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Zonal jets at the laboratory scale:
hysteresis and Rossby waves resonance
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The dynamics, structure and stability of zonal jets in planetary flows are still poorly
understood, especially in terms of coupling with the small-scale turbulent flow. Here,
we use an experimental approach to address the questions of zonal jets formation and
long-term evolution. A strong and uniform topographic β-effect is obtained inside a
water-filled rotating tank thanks to the paraboloidal fluid free upper surface combined
with a specifically designed bottom plate. A small-scale turbulent forcing is performed by
circulating water through the base of the tank. Time-resolving particle image velocimetry
measurements reveal the self-organization of the flow into multiple zonal jets with a strong
instantaneous signature. We identify a subcritical bifurcation between two regimes of
jets depending on the forcing intensity. In the first regime, the jets are steady, weak in
amplitude, and directly forced by the local Reynolds stresses due to our forcing. In the
second one, we observe highly energetic and dynamic jets of width larger than the forcing
scale. An analytical modelling based on the quasi-geostrophic approximation reveals that
this subcritical bifurcation results from the resonance between the directly forced Rossby
waves and the background zonal flow.
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1. Introduction

A recurrent feature of planetary fluid envelopes is the presence of east–west flows of
alternating direction, so-called zonal jets. Zonal flows are particularly striking in the gas
giants’ atmospheres such as on Jupiter, where the zonation of clouds of ammonia and
water ice reveals the presence of several jet streams (Ingersoll et al. 2007; Vasavada &
Showman 2005). On these gas giants, it has been suggested that at the top of the clouds,
the jets may contain more than 90 % of the total kinetic energy (Galperin et al. 2014b)
and penetrate deep into the planet’s interior (Kaspi et al. 2018, 2020). Apart from their
strength, jets on gas giants are also puzzling by their stability since the pattern has barely
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varied over decades (Porco et al. 2003; Tollefson et al. 2017). On Earth, at least one zonal
jet lies in each hemisphere of the atmosphere (Schneider 2006). Perhaps surprisingly, the
observation of zonal flows on the gas giants significantly predates that of the zonal flows
in the Earth’s oceans. This might be explained by the fact that oceanic jets only appear
after a careful time averaging (Maximenko, Bang & Sasaki 2005; Maximenko et al. 2008;
Ivanov, Collins & Margolina 2009). Despite their latent nature, these jets seem to penetrate
deep into the ocean (e.g. Cravatte, Kessler & Marin 2012).

There is not yet a commonly accepted mechanism to explain the formation of zonal jets
in planetary flows. The only consensus is that the β-effect, arising from the variation of
the Coriolis effect with latitude (Vallis 2006), is responsible for the anisotropisation of
the turbulent flow. In his seminal paper, Rhines (1975) predicted that the β-effect would
alter the inverse energy cascade expected in geostrophic turbulence, and redirect energy
towards zonal modes at low wavenumbers. This work was however mainly heuristic, and
since then, the dynamical process of jet formation has been the subject of intensive study.
In a recent book, Galperin & Read (2019) provide a survey of the latest theoretical,
numerical and experimental advancements focusing on zonal jets dynamics and their
interactions with turbulence, waves and vortices. As summarized by Bakas & Ioannou
(2013), several processes can lead to zonal flows formation, such as anisotropic turbulent
cascades (Sukoriansky, Galperin & Dikovskaya 2002; Galperin et al. 2006; Sukoriansky,
Dikovskaya & Galperin 2007; Galperin et al. 2019), modulational instability (Lorenz 1972;
Gill 1974; Manfroi & Young 1999; Berloff, Kamenkovich & Pedlosky 2009; Connaughton
et al. 2010) and mixing of potential vorticity (Dritschel & McIntyre 2008; Scott &
Dritschel 2012, 2019). Zonal flows also emerge as statistical equilibria from complex
turbulent flows (Galperin & Read 2019, part VI and references therein). It is not clear
yet which mechanism(s) is (are) the most relevant for planetary applications, and for which
planetary flow (terrestrial ocean and atmosphere, gas giant atmospheres). For instance, and
as pointed out by Bakas & Ioannou (2013), the inverse energy cascade from a small-scale
forcing and its anisotropisation by the β-effect implies spectrally local interactions which
are not observed in the Earth atmosphere, or at least not at low latitudes where non-local
eddy-mean flow interactions are expected to prevail (Chemke & Kaspi 2016). Non-local
energy transfers towards the mean flow have also been demonstrated in the heated rotating
annulus experiments (Wordsworth, Read & Yamazaki 2008). On Jupiter on the contrary,
the large-scale circulation seems indeed to be powered by a well-defined inverse cascade
emanating from the scale of baroclinic instabilities at ∼2000 km (Young & Read 2017).
Then, as a second example, robust zonal jets can form thanks to eddies even when the
mixing is not sufficient to turn the initial potential vorticity profile into a staircase profile
(Scott & Dritschel 2012). Finally, the relevance of statistical theories (Bouchet & Venaille
2012, 2019), where both the forcing and the dissipation are vanishing, remains to be
addressed for planetary flows.

