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1. Introduction

Let k be a number field and A be the ring of adeles of k. Let Om be the orthogonal
group associated to a non-degenerate quadratic k-vector space X of dimension m. Let χ

be a quadratic character of A
×/k×. By means of the spinor norm, one may view χ as an

automorphic character of Om(A). We denote by Ac(Om/k) the set of irreducible cuspidal
automorphic representations of Om(A), which occur as irreducible subspaces in the space
of cuspidal automorphic functions on Om(A). For any σ ∈ Ac(Om/k), we study in this
paper the location of poles of the partial twisted standard L-functions LS(s, σ⊗χ), where
S is a finite set of local places of k including all archimedean local places.

By the doubling method of Piatetski-Shapiro and Rallis [5, Part I], the partial twisted
standard L-function LS(s, σ⊗χ) has at most simple poles at Re(s) > 1

2 , and the possible
poles may occur at s = 1

2m − j > 0 [5, 17]. It is a program of Kudla and Rallis to
determine the location of the poles of LS(s, σ ⊗ χ) in terms of the non-vanishing of the
relevant theta liftings via the regularized Siegel–Weil formula [18,25].
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We recall some basic facts from the theory of the theta correspondence. Let Sp2l be
the symplectic group of k-rank l. Then (Om, Sp2l) forms a reductive dual pair in Sp2lm,
in the sense of Howe [9]. We denote by Mp2l(A) the metaplectic double cover S̃p2l(A)
of Sp2l(A) if m = 2n + 1 or the A-rational points Sp2l(A) of Sp2l if m = 2n. For a non-
trivial character ψ of A/k, there exists the Weil representation ωψ of S̃p2lm(A), which
is realized in the Schrödinger model S(Aml), where S(Aml) is the space of C-valued
Schwartz–Bruhat functions on A

ml.
For ϕ ∈ S(Aml), we form the theta function

θψ,ϕ(x) :=
∑

ξ∈kml

ωψ(x)(ϕ)(ξ),

on S̃p2ml(A). There is a natural homomorphism

Om(A) × Mp2l(A) → S̃p2ml(A)

with the kernel C2 = {±1}, and the centre of Om(A) diagonally embedded. We pull the
Weil representation ωψ back to Om(A) × Mp2l(A). The details may be found in [15], for
instance.

For a σ ∈ Ac(Om/k), the integral

θ2l
ψ,m(g; φσ, ϕ) :=

∫
Om(k)\ Om(A)

φσ(h)θψ,ϕ(g, h) dh, (1.1)

with φσ ∈ Vσ, defines an automorphic function on Mp2l(A). We denote by θ2l
ψ,m(σ) the

space of the automorphic representation generated by all θ2l
ψ,m(g; φσ, ϕ), as ϕ and φσ

vary, and call θ2l
ψ,m(σ) the ψ-theta lifting of σ to Mp2l(A).

A basic problem in the theory of the theta correspondence is to determine when the
ψ-theta lifting θ2l

ψ,m(σ) is non-zero. By the Rallis theta tower property [24], if for any
l1 < l0, the ψ-theta lifting of σ, θ2l1

ψ,m(σ) to Mp2l1(A) is zero, then the ψ-theta lifting of σ,
θ2l0

ψ,m(σ) is a cuspidal automorphic representation of Mp2l0(A); and if θ2l0
ψ,m(σ) is non-zero

and cuspidal, then for any l2 > l0, the space θ2l2
ψ,m(σ) consists of automorphic functions

on Mp2l2(A), which are no longer cuspidal. In fact, by the work of Moeglin [20,21], one
knows that they are orthogonal to the space of cuspidal automorphic forms on Mp2l2(A).
In this case, the integer l0 is called the first occurrence of σ in the Witt tower of Mp2l(A),
and is denoted by FOψ(σ) := 2l0. Furthermore, for a given σ ∈ Ac(Om/k), it is proved
in [24] that the first occurrence FOψ(σ) is a positive integer, which is at most 2m.
It is interesting and important to characterize the first occurrence FOψ(σ) in terms of
basic properties of σ. We remark that for any σ ∈ Ac(Om/k), if the first occurrence
FOψ(σ) = 2l0, then the ψ-theta lifting of σ, θ2l0

ψ,m(σ) is a non-zero irreducible cuspidal
automorphic representation of Mp2l0(A). This is proved in [21] when m is even and
in [15] when m is odd.

The same problem for the first occurrence can be formulated for irreducible cuspidal
automorphic representations of Mp2l(A).

In [18], Kudla and Rallis illustrated their theory for the symplectic groups Sp2l. It is
clear that their arguments work for Om and for Mp2l provided that the relevant theories
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for Om and for Mp2l are established, respectively. In this paper, we prove the following
orthogonal group analogue of Theorem 7.2.5 of [18] as a consequence of one of the main
results of this paper (Theorem 1.3).

Note that because of the disconnectedness of Om, there are automorphic sign characters
of Om(A) which are trivial on Om(k). Such characters can be constructed as follows.
Consider the adelic group of the group Z2 := {±1} and consider any character ε of Z2(A)
which takes the value 1 at all local places v of k, except an even number of local places,
where it takes value −1. such characters of Z2(A) induce automorphic sign characters
of Om(A). For any automorphic sign character ε and any σ ∈ Ac(Om/k), L(s, σv) =
LS(s, σv ⊗ εv), for all places v. On the other hand, σ and σ ⊗ ε may have different first
occurrences when they are lifted by ψ-theta correspondence to the tower Mp2l(A).

It is natural to introduce the notion of the lowest occurrence LOψ(σ) of σ, with respect
to all twists by automorphic sign characters of Om(A), in the tower Mp2l(A) via ψ-theta
correspondence. We define it by

LOψ(σ) := min
ε

{FOψ(σ ⊗ ε)}, (1.2)

where ε runs through all automorphic sign characters of Om(A).
We prove the following theorem, which is the orthogonal group analogue of Theo-

rem 7.2.5 of [18]. Here, as pointed to us by Moeglin, the choice of a twist by a sign
character is analogous to the choice of a Hasse invariant in Theorem 7.2.5 of [18].

Theorem 1.1. Let Om be the orthogonal group attached to a quadratic k-vector space
of dimension m, and let χ be a quadratic character of k×\A

× and σ ∈ Ac(Om/k).

(1) If the partial L-function LS(s, σ ⊗ χ) has a pole at s0 = 1
2m − j > 0, or if m is odd

and the partial L-function LS(s, σ ⊗ χ) does not vanish at s = 1
2 , i.e. j = 2[ 12m],

then there is an automorphic sign character ε of Om(A), such that the ψ-theta
lifting of (σ ⊗ χ) ⊗ ε to Mp2j(A), does not vanish, that is, LOψ(σ ⊗ χ) � 2j.

(2) If the lowest occurrence of σ⊗χ, LOψ(σ⊗χ) is 2j0 < m, then the partial L-function
LS(s, σ ⊗ χ) is holomorphic for Re(s) > 1

2m − j0.

(3) If (in (2)) 2j0 � m, then the partial L-function LS(s, σ ⊗ χ) is holomorphic for
Re(s) � 1

2 .

This theorem will be proved in § 4, by using Theorem 3.1, which is a preliminary
step towards the main theorem in this paper (Theorem 1.3 below). We remark that in
Theorem 1.1 (2), it is not known if the partial L-function LS(s, σ ⊗ χ) has a pole at
s = s0 = 1

2m − j0. We state it as a conjecture.

Conjecture 1.2. Let Om be the orthogonal group attached to a quadratic k-vector
space of dimension m, and let χ be a quadratic character of k×\A

× and σ ∈ Ac(Om/k).
The partial L-function LS(s, σ ⊗ χ) has a pole at s0 = 1

2m − j0 > 0 and is holomorphic
for Re(s) > s0, or LS( 1

2 , σ ⊗ χ) �= 0 when m = 2n + 1 and j0 = n, if and only if the
lowest occurrence LOψ(σ ⊗ χ) = 2j0.
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It is clear that new ideas are needed in order to determine the intrinsic relation between
the precise location of the possible poles of LS(s, σ⊗χ) and the first occurrence of σ⊗χ,
FOψ(σ ⊗ χ), or more naturally, the lowest occurrence LOψ(σ ⊗ χ) as defined in (1.2).

It was Moeglin’s idea [20, 21] to replace the partial L-function LS(s, σ ⊗ χ) by the
Eisenstein series E(g; φσ⊗χ, s) on Om+2(A) attached to the cuspidal datum (Q1, χ ⊗ σ),
where the Levi part of Q1 is GL1 × Om. The precise definition of E(g; φσ⊗χ, s) is given
in §§ 2 and 4. The key point in using this Eisenstein series is that the constant term of
E(g; φσ⊗χ, s) along the maximal parabolic subgroup Q1 is closely related to LS(s, σ⊗χ).
We refer to §§ 2 and 4 for more detailed discussion.

We denote by P(σ⊗χ, Q1) the set of positive poles of the Eisenstein series E(g; φσ⊗χ, s).
As in [20] and [21], for m even, one can prove that for a given cuspidal datum (Q1, χ⊗σ),
if the set P(σ ⊗ χ, Q1) is non-empty, then the maximal member in the set P(σ ⊗ χ, Q1)
must be of form 1

2m − j > 0. In this case, there is an automorphic sign character ε, such
that the ψ-theta lifting of (σ⊗χ)⊗ε to Mp2j(A) is non-zero. Hence the lowest occurrence
LOψ(σ ⊗ χ) � 2j.

One of the main results in this paper is to show, that for any orthogonal group Om and
for any σ ∈ Ac(Om/k), if the set P(σ ⊗ χ, Q1) is non-empty, then the maximal member
s0 = 1

2m − j0 > 0 yields the exact information on the lowest occurrence LOψ(σ ⊗ χ).
More precisely, we have the following theorem.

Theorem 1.3. Let Om be the orthogonal group attached to a quadratic k-vector space
of dimension m, and let χ be a quadratic character of k×\A

× and σ ∈ Ac(Om/k). Assume
that the set P(σ ⊗ χ, Q1) as defined above is non-empty. Then the maximal member in
P(σ ⊗ χ, Q1) is of the form s0 = 1

2m − j0 > 0, where j0 is a positive integer, if and only
if the lowest occurrence LOψ(σ ⊗ χ) is 2j0.

This theorem is a combination of Theorem 3.1 and Theorem 5.1, which are proved in § 3
and § 6, respectively. Theorem 1.3 will be proved in § 5. Theorem 3.1 will be proved by
following the same arguments as in [20] and [21], for m is even. Theorem 5.1 determines
the existence of the pole of E(g; φσ⊗χ, s) in terms of the first occurrence FOψ(σ ⊗ χ).

It should be mentioned that Theorem 5.1 contains also a result for s0 = 1
2m − j0 < 0.

This is new and is a result of the application of the Arthur truncation method in the
content of theta correspondence. More precisely, we apply the Arthur truncation to the
Eisenstein series E(g; φσ⊗χ, s) and show that if the first occurrence FOψ(σ ⊗ χ) = 2j <

m, a certain period of the truncation of the Eisenstein series E(g; φσ⊗χ, s) has a pole at
s = 1

2m − j. In particular, the Eisenstein series E(g; φσ⊗χ, s) has a pole at s = 1
2m − j.

When 1
2m − j > 0, we prove that all the integrals are absolutely convergent. However,

when 1
2m− j < 0, we impose the condition that 6 < m and 1

2m < j < m−2 to avoid the
technical complication of proving absolute convergence of certain integrals in this case.
See Theorem 5.1 and its proof in § 6 for details.

Based on this, when 1
2m − j > 0, we apply again the Arthur truncation to the residue

of the Eisenstein series E(g; φσ⊗χ, s) at s = 1
2m−j and show that such periods converges

absolutely and can be expressed in terms of the similar periods of the cuspidal datum
σ ⊗ χ (Theorem 6.6). In particular, if the first occurrence FOψ(σ ⊗ χ) = 2j < m, then
the residue at s = 1

2m − j of the Eisenstein series E(g; φσ⊗χ, s) has a non-zero period
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over a certain (smaller) orthogonal group (Theorem 5.3). This is also a new feature that
the Arthur truncation method is applied in the content of theta correspondence.

We prove Theorems 5.1, 5.3 and 6.6 in § 6.
In case the Eisenstein series is holomorphic for Re(s) > 0, i.e. the set P(σ ⊗ χ, Q1) is

empty, we have the following conjecture.

Conjecture 1.4. The set P(σ ⊗ χ, Q1) is empty if and only if the lowest occurrence
LOψ(σ ⊗ χ) is equal to 2[ 12m] + 2.

In one direction, when m = 2n + 1 is odd, if the set P(σ ⊗ χ, Q1) is empty, then the
L-function LS(s, σ ⊗ χ) is holomorphic for Re(s) � 1

2 . We expect, in this case, that the
lowest occurrence LOψ(σ ⊗ χ) is equal to 2n if and only if LS( 1

2 , σ ⊗ χ) �= 0.
When Om is a k-split even orthogonal group and σ is an irreducible, automorphic, cusp-

idal representation of SOm(A), and assumed to be generic, i.e. has a non-zero Whittaker–
Fourier coefficient, it is proved in [6] that LS(s, σ ⊗ χ) is holomorphic for Re(s) > 1.
Furthermore, it is proved in [6] that LS(s, σ ⊗ χ) has a pole at s = 1, if and only if
the first occurrence of σ ⊗ χ, FOψ(σ ⊗ χ) is m − 2; otherwise, the first occurrence of
σ ⊗ χ, FOψ(σ ⊗ χ) is m. Here, the notion of first occurrence for the pair (SOm, Sp2n)
is defined in the same way. When Om is a k-split odd orthogonal group and, as above,
σ ∈ Ac(SOm /k) is generic, it follows from the Langlands functorial transfer from SOm to
GLm−1 [4] that LS(s, σ ⊗ χ) is holomorphic for Re(s) � 1

2 . It is proved in [14] and [15]
that LS(s, σ ⊗ χ, 1

2 ) �= 0, if and only if the first occurrence of σ ⊗ χ, FOψ(σ ⊗ χ) is
m − 1; otherwise, the first occurrence of σ ⊗ χ, FOψ(σ ⊗ χ) is m + 1. In this case, the
non-vanishing of LS(s, σ ⊗ χ) at s = 1

2 is equivalent to the existence of the pole of
E(g; φσ⊗χ,s) at s = 1

2 . Hence both Conjectures 1.2 and 1.4 hold for irreducible generic
cuspidal automorphic representations σ of k-split orthogonal groups SOm. See § 7 for
more details.

Combining the above results with those in [13], [14] and [15], we can deduce the
following interesting consequences, which may be deduced from the Arthur conjecture (or
Arthur’s Theorem assuming the availability of various types of the fundamental lemmas)
on the basic structures of the discrete spectrum of automorphic forms [3].

Theorem 1.5. Let SOm be the special orthogonal group attached to a quadratic k-
vector space of dimension m, and let χ be a quadratic character of k×\A

× and σ =
⊗vσv ∈ Ac(SOm /k). If there is a local place v, such that SOm(kv) is kv-quasi-split and
the v-local component σv is (locally) generic, then the partial L-function LS(s, σ ⊗ χ) is
holomorphic for Re(s) > s0, where s0 = 1 if m is even and s0 = 1

2 if m is odd.

Next, we consider a special case when SOm is the k-split odd orthogonal group (m =
2n + 1), and σ is an irreducible, automorphic, cuspidal representation of SO2n+1(A),
with Bessel model of special type. Recall that the Whittaker–Fourier coefficients are the
Fourier coefficients attached to the regular nilpotent orbit, while the Bessel model of
special type may be viewed as certain Fourier coefficients attached to the subregular
nilpotent orbit, which have a non-trivial period along a certain subgroup, isomorphic
some SO2. See § 7 and [14] for details.
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Theorem 1.6. Let SO2n+1 be the k-split odd special orthogonal group. Assume that
σ = ⊗vσv ∈ Ac(SO2n+1 /k) has a non-zero (global) Bessel model of special type. If there
is a place v, such that the v-local component σv is (locally) generic, then σ is nearly
equivalent to an irreducible generic (globally) cuspidal automorphic representation σ′ of
SO2n+1(A).

We will give the proofs for Theorem 1.5 and Theorem 1.6 in § 7, when v is a finite place
of k. When v is an archimedean place of k, the proofs are similar, and we omit them. We
remark that Theorem 1.6 was proved in [14] with an additional requirement on the place
v. Theorem 7.1 provides a domain of holomorphy of the L-functions in terms of the first
occurrence in the theory of local Howe correspondence. As consequences of Theorem 7.1
and Theorem 1.3, we prove Theorem 1.5 and Theorem 1.6.

