−1 whose components satisfy

[ ∑
i∈NN−1

|αi|p

akp−1
i

]1/p

< (1 + ‖Id − L‖)−1 for p ∈ [1,∞),

max
i∈NN−1

{
|αi|
ak

i

}
< (1 + ‖Id − L‖)−1 for p = ∞,

the fractal operator Fα is a topological automorphism on Wk,p(I). Furthermore, with
K as in Theorem 4.2,

1 − K‖L‖
1 + K

‖f‖Wk,p � ‖Fα(f)‖Wk,p � 1 +
K

1 − K
‖Id − L‖ ‖f‖Wk,p .

Proof. From Theorem 4.2 it can be easily seen that

‖Id − Fα‖ � K

1 − K
‖Id − L‖.

In view of the assumption on the scaling vector α, we get K < (1+‖Id−L‖)−1 and hence
‖Id − Fα‖ < 1. Consequently, the Neumann series

∑∞
j=0(Id − Fα)j is convergent in the

operator norm and Fα = Id − (Id − Fα) is invertible (see, for example, [5]). Bearing in
mind that

‖L‖ = ‖Id − (Id − L)‖ � 1 + ‖Id − L‖,

the bounds on ‖Fα(f)‖Wk,p follow from Theorem 4.3 and 4.4. �

The existence of Schauder bases for Sobolev spaces is helpful if one wants to prove the
existence of solutions of nonlinear boundary-value problems. Sometimes it is interesting
to look for the global structure involved in a given problem, and self-referentiality may
therefore be advantageous. Hence, it is worth searching for a Schauder basis for Wk,p(I)
consisting of fractal functions. It is to this that we now turn. First let us recall the
following theorem, which asserts the existence of a Schauder basis for Wk,p(I), where
p � 1 is a real number. We briefly reproduce its proof here for the sake of completeness.
Without loss of generality assume that I = [0, 1].

Theorem 4.6 (Fuč́ık [8, Theorem 4.7]). For 1 � p < ∞, Wk,p(I) has a Schauder
basis.
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Proof. Proof is by induction with respect to k. For k = 0, W0,p(I) = Lp(I), and it has
a Schauder basis. Let {fk

n} be a Schauder basis for Wk,p(I) and let {βk
n} be a sequence

of continuous linear functionals such that for each f ∈ Wk,p(I), f =
∑∞

n=1 βk
n(f)fk

n . For
f ∈ Wk,p(I), set

fk+1
1 (x) ≡ 1, βk+1

1 (f) = f(0),

fk+1
n (x) =

∫ x

0
fk

n−1(t) dt, βk+1
n (f) = βk

n−1(f
′), n � 2.

Then {fk+1
n } is a Schauder basis in Wk+1,p(I). �

Theorem 4.7. For 1 � p < ∞, the space Wk,p(I) admits a Schauder basis consisting
of self-referential functions.

Proof. Let {fn} be a Schauder basis for Wk,p(I) with associated coefficient function-
als {βn}. Consider the scaling factors αi, i ∈ NN−1, such that the condition prescribed
in Theorem 4.5 is satisfied so that Fα is a topological automorphism on Wk,p(I). Let
f ∈ Wk,p(I). Then (Fα)−1(f) ∈ Wk,p(I) and

(Fα)−1(f) =
∞∑

n=1

βn((Fα)−1(f))fn.

Since Fα is a bounded linear map we obtain

f =
∞∑

n=1

βn((Fα)−1(f))fα
n .

Next we prove that the representation is unique. Let f =
∑∞

n=1 γnfα
n be another repre-

sentation of f . Continuity of (Fα)−1 ensures that

(Fα)−1(f) =
∞∑

n=1

γnfn

and hence
γn = βn((Fα)−1(f)), n ∈ N.

Thus {fα
n } is a Schauder basis for Wk,p(I) comprising of self-referential functions. �

For p = 2, the Sobolev space Wk,2(I) = Hk(I) is a Hilbert space and hence we can
talk about the adjoint (in the usual sense) (Fα)∗ of the fractal operator Fα. We have
the following.

Theorem 4.8. For a scale vector α ∈ R
N−1 satisfying

[ ∑
i∈NN−1

|αi|2

a2k−1
i

]1/2

< min{1, ‖L‖−1},
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we have
Hk(I) = rg(Fα) ⊕ ker((Fα)∗),

where rg(A) and ker(A) represent the range and kernel of an operator A. Also, (Fα)∗ is
surjective.

Proof. From the proof of Theorem 4.4 it follows that for a scale vector α satisfying
the stated hypothesis, rg(Fα) is closed. By the orthogonal decomposition theorem for a
Hilbert space (see, for example, [5]),

Hk(I) = rg(Fα) ⊕ rg(Fα)⊥ = rg(Fα) ⊕ ker((Fα)∗).

Again by the orthogonal decomposition,

Hk(I) = rg((Fα)∗) ⊕ rg((Fα)∗)
⊥

= rg((Fα)∗) ⊕ rg((Fα)∗)⊥ = rg((Fα)∗) ⊕ ker(Fα).

For a scale vector satisfying the given condition, Fα is injective. That is, ker(Fα) = {0}.
Consequently, Hk(I) = rg((Fα)∗), i.e. rg((Fα)∗) is dense in Hk(I). For a linear and
bounded operator of a Hilbert space, its range is closed if and only if the range of
its adjoint is closed (see, for example, [5]). Therefore, rg((Fα)∗) is closed and hence
rg((Fα)∗) = Hk(I). �

Theorem 4.9. For a scale vector α satisfying
[ ∑

i∈NN−1

|αi|2

a2k−1
i

]1/2

< (1 + ‖Id − L‖)−1,

the fractal operator Fα : Hk(I) → Hk(I) is Fredholm with index zero.

Proof. With the stated assumption on α, Theorem 4.5 asserts that the operator Fα

is an isomorphism. Therefore, by the following theorem (see [19]) Fα is Fredholm.
A linear bounded operator A is Fredholm if and only if A = B + F , where B is an

isomorphism and F has finite rank.
Also,

indFα := dim ker(Fα) − codim rg(Fα) = 0,

delivering the proof. �

Remark 4.10. Throughout this paper we have confined our discussion to real-valued
functions. However, we remark that many of our results also apply immediately to
complex-valued functions defined on a real compact interval. For instance, denoting the
real and imaginary parts of f by fre and fim, respectively, one may consider the operator

Fα
C : Wk,p(I, C) → Wk,p(I, C), Fα

C(f) = Fα
C(fre + ifim) = Fα(fre) + iFα(fim).

It is not hard to show that Fα
C is a bounded linear operator. Other properties of Fα

C can
be dealt with similarly.
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