In the present study we wish to better understand zonal jets formation thanks to an
experimental set-up which allows for the self-organization of the flow into a dominant and
instantaneous zonal flow made of multiple jets. In the past, numerous studies focused
on the characteristics of directly forced zonal flows, either through an imposed zonal
acceleration (Hide & Titman 1967; Niino & Misawa 1984; Nezlin & Snezhkin 1993; Früh
& Read 1999; Barbosa Aguiar et al. 2010) or a radial one which converts into a zonal
acceleration following the action of the Coriolis force (Hide 1968; Sommeria, Meyers
& Swinney 1989; Solomon, Holloway & Swinney 1993). Such a situation is relevant for
certain terrestrial circulations such as the oceanic zonal currents forced by the wind, or
the subtropical jet driven by the poleward motion in the Hadley cell (Read 2019). Here,
in the context of self-organized large-scale jets, we are interested in the formation of jets
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through the indirect effect of the Reynolds stresses, as a result of systematic correlations
in the small-scale turbulent flow. Reproducing zonal jets without directly forcing them is
experimentally challenging, namely because of the large boundary dissipation and small
β-effect typically obtained in laboratory set-ups. Generating significant zonal motions in
an indirectly forced and dissipative rotating flow requires:

(i) a process by which eddying turbulent motions are constantly generated;
(ii) a significant β-effect coupled with a small Ekman number E = ν/ΩH2 for the

boundary dissipation to be as small as possible (ν being the kinematic viscosity,
Ω the rotation rate and H the typical fluid height).

The first point can be achieved thanks to natural instabilities such as barotropic (Condie
& Rhines 1994; Gillet et al. 2007; Read et al. 2015) or baroclinic thermal convection, in the
differentially heated rotating annulus configuration (Hide & Mason 1975; Bastin & Read
1997, 1998; Wordsworth et al. 2008; Smith, Speer & Griffiths 2014). Note that Read et al.
(2004, 2007) alternatively used a specific convective forcing by spraying dense (salt) water
at the free surface of a fresh water layer, and in a similar fashion, Afanasyev et al. (2012),
Slavin & Afanasyev (2012), Zhang & Afanasyev (2014), Matulka & Afanasyev (2015)
performed a localized forcing involving sources of buoyancy. Another method, which has
the advantage of allowing a close control of the location, scale and intensity of the forcing,
consists in applying a mechanical forcing, provided that, again, it does not directly force the
mean flow. In that purpose, Whitehead (1975) used a vertically oscillating disk, Afanasyev
& Wells (2005), Espa et al. (2012), Zhang & Afanasyev (2014), Galperin et al. (2014a)
employed an electromagnetic forcing, and several studies performed an eddy forcing using
sinks and sources of fluid (De Verdiere 1979; Aubert, Jung & Swinney 2002; Di Nitto,
Espa & Cenedese 2013; Cabanes et al. 2017; Burin et al. 2019).