We expect that the first occurrence of irreducible admissible representations in the
theory of the local Howe correspondence could be expressed in terms of generalized
Gelfand–Graev models, which are generalizations of the Whittaker models used in The-
orem 1.5; and also the determination of the domain of holomorphy of L-functions could
have a deep impact on the estimate of the Satake parameters at the unramified places.
These topics will be included in our forthcoming work. In connection with the CAP
conjecture [14], the following theorem can be proved as applications of Theorem 3.1
combined with [14] and [15].

Theorem 1.7. Let G be the k-split group SO2n+1. Assume that σ ∈ Ac(G/k) has a
non-zero Fourier coefficient attached to the subregular nilpotent orbit of the complex Lie
algebra of G. Then the following hold.

(1) The partial L-function LS(s, σ ⊗ χ) is holomorphic for Re(s) > 3
2 , for all quadratic

characters χ of k×\A
×.

(2) If the partial L-function LS(s, σ⊗χ) has a pole at s = 3
2 , for some quadratic charac-

ter χ of k×\A
×, then σ is a CAP representation. More precisely, σ is either a CAP

representation with respect to the generic cuspidal datum (P1; χ| · |1/2 ⊗ σn−1)
where P1 is the standard parabolic subgroup, whose Levi part is isomorphic to
GL1 × SO2n−1, and σn−1 is an irreducible generic cuspidal automorphic represen-
tation of SO2n−1(A), or a CAP representation with respect to the generic cuspidal
data

(P1,1; χ| · |1/2 ⊗ χχ′| · |1/2 ⊗ σn−2),

where P1,1 is the standard parabolic subgroup, whose Levi part is isomorphic to
GL1 × GL1 × SO2n−3, χ′ is a certain quadratic character attached to the Fourier
coefficient, and σn−2 is an irreducible generic cuspidal automorphic representation
of SO2n−3(A).

Under the assumption that σ has a non-zero Bessel model of special type, Theorem 1.7
was proved in [14] and [15]. We think that the formulation of Theorem 1.7 serves as a
model to understand the CAP conjecture for general cuspidal automorphic representa-
tions of general classical groups. We will give a sketch of the proof in § 7.3. More complete
theory will be included in our forthcoming work [8].
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2. Poles of certain Eisenstein series

Let k be a number field and A be the ring of adeles of k. Let (X, b) be a non-degenerate
quadratic k-vector space of dimension m, where b is the corresponding symmetric form.
Denote its k-Witt index by r and hence r ∈ {0, 1, . . . , [ 12m]}. Without loss of generality,
we assume that m > 2 in this paper.

For any non-negative integer a, denote by

Ha = 
+a ⊕ 
−
a (2.1)

the polarization of the 2a-dimensional quadratic k-vector space Ha, which is the direct
sum of a-copies of the hyperbolic plane. Then we define

Xa := X ⊥ (
+a ⊕ 
−
a ). (2.2)

This is a non-degenerate quadratic k-vector space of dimension m + 2a, with k-Witt
index a+r. Take Qa = MaNa to be the maximal parabolic k-subgroup of the orthogonal
group O(Xa), which preserves 
+a ; its Levi subgroup is

Ma
∼= GL(
+a ) × O(X) = GLa × Om . (2.3)

The elements of Ma will be denoted by m(x, h), with x ∈ GLa and h ∈ Om.
Let Ka =

∏
v Ka,v be a (good) maximal compact subgroup of O(Xa)(A), such that

the Iwasawa decomposition
O(Xa)(A) = Qa(A)Ka (2.4)

holds. For instance, Ka,v = Om+2a(Ov), the v-integral points of Om+2a, when Om+2a is
kv-split. Then the Langlands decomposition of Om+2a(A) is

Om+2a(A) = Na(A)M1
aA+

a Ka, (2.5)

where Aa is the (split) centre of Ma. The unique reduced root in Φ+(Qa, Aa) can be
identified with the simple root αa. As normalized in [26], we denote

α̃a := 〈ρQa
, αa〉−1ρQa

, (2.6)

where ρQa is half of the sum of all positive root in Na and 〈· , ·〉 is the usual Killing–Cartan
form for the root system of Om+2a. We let

aMa = HomR(X(Ma), R), a
∗
Ma

= X(Ma) ⊗ R, (2.7)

where X(Ma) denotes the group of all rational characters of Ma. Since Qa is maximal,
a∗

Ma
is one-dimensional. We identify C with a∗

Ma,C via s 
→ sα̃a.
Let Ha : Ma(A) 
→ aMa be the map defined as follows, for any χ ∈ a∗

Ma
,

Ha(m)(χ) =
∏
v

|χ(mv)|v (2.8)
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for m ∈ Ma(A). It follows that Ha is trivial on M1
a . This map Ha can be extended as a

function over Om+2a(A), via the Iwasawa decomposition or the Langlands decomposition
above. By direct computation, we know that

Ha(m(x, h))(s) = |det x|s, Ha(m(x, h))(ρQa) = |det x|(m+a−1)/2 (2.9)

where s ∈ C and m = m(x, h) ∈ Ma(A), with x ∈ GLa(A) and h ∈ Om(A).
We denote by Ac(Om/k) the set of irreducible, automorphic, cuspidal representations

of Om(A), occurring as subspaces in the space of cuspidal automorphic forms on Om(A).
For σ ∈ Ac(Om/k) and a quadratic character χ, of A

×/k×, we denote by Ea;σ,χ the space
of smooth C-valued functions φa;σ,χ on Na(A)Ma(k)\ O(Xa)(A) satisfying the following
properties:

• φa;σ,χ is right Ka-finite;

• for any x ∈ GLa(A) and g ∈ O(Xa)(A),

φa;σ,χ(m(x, IX)g) = χ(det x) · |det x|(m+a−1)/2 · φa;σ,χ(g);

and

• for any fixed t ∈ Ka, and for any h ∈ Om(A), the function

h 
→ φa;σ,χ(m(Ia, h)t)

is a smooth and right Ka∩M1
a -finite vector, in the space Vσ of the irreducible, auto-

morphic, cuspidal representation σ, realized in the cuspidal spectrum on Om(A)
(in the σ-isotypic component of the cuspidal spectrum if there is multiplicity).

For any s ∈ C and φa;σ,χ ∈ Ea;σ,χ, define

Φs(g; φa;σ,χ) := Ha(g)(s)φa;σ,χ(g). (2.10)

It is clear that for g = nm(x, h)t ∈ Qa(A) · Ka, we have

Φs(g; φa;σ,χ) = χ(det(x))|det(x)|s+((m+a−1)/2)φa;σ,χ(m(1a, h)t). (2.11)

Equivalently, one may identify Φs(g; φa;σ,χ) as a smooth section of the normalized induced
representation

I(s; σ) := IndOm+2a(A)
Qa(A) (χ · |det |s ⊗ σ). (2.12)

Attached to such a function Φs(g; φa;σ,χ), we define an Eisenstein series, on Om+2a(A),
by

EQa(g; φa;σ,χ, s) :=
∑

γ∈Qa(k)\ Om+2a(k)

Φs(γg; φa;σ,χ). (2.13)

By the Langlands theory of Eisenstein series [22], this Eisenstein series converges abso-
lutely, for Re(s) > 1

2 (m + a − 1), and has a meromorphic continuation to the whole
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s-plane, with finitely many possible poles for Re(s) > 0, which in this case, turn out to
be real.

We denote by P(σ ⊗ χ, Qa), the set of positive poles of the Eisenstein series
EQa(g; φa;σ,χ, s), when φa;σ,χ runs in Ea;σ,χ. Hence, if s0 > 0 is a number in the set
P(σ ⊗ χ, Qa), there exists a φa;σ,χ ∈ Ea;σ,χ such that EQa(g; φa;σ,χ, s) has a pole at s0;
and if s0 > 0 is the maximal number in the set P(σ ⊗ χ, Qa), then for all φa;σ,χ ∈ Ea;σ,χ,
the Eisenstein series EQa(g; φa;σ,χ, s) is holomorphic for Re(s) > s0. As in [20] and [21],
we have the following proposition.

Proposition 2.1. Assume that P(σ ⊗ χ, Q1) is non-empty, and let s0 be its maximum.
Then, for all integers a � 1, sa := s0 + 1

2 (a − 1) lies in P(σ ⊗ χ, Qa).

The proof is the same as that in § 1.1 of [20]. We omit the details here.

Proposition 2.2. Assume that the partial L-function LS(s, σ ⊗ χ) has a pole at s =
s0 > 0, and is holomorphic for Re(s) > s0. Then, for all integers a � 1, the Eisenstein
series EQa(g; φa;σ,χ, s) has a pole at sa := s0 + 1

2 (a − 1).

Proof. The proof is the same as in § 1.2 of [20]. We sketch some details here for com-
pleteness. By the Langlands theory of the constant terms of Eisenstein series, one has
to calculate the constant terms of EQa(g; φa;σ,χ, s) along various parabolic subgroups of
Om+2a. As in § 1.2 of [20], since s = s0 is the maximal pole of the partial L-function
LS(s, σ ⊗ χ), it is enough to consider the poles of the intertwining operator attached
to the longest Weyl group element wa in Qa\ Om+2a/Qa. By the Gindikin–Karpelevich
formula at unramified finite places, when m is even, the product of partial L-functions
reads

a∏
i=1

LS(s − 1
2 (a − 1) + i − 1, σ ⊗ χ)

LS(s − 1
2 (a − 1) + i, σ ⊗ χ)

∏
1�i<j�a

ζS(2s − a + i + j − 1)
ζS(2s − a + i + j)

; (2.14)

and when m is odd, it reads

a∏
i=1

LS(s − 1
2 (a − 1) + i − 1, σ ⊗ χ)

LS(s − 1
2 (a − 1) + i, σ ⊗ χ)

∏
1�i�j�a

ζS(2s − a + i + j − 1)
ζS(2s − a + i + j)

. (2.15)

Here, ζS(s) is the partial Dedekind zeta function of k. After cancellation, when m is
even, it reduces to

LS(s − 1
2 (a − 1), σ ⊗ χ)

LS(s + 1
2 (a + 1), σ ⊗ χ)

∏[a/2]
i=1 ζS(2s − a + 2i)∏a−1

i=[(a+1)/2] ζ
S(2s − a + 2i + 1)

; (2.16)

and when m is odd, it reduces to

LS(s − 1
2 (a − 1), σ ⊗ χ)

LS(s + 1
2 (a + 1), σ ⊗ χ)

∏[(a+1)/2]
i=1 ζS(2s − a + 2i − 1)∏a

i=[a/2]+1 ζS(2s − a + 2i)
. (2.17)

https://doi.org/10.1017/S1474748009000097 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748009000097


702 D. Ginzburg, D. Jiang and D. Soudry

Now we evaluate the products of partial L-functions at s = sa = s0 + 1
2 (a−1) and obtain

the following. When m is even, it reads

ress=s0 LS(s, σ ⊗ χ)
LS(s0 + a, σ ⊗ χ)

∏[a/2]
i=1 ζS(2s0 − 1 + 2i)∏a−1

i=[(a+1)/2] ζ
S(2s0 + 2i)

; (2.18)

and when m is odd, it reads

ress=s0 LS(s, σ ⊗ χ)
LS(s0 + a, σ ⊗ χ)

∏[(a+1)/2]
i=1 ζS(2s0 + 2i − 2)∏a
i=[a/2]+1 ζS(2s0 + 2i − 1)

. (2.19)

In both cases, the residue ress=s0 LS(s, σ ⊗ χ) cannot be cancelled by the denominator.
Hence the product of local intertwining operators at finite unramified places has a pole
at s = sa = s0 + 1

2 (a − 1). We remark that since s0 is the maximal pole, it cannot
be cancelled by the possible poles from the intertwining operators attached to other
Weyl group elements. Therefore, the constant term of EQa(g; φa;σ,χ, s) has a pole at
s = sa = s0 + 1

2 (a − 1). �

Note that by [17], the possible positive poles of the partial L-functions LS(s, σ ⊗ χ)
are at s = 1

2m − j > 0. We want to prove the following proposition.

Proposition 2.3. Let s0 be the maximum of P(σ ⊗ χ, Q1). Then s0 must be of form
1
2m − j, with j = 1, 2, . . . , [ 12 (m − 1)], when O(X) is not k-anisotropic. When O(X) is
k-anisotropic, the Eisenstein series EQ1(g; φ1;σ,χ, s) has a pole at s = 1

2m, if and only if
σ is the composition of χ with the spinor norm of O(X).

This is a consequence of Theorem 3.1 in § 3, which will be proved by the generalized
doubling method.

3. Generalized doubling method

We consider the generalized doubling method, for general orthogonal groups Om, follow-
ing the ideas and arguments of Moeglin in § 2.1 of [20], where the case of even orthogonal
groups is studied. See also § 3.1 of [15] for the treatment for the case of S̃p2j . As a con-
sequence, we prove a stronger result than Proposition 2.3.

Theorem 3.1. Let Om be the orthogonal group attached to a quadratic k-vector space
of dimension m, and let χ be a quadratic character of k×\A

×, and σ ∈ Ac(Om/k). If
the Eisenstein series EQ1(g; φ1;σ,χ, s) has a pole at s = s0 > 0 and is holomorphic for
Re(s) > s0, i.e. s0 is the maximum of P(σ ⊗ χ, Q1), then s0 = 1

2m − j, for some integer
j, and there is an automorphic sign character ε of Om(A), such that the ψ-theta lifting
θ2j

ψ,m((σ ⊗ χ) ⊗ ε) of (σ ⊗ χ) ⊗ ε to Mp2j(A) is non-zero, i.e. the lowest occurrence

LOψ(σ ⊗ χ) � FOψ((σ ⊗ χ) ⊗ ε) � 2j.

Moreover, we also have 2j � r, where r is the Witt index of the quadratic form b, which
defines Om. In particular, if Om is k-split, then 2j � [ 12m].
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This theorem was proved by Moeglin in [20], for even orthogonal groups. The proof for
m odd is similar. For completeness, we review the proof, in general, following Moeglin’s
argument. To prove Theorem 3.1, we recall the generalized doubling method. We keep
using the notation introduced in § 2.

Let (X ′, b′) := (X, −b) be the quadratic k-vector space obtained by taking the same
vector space as X, but with the non-degenerate symmetric bilinear form b′ = −b. Take
W = X ⊥ X ′, the ‘doubled’ k-vector space, and define, for any non-negative integer a,

Wa = Xa ⊥ X ′ = W ⊥ (
+a ⊕ 
−
a ) = W ⊥ Ha, (3.1)

where Xa, 
±
a and Ha are given in (2.1) and (2.2). One may call Wa the generalized

doubled k-vector space. Define

X∆,± := {(x,±x) ∈ W | x ∈ X} and X∆,±
a = X∆,± ⊕ 
±

a . (3.2)

Then we have
W = X∆,+ ⊕ X∆,− and Wa = X∆,+

a ⊕ X∆,−
a . (3.3)

These are the polarizations of W and Wa, with respect to the maximal totally isotropic
subspaces X∆,± and X∆,±

a , respectively. In particular, both W and Wa are k-split
quadratic k-vector spaces.

Let Pa be the maximal parabolic subgroup of O(Wa), stabilizing the maximal totally
isotropic subspace X∆,+

a of Wa. Then we write Pa = MPa
UPa

as the Levi decomposition
of Pa, with the Levi part MPa

∼= GLm+a. It is clear that the unipotent radical UPa is
abelian. There is a maximal compact subgroup K ′

a of O(Wa)(A) such that

K ′
a ∩ O(Xa)(A) = Ka and O(Wa)(A) = Pa(A)K ′

a, (3.4)

where Ka is the maximal compact subgroup of O(Xa)(A), as defined in (2.4). Let

ι = ι1 × ι2 : O(Xa) × O(X ′) → O(Wa) (3.5)

be the natural embedding according to (3.1).
Replacing σ by σ ⊗ χ, we may assume that χ = 1.
As in [20], we denote by E

′
a,s the space of automorphic forms f on

UPa(A)MPa(k)\ O(Wa)(A),

such that
f(m(x)g) = |det(x)|sAδ

1/2
Pa

(m(x))f(g),

where

m(x) =

(
x 0
0 x∗

)
∈ MPa

(A),

with x ∈ GLm+a(A), g ∈ O(Wa)(A). For f ∈ E
′
a,0 (i.e. s = 0), define

fs(g) := [hPa(g)]s · f(g), (3.6)
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where hPa
is the same as the function Ha, defined in (2.8), replacing the parabolic sub-

group Qa there by the parabolic subgroup Pa here. It is clear that fs defines a section
in the normalized induced representation IndO(Wa)(A)

Pa(A) (|det |s). We define the Eisenstein
series attached to fs by

EPa(g; fs) :=
∑

γ∈Pa(k)\ O(Wa)(k)

fs(γg). (3.7)

In [17], the possible positive poles of the Eisenstein series EPa(g; fs) are proved to be in
the following set

{ 1
2 (m + a − 1) − j | j = 0, 1, 2, . . . , [ 12 (m + a)] − 1}. (3.8)

For any σ ∈ Ac(O(X)/k), we define, for any φσ ∈ Vσ, f ∈ E
′
a,0 and ga ∈ O(Xa)(A),

the following function

fφσ,s(ga) :=
∫

O(X)(A)
fs(ι1(g−1ga))φσ(g) dg, (3.9)

where fs is given as in (3.6). We have the following results, which extend § 2.1 of [20] to
cover both even and odd orthogonal groups. For S̃p2j , it is Proposition 3.3 of [15].

Proposition 3.2. With the notation above, the following hold.

(1) The integral defining fφσ,s(ga) converges absolutely for Re(s) > 1
2 (m + a − 1).

(2) The integral defining fφσ,s(ga) has meromorphic continuation to the whole complex
plane C, with possible poles contained in the set of poles of the Eisenstein series
EP0(g; (fs)|O(W )(A)), which is

{±( 1
2 (m − 1) − j) �= 0 | j = 0, 1, 2, . . . , 1

2m − 1},

where (fs)|O(W )(A) denotes the restriction of fs to the subgroup O(W )(A).

(3) The function fφσ,s(ga) is a Ka-finite section in the normalized induced represen-
tation I(s; σ) = IndO(Xa)(A)

Qa(A) (|det |s ⊗ σ) of O(Xa)(A) as defined in (2.12).

The proof of Proposition 3.2 is exactly the same as in § 2.1 of [20], which is for even
orthogonal groups. The same result for S̃p2j is in Proposition 3.3 of [15]. We omit the
details here. By using the section fφσ,s(ga), we define the Eisenstein series EQa(ga; fφσ,s)
as in (2.13). As in Proposition 2.1 of [20] and in Theorem 3.5 in [15], we consider
the maximal parabolic subgroup Pa,∆ of O(Wa), which stabilizes the maximal totally
isotropic subspace X∆,−

a (see (3.3)). Let δ0 be an element in O(Wa) such that

δ0 · Pa,∆ · δ−1
0 = Pa.

Then as in (3.6) of [15] or in § 2.1 of [20] we define

f ′
s(g) := fs(δ0 · g).
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Then f ′
s is a section in IndO(Wa)(A)

Pa,∆
(A)(|detX∆,−

a
|s), and we have

EPa,∆(g; f ′
s) = EPa(δ0 · g; fs). (3.10)

We have the following result, the proof of which is the same as in § 2 of [20] and § 3
of [15], and we will omit the details here.

Proposition 3.3. For any section f ′
s in IndO(Wa)(A)

Pa,∆(A) (|detX∆,−
a

|s), and φσ in the space of
σ ∈ Ac(O(Xa)/k), the following identity holds∫

O(X)(k)\ O(X)(A)
EPa,∆(ι(ga, g); f ′

s)φσ(g) dg = EQa(ga; fφσ,s).

The only thing we want to discuss here is that, for a large enough, the section
fφσ,s is general enough to detect the poles of the Eisenstein series corresponding to
I(s; σ) = IndO(Xa)(A)

Qa(A) (|det |s ⊗ σ). This is important for the determination of the possi-
ble poles of the Eisenstein series EQa(ga; φa;σ, s) in terms of the possible poles of the
degenerate Eisenstein series EPa,∆(g; f ′

s) or EPa(g; fs). We do this as in § 2 of [20].
By (3.9), the integral which defines the section fφσ,s can be viewed as an O(Xa)(A)-

intertwining mapping from
IndO(Wa)(A)

Pa(A) (|det |s) ⊗ Vσ

to I(s; σ), as defined in (2.12). We want to show that this intertwining mapping produces
arbitrary sections in I(s; σ). It is clear that one has to prove this for every local place v

of k.
Let P 0

a = M0
Pa

· UPa be the subgroup of the Siegel parabolic subgroup Pa = MPa · UPa ,
with M0

Pa
= SLm+a. Let Q0

a = M0
a · Na be the subgroup of the maximal parabolic sub-

group Qa = Ma · Na, defined in (2.3), with M0
a = SL(
+a ) × IX , and t̂ = diag(t, Ia−1) ∈

GL(
+a ) for t ∈ k×
v . We have the following natural projection,

ϕv 
→
∫

k×
v ×O(X)(kv)

|t|−sδQa(t̂)−1/2σv(g−1)ϕv(t̂gga) d×t dg, (3.11)

from the space, C∞
c (Q0

a(kv)\ O(Xa)(kv), Vσv ), consisting of all Vσv -valued, smooth, com-
pactly supported functions, to the induced representation I(s; σv). It is clear that this
projection is an O(Xa)(kv)-intertwining map. As in § 2 of [20], after the normalization
by a product of local L-functions defined by σv, (3.11) produces arbitrary holomorphic
Ka,v-finite sections in I(s; σv), if a is sufficiently large (depending on σ only). The con-
dition on a is needed only when σv has ramification.

By applying the argument used in the original doubling method, we know, from (3.5),
that the natural embedding

ι1 : (k×
v × Q0

a(kv))\ O(Xa)(kv) → (k×
v × P 0

a (kv))\ O(Wa)(kv) (3.12)

gives the Zariski open orbit of the action of O(Xa)(kv) × O(X)(kv) on the generalized
flag variety Pa(kv)\ O(Wa)(kv). Hence functions in C∞

c (Q0
a(kv)\ O(Xa)(kv)) can be nat-

urally extended to functions in C∞
c (P 0

a (kv)\ O(Wa)(kv)). Moreover, it is easy to check
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that Ka,v-finite functions in C∞
c (Q0

a(kv)\ O(Xa)(kv)) extend to K ′
a,v-finite functions in

C∞
c (P 0

a (kv)\ O(Wa)(kv)). Via the natural isomorphism, we have

C∞
c (Q0

a(kv)\ O(Xa)(kv)) ⊗̂Vσv
∼= C∞

c (Q0
a(kv)\ O(Xa)(kv), Vσv ).

One can also check that this isomorphism carries

C∞
c (Q0

a(kv)\ O(Xa)(kv), Vσv )Ka,v-finite

into

C∞
c (Q0

a(kv)\ O(Xa)(kv))Ka,v-finite ⊗̂Vσv
.

This is clear when v is a finite place of k, since the smooth functions are locally constant.
At an archimedean place v of k, for any ϕ in C∞

c (Q0
a(kv)\ O(Xa)(kv), Vσv

), we write

ϕ(ga) =
∞∑

n=1

ϕn(ga) · νn

where {νn | n = 1, 2, . . . } forms a countable orthonormal basis in the unitary completion
of the representation σv. If ϕ is Ka,v-finite, with Ka,v-type ρv and orthonormal basis
ϕ1, . . . , ϕf in ρv, then for k ∈ Ka,v, we have

ϕ(gak) =
f∑

i=1

〈ρv(k)ϕ, ϕi〉 · ϕi(ga)

=
f∑

i=1

〈ρv(k)ϕ, ϕi〉
∞∑

n=1

ϕi,n(ga) · νn

=
∞∑

n=1

( f∑
i=1

〈ρv(k)ϕ, ϕi〉ϕi,v(ga)
)

νn.

It follows that

ϕn(gak) =
f∑

i=1

〈ρv(k)ϕ, ϕi〉ϕi,v(ga).

Hence the Ka,v-finite ϕ can be approximated by elements in

C∞
c (Q0

a(kv)\ O(Xa)(kv))Ka,v-finite ⊗ Vσv
.

This space is embedded, by the explanation right after (3.12), inside the space
C∞

c (P 0
a (kv)\ O(Wa)(kv)) ⊗ Vσv

. As in (3.11), there is a natural O(Wa)(kv)-intertwining
projection from C∞

c (P 0
a (kv)\ O(Wa)(kv)) onto

IndO(Wa)(kv)
Pa(kv) (|det |s).

Therefore, the local version of (3.9) produces arbitrary holomorphic Ka,v-finite sections
in I(s; σv) for each place v, as long as a is sufficiently large (depending on the local
ramification of σv), and so we obtain that for a sufficiently large, the integral (3.9) pro-
duces arbitrary global holomorphic Ka-finite sections in I(s; σ). This proves the following
proposition.
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Proposition 3.4. For a sufficiently large, the family of Eisenstein series formed by
the integrals (3.9) has the same set of poles as the whole family of Eisenstein series
corresponding to I(s; σ).

Now we can prove Proposition 2.3, which is the first part of Theorem 3.1. (We keep
the assumption χ = 1.)

Let s0 > 0 be the maximal number in P(σ, Q1), i.e. the Eisenstein series EQ1(g; φ1;σ, s)
is holomorphic for Re(s) > s0, and has a pole at s0. Then, by Proposition 2.1, for all
integers a � 1, sa = s0 + 1

2 (a − 1) is in P(σ, Qa), i.e. the Eisenstein series EQa(g; φa;σ, s)
has a pole at sa. By Propositions 3.4 and 3.3, for a sufficiently large, there is a holomorphic
K ′

a-finite section fs in E
′
a,s such that the Eisenstein series EPa(g; fs) has a pole at

s = sa = s0 + 1
2 (a − 1).

On the other hand, by [17, (3.8)], there exists an integer j � 0 such that sa = 1
2 (m +

a − 1) − j. Hence, we must have
s0 = 1

2m − j.

When j = 0, the residue at s = 1
2 (m+a−1) of the Eisenstein series EPa(g; fs) generates

the trivial one-dimensional automorphic representation of O(Wa)(A). In order to get a
non-zero residue at s = 1

2 (m + a − 1), via the identity in Proposition 3.3, σ must be
the trivial representation. Thus, the Eisenstein series EQa(g; φa;σ, s) is holomorphic at
s = 1

2 (m + a − 1) when O(X) is not k-anisotropic. In this case, by Proposition 2.1,
the Eisenstein series EQ1(g; φ1;σ, s) must be holomorphic at s = 1

2m. When O(X) is
k-anisotropic, the assertion of Proposition 2.3 follows also from Proposition 3.3. This
proves Proposition 2.3.

We continue to complete the proof of Theorem 3.1 below, by using a certain version
of the regularized Siegel–Weil formula for the case under consideration.

Let s0 = 1
2m − j be the maximum of P(σ, Q1). Then by Proposition 2.1, for all

integers a � 1, sa = 1
2 (m + a − 1) − j is a pole of the Eisenstein series EQa(g; φa;σ, s).

By Propositions 3.3 and 3.4, for a sufficiently large, the following integral (period)∫
O(X)(k)\ O(X)(A)

ress=sa EPa(ι(ga, g), fs)φσ(g) dg (3.13)

is non-zero for some choice of data. To understand ress=sa EPa(ι(ga, g), fs), we use the
idea of the regularized Siegel–Weil formula of Kudla and Rallis [18]. In this particular
case, we follow § 3 of [20] and § 2 of [15]. By § 3.1 of [20], the space generated by the
square-integrable automorphic forms ress=sa EPa(ι(ga, g), fs) is contained in the following
direct sum ⊕

ε

Π1,ε,

where the representation Π1,ε is as defined in § 3.1 of [20], with η = 1. Now by § 3.2
of [20] and § 2 of [15], for a given f , there are automorphic sign characters ε and ϕε in
S(Wa(A)j) such that

ress=sa EPa(h, fs) =
∑

ε

cε · ε(det h)
∫

Sp2j(k)\ Sp2j(A)
θ

ωψv0
(1,αv0 )◦ϕε

ψ (h, x) dx, (3.14)
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where cε is a non-zero constant as given in the regularized Siegel–Weil formula. In the
integral, ψ is the fixed character which defines the Weil representation ωψ on S(Wa(A)j),
and αv0 is a Hecke algebra element at a finite place v0, depending on the section fs.
This Hecke algebra element αv0 regularizes the theta function θϕ

ψ(g, x), so that it decays
rapidly on the variable x and so that the integral converges absolutely. Formula (3.14) is
the version of the regularized Siegel–Weil formula for the non-connected group Om and
will be used below in the proof of Theorem 3.1.

By (3.14), the non-vanishing of (3.13) implies that there is a sign character ε, as above,
such that the following integral does not vanish identically:∫

O(X)(k)\ O(X)(A)

∫
Sp2j(k)\ Sp2j(A)

θ
ωψv0

(1,αv0 )◦ϕ

ψ (ι(ga, g), x)ε(det g)φσ(g) dxdg. (3.15)

Consider the separation of variables in the Weil representation, and obtain

ω
O(Wa)×Sp2j

ψ |[O(Xa)(A)×O(X)(A)]×Mp2j(A)
∼= ω

O(Xa)×Mp2j

ψ ⊗ ω
O(X)×Mp2j

ψ . (3.16)

One may choose ϕ = ϕXa ⊗ ϕX so that one gets

θϕ
ψ((ga, g), x) = θ

ϕXa

ψ (ga, x)θϕX

ψ (g, x). (3.17)

Hence the integral (3.15) can be written as∫
x

θ
ωψv0

(1,αv0 )◦ϕXa

ψ (ga, x)
∫

g

θ
ωψv0

(1,αv0 )◦ϕX

ψ (g, x)ε(det g)φσ(g) dg dx, (3.18)

where the dx-integration is over Sp2j(k)\ Sp2j(A), and the dg-integration is over
O(X)(k)\ O(X)(A). Now the non-vanishing of (3.15) implies the non-vanishing of (3.18),
and hence implies the non-vanishing of the inner integration∫

O(X)(k)\ O(X)(A)
θ

ωψv0
(1,αv0 )◦ϕX

ψ (g, x)ε(det g)φσ(g) dg. (3.19)

Since σ is cuspidal, integral (3.19) converges absolutely for all theta functions θϕX

ψ (g, x)
with all Schwartz–Bruhat functions ϕX in S(X(A)j). Hence the following integral∫

O(X)(k)\ O(X)(A)
θϕX

ψ (g, x)ε(det g)φσ(g) dg

does not vanish for some choices of data. This is equivalent to saying that the ψ-theta
lifting of σ ⊗ ε to Mp2j(A) is non-zero. Finally, let FOψ(σ ⊗ ε) = 2j′. Then 2j′ � 2j.
Denote π = θ2j′

ψ,m(σ ⊗ ε). This is a cuspidal representation of Mp2j′(A). By the theorem
in § 2 of [21] and by Theorem 1.2 in [15], π is irreducible and σ ⊗ ε = θm

ψ−1,2j′(π). Write
m = m0 + 2r, where r is the Witt index of the quadratic form b. Then it is known that
always, θm0+4j′

ψ−1,2j′ (π) �= 0. Since FOψ−1(π) = m, we conclude that m � m0 +4j′, and hence
r � 2j′ � 2j. The proof of Theorem 3.1 is now complete.
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4. Proof of Theorem 1.1

The proof of Theorem 1.1 can be carried out exactly as in [17], using the doubling method
directly for Om, where the role of the regularized Siegel–Weil formula is played by (3.14).
This will prove the theorem except one case, namely when Om = O2n+1, LS(σ⊗χ, 1

2 ) �= 0
and LS(σ ⊗ χ, s) is holomorphic for Re(s) > 1

2 . So, as in Theorem 3.1, we consider again
the maximal positive pole s0 (assuming it exists) of the Eisenstein series EQ1(g; φ1;σ,χ, s).
As in the previous section, we may assume that χ = 1, since we can replace σ by σ ⊗ χ.
Since we only consider case a = 1 in the rest of this section, we redenote EQ1(g; φ1;σ, s)
by E(g; φ1;σ, s). We now prove Theorem 1.1.

Assume first, that the partial L-function LS(s, σ) has a pole at s = 1
2m − j > 0.

Consider its maximal pole, say s′
0 = 1

2m − j′
0, j′

0 � j. Then, by Proposition 2.2, the
Eisenstein series E(g; φ1;σ, s) has a pole at s′

0 = 1
2m − j′

0. Hence there is an s0 � 1
2m −

j′
0 > 0 such that E(g; φ1;σ, s) has a pole at s0 and is holomorphic for Re(s) > s0. By

Proposition 2.3, there is j0 � j′
0 � j, such that s0 = 1

2m − j0. By Theorem 3.1, there
is an automorphic sign character ε, such that the ψ-theta lift θ2j0

ψ,m(σ ⊗ ε) of σ ⊗ ε to
Mp2j0(A) is non-zero. By the Rallis tower property [24], the ψ-theta lift θ2j

ψ,m(σ ⊗ ε) to
Mp2j(A) is non-zero, since j0 � j. Assume next, that m = 2n + 1, and LS(σ, 1

2 ) �= 0. If
LS(σ, s) has a pole at Re(s) > 1

2 , then by what we just proved, there is an automorphic
sign character ε, such that θ2j

ψ,m(σ ⊗ ε) �= 0, for some j < n, and hence, by Rallis tower
property, θ2n

ψ,m(σ ⊗ ε) �= 0. If LS(σ, s) is holomorphic at Re(s) > 1
2 , then we repeat the

calculation (2.19), with a = 1. In the calculation of the constant term of E(g, φ1;σ, s)
along the unipotent radical of Q1, the associated intertwining operator is applied to a
decomposable section and then evaluated at the identity, and we get

LS(s, σ)ζS(2s)
LS(s + 1, σ)ζS(2s + 1)

,

up to a function that is holomorphic and non-zero at s0 = 1
2 . Since at s0 = 1

2 ,

LS(s, σ)ζS(2s)
LS(s + 1, σ)ζS(2s + 1)

has a pole, we obtain that E(g, φ1;σ, s) has a pole at s = 1
2 . Then, by Theorem 3.1, there

is an automorphic sign character ε, such that θ2n
ψ,m(σ ⊗ ε) �= 0. This proves part (1) of

the theorem.