Regarding the second point, since spatial modulation of the Coriolis parameter is
difficult to set up experimentally, the β-effect is usually achieved topographically, i.e.
through the variation of the fluid height. Two principal approaches have been tested:
using a sloping bottom, associated or not with a top lid, or using the natural paraboloidal
shape adopted by any fluid with a free surface in solid body rotation. But as explained
below, a β-effect alone is not sufficient for the development of large-scale zonal flows and
should be accompanied by the smallest possible friction. In the context of eddy-driven
jets in forced-dissipative experiments, the zonostrophy index Rβ has been introduced to
distinguish friction-dominated regimes (small Rβ , Earth’s ocean and atmosphere) and
zonostrophic regimes, i.e. regimes of strong jets (Rβ > 2.5, Jupiter and Saturn) (Galperin
et al. 2006; Sukoriansky et al. 2007; Galperin et al. 2019, table 13.1). This index is
basically the ratio between the largest scale of the dynamics set by the large-scale drag,
and the scale at which the eddies start to feel the β-effect. To favour the emergence of
strong jets, experimentalists should seek large Rβ , i.e. strong β-effect, strong flows (but still
dominated by rotation), and small viscous dissipation thanks to fast rotation and/or large
containers (Read 2019). Previous experimental studies (Di Nitto et al. 2013; Smith et al.
2014; Zhang & Afanasyev 2014; Read et al. 2015) lied in the range Rβ ∈ [0.73, 1.46] and
the observed flows were not in the zonostrophic regime, but recently, Cabanes et al. (2017)
were able to reach Rβ ≈ 3.7 thanks to the fast rotation (75 RPM) of a 1 m-diameter tank,
thus getting closer to the regime observed on gas giants. The present study follows the work
of Cabanes et al. (2017): we built a very close but significantly improved experimental
set-up designed to make more quantitative measurements as well as to study more precisely
the dependence of the obtained jets on the forcing amplitude. We also wish to focus on
their long-term evolution, if any.
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The layout of the paper is as follows. In § 2 we present the experimental set-up. In § 3
we describe the main experimental results: we observe a subcritical bifurcation between
two regimes of zonal flows depending on the forcing intensity. In § 4 we develop a
theoretical bidimensional model based on the quasi-geostrophic approximation to explain
the experimental results. In § 5 we point towards experimental improvements and future
work and discuss the implications at the planetary scale.

2. Experimental methods

The experimental set-up is an improved version of the set-up of Cabanes et al. (2017).
Three main modifications were made compared to the initial set-up. First, the vast majority
of theories and numerical simulations are performed in the context of the so-called
β-plane, where the Coriolis parameter is assumed to vary linearly in one direction, with β
its (constant) derivative. For that reason, we designed the present set-up to have a uniform
topographic β effect over the whole tank, rather than a strongly varying one due to the
paraboloidal free surface. Second, in the present experiment, we are able to control the
forcing amplitude with radius and we decreased the forcing scale by a factor two. Finally,
and most importantly, the tank is transparent which allows for time-resolving particle
image velocimetry (PIV) measurements.

Following Cabanes et al. (2017), our experiment consists of a rapidly rotating cylindrical
tank filled with water with a free upper surface and a topographic β-effect induced by the
parabolic increase of the fluid height with radius due to the centrifugally induced pressure.
The tank, made of Plexiglas, has an external diameter of 1 m, is 1 cm thick and 1.6 m
high. It is covered with a top lid also made of Plexiglas to bring the underlying air in solid
body rotation, thus reducing as much as possible perturbations of the free surface. The
experimental set-up is sketched in figure 1.