Part (2) follows from part (1). Assume that the lowest occurrence LOψ(σ) is 2j0 < m. If
the partial L-function LS(s, σ) is not holomorphic for Re(s) > s0 = 1

2m − j0, then there
is an integer j < j0 such that the partial L-function LS(s, σ) has a pole at s = 1

2m − j.
Then by part (1), we know that there is an automorphic sign character ε0, such that the
ψ-theta lift θ2j

ψ,m(σ ⊗ ε0) of σ ⊗ ε0 to Mp2j(A) is non-zero. Since j < j0, we must obtain
that the lowest occurrence LOψ(σ) = 2j0 > 2j. This contradiction proves part (2).

Finally, assume that the lowest occurrence LOψ(σ) is 2j0 � m. If the partial L-function
LS(s, σ) has a pole at s = 1

2m − j � 1
2 , then by part (1), there is an automorphic sign
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character ε0, such that the ψ-theta lift θ2j
ψ,m(σ ⊗ ε0) to Mp2j(A) is non-zero. Hence we

have
m � 2j0 � FOψ(σ ⊗ ε0) � 2j < m.

This is impossible. This completes the proof of Theorem 1.1.

Remark 4.1. Theorem 1.1 is the orthogonal group version of Theorem 7.2.5 in [18],
which explains the poles of the partial L-function LS(s, σ) for Sp2n in terms of theta
liftings to orthogonal groups.

5. Proof of Theorem 1.3

We first state the following theorem, which is important to the proof of Theorem 1.3.

Theorem 5.1. Let Om be the orthogonal group attached to a quadratic k-vector space of
dimension m. For any σ ∈ Ac(Om/k), if the first occurrence of σ is FOψ(σ) = 2j0 �= m,
with the property that either 2j0 < m or 1

2m < j0 < m − 2 with 6 < m, then the
Eisenstein series E(g; φ1;σ, s) has a pole at s = 1

2m − j0.

Note that in this theorem, we consider the specific first occurrence FOψ(σ) of σ, but
not the lowest occurrence LOψ(σ) of the family of all twists by sign characters σ ⊗ ε of
σ. In the proof, we have to study a certain period integral of the Arthur truncation of
the Eisenstein series. The condition that 1

2m < j0 < m − 2 with 6 < m is imposed to
avoid the technical complication of proving absolute convergence of certain integrals in
this case. See its proof in § 6 for details. As result, when 2j0 < m, we are going to prove
a result (Theorem 5.3) which is stronger than Theorem 5.1 in this case.

5.1. Proof of Theorem 1.3

Let us show how Theorem 3.1 and Theorem 5.1 imply Theorem 1.3.
We may assume, as before, that χ = 1. Assume that the Eisenstein series E(g; φ1;σ, s)

has a pole at s0 = 1
2m − j0 > 0 and is holomorphic for Re(s) > s0. By Theorem 3.1,

there is an automorphic sign character ε0, such that the ψ-theta lifting of σ ⊗ ε0 to
Mp2j0(A), θ2j0

ψ,m(σ ⊗ ε0) does not vanish. If the lowest occurrence LOψ(σ) < 2j0, then
there is an automorphic sign character ε (could be ε0), such that the first occurrence
FOψ(σ ⊗ ε) = 2j1 < 2j0. Then by Theorem 5.1, the Eisenstein series E(g; φ1;σ⊗ε, s)
must have a pole at s = 1

2m − j1 > s0. Clearly, we have

E(g; φ1;σ⊗ε, s) = ε(det g)E(g; φ1;σ, s).

Hence E(g; φ1;σ, s) has a pole at s = 1
2m − j1 > s0. This contradicts the assumption.

Hence we must have that LOψ(σ) = 2j0. This proves one direction of Theorem 1.3.
Conversely, assume that the lowest occurrence LOψ(σ) = 2j0 < m. Let ε0 be an

automorphic sign character of Om(A), such that the lowest occurrence LOψ(σ) is achieved
by the first occurrence of σ ⊗ ε0, i.e.

FOψ(σ ⊗ ε0) = 2j0 = LOψ(σ).

https://doi.org/10.1017/S1474748009000097 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748009000097


Poles of L-functions and theta liftings for orthogonal groups 711

Then by Theorem 5.1, the Eisenstein series E(g; φ1;σ⊗ε0 , s), and hence E(g; φ1;σ, s), has
a pole at s0 = 1

2m − j0 > 0. If E(g; φ1;σ, s) is not holomorphic for Re(s) > s0, then
there is an s1 > s0, such that E(g; φ1;σ, s) has a pole at s1, and is holomorphic for
Re(s) > s1. By Proposition 2.3, there is an integer j1 < j0 such that s1 = 1

2m− j1. Now,
by Theorem 3.1, there is an automorphic sign character ε1, such that the ψ-theta lifting
of σ ⊗ ε1 to Mp2j1(A), θ2j1

ψ,m(σ ⊗ ε1) is non-zero. Hence we must have

FOψ(σ ⊗ ε1) � 2j1 < 2j0 = LOψ(σ).

This is a contradiction to the definition of the lowest occurrence of σ (see (1.2)).
Therefore, Theorem 3.1 and Theorem 5.1 imply Theorem 1.3.

5.2. Periods of certain residues

In order to state Theorem 5.3, we have to recall some basics in the theory of theta
correspondence and define the periods of Eisenstein series and its residue.

We write the elements of the symplectic group Sp2j with respect to the skew-symmetric
matrix J−

2j , which is defined inductively as follows:

J−
2j :=

⎛⎜⎝ 0 1
J−

2j−2

−1 0

⎞⎟⎠ .

Consider the unipotent radical U of the Siegel parabolic subgroup Q = LU of Sp2j . We
write the elements of U as

u(S) =

(
Ij S

0 Ij

)
∈ U ⊂ Sp2j . (5.1)

Let 
 := (l1, l2, . . . , lj) ∈ (k×)j be any j-tuple. For a non-trivial character ψ of A/k,
define a character ψ� of U(A) by

ψ�(u(S)) := ψ(l1s1,j + l2s2,j−1 + · · · + ljsj,1). (5.2)

This is trivial on U(k). Let π̃ be an irreducible, automorphic, cuspidal representation of
Mp2j(A). By a theorem of Li [19], there exists an 
 = (l1, l2, . . . , lj) as above, such that
the following ψ�-Fourier coefficient∫

U(k)\U(A)
φπ̃(ug)ψ−1

� (u) du (5.3)

does not vanish, for some φπ̃ in the space of π̃.
In the following, for any σ ∈ Ac(Om/k), we take π̃ = θ2j

ψ,m(σ) and assume that π̃ is
an irreducible, automorphic, cuspidal representation of Mp2j(A), i.e. the first occurrence
of σ is FOψ(σ) = 2j, with 1 � j � m. The calculation of the ψ�-Fourier coefficient of
automorphic forms φπ̃ in the space of π̃ is standard [10,24].
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Let v1, . . . , vj be vectors in (X, b) (as introduced in § 2), with the property that
b(vs, vt) = 0 if s �= t for s, t = 1, 2, . . . , j; and b(vt, vt) = lt for t = 1, 2, . . . , j. Then
the pointwise stabilizer H�, in Om, of the subspace generated by v1, v2, . . . , vj , is a k-
rational form of Om−j . Note that if j = m, then H� is the identity group. In this case, the
first statement of the next proposition is meaningless, and the meaning of the proposition
is really its second part. Note also, that if j = m− 1, then H� is isomorphic to the group
of two elements.

Proposition 5.2. Let σ ∈ Ac(Om/k). Assume that the first occurrence of σ is FOψ(σ) =
2j, for some positive integer j � m.

(1) There exists an 
 = (l1, l2, . . . , lj) ∈ (k×)j , such that the following period∫
H�(k)\H�(A)

φσ(h) dh (5.4)

does not vanish, for some φσ in the space of σ.

(2) For any orthogonal subgroup H�+ of Om, with a conjugate gH�+g−1, g ∈ Om,
containing H� as a proper subgroup, the following period∫

H�+ (k)\H�+ (A)
φσ(h) dh (5.5)

vanishes for all choices of the data.

(3) The period integrals in (5.4) and (5.5) converge absolutely.

Proof. It is not hard to show that the period integrals in (5.4) and (5.5) are absolutely
convergent. In fact, the cuspidal automorphic form φσ is rapidly decreasing over the
Siegel domain of Om(k)\ Om(A). In particular, it is bounded over the Siegel domain of
Om and hence over the group Om(A). When H� or H�+(k) is not the split orthogonal
group in two variables, both H�(k)\H�(A) and H�+(k)\H�+(A) are of finite volume with
respect to their canonical Haar measures. This proves that both period integrals in (5.4)
and (5.5) are absolutely convergent.

In case of the split orthogonal group in two variables, we can use a suitable basis to
get that the connected part becomes the diagonal group

t(x) =

⎛⎜⎝x

Im−2

x−1

⎞⎟⎠ ,

and φσ(t(x)) is rapidly decreasing at infinity. It is also rapidly decreasing near zero, since
if w0 is a Weyl element of Om which takes t(x) to t(x−1), then φσ(t(x)) = φσ(t(x−1)w0).
Thus, ∫

k∗\A∗
|φσ(t(x))| d∗x < ∞,

and clearly this convergence implies the absolute convergence of the period integral along
the split orthogonal group in two variables. This proves part (3) of the theorem.
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The standard calculation of the ψ�-Fourier coefficient of automorphic forms φπ̃ in the
space of π̃ [10,24] expresses the period (5.4) as an inner integration of the ψ�-Fourier
coefficient (5.3). This implies part (1).

The same calculation shows that any period as in (5.5) will occur as an inner integral
of a certain Fourier coefficient of the ψ-theta lifting of σ to Mp2j0(A) with j0 < j. Since
the first occurrence of σ is 2j, the period as in (5.5) must vanish identically.

More detailed arguments and calculations will be given in § 6.1 in the proof of Lemma
6.2. �

As in (2.2), we consider X1 = X ⊥ (
+1 ⊕ 
−
1 ). We may write

X1 = 
+1 ⊕ X ⊕ 
−
1 . (5.6)

Denote the corresponding bilinear form on X1 by b1. We choose a basis in X1 of form

e+
0 , x1, . . . , xm, e−

0 , (5.7)

where x1, . . . , xm is a basis for X, and 
±
1 = k · e±

0 with b1(e+
0 , e−

0 ) = 1.
As in (2.3), for a = 1, we take Q1 = M1N1 to be the maximal parabolic subgroup of

O(X1), which stabilizes the isotropic line k · e+
0 = 
+1 . Hence, the Levi subgroup M1 is

isomorphic to GL1 × O(X) = GL1 × Om. For any 
 = (l1, l2, . . . , lj) ∈ (k×)j , we choose,
as before, vectors v1, . . . , vj in (X, b), with the property that b(vs, vt) = 0, if s �= t, for
s, t = 1, 2, . . . , j; and b(vt, vt) = lt, for t = 1, 2, . . . , j. We denote by Yj the subspace of
X generated by v1, . . . , vj . Then Yj is a non-degenerate subspace of X, and we have

X = Yj ⊥ Zm−j . (5.8)

As in Proposition 5.2, we have H� = O(Zm−j). It follows that

X1 = 
+1 ⊕ X ⊕ 
−
1 = Yj ⊥ Zm−j+2 = Yj ⊥ (
+1 ⊕ Zm−j ⊕ 
−

1 ). (5.9)

We set G� = O(Zm−j+2). For simplicity, we set here Om = O(X) and Om+2 = O(X1).
Now we are ready to state a refinement of Theorem 5.1 for the poles at s = 1

2m−j > 0
of the Eisenstein series E(g; φ1;σ, s). By a theorem of Langlands [22, § IV.1.11], these
poles have no multiplicity.

Theorem 5.3. Let E(g; φ1;σ, s) be the Eisenstein series on Om+2(A), attached to the
cuspidal datum (Q1, 1 ⊗ σ), as defined in § 2. Assume that σ ∈ Ac(Om/k) has the first
occurrence FOψ(σ) = 2j for some positive integer j < 1

2m. Then

(1) the Eisenstein series E(g; φ1;σ, s) has a simple pole at s = 1
2m − j > 0;

(2) there is an 
 = (l1, l2, . . . , lj) ∈ (k×)j , such that the residue at s0 = 1
2m − j

of E(g; φ1;σ, s), denoted by Em/2−j(g; φ1;σ), is G�-distinguished, i.e. the following
period ∫

G�(k)\G�(A)
Em/2−j(h; φ1;σ) dh (5.10)

is absolutely convergent for all choices of data, and is non-zero for some choices of
data; and
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(3) all residues at other positive (simple) poles s0 �= 1
2m − j of E(g; φ1;σ, s) cannot be

G�-distinguished.

It is clear that part (1) of Theorem 5.3 is contained in Theorem 5.1 for the positive
poles. In the next section we will prove Theorem 5.1 by studying the period of type (5.10)
for the Arthur truncation of the Eisenstein series. Based on this, we continue to study
period of type (5.10) for Arthur truncation of the residue of the Eisenstein series, which
proves Theorem 5.3.

6. Proof of Theorems 5.1 and 5.3

We start with proof of Theorem 5.1. For any σ ∈ Ac(Om/k), we assume that the first
occurrence of σ is FOψ(σ) = 2j0 �= m, with the property that either 2j0 < m or 1

2m <

j0 < m − 2 with 6 < m. This is the assumption of Theorem 5.1.
We consider the period of the Eisenstein series∫

G�(k)\G�(A)
E(h; φ1;σ, s) dh. (6.1)

This integral may diverge. We first regularize this integral by Arthur’s truncation. Then
we show that the period over G� of the truncated Eisenstein series has a pole at s =
1
2m − j �= 0, and hence the Eisenstein series E(g; φ1;σ, s) has a pole at s = 1

2m − j.
This will prove Theorem 5.1. When 2j0 > m, we introduce the restriction on j0 and m

to avoid the technical complication of proving absolute convergence of certain integrals
which are introduced in the regularization process via the Arthur truncation method.
Then, when the pole above is positive (i.e. 2j0 < m), by applying the Arthur truncation
to the residue Em/2−j(g; φ1;σ), we express the period of Em/2−j(g; φ1;σ) in terms of the
period of the truncated Eisenstein series and deduce (5.10). This will prove Theorem 5.3.

6.1. The Arthur truncation method

We recall from [1] and [2] Arthur’s truncation formula, in our special case. Since Q1

is maximal, aQ1 is one dimensional. We identity aQ1 with R, as in § 2. Let c be a real
number c ∈ R>1 ⊂ aQ1 , where R>1 is the set of real numbers, which are greater than
one. Let τ c (c ∈ R>1) be the characteristic function over R>0 of the subset R�c and
τc = 1R>0 − τ c. By § 2.13 of [22], the truncation of the Eisenstein series is defined as
follows:

ΛcE(g; φ1;σ, s) = E(g; φ1;σ, s) −
∑

γ∈Q1\ Om+2

EQ1(γg; φ1;σ, s)τ c(H(γg)), (6.2)

where EQ1(g; φ1;σ, s) is the constant term of E(g; φ1;σ, s) along the maximal parabolic
subgroup Q1. We remark that we are free to take c as large as we may need. Below we will
need that c > c0, for a certain constant c0, which will be specified later. For Re(s) > 1

2m,
we have the identity

EQ1(g; φ1;σ, s) = Φs(g; φ1;σ) + M(s, σ, w1)(Φs)(g; φ1;σ),
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which holds for all s as meromorphic functions. Here M(s, σ, w1) is the standard (global)
intertwining operator attached to the maximal parabolic subgroup Q1 and the Weyl
element w1, which has the property that w1M1w

−1
1 = M1 and w1N1w

−1
1 = N−

1 (the
opposite of N1).

We remark that the summation in (6.2) has only finitely many terms (depending on g)
and converges. Further, for Re(s) > 1

2m, the truncated Eisenstein series may be written
as follows:

ΛcE(g; φ1;σ, s) =
∑

γ∈Q1\ Om+2

Φs(γg; φ1;σ)τc(H(γg))

−
∑

γ∈Q1\ Om+2

M(s, σ, w1)(Φs)(γg; φ1;σ)τ c(H(γg))

= θc
1(g) − θc

2(g), (6.3)

where

θc
1(g) :=

∑
γ∈Q1\ Om+2

Φs(γg; φ1;σ)τc(H(γg)),

θc
2(g) :=

∑
γ∈Q1\ Om+2

M(s, σ, w1)(Φs)(γg; φ1;σ)τ c(H(γg)).

Note that θc
1(g) converges absolutely for Re(s) > 1

2m, while θc
2(g) has only finitely many

terms (depending on g). Both have meromorphic continuation to the whole complex
plane.

We will calculate first the period of the truncated Eisenstein series∫
G�(k)\G�(A)

ΛcE(g; φ1;σ, s) dg =
∫

G�(k)\G�(A)
θc
1(g) dg −

∫
G�(k)\G�(A)

θc
2(g) dg. (6.4)

The truncated Eisenstein series ΛcE(g; φ1;σ, s) is rapidly decaying over a Siegel domain
of Om+2(k)\ Om+2(A), and hence, by the proof of part (3) of Proposition 5.2, the period
integral on the left-hand side of (6.4) is absolutely convergent. The right-hand side of
(6.4) is a difference of two integrals. We will show that the term with i = 1 converges
absolutely for Re(s) sufficiently large and has a meromorphic continuation to the whole
plane, and we will determine the location of its poles precisely. We will also show that
the term with i = 2 converges absolutely for all s, where the intertwining operator is
defined, provided we take the truncation parameter c > c0 for some c0, which will be
specified later. Put

Ic
i =

∫
G�(k)\G�(A)

θc
i (g) dg. (6.5)

For the calculation below, write, for i = 1, 2,

θc
i (g) =

∑
γ∈Q1\ Om+2

ξc
i,s(γg), (6.6)
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where we have

ξc
i,s(g) =

{
Φs(g; φ1;σ)τc(H(g)) if i = 1,

M(s, σ, w1)(Φs)(g; φ1;σ)τ c(H(g)) if i = 2.
(6.7)

We may unfold formally the integral (6.5) as follows:

Ic
i =

∫
G�(k)\G�(A)

∑
γ∈Q1\ Om+2

ξc
i,s(γg) dg

=
∑

γ∈Q1\ Om+2 /G�

∫
Gγ

� \G�(A)
ξc
i,s(γg) dg, (6.8)

where Gγ
� = γ−1Q1γ ∩ G�. We will show that each integral in the summation (6.8) con-

verges absolutely. Since there are infinitely many G�-orbits in the generalized flag variety
Q1\ Om+2, we have to show that the series is absolutely convergent. More precisely, we
will show that ∑

γ∈Q1\ Om+2 /G�

∫
Gγ

� \G�(A)
|ξc

i,s(γg)| dg < ∞, (6.9)

for Re(s) sufficiently large, when i = 1, and for all s, where the intertwining operator is
defined, when i = 2, provided c > c0. We will show that the integrals in (6.8) are equal
to zero, for all G�-orbits Q1γG�, except the G�-orbit with representative γ = 1. Hence
the series over γ ∈ Q1\ Om+2 /G� has at most one non-zero term. We will compute this
term explicitly.

We first classify the G�-orbits in the generalized flag variety Q1\ Om+2. It is clear that
the double coset decomposition Q1\ Om+2 /G� is the same as the orbit decomposition of
the right action of G� on the generalized flag variety Q1\ Om+2, which is isomorphic to
the projective variety I(X1), which is the isotropic cone in X1 consisting of all isotropic
lines in the quadratic vector space X1.

Let x and x′ be two non-zero isotropic vectors in X1, which belong to the same G�-orbit.
Then by (5.7), we have b1(x, x) = b1(x′, x′) = 0 and there is an h ∈ G� and α ∈ k× such
that αx′ = h−1 ·x. Following the decomposition (5.9), we write x = y+z and x′ = y′ +z′.
It follows that h−1 · x = y + h−1 · z = αy′ + αz′ = αx′. Hence we obtain that if x = y + z

and x′ = y′ + z′ are two non-zero isotropic vectors in X1, which belong to the same
G�-orbit, then

y′ = βy and z′ = β · h−1 · z

for some β ∈ k× and h ∈ G�. For a double coset Q1γG�, in the double coset decomposition
Q1\ Om+2 /G�, we denote by k · xγ the corresponding isotropic line in X1, and similarly,
for an isotropic line k · x in X1, we denote by Q1γxG� the corresponding double coset in
the double coset decomposition Q1\ Om+2 /G�.

We decompose the isotropic cone I(X1) into a disjoint union as follows:

Q1\ Om+2 = I(X1) = Ω1,0 ∪ Ω0,1 ∪ Ω1,1 ∪ Ω2,2. (6.10)
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Here Ω1,0 consists of all x = y + z ∈ I(X1) such that z = 0; Ω0,1 consists of all
x = y + z ∈ I(X1) such that y = 0; Ω1,1 consists of all x = y + z ∈ I(X1) such that both
y and z are non-zero isotropic vectors; and Ω2,2 consists of all x = y + z ∈ I(X1) such
that both y and z are anisotropic vectors. It is not hard to check that Ω1,0, Ω0,1, Ω1,1

and Ω2,2 are all G�-stable. Hence we have

Q1\ Om+2 /G� = [Ω1,0/G�] ∪ [Ω0,1/G�] ∪ [Ω1,1/G�] ∪ [Ω2,2/G�].

It follows that the series in (6.8) can be written as∑
γ∈Q1\ Om+2 /G�

∫
Gγ

� \G�(A)
ξc
i,s(γg) dg =

∑
x∈Ω1,0/G�

∫
Gγx

� \G�(A)
ξc
i,s(γxg) dg

=
∑

x∈Ω0,1/G�

∫
Gγx

� \G�(A)
ξc
i,s(γxg) dg

=
∑

x∈Ω1,1/G�

∫
Gγx

� \G�(A)
ξc
i,s(γxg) dg

=
∑

x∈Ω2,2/G�

∫
Gγx

� \G�(A)
ξc
i,s(γxg) dg. (6.11)

It is enough to prove (6.9) for each of these series.

6.2. The series over Ω1,0/G�

For x ∈ Ω1,0, we have x = y ∈ Yj with z = 0. Then k · y is a G�-orbit. Since
b1(y, y) = b1(x, x) = 0, there is a γ ∈ Om+2(k) such that γ−1 · e+

0 = y. This implies that
x = xγ , and

Gγ
� = γ−1 · Q1 · γ ∩ G�

= {g ∈ G� | g−1(k · y) = k · y}
= G�.

It follows that γ ·G� ·γ−1 ⊂ Q1. We choose a representative γ for the double coset Q1γG�

as follows. Let y′ ∈ Yj be an isotropic vector, which is dual to y, i.e. b1(y, y′) = 1. Then
we choose γ ∈ Om+2(k) such that γ−1 · e+

0 = y, γ−1 · y = e+
0 , γ−1 · e−

0 = y′, γ−1 · y′ = e−
0 ,

and the restriction of γ−1 to the subspace Span(y, y′)⊥ ∩ Yj ⊕ Zm−j is the identity. It
follows that

γ · G� · γ−1 ⊂

⎛⎜⎝1 0
Om

0 1

⎞⎟⎠ = M0
1 . (6.12)

More precisely, we have

γ · G� · γ−1 = O((k · y ⊕ k · y′) ⊕ Zm−j) ⊂ O(X) = Om .
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For such a γ or a double coset Q1γG�, the integral in (6.8) can be written as∫
Gγ

� \G�(A)
ξc
i,s(γg) dg =

∫
Gγ

� \G�(A)
ξc
i,s(γgγ−1 · γ) dg

=
∫

O((k·y⊕k·y′)⊕Zm−j)\ O((k·y⊕k·y′)⊕Zm−j)(A)
ξc
i,s(hγ) dh.

By the definition of ξc
i,s(g) (see (6.7) and (2.10), (2.11)), we have

ξc
i,s(hγ) =

{
φ1;σ(hγ)τc(H(γ))H(γ)(s) if i = 1,

M(s, σ, w1)(φ1;σ)(hγ)τ c(H(γ))H(γ)(−s) if i = 2.

Hence the dh-integration defines a period of the cuspidal automorphic form φσ in the
space of σ over the reductive subgroup

O((k · y ⊕ k · y′) ⊕ Zm−j)

of Om+2. By Proposition 5.2, it is absolutely convergent. Note that the dh-integration
of H(γ)(− 1

2m)|φ1;σ(hγ)| is bounded, as γ varies as above. Note also that, for all
y, y′ as above, O((k · y ⊕ k · y′) ⊕ Zm−j) is k-isomorphic to G�. We use the fact
that H(γ)(− 1

2m)|φ1;σ(hγ)| is uniformly bounded, for h, γ as above, and the fact that
G�(k)\G�(A) has finite measure (since m− j +2 �= 2). Thus, it is enough to consider the
convergence of the series ∑

x∈Ω1,0/G�

τc(H(γx))H(γx)(Re(s) + 1
2m)

if i = 1; and ∑
x∈Ω1,0/G�

τ c(H(γx))H(γx)(− Re(s) + 1
2m)

if i = 2.
When i = 1, the series is majorized by the Eisenstein series∑

γ∈Q1\ Om+2

H(γ)(Re(s) + 1
2m),

which converges absolutely, for Re(s) large enough. When i = 2, the series above is a
finite sum, due to the presence of τ c(H(γ)).

On the other hand, by Proposition 5.2, the dh-integrations above must vanish, for all
choices of data because of the assumption of the first occurrence of σ. We summarize
this as the following proposition.

Proposition 6.1. Let σ ∈ Ac(Om/k) have the first occurrence FOψ(σ) = 2j, such that
j and m satisfy the condition in Theorem 5.1. Then the series∑

x∈Ω1,0/G�

∫
Gγx

� \G�(A)
ξc
i,s(γxg) dg
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converges absolutely, i.e. ∑
x∈Ω1,0/G�

∫
Gγx

� \G�(A)
|ξc

i,s(γxg)| dg < ∞,

for Re(s) sufficiently large, when i = 1, and for all s, where the intertwining operator is
defined, when i = 2. Moreover, the integral in the summation above attached to γx,∫

Gγx
� \G�(A)

ξc
i,s(γxg) dg,

is absolutely convergent for all s (where the intertwining operator is defined, when i = 2)
and is identically zero, for all choices of data.

In Proposition 6.1, the only restriction we needed on j was that j < m.

6.3. The series over Ω1,1/G�

For x = y + z with z �= 0, we have three cases for y:

(1) y = 0, which means that x = y + z = z is isotropic, and hence x ∈ Ω0,1/G�;

(2) y �= 0 is isotropic, which implies that z is isotropic, and hence x ∈ Ω1,1/G� (of
course, if b is k-anisotropic, this is impossible and hence Ω1,1 is empty); and

(3) y �= 0 is anisotropic, which means that z must be anisotropic, and hence x ∈
Ω2,2/G�.

We treat the case (2) in this subsection and cases (1) and (3) in the following subsections.
For x = y + z ∈ Ω1,1/G�, y is an non-zero isotropic vector in Yj . This means that b is

assumed to be k-isotropic. In this case, z is isotropic in Zm−j+2. It is easy to see that,
for each y, with the above property, the set of isotropic lines of the following type

{k · (y + z) | 0 �= z ∈ Zm−j+2, b1(z, z) = 0} (6.13)

is a G�-orbit. Note that this also holds for x ∈ Ω0,1, i.e. y = 0 case.
When y �= 0 (x = y+z ∈ Ω1,1/G�), we may choose the isotropic line k · (y+e+

0 ), as the
representative of the G�-orbit, and γ is the corresponding representative for Q1γG�. For
h ∈ G�, which stabilizes the isotropic line k · (y + e+

0 ), we have h · (y + e+
0 ) = α(y + e+

0 ).
We must have α = 1 and h ·e+

0 = e+
0 . Hence, the stabilizer of the isotropic line k ·(y+e+

0 )
in G�, Gγ

� is contained in Q0
1, where Q0

1 = M0
1 N1 ⊂ Q1, with M0

1 being defined in (6.12).
It is easy to check that

Gγ
� = G� ∩ Q0

1.

Next, note that k · (y1 + e+
0 ) and k · (y2 + e+

0 ) (y1, y2 non-zero isotropic vectors in Yj)
lie in the same G� orbit, if and only if y1, y2 are proportional by an element of k∗. Thus,
for this family of orbits, y varies in the set of non-zero isotropic vectors of Yj , modulo
k∗. Now, we may modify the representative γ, so that γ has the following additional

https://doi.org/10.1017/S1474748009000097 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748009000097


720 D. Ginzburg, D. Jiang and D. Soudry

properties. Let y′ be an isotropic vector in Yj , which is dual to y. It is easy to check that
we can choose a γ within the double coset Q1γG�, with the following properties:

γ−1 · e+
0 = y + e+

0 , γ−1 · e−
0 = 1

2 (y′ + e−
0 ),

γ−1 · y = −y + e+
0 , γ−1 · y′ = 1

2 (−y′ + e−
0 ),

and the restriction of γ−1 to the subspace Span(y, y′)⊥ ∩ Yj ⊕ Zm−j is the identity.
For h ∈ G� ∩ Q0

1 = Gγ
� , we want to know the action of γhγ−1 according to the

decomposition of X1:

X1 = k · e+
0 ⊕ k · y ⊕ Zm−j ⊕ Yj ∩ Span(y, y′)⊥ ⊕ k · y′ ⊕ k · e−

0 .

Note that γhγ−1 ∈ Q1. Further we have

γhγ−1 · e+
0 = e+

0 ,

γhγ−1 · y = y,

γhγ−1 · z′ = 1
2βe+

0 + 1
2βy + z′(h) (z′ ∈ Zm−j , β ∈ k),

γhγ−1 · y0 = y0 (y0 ∈ Yj ∩ Span(y, y′)⊥),

γhγ−1 · y′ = 1
4αe+

0 + 1
4αy + 1

2z + y′,

γhγ−1 · e−
0 = 1

4αe+
0 + 1

4αy + 1
2z + e−

0 (α = α(h) ∈ k, z = z(h) ∈ Zm−j),

and γhγ−1 · (−y′ + e−
0 ) = (−y′ + e−

0 ). Hence the element γhγ−1 can be expressed as the
following matrix: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1
2β 0 1

4α 1
4α

0 1 1
2β 0 1

4α 1
4α

0 0 h′ 0 z z

0 0 0 Ij−2 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.14)

where h′ ∈ O(Zm−j) = H�, β is a row vector and z is an appropriate column vector.
Note that in (6.14) we have

g(h) :=

⎛⎜⎜⎜⎜⎝
1 1

2β 0 1
4α

0 h′ 0 z

0 0 Ij−2 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ ∈ Om = O(X),

according the following decomposition of the quadratic vector space X:

X = k · y ⊕ Zm−j ⊕ Yj ∩ Span(y, y′)⊥ ⊕ k · y′.
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It is easy to check that the mapping γhγ−1 
→ g(h) is a group homomorphism from
γ · Gγ

� · γ−1 onto the subgroup Hy,j of Om = O(X), where Hy,j is defined to be⎧⎪⎪⎪⎨⎪⎪⎪⎩g =

⎛⎜⎜⎜⎝
1 u 0 v

0 h′ 0 u′

0 0 Ij−2 0
0 0 0 1

⎞⎟⎟⎟⎠ ∈ O(X)

∣∣∣∣∣∣∣∣∣ h′ ∈ O(Zm−j), u ∈ km−j , v ∈ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6.15)

In other words, for any g in (6.15), we have

γ−1gγ ∈ G� ∩ Q0
1 = Gγ

� .

Lemma 6.2. For σ ∈ Ac(Om/k), if the first occurrence FOψ(σ) = 2j, then the following
period ∫

Hy,j\Hy,j(A)
φσ(h) dh

is absolutely convergent, and vanishes identically for all automorphic forms φσ in the
space of σ.

This lemma will be proven later in § 6.8. The absolute convergence in the lemma is
clear, using Proposition 5.2. Note that Hy,j is a semi-direct product of O(Zm−j) and a
unipotent group.