The topographic β-effect is a source or sink of vorticity following radial motions, and is
a consequence of the local conservation of angular momentum in a rapidly rotating fluid.
Here, the β parameter can be written as

β = − f
h

dh
dρ
, (2.1)

where ρ is the cylindrical radius, h(ρ) is the total fluid height and f = 2Ω is the Coriolis
parameter with Ω the rotation rate. Appendix A provides details about the origin of this
expression. Equation (2.1) shows that for the topographic β-effect to be uniform over the
whole domain, the fluid height should vary exponentially with radius. To achieve this,
we choose to compensate the unalterable paraboloidal shape of the free surface using a
non-flat bottom plate placed inside of the tank (figures 1 and 2). The total fluid height
h above the bottom plate is the difference between the free-surface altitude hp and the
bottom topography hb. In solid body rotation at a rate Ω , the water free-surface height as
a function of the cylindrical radius ρ is

hp(ρ) = hmin + Ω2

2g
ρ2 = h0 + Ω2

2g

(
ρ2 − R2

2

)
, (2.2)

where g is the gravitational acceleration, R is the tank radius, hmin the minimum fluid
height in rotation and h0 the fluid height at rest. We want the fluid height h to have an
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Figure 1. Schematic of the experimental set-up. A cylindrical tank of 1 m in diameter and 1.6 m in height,
filled with 600 l of water, is fixed on a table rotating at 75 RPM. The fluid free surface takes a paraboloidal
shape due to the centrifugally induced pressure. The bottom plate is designed to achieve a uniform topographic
β-effect. A small-scale turbulent forcing is performed by circulating water through 128 holes at the base of
the tank. The forcing pattern is sketched on the right: each ring C1–C6 is controlled by an independent pump.
Time-resolving PIV measurements are performed on a horizontal plane using a side green laser and a top-view
camera.

exponential increase with ρ such that the β parameter (2.1) is constant, that is,

h(ρ) = hmin exp
(

− β

2Ω
ρ

)
. (2.3)

The topography of the bottom of the tank is thus designed such that hb = hp − h. In
addition, we optimized the choice of the physical parameters for hb to be the less steep
possible in order to minimize the cost of production. Two additional constraints are given
by the maximum rotation rate of the turntable (90 RPM) and its maximum load (1500 kg).
This process led us to choose

hmin = 0.20 m; (2.4)

h0 = 0.58 m; (2.5)

Ω = 75 RPM ≈ 7.85 rad s−1; (2.6)

β ≈ −50.1 m−1 s−1. (2.7)

With these parameters, the bottom plate has the shape of a curly bracket (figure 2c)
with a maximum height difference of 5.36 cm and a mean absolute slope of 22 %.
The effective fluid height is minimum at the centre, hmin = 0.2 m, and increases up to
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Laser

H~1.60 m

D~1 m

Rotating table

Paraboloidal

free surface

Ω = 75 RPM

Camera(a) (b)

(c) (d)

Figure 2. (a) Experimental set-up at rest. The tank is mounted on a rotating table operating using an air
cushion. It is filled with ∼600 l of tap water so that the fluid height at rest above the bottom plate is of ∼58 cm.
It is closed by a Plexiglas top lid. (b) Experimental set-up in solid body rotation at 75 RPM, with the side green
laser turned on. The difference in fluid height between the centre of the tank and its border is of ∼76 cm and the
fluid height at the centre is hmin = 20 cm. (c) View of the bottom plate through which the forcing is performed.
The plate has the shape of a curly bracket for the fluid height to increase exponentially with the radius, see
(2.3). It is drilled with 128 holes corresponding to 64 inlets and 64 outlets connected to six submersible pumps.
(d) View of the six pumps and 128 hoses placed beneath the bottom plate.

hmax = 0.96 m (figure 2b). The total volume of water, including the water located below
the bottom plate is of about 600 l. Finally, the chosen rotation rate leads to an Ekman
number

E = ν

Ωh2
0

≈ 3.78 × 10−7, (2.8)
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Zonal jets at the laboratory scale

where ν is the kinematic viscosity of water (ν = 10−6 m2 s−1). Note that we assume
ν to be constant, but the experiments discussed in the following were performed at
room temperatures varying between 20 and 27 ◦C, leading to ν ∈ [0.8539, 1.0034] ×
10−6 m2 s−1 and E ∈ [3.23, 3.80] × 10−7.