The formal calculation of the integral in (6.8), attached to the representative γ above,
is as follows:∫

Gγ
� \G�(A)

ξc
i,s(γg) dg =

∫
Gγ

� (A)\G�(A)

∫
Gγ

� \Gγ
� (A)

ξc
i,s(γhg) dh dg

=
∫

Gγ
� (A)\G�(A)

∫
Gγ

� \Gγ
� (A)

ξc
i,s(γhγ−1 · γg) dh dg

=
∫

Gγ
� (A)\G�(A)

∫
Hy,j\Hy,j(A)

ξc
i,s(h · γg) dh dg. (6.16)

The last equality holds because ξc
i,s(ng) = ξc

i,s(g) for any n ∈ N1(A). By the definition
of ξc

i,s(g) (see (6.7) and (2.10), (2.11)), we have

ξc
i,s(h · γg) =

{
φ1;σ(hγg)τc(H(γg))H(γg)(s) if i = 1,

M(s, σ, w1)(φ1;σ)(hγg)τ c(H(γg))H(γg)(−s) if i = 2.

Hence the inner integration in (6.16)∫
Hy,j\Hy,j(A)

ξc
i,s(h · γg) dh

defines a period as in Lemma 6.2. Hence it is identically zero for all choices of data since
the first occurrence FOψ(σ) is 2j.
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Now we prove that the series∑
x∈Ω1,1/G�

∫
Gγx

� (A)\G�(A)

∫
Hy,j\Hy,j(A)

ξc
i,s(h · γxg) dh dg (6.17)

converges absolutely, i.e.∑
x∈Ω1,1/G�

∫
Gγx

� (A)\G�(A)

∫
Hy,j\Hy,j(A)

|ξc
i,s(h · γxg)| dh dg < ∞,

for Re(s) sufficiently large, when i = 1, and for all s, where the intertwining operator is
defined, when i = 2, provided the truncation parameter c > c0, which is a constant to
be specified soon. Since each G�-orbit has representative x = y + e+

0 , we may abuse the
notation by setting γx = γy for y ∈ Yj . In this case, y must be non-zero and isotropic.

Let us start with i = 1. Put G� ∩ Q1 = Q�,1. This is the parabolic subgroup of G�,
which preserves the line through e+

0 . Clearly, the elements of Q�,1 can be written uniquely
in the form gh0(t), where g ∈ Gγ

� and, for t ∈ k∗, h0(t)e+
0 = te+

0 , h0(t)e−
0 = t−1e−

0 , and
the restriction of h0(t) to Zm−j is the identity. By the Iwasawa decomposition in G�(A),
it is enough to consider

∑
y

∫
A∗

|t|j−m

∫
Hy,j\Hy,j(A)

H(γyh0(t))(− 1
2m)|φ1;σ(hγyh0(t))|

× τc(H(γyh0(t)))H(γyh0(t))(Re(s) + 1
2m) dh dt,

where the summation is over the non-zero isotropic vectors y ∈ Yj , modulo k∗. Note
that the matrix form of Hy,j is independent of y. Since σ is cuspidal and Hy,j\Hy,j(A)
has finite measure (due to our assumption that m − j �= 2, if j � 2) we may bound
H(γyh0(t))(− 1

2m)|φ1;σ(hγyh0(t))| by a constant (depending on the section). Thus, it is
enough to consider∑

y

∫
A∗

|t|j−mτc(H(γyh0(t)))H(γyh0(t))(Re(s) + 1
2m) d∗t, (6.18)

where the summation over y is as before. Let us use the k-basis for Y ′ = ke+
0 ⊕Yj ⊕ke−

0 ,
{e+

0 , v1, . . . , vj , e
−
0 } in order to give coordinates on Y ′(kv), for all places v, and identify

Y ′(kv) = kj+2
v , using this basis (see the paragraph after (5.7)). Consider for each place v

the local norm on Y ′(kv) = kj+2
v , which is the maximum norm of the coordinates, when v

is finite, the usual Euclidean norm, when v is real, and the square of the usual Euclidean
norm, when v is complex. Define now, for w ∈ Y ′(A),

‖w‖ =
∏
v

‖wv‖v.

Note that for any non-zero vector w ∈ Y ′ (i.e. with rational coordinates), we have
‖w‖ � 1. Now, in the last integral, by our choice of the representatives γ = γy, we
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may think of γy and of h0(t) as elements of the adelic points of the orthogonal group
O(Y ′) corresponding to Y ′, because they act as the identity on Zm−j . Denote by Q′

1 the
parabolic subgroup of O(Y ′), which preserves the line through e+

0 . The Levi part of Q′
1

is naturally isomorphic to GL1 × O(Yj), where the elements of GL1 are realized as the
h0(t) above. Denote the unipotent radical of Q′

1 by U ′ and put (Q′
1)

0 = O(Yj)U ′. Choose
a good maximal subgroup K ′

v of O(Y ′)v, with respect to Q′
1 and let K ′

A
=

∏
v K ′

v. Let
g ∈ O(Y ′)A and write its Iwasawa decomposition

g = q0(g)h0(t(g))k′(g),

where q0(g) ∈ (Q′
1)

0(A), t(g) ∈ A
∗, k′(g) ∈ K ′

A
. We have

‖g−1e+
0 ‖ = |t(g)|−1‖k′(g)−1e+

0 ‖ = H(g)(−1)‖k′(g)−1e+
0 ‖,

and hence
H(g)(1) = ‖g−1e+

0 ‖−1‖k′(g)−1e+
0 ‖.

Clearly, there are positive constants, d1, d2, such that

d1 � ‖k′e+
0 ‖ � d2,

for all k′ ∈ K ′
A
, hence H(g)(1) is comparable to ‖g−1e+

0 ‖−1, and so in the integral (6.18)
we may replace H(γyh0(t))(Re(s) + 1

2m) by

‖(γyh0(t))−1e+
0 ‖− Re(s)−m/2 = ‖t−1e+

0 + y‖− Re(s)−m/2.

Thus, it is enough to consider the convergence of∑
y

∫
A∗

|t|m−j‖te+
0 + y‖− Re(s)−m/2 d∗t,

where the sum is taken over all non-zero isotropic vectors y ∈ Yj , modulo k∗. Note that
‖te+

0 + y‖ � ‖y‖ � 1. For a finite place v, we have∫
k∗

v

|t|m−j
v ‖te+

0 + y‖−s−m/2
v dt

= ‖y‖−s−m/2
v

∫
|t|v�‖y‖v

|t|m−j
v d∗t +

∫
|t|v>‖y‖v

|t|−s+m/2−j
v d∗t.

Now, a straightforward calculation gives∫
k∗

v

|t|m−j
v ‖te+

0 + y‖−s−m/2
v d∗t = ‖y‖−s+m/2−j

v

ζv(m − j)ζv(s − 1
2m + j)

ζv(s + 1
2m)

,

provided Re(s) > 1
2m − j. (Note that our assumptions on j imply, in particular, that

m − j � 1.) Here, ζv denotes the local zeta function. We get the same condition, when v

is archimedean. For example, if kv = R, then∫
k∗

v

|t|m−j
v ‖te+

0 + y‖−s−m/2
v d∗t =

∫
R∗

(|t|2 + ‖y‖2)−s/2−m/4|t|m−j d∗t

= ‖y‖−s+m/2−j

∫
R∗

(|t|2 + 1)−s/2−m/4|t|m−j d∗t.
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Now, it is clear that this integral converges absolutely when Re(s) > 1
2m − j (and

m − j � 1). Thus, we get, for s ∈ R,

∑
y

∫
A∗

|t|m−j‖te+
0 + y‖−s−m/2 d∗t

=
∏
v

ζv(m − j)ζv(s − 1
2m + j)

ζv(s + 1
2m)

I∞(s)
∑

y

‖y‖−s+m/2−j ,

where I∞(s) is the product over the archimedean places of the integrals∫
k∗

v

|t|m−j
v ‖te+

0 + y‖−s−m/2
v d∗t.

Thus, for convergence, we must require that s > 1
2m − j + 1 (by our assumptions on j,

we have m − j � 2) and that ∑
y

‖y‖−s+m/2−j < ∞.

For this, fix a non-zero isotropic vector e1 ∈ Yj . Let R be the parabolic subgroup of O(Yj)
which preserves the line through e1. Recall that in the last sum y varies over the non-zero
isotropic vectors of Yj , modulo k∗, thus we may write y = η−1e1, where η ∈ R\ O(Yj),
and hence we consider ∑

η∈R\ O(Yj)

‖η−1e1‖−s+m/2−j .

This is an Eisenstein series on O(Yj), corresponding to the representation induced from
a character of the form δs′

R , where

s′ =
s − 1

2 (m − j − 2)
j − 2

,

and δR is the modular character of R(A). Thus, this series converges when s is sufficiently
large (s is real now). This completes the proof of absolute convergence of the series (6.17)
which is a subseries in (6.8) when i = 1.

The case i = 2 is much simpler. Indeed, as in case i = 1, we have to examine the
convergence of the following series, which is analogous to (6.18),∑

y

∫
A∗

|t|j−mτ c(H(γyh0(t)))H(γyh0(t))(−s + 1
2m) d∗t.

Again, we take s real. In the last integral, if τ c(H(γyh0(t))) �= 0, we must have c �
H(γh0(t)). Since we have H(g)(1) � d2‖g−1e+

0 ‖−1, for all g ∈ O(Y ′)A, we get that
(recall that γ = γy)

c � d2‖(γyh0(t))−1e+
0 ‖−1 = d2‖t−1e+

0 + y‖−1,
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and hence ‖t−1e+
0 + y‖ � d2c

−1. Since we always have

‖y‖ � ‖t−1e+
0 + y‖,

and also 1 � ‖y‖, for all non-zero y in Yj , we get that 1 � d2c
−1. Hence, when c > d2,

we always have that
τ c(H(γyh0(t))) = 0.

Recall that c > 1 is the truncation parameter. We may take it as large as we want. Note
that d2 is of course fixed and depends on j and our choice the basis of Yj . Hence, when
i = 2, every term in the sum over y above is zero when c is sufficiently large. Now we
define the constant c0 by

c0 = max{1, d2}.

Proposition 6.3. Let σ ∈ Ac(Om/k) have the first occurrence FOψ(σ) = 2j, such that
j and m satisfy the condition in Theorem 5.1. Then the integral attached to γx = γy,∫

Gγx
� \G�(A)

ξc
i,s(γxg) dg,

is absolutely convergent and identically zero for all choices of data. Moreover, when i = 1,
the series ∑

x∈Ω1,1/G�

∫
Gγx

� \G�(A)
ξc
i,s(γxg) dg

converges absolutely, i.e. ∑
x∈Ω1,1/G�

∫
Gγx

� \G�(A)
|ξc

i,s(γxg)| dg < ∞,

for Re(s) sufficiently large; while, when i = 2, there is a constant c0 such that for all
c > c0, the following holds: ∑

x∈Ω1,1/G�

∫
Gγx

� \G�(A)
|ξc

2,s(γxg)| dg = 0

for all s where the intertwining operator is defined.

In Proposition 6.3, we need the restrictions that j < m−1 and j �= m−2, when j � 2.

6.4. The series over Ω0,1/G�

For x = y + z ∈ Ω0,1/G� with y = 0 and z �= 0. By Witt’s theorem, Ω0,1/G� is a single
G�-orbit. We may choose e+

0 as a representative in the G�-orbit Ω0,1/G�. Correspondingly,
the double coset is Q1 · G�, i.e. γ = 1. Hence we have Gγ

� = G� ∩ Q1. Recall that

G� = O(Zm−j+2) = O(k · e+
0 ⊕ Zm−j ⊕ k · e−

0 ).
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Recall that G� ∩Q1 = Q�,1 is the maximal parabolic subgroup of G�, which stabilizes the
isotropic line k · e+

0 in Zm−j+2. It has Levi decomposition Q�,1 = M�,1N�,1, the Levi part
of which is M�,1 = GL1 ×H� = GL1 × Om−j . The integral in (6.8) attached to γ = 1 is∫

Q�,1(k)\G�(A)
ξc
i,s(g) dg. (6.19)

By the Iwasawa decomposition of G�(A), G�(A) = Q�,1(A) · K�,1 (K�,1 is a product of
local good maximal compact subgroups, with respect to Q�,1) we can write g = nm(t, h)r.
Integral (6.19) equals∫

K�,1

∫
H�(k)\H�(A)

∫
k×\A×

ξc
i,s(m(t, h)r)δ−1

Q�,1
(m(t, 1)) d×t dh dr, (6.20)

because the quotient N�,1(k)\N�,1(A) has volume one.
When i = 1, integral (6.20) equals∫

K�,1

∫
H�(k)\H�(A)

φ1;σ(hr) dh dr ·
∫

k×\A×, |t|A�c

|t|s−m/2+j
A

d×t, (6.21)

and this converges absolutely, when Re(s) > 1
2m − j. It is easy to see that∫

k×\A×, |t|A�c

|t|s−m/2+j
A

d×t = vol(k×\A
1)

cs−m/2+j

s − 1
2m + j

. (6.22)

Also the integral ∫
K�,1

∫
H�(k)\H�(A)

φ1;σ(hr) dh dr

converges absolutely, by Proposition 5.2. Hence integral (6.21) and therefore, integral
(6.19) with γ = 1 and i = 1 converges absolutely for Re(s) > 1

2m − j, has meromorphic
continuation to the whole complex plane C and has at most a simple pole at s = 1

2m − j

with residue

vol(k×\A
1)

∫
K�,1

∫
H�(k)\H�(A)

φ1;σ(hr) dh dr. (6.23)

This residue is indeed not identically zero since by part (1) of Proposition 5.2, there is
φ1;σ such that the period ∫

H�(k)\H�(A)
φ1;σ(hg) dh

is non-zero. By the argument in [11] (see also the same argument in [6], [12] or [7]), one
can extend the non-zero period of φ1;σ over H� through the compact integration over
K�,1 and obtain a non-zero integral∫

K�,1

∫
H�(k)\H�(A)

φ1;σ(hr) dh dr.
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When i = 2, integral (6.20) equals∫
K�,1

∫
H�(k)\H�(A)

M(s, σ, w1)(φ1;σ)(hr) dh dr

∫
k×\A×, |t|A�c

|t|−s−m/2+j
A

d×t. (6.24)

Hence this integral converges absolutely for Re(s) > j − 1
2m, has meromorphic continu-

ation to C, and is equal to

vol(k×\A
1)c−s−m/2+j

s + 1
2m − j

∫
K�,1

∫
H�(k)\H�(A)

M(s, σ, w1)(φ1;σ)(hr) dh dr, (6.25)

as meromorphic functions.
We summarize the above calculation as the following proposition.

Proposition 6.4. Let σ ∈ Ac(Om/k) have the first occurrence FOψ(σ) = 2j, such that
j and m satisfy the condition in Theorem 5.1. Then the integral attached to γ = 1
converges absolutely for Re(s) sufficiently large and can be expressed as follows: when
i = 1, ∫

Gγ
� \G�(A)

ξc
1,s(γg) dg = ck

cs−m/2+j

s − 1
2m + j

∫
K�,1

∫
H�(k)\H�(A)

φ1;σ(hr) dh dr,

where ck := vol(k×\A
1); and when i = 2,∫

Gγ
� \G�(A)

ξc
2,s(γg) dg = ck

c−s−m/2+j

s + 1
2m − j

∫
K�,1

∫
H�(k)\H�(A)

M(s, σ, w1)(φ1;σ)(hr) dh dr.

These identities provide the meromorphic continuation of the integrals on the left-hand
side to the whole plane. Finally, the integral∫

K�,1

∫
H�(k)\H�(A)

φ1;σ(hr) dh dr

is not identically zero.

For Proposition 6.4, we did not use any of our restrictions on j.

6.5. The series over Ω2,2/G�

Finally, we consider x = y + z ∈ Ω2,2/G�, which is isotropic lines k · x in X1 with
y ∈ Yj and z ∈ Zm−j+2 not isotropic. In this case, we have

b1(y, y) = −b1(z, z) �= 0.

For a fixed y ∈ Yj , the following set of isotropic lines in X1

{k(y + z) | b1(y, y) = −b1(z, z) �= 0}

is one G�-orbit. We may take k(y + zy) as a representative of this G�-orbit, where

zy = e+
0 − 1

2b1(y, y)e−
0 .
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If h ∈ G� stabilizes the isotropic line k(y + zy), then we have h · y = y and h · zy = zy.
It follows that StabG�

(k(y + zy)) = StabG�
(zy). Take z′

y = e+
0 + 1

2b1(y, y)e−
0 . It is clear

that Span(e+
0 , e−

0 ) = Span(zy, z′
y) is the hyperbolic plane. Hence we have

StabG�
(k(y + zy)) = StabG�

(zy)

= O(Zm−j ⊕ k · z′
y)

= O(z⊥
y ∩ Zm−j+2). (6.26)

The representative γ for the corresponding double coset Q1 · γ · G� can be chosen such
that

γ−1 · e+
0 = y + zy,

γ−1 · e−
0 =

1
2b1(y, y)

(y − zy),

γ−1 · y = z′
y,

and the restriction of γ−1 to the subspace y⊥ ∩ X is the identity. Then we have

Gγ
� = γ−1 · Q1 · γ ∩ G� = StabG�

(k(y + zy)) = O(Zm−j ⊕ k · z′
y),

which is the same as (6.26). We want to write down the explicit embedding of γ ·Gγ
� ·γ−1

into O(X).
For h ∈ Gγ

� = O(Zm−j ⊕ k · z′
y), it is easy to check that the following hold

γhγ−1 · e+
0 = e+

0 ,

γhγ−1 · e−
0 = e−

0 ,

γhγ−1 · y = γh · z′
y = γ · (z0 + αz′

y) = z0 + αy,

where z0 = z0(h) ∈ Zm−j and α ∈ k; for any z ∈ Zm−j , we have γ−1 · z = z since
Zm−j ⊂ y⊥ ∩ X, and

γhγ−1 · z = γh · z = γ · (z∗ + βz′
y) = z∗ + βz′

y,

where z∗ = z∗(h) and β = β(h) ∈ k; and finally, the restriction of γhγ−1 to the subspace
y⊥ ∩ Yj is the identity. According to the following decomposition of X1

X1 = k · e+
0 ⊕ Zm−j ⊕ k · y ⊕ y⊥ ∩ Yj ⊕ k · e−

0 ,

we can write γhγ−1 in matrix form:⎛⎜⎜⎜⎜⎜⎝
1

h∗ ∗ 0
∗ ∗ 0
0 0 Ij−1

1

⎞⎟⎟⎟⎟⎟⎠ , (6.27)
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where h∗ is the composition of h with the projection from h · z = z∗ +βy to z∗. It is easy
to check that the following element from (6.27)

g(h) =

⎛⎜⎝h∗ ∗ 0
∗ ∗ 0
0 0 Ij−1

⎞⎟⎠
belongs to O(X) and the set {g(h) | h ∈ Gγ

� } is a subgroup of O(X) which is isomorphic
to O(Zm−j ⊕ k · y).

For such a γ = γx, or a double coset Q1γG�, the integral attached to γx can be written
as ∫

Gγx
� \G�(A)

ξc
i,s(γxg) dg =

∫
Gγx

� \G�(A)
ξc
i,s(γxgγ−1

x · γx) dg

=
∫

O(k·y⊕Zm−j)\ O(k·y⊕Zm−j)(A)
ξc
i,s(hγ) dh. (6.28)

By the definition of ξc
i,s(g) (see (6.7) and (2.10), (2.11)), we have

ξc
i,s(hγ) =

{
φ1;σ(h)τc(H(γ))H(γ)(s) if i = 1,

M(s, σ, w1)(φ1;σ)(h)τ c(H(γ))H(γ)(−s) if i = 2.

Hence the dh-integration in (6.28) defines a period of cuspidal automorphic functions in
σ over the reductive subgroup O(k · y ⊕Zm−j) of Om, which is absolutely convergent (as
in the proof of part (3) of Proposition 5.2). Again, by Proposition 5.2, the integral must
vanish identically for all choices of data because of the assumption of the first occurrence
of σ. Finally, exactly as in the proof of Proposition 6.1, we get that for Re(s) sufficiently
large ∑

x=y+zy∈Ω2,2/G�

∫
O(k·y⊕Zm−j)\ O(k·y⊕Zm−j)(A)

|ξc
1,s(hγx)| dh < ∞,

where the summation is over the representatives γ as above. Similarly, for all s where
the intertwining operator is defined∑

x=y+zy∈Ω2,2/G�

∫
O(k·y⊕Zm−j)\ O(k·y⊕Zm−j)(A)

|ξc
2,s(hγx)| dh < ∞.

Indeed the last series has finitely many non-zero terms. We state this result as the
following proposition.

Proposition 6.5. Let σ ∈ Ac(Om/k) have the first occurrence FOψ(σ) = 2j, such that
j and m satisfy the condition in Theorem 5.1. For x = y + zy ∈ Ω2,2/G�, the integral in
the summation (6.8) attached to γx,∫

Gγx
� \G�(A)

ξc
i,s(γxg) dg,
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is absolutely convergent and identically zero, for all choices of data. Moreover, the fol-
lowing absolute convergence∑

x=y+zy∈Ω2,2/G�

∫
O(k·y⊕Zm−j)\ O(k·y⊕Zm−j)(A)

|ξc
i,s(hγx)| dh < ∞,

holds for Re(s) sufficiently large, when i = 1, and for all s where the intertwining operator
is defined, when i = 2.

In Proposition 6.5, we used the restriction j < m − 1.

6.6. Proof of Theorem 5.1

We complete the proof of Theorem 5.1 in this subsection.
By Propositions 6.1, 6.3, 6.4 and 6.5, we have proved that (6.9) holds, that is, each

integral in the summation in (6.8) converges absolutely, and the series in (6.8) converges
absolutely for Re(s) sufficiently large, when i = 1, and for all s where the intertwining
operator is defined, when i = 2 and the truncation parameter c > c0 (which is defined
before Proposition 6.3). Further we prove that all the summands in the expression (6.8)
are identically zero except the summand attached to the representative γ = 1. In this
case, the summand is given by Proposition 6.4.

Combining this with formulae (6.4), (6.6), (6.7) and (6.8), we obtain, for Re(s) large,
c > c0 and j satisfying the condition of Theorem 5.1, a formula for the period of the
truncated Eisenstein series∫

G�(k)\G�(A)
ΛcE(g; φ1;σ, s) dg = Ic

1 − Ic
2 , (6.29)

where

Ic
1 = ck

cs−m/2+j

s − 1
2m + j

∫
K�,1

∫
H�(k)\H�(A)

φ1;σ(hr) dh dr (6.30)

and

Ic
2 = ck

c−s−m/2+j

s + 1
2m − j

∫
K�,1

∫
H�(k)\H�(A)

M(s, σ, w1)(φ1;σ)(hr) dh dr, (6.31)

where the constant ck is as in Proposition 6.4. Note that we proved the identity (6.29) for
Re(s) sufficiently large, and since the left-hand side is meromorphic in the whole plane,
then, by (6.30), (6.31) the identity (6.29) holds as meromorphic functions in C. It is clear
that Ic

1 has only one pole, and it is the simple pole at s = 1
2m − j. (See also the proof of

Theorem 6.6.)
Assume now, that 2j �= m (j as above). We claim that the intertwining operator

M(s, σ, w1)(φ1;σ) has a pole at s = 1
2m − j, for some φ1;σ. Otherwise, Ic

2 is holomorphic
at s = 1

2m − j. Then by (6.29), the period of the truncated Eisenstein series has a pole
at s = 1

2m − j. In particular, the Eisenstein series E(g; φ1;σ, s) has a pole at s = 1
2m − j,

and hence the intertwining operator M(s, σ, w1)(φ1;σ) must have a pole at s = 1
2m − j

for some φ1;σ. This is a contradiction. This proves that the Eisenstein series E(g; φ1;σ, s)
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must have a pole at s = 1
2m − j under the assumption that the first occurrence of σ

is FOψ(σ) = 2j, when 2j �= m, j < m − 1 and if j � 2, then j �= m − 2. This proves
Theorem 5.1.

6.7. Proof of Theorem 5.3

In order to finish the proof of Theorem 5.3, we assume that 2j < m, and hence the
pole at s = 1

2m − j > 0 is simple (by the general theory of Eisenstein series due to
Langlands [22]). We will consider the period (and its convergence) of the residue at
s = 1

2m − j of the Eisenstein series E(g; φ1;σ, s), i.e. the period in (5.10):∫
G�(k)\G�(A)

Em/2−j(h; φ1;σ) dh. (6.32)

Let s0 > 0 be a positive pole of the Eisenstein series E(g; φ1;σ, s), and denote the
residue by Es0(g; φ1;σ). It is clear that the constant term of the residue is

Es0,P1(g, φ1;σ) = ress=s0 M(s, σ, w1)(φ1;σ)(g) := Ms0(σ, w1)(φ1;σ)(g).

Then the truncation of the residue is

ΛcEs0(g, φ1;σ) = Es0(g, φ1;σ) −
∑

γ∈P1\G

Ms0(σ, w1)(φ1;σ)(γg)τ c(H(γg))

:= Es0(g, φ1;σ) − θc
3(g). (6.33)

Note that ΛcEs0(g, φ1;σ) = ress=s0 ΛcE(g, φ1;σ). We can repeat the proofs of Proposi-
tions 6.1–6.5, for i = 2, and get, in particular, that |θc

3| is integrable over G�(k)\G�(A).
Note that in Proposition 6.4 s0 + 1

2m − j > s0 > 0, and so (6.24) and (6.25) are valid for
θc
3 as well. We conclude from (6.33) that |Es0(g; φ1;σ)| is integrable over G�(k)\G�(A).
Now we can express the period of the residue Es0(g; φ1;σ) over the subgroup G� as

follows:∫
G�(k)\G�(A)

Es0(h, φ1;σ) dh =
∫

G�(k)\G�(A)
[θc

3(h) + ΛcEs0(h; φ1;σ)] dh

=
∫

G�(k)\G�(A)
θc
3(h) dh + ress=s0(I

c
1 − Ic

2). (6.34)

We obtain from the proof of the case when i = 2 in Proposition 6.4 that

ress=s0 Ic
2 =

∫
G�(k)\G�(A)

θc
3(h) dh, (6.35)

since for s0 > 0, the pole of Ic
2 is also simple. By (6.34), we obtain∫

G�(k)\G�(A)
Es0(h, φ1;σ) dh = ress=s0 Ic

1 .
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Thus, we see that if s0 �= 1
2m − j, then since ress=s0 Ic

1 = 0, we have that∫
G�(k)\G�(A)

Es0(h, φ1;σ) dh = 0.

This proves part (3) of Theorem 5.3.
When s0 = 1

2m − j, we have∫
G�(k)\G�(A)

Em/2−j(h, φ1;σ) dh = ck

∫
K�,1

∫
H�(k)\H�(A)

φ1;σ(hr) dh dr, (6.36)

where the constant c is as Proposition 6.4. Finally, the proof of part (2) of Theo-
rem 5.3 follows easily from part (1) of Proposition 5.2 and the identity (6.36). In
fact, when a σ ∈ Ac(Om/k) has the first occurrence FOψ(σ) = 2j for some integer
j ∈ {1, 2, . . . , [ 12 (m − 1)]}, the period∫

H�(k)\H�(A)
φ1;σ(hr) dh

is non-zero for some choice of data, by part (1) of Proposition 5.2. Now it is a standard
argument to extend this non-vanishing property through the compact integration in
(6.36) [7,11,12], so that the right-hand side of the identity (6.36) is non-zero for some
choice of data. This proves part (2) of Theorem 5.3, and hence completes the proof of
Theorem 5.3.

We summarize the above discussion and Proposition 6.4 as the following theorem.

Theorem 6.6. Let E(g; φ1;σ, s) be the Eisenstein series on Om+2(A) as in Theorem 5.3.
Assume that σ ∈ Ac(Om/k) has the first occurrence FOψ(σ) = 2j for some integer
j ∈ {1, 2, . . . , [ 12 (m − 1)]}. Let s0 > 0 be a pole of the Eisenstein series. Then the residue
at s0, Es0(g; φ1;σ) of E(g; φ1;σ, s) is not G�-distinguished for all 
 = (l1, . . . , lj) ∈ (k×)j ,
except for s0 = 1

2m − j. At s0 = 1
2m − j the Eisenstein series has a simple pole, and

there is an 
 = (l1, . . . , lj) ∈ (k×)j such that the period of the residue Em/2−j(g; φσ) is
non-trivial. This period is expressed by the following formula∫

G�(k)\G�(A)
Em/2−j(h, φ1;σ) dh = ck ·

∫
K�,1

∫
H�(k)\H�(A)

φ1;σ(hr) dh dr,

where the constant ck = vol(k×\A
1).

6.8. Proof of Lemma 6.2

The nature of the proof of Lemma 6.2 is essentially the same as that of Proposition 5.2,
where we sketched the main ideas. For completeness, we give here a more detailed proof
of Lemma 6.2.

For a Schwartz–Bruhat function ϕ in S(X(A)j−1) and for φσ in the space Vσ, the
ψ-theta lifting of φσ to Mp2j−2(A) is given by the following integral (as in (1.1)):

θ2j−2
ψ,m (g; φσ, ϕ) =

∫
Om(k)\ Om(A)

θψ,ϕ(h, g)φσ(h) dh, (6.37)

https://doi.org/10.1017/S1474748009000097 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748009000097


Poles of L-functions and theta liftings for orthogonal groups 733

where g ∈ Mp2j−2(A). The ψ-theta lifting of σ, which is denoted by θ2j−2
ψ,m (σ) as before,

consists of all automorphic functions, θ2j−2
ψ,m (g; φσ, ϕ) with ϕ running in S(X(A)j−1) and

φσ running in Vσ.
To prove Lemma 6.2, we show that if σ ∈ Ac(Om/k) has the first occurrence FOψ(σ) =

2j with j and m satisfying the condition of Theorem 5.1, then the period∫
Hy,j\Hy,j(A)

φσ(h) dh (6.38)

is identically zero for all choices of φσ in Vσ (see (6.15) for the definition of the sub-
group Hy,j). (Recall that we already explained why this integral converges absolutely,
right after the statement of this lemma in the previous subsection.)

In order to obtain the vanishing statement above, we calculate certain Fourier coeffi-
cients of θ2j−2

ψ,m (g; φσ, ϕ). More precisely, as in § 5, we take the Siegel parabolic subgroup
Q = LU of Sp2j−2 and take 
 = (l1, . . . , lj−2, 0) with li ∈ k×. Then we calculate the
ψ�-Fourier coefficient of θ2j−2

ψ,m (g; φσ, ϕ), which is given by

Fψ�(θ2j−2
ψ,m (·)) :=

∫
U(k)\U(A)

θ2j−2
ψ,m (u; φσ, ϕ)ψ−1

� (u) du. (6.39)

By (6.37), the ψ�-Fourier coefficient (6.39) can be written as

Fψ�(θ2j−2
ψ,m (·)) =

∫
U(k)\U(A)

∫
Om(k)\ Om(A)

θψ,ϕ(h, u)φσ(h) dhψ−1
� (u) du

=
∫

h

φσ(h)
∫

U(k)\U(A)
θψ,ϕ(h, u)ψ−1

� (u) du dh, (6.40)

where the dh-integration is over Om(k)\ Om(A). We consider first the inner integration∫
U(k)\U(A)

θψ,ϕ(h, u)ψ−1
� (u) du. (6.41)

To calculate this Fourier coefficient explicitly, we write

ξ = (ξ1, ξ2, . . . , ξj−1) ∈ Xj−1,

and u = u(S) as in (5.1). By definition, we have

θψ,ϕ(h, u) =
∑

ξ∈Xj−1(k)

ωψ(u(S))ωψ(h)ϕ(ξ)

=
∑

ξ∈Xj−1(k)

ωψ(h) · ϕ(ξ)ψ( 1
2 tr Gr(ξ) · S · Jj−1), (6.42)

where the matrix Ji is defined by

Ji =

(
0 1

Ji−1 0

)
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inductively, and Gr(ξ) is defined as the (j − 1) × (j − 1)-matrix (b(ξt, ξs)). Hence the
Fourier coefficient (6.41) can be written as∑

ξ∈Xj−1(k)

ωψ(h) · ϕ(ξ)
∫

U(k)\U(A)
ψ( 1

2 tr Gr(ξ) · S · Jj−1)ψ−1
� (u) du. (6.43)

By the orthogonality relations of characters, we know that the summands parametrized
by ξ ∈ Xj−1(k) may be non-zero only if ξ = (ξ1, ξ2, . . . , ξj−1) ∈ Xj−1 satisfy the following
geometric conditions: b(ξt, ξs) = 0 if t �= s for t, s = 1, 2, . . . , j − 1; b(ξt, ξt) = lt for
t = 1, 2, . . . , j −2; and b(ξj−1, ξj−1) = 0. We denote by Xj−1

� the subset of all ξ satisfying
the above geometric conditions. It is clear from Witt’s theorem that the action of Om(k) =
O(X)(k) on Xj−1

� decomposes Xj−1
� into two orbits: one is with ξj−1 = 0 and the second

is with ξj−1 �= 0 (but isotropic).
We fix a representative ξ0 := (v1, . . . , vj−2, 0) for the first orbit, and a representative

ξy := (v1, . . . , vj−2, y) for the second orbit, where vt for t = 1, 2, . . . , j − 2 are given as
in § 5. In particular we have that b(vt, vt) = lt. One can check that the stabilizer of the
representative ξy in O(X) is Hy,j as in Lemma 6.2. The stabilizer of the representative
ξ0 in O(X) is denoted by Hm−j+2 as in § 5.2. It is a k-rational form of Om−j+2. Hence
we may write (6.43) and hence (6.41) as a sum of two terms:∑

g∈Hy,j(k)\ Om(k)

ϕ(g−1ξy) +
∑

g∈Hm−j+2(k)\ Om(k)

ϕ(g−1ξ0). (6.44)

We go back to calculate the ψ�-Fourier coefficient Fψ�(θ2j−2
ψ,m (·)) via the second integral

in (6.40). We have

Fψ�(θ2j−2
ψ,m (·)) =

∫
Hy,j(A)\ Om(A)

ϕ(g−1ξy)
∫

Hy,j(k)\Hy,j(A)
φσ(hg) dh dg

+
∫

g

ϕ(g−1ξ0)
∫

Hm−j+2(k)\Hm−j+2(A)
φσ(hg) dh dg, (6.45)

where the dg-integration in the second summand in (6.45) is over Hm−j+2(A)\ Om(A).
Note that each summand in (6.45) converges absolutely as a double integral. This is due
to the fact that ϕ is a Schwartz function, φσ is bounded over the Siegel domain of Om,
and both Hy,j(k)\Hy,j(A) and Hm−j+2(k)\Hm−j+2(A) have finite measures. Since the
first occurrence of σ, FOψ(σ) = 2j, by part (2) of Proposition 5.2, the period∫

Hm−j+2(k)\Hm−j+2(A)
φσ(hg) dh

must be zero identically in Vσ. (The proof for this is a repetition of the calculation (6.43),
where we compute Fψ�′ (θ2j−4

ψ,m (·)), for 
′ = (
1, . . . , 
j−2).) Hence by (6.45), if the first
occurrence of σ, FOψ(σ) = 2j, we have

Fψ�(θ2j−2
ψ,m (·)) =

∫
Hy,j(A)\ Om(A)

ϕ(g−1ξy)
∫

Hy,j(k)\Hy,j(A)
φσ(hg) dh dg. (6.46)
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If the period (the inner integral)∫
Hy,j(k)\Hy,j(A)

φσ(hg) dh

is non-zero for some choice of φσ ∈ Vσ, then it is easy to show that there exists a choice
of ϕ in S(Xj−1(A)) such that the whole integral in (6.46) is non-zero. This proves that
the ψ-theta lifting of σ to Mp2j−2(A), θ2j−2

ψ,m (σ) has a non-zero ψ�-Fourier coefficient, and
hence θ2j−2

ψ,m (σ) is non-zero. But this contradicts the assumption that FOψ(σ) = 2j. This
completes the proof of Lemma 6.2.

7. Proofs of Theorems 1.5, 1.6 and 1.7

In this section, we first prove Theorem 7.1 below. Combining this with Theorem 1.3,
and the results in [13], [14] and [15], we prove Theorems 1.5, 1.6 and 1.7. To state
Theorem 7.1 below, we have to introduce some notation from the theory of local theta
correspondence.

Let v be a finite local place of the number field k. We recall briefly from [23] the local
theta correspondence over the local field kv. For a non-trivial character ψv of kv, let ωψv

be the Weil representation of the reductive dual pair Om(kv) × Mp2j(kv) acting on the
local Schrödinger model S(Xj(kv)). The detailed discussion of the splitting of the double
cover and the related the cocycles can be found in [15]. See [16] for general reductive
dual pairs.

Let (σv, Vσv ) (and (π̃v, Vπ̃v ), respectively) be an irreducible admissible representation
of Om(kv) (and Mp2j(kv), respectively). If the following space

HomOm(kv)×Mp2j(kv)(ωψv , Vσv ⊗ Vπ̃v ) �= 0, (7.1)

then we say that π̃v is a local ψv-theta lift of σv, and σv is a local ψv-theta lift of
π̃v. We do not assume that the local Howe duality conjecture holds for the case we are
discussing here. The local Howe duality conjecture was proved by Waldspurger [27], when
the residual characteristic of k is odd. In such a circumstance, the local ψv-theta lift is
the same as the local ψv-Howe lift. We refer to [23] for more detailed discussions.

Our definition of the first occurrence for the local ψv-theta liftings is based on (7.1).
More precisely, we say that the first occurrence of σv is FOψv (σv) = 2j0 if the following
space

HomOm(kv)×Mp2j1
(kv)(ωψv , Vσv ⊗ Vπ̃v,j1

)

is zero for all j1 < j0 and for all irreducible admissible representations π̃v,j1 of Mp2j1(kv),
but there exists at least one irreducible admissible representation π̃v,j0 of Mp2j0(kv) such
that

HomOm(kv)×Mp2j0
(kv)(ωψv , Vσv ⊗ Vπ̃v,j0

) �= 0.

We note that the above definition of the first occurrence for the local ψv-theta liftings
can be extended to the archimedean local places. We will not repeat it here.
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In analogy to (1.2), where we defined the (global) lowest occurrence of σ, we define
now the lowest occurrence at the v-component of σ ∈ Ac(Om/k) (at a local place v of k):

LOψv (σ) := min{FOψv (σv), FOψ(σv ⊗ det)}. (7.2)

Theorem 7.1. Let σ ∈ Ac(Om/k). Assume that there is a local place v of k, such
that LOψv (σ) = 2j0. If 2j0 < m, then the partial L-function LS(s, σ) is holomorphic for
Re(s) > 1

2m − j0. If 2j0 � m, then LS(s, σ) is holomorphic for Re(s) > 1
2 .

Proof. Let the (global) lowest occurrence LOψ(σ) = 2j1. Assume that FOψ(σ ⊗ ε0) =
2j1 for some sign character ε0 of Om(A). Then the ψ-theta lifting θ2j1

ψ,m(σ ⊗ ε0) is an
irreducible cuspidal automorphic representation of Mp2j1(A) [15,21]. In particular, the
local ψv-theta lift of σv ⊗ ε0,v to Mp2j1(kv) is non-zero. This implies that 2j0 � 2j1,
i.e. j0 � j1.

Assume that 2j0 < m. If the partial L-function LS(s, σ) has a pole at Re(s) > 1
2m − j0,

then this pole must be at s = 1
2m − j′

1 with j′
1 < j0. By Theorem 1.1, there is an auto-

morphic sign character ε, such that the global ψ-theta lift, θ
2j′

1
ψ,m(σ ⊗ ε) is non-zero. This

implies that
j1 � j′

1 < j0 � j1,

which is a contradiction. Finally, assume that 2j0 � m. Then 2j1 � m, and by Theo-
rem 1.1 LS(s, σ) is holomorphic for Re(s) > 1

2 . This proves the theorem. �

Remark 7.2. By Theorem 1.3, we can conclude a stronger result that under the
assumption of Theorem 7.1, the Eisenstein series EQ1(g, φ1;σ, s) is holomorphic at
Re(s) > 1

2m − j0. We omit the details here.

Remark 7.3. We expect that the lowest occurrence at the v-component, LOψv
(σ) should

be characterized in terms of the generalized Gelfand–Graev models for irreducible admis-
sible representations of Om(kv). To illustrate this key point, we prove Theorems 1.5
and 1.7 by Theorem 7.1. The general cases will be treated in our forthcoming work.

7.1. Proof of Theorem 1.5

Consider σ ∈ Ac(SOm /k), i.e. σ is an irreducible automorphic cuspidal representation
of SOm(A), where SOm = SO(X) is as before. Assume that there is a place v0, such
that SOm(kv0) is kv0-quasisplit and the local v0-component, σv0 of σ has a non-zero local
Whittaker model, i.e. σ is locally generic at v0. Then, for any quadratic character χ, the
representation σ⊗χ is also locally generic at v0. It is enough to prove Theorem 1.5 for σ.

We ‘extend’ σ to an irreducible, automorphic, cuspidal representation σ′ of Om(A)
as follows. When m is odd, then Om = SOm × Z2, where Z2 = {±Im}. We choose a
character µ of Z2(k)\ Z2(A), and extend σ to σ′ = σµ, on Om(A), by letting the central
subgroup Z2(A) act by µ. Similarly, we extend the cusp forms in the space of σ to Om(A).
It is clear that σ′|SOm(A) = σ. When m is even, we fix α ∈ Om(k), with det(α) = −1.
In this case, we define Z2 = {Im, α}. Then Om = SOm � Z2. Consider the map T , on
IndOm(A)

SOm(A) σ, defined by
Tf(h) = f(h, 1) + f(αh, 1),
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where f is a function in the last induced representation, viewed as a complex function
on Om(A) × SOm(A), such that g 
→ f(h, g) is a cusp form in the space of σ, for each
h. Clearly, the image of T , Im(T ) is an automorphic, cuspidal representation of Om(A).
Fix an irreducible summand σ′ of Im(T ). Note that, for g ∈ SOm(A),

Tf(g) = f(1, g) + f(α, gα),

where gα = αgα. Thus, Tf |SOm(A) ∈ σ + σα.
Assume that the (global) lowest occurrence

LOψ(σ) = FOψ(σ′ ⊗ ε0) = 2j0.

Then the ψ-theta lifting π̃ := θ2j0
ψ,m(σ′ ⊗ ε0) is an irreducible, automorphic, cuspidal

representation of Mp2j0(A) (see [21] for m even and [15] for m odd). Then the local
ψv0-theta lift of σ′

v0
⊗ ε0,v0 to Mp2j0(kv0) is non-trivial. Hence σ′

v0
|SOm(kv0 ) has a local

non-trivial ψv0-theta lift to Mp2j0(kv0). In case m is odd, this means that θ2j0
ψv0 ,m(σv0) �= 0.

In case m is even, it is clear that σ′
v0

|SOm(kv0 ) is either σv0 , σα
v0

, or the direct sum of these
two representations. Since σv0 is locally generic, we know that the local first occurrence
of σv0 (or, in case m is even, consider σα

v0
as well; it is also generic) is greater than or

equal to 2[12 (m − 1)]. When v0 is finite, this is [13, Proposition 2.1] for m odd, and by
the local analogue of the global results in [6] for m even. When v0 is archimedean, the
same result can be shown by adapting in a simple way these proofs to the archimedean
setting. We omit the details. Hence we have

2j0 � 2[ 12 (m − 1)].

Hence,

1
2m − j0 � 1

2m − [ 12 (m − 1)] =

{
1 if m is even,
1
2 if m is odd.

If 1
2m − j0 > 0, then, by Theorem 7.1, the partial L-function LS(s, σ) is holomorphic at

Re(s) > 1
2m − [ 12 (m − 1)]. Similarly, if 1

2m − j0 � 0, then, by Theorem 7.1, LS(s, σ) is
holomorphic at Re(s) > 1

2 . This proves Theorem 1.5.

Remark 7.4. As in Remark 7.2, by Theorem 1.3, we conclude a stronger result, that
under the assumption of Theorem 1.5, the Eisenstein series E(g, φ1;σ, s) is holomorphic
at Re(s) > 1

2 if m is odd and at Re(s) > 1 if m is even.

Here, the Eisenstein series E(g, φ1;σ, s) is defined analogously on SOm+2(A). It is easy
to see that this family of Eisenstein series, on SOm+2(A), has exactly the same set of
poles as that of the family of Eisenstein series E(g, φ′

1;σ′ , s), on Om+2(A).

7.2. Proof of Theorem 1.6

In this section, we assume that m = 2n + 1 is odd and SO2n+1 is the k-split odd
orthogonal group.
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Recall briefly, from § 2 of [14], the definition of Bessel model of special type for cuspidal
automorphic form φ on SO2n+1(A). Define

J2n+1 =

⎛⎜⎝0 1
J2n−1

1 0

⎞⎟⎠ ,

inductively, so that the quadratic vector space (X, b), and SO2n+1 are defined with respect
to J2n+1. As in § 2.2 of [14], we consider the unipotent radical Nn−1

n , consisting of the
unipotent matrices of following type

n(u, x, z) =

⎛⎜⎝u x z

I3 x∗

u∗

⎞⎟⎠ ∈ SO2n+1, (7.3)

where u ∈ Un−1, the maximal upper triangular unipotent subgroup of GLn−1. Note that
the Levi subgroup, which normalizes Nn−1

n is Ln−1
n = GLn−1

1 × SO3. As in (2.9) of [14],
we define

ψn,n−1;λ(n(u, x, z)) := ψ(u1,2 + · · · + un−2,n−1)ψ(b(x · uλ, en−1)) (7.4)

for each λ ∈ k× mod (k×)2. As in (2.10) of [14], the ψn,n−1;λ-Fourier coefficient of
cuspidal automorphic form φ is defined by

Fψn,n−1;λ(g; φ) :=
∫

Nn−1
n (k)\Nn−1

n (A)
φ(ng)ψ−1

n,n−1;λ(n) dn. (7.5)

This is a Fourier coefficient attached to the subregular nilpotent orbit in the sense of § 2
of [14], which is also-called a Bessel–Fourier coefficient of φ attached to the subregular
nilpotent orbit. Note that the Whittaker–Fourier coefficient is the one attached to the
regular nilpotent orbit. The connected component of the stabilizer of ψn,n−1;λ in Ln−1

n

is isomorphic to a k-rational form of SO(2), which is denoted by Dλ as in § 2 of [14].
We say that a cuspidal automorphic form φ has a Bessel model of special type if the
following integral

Bψn,n−1;λ(φ) :=
∫

Dλ(k)\Dλ(A)
Fψn,n−1;λ(h; φ) dh �= 0, (7.6)

as in (2.11) of [14].
Let σ = ⊗vσv ∈ Ac(SO2n+1 /k) have a non-zero Bessel model of special type. By [15,

Theorem 1.5], σ is either nearly equivalent to an irreducible generic (globally) cuspidal
automorphic representation σ0 of SO2n+1(A), i.e. the local components σv are isomorphic
to the local component σ0,v at almost all finite places v of k, or σ is a CAP automorphic
representation of SO2n+1(A). In the second case, by [15, Theorem 1.5] again, the partial
L-function LS(s, σα0 ⊗ χ) has a pole at s = 3

2 for some quadratic character χ.
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Assume that there exists a place v0, such that σv0 is generic. By Theorem 1.5, just
proved above, the partial L-function LS(s, σ ⊗ χ) is holomorphic at Re(s) > 1

2 , and,
in particular, it is holomorphic at s = 3

2 , for all quadratic characters χ. This implies
that σ cannot be a CAP automorphic representation of SO2n+1(A). Therefore, by [15,
Theorem 1.5], σ must be nearly equivalent to an irreducible generic (globally) cuspidal
automorphic representation σ0 of SO2n+1(A). This proves Theorem 1.6.

7.3. A sketch of the proof of Theorem 1.7

We sketch the proof of Theorem 1.7 in order to illustrate the idea that the Gelfand–
Graev models for irreducible cuspidal automorphic representations of SO2n+1(A) deter-
mine the structure of irreducible cuspidal automorphic representations. This idea should
work for other classical groups. The general discussion will be included in our forthcoming
work.

Assume that σ ∈ Ac(SO2n+1 /k) has a non-zero Bessel–Fourier coefficient as defined
in (7.4). First, we can prove that FOψ(σ) � 2n − 2. The proof uses just one place v, and
the fact that σv has a non-trivial Jacquet module, with respect to the character at v,
which defines the Bessel–Fourier coefficient. We show that, for 2j < 2n − 2, a local theta
lift from Mp2j(kv) to SO2n+1 cannot have a non-trivial such Jacquet module. Following
the same argument as in the proof of Theorem 1.5 above, we conclude that the partial
L-function LS(s, σ ⊗ χ) is holomorphic for Re(s) > 3

2 , for all quadratic characters χ of
k×\A

×. If the partial L-function LS(s, σ ⊗ χ) has a pole at s = 3
2 , for some quadratic

character χ, then the first occurrence FOψ(σ) must be 2n − 2. Thus, the ψ-theta lift
to Mp2n−2(A), θ2n−2

ψ,2n+1(σ) is a (non-trivial) automorphic, cuspidal representation. We
show that this representation is also generic, with respect to a character, determined
by the Bessel–Fourier coefficient above. Let π̃ be an irreducible summand of θ2n−2

ψ,2n+1(σ).
Then σ = θ2n+1

ψ,2n−2(π̃). We calculate directly the Bessel–Fourier coefficient above, for σ,
in terms of Whittaker coefficients of π̃, and we get that this Bessel–Fourier coefficient
already provides a Bessel model of special type as in (7.5). By [15, Theorem 1.5], σ must
be a CAP automorphic representation of SO2n+1(A), since LS(s, σ ⊗ χ) has a pole at
s = 3

2 , for some quadratic character χ. Now the conclusion of Theorem 1.7 follows from
Theorem 1.5 of [15]. We omit the details here.

It is clear that Theorem 1.7 restricts the global Arthur parameters for irreducible cuspi-
dal automorphic representations of SO2n+1(A) with non-zero Fourier coefficient attached
to the subregular nilpotent orbit. We expect that this is a general phenomenon. We will
get back to this topic in our future work.
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