We force small-scale fluid motions using an hydraulic system located at the base
of the tank (figure 2c,d). This system is inspired from previous set-ups designed to
study turbulent (Bellani & Variano 2013; Yarom & Sharon 2014) and zonal flows
(De Verdiere 1979; Aubert et al. 2002; Cabanes et al. 2017; Burin et al. 2019). The
curved bottom plate is drilled with 128 holes (64 inlets and 64 outlets) of 4 mm diameter.
The forcing pattern is arranged on a polar lattice with six rings C1−6 located at radii
Ri ∈ {0.067, 0.140, 0.214, 0.287, 0.361, 0.434} m as represented in figure 1. Each ring
counts respectively 6, 12, 18, 24, 30 and 38 holes, half of them being inlets (sucking water
from the tank and generating cyclones) and the other half-outlets (generating anticyclones)
as represented in figure 1. The holes are uniformly distributed along each ring, leading to
a minimum separating distance of 7.0 cm (ring C1) and a maximum separating distance
of 7.6 cm (ring C5). Note that there is also a spatial phase shift between each consecutive
ring in order to minimize the variance in the distance between two neighbouring inlets or
outlets (figure 1). All the holes of a given ring are connected to a submersible pump (TCS
Micropump, M510S-V) via a network of flexible tubes (figure 2). Six submersible pumps
are thus located beneath the bottom plate, and circulate water through the six rings. The
resulting circulation induces no net mass flux, since the water is directly sucked from the
working fluid and released in it. At this point, it is important to stress that the system was
designed to minimize the direct forcing of the zonal mean zonal flow and that only the
eddy momentum fluxes should be responsible for its eastward or westward acceleration.
Finally, each ring is controlled by one pump independently of the others which allows us to
control the forcing intensity with the radius. The pumps are controlled remotely by linking
them to their drivers (TCS EQi Controllers) through the base of the tank. The drivers are
controlled by a Raspberry Pi connected to a local network. We can choose the power of
a given pump to be stationary, or to fluctuate randomly within a prescribed power range
every 3 s.

To measure velocity fields, time-resolving PIV measurements are performed on a
horizontal plane. A green laser beam (Laser Quantuum 532 nm CW Laser 2 Watts)
associated with a Powell lens is used to create a horizontal laser plane located 11 cm
above the edge of the bottom plate (9 cm below the centre of the paraboloid). The water is
seeded with fluorescent red polyethylene particles of density 0.995 and 40–47 micrometres
in diameter (Cospheric, UVPMS-BR-0.995). Their motion is tracked using a top-view
camera (DANTEC HiSense Zyla) placed above the tank (figures 1 and 2). A 28 mm lens is
mounted on the camera (ZEISS Distagon T* 2/28). The particles emit an orange light
(607 nm) so that using a high-pass filter on the lens allows us to filter out the green
laser reflections on the free surface and tank sides, leading to a better image quality
and, hence, better PIV measurements. The images are acquired using Dantec’s software
DynamicStudio. We reduced the sensor region of interest to fit the tank borders, leading to
1900 × 1900 pixels images. Optical distortion induced by the paraboloidal free surface
is corrected on DynamicStudio using a preliminary calibration performed by imaging
a plate with a precise dot pattern. An illustrative movie of the particles motion during
an experiment is available as supplementary movie 1 available at https://doi.org/10.1017/
jfm.2020.1000. The velocity fields are deduced from these images using the MATLAB
program DPIVSoft developed by Meunier & Leweke (2003). We consider 32×32 pixels
boxes on 1900 × 1900 pixels images and obtain 100 × 100 velocity vector fields (40 %
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Figure 3. Instantaneous velocity fields computed from PIV measurements in the statistically stationary
state reached in the two experimental regimes. The shaded areas in the top-right and bottom-left corners
are shadow areas due to the laser refraction: no measurements are performed in these areas. The colours
represent the vertical component of the vorticity ζ . Note that there is a factor ten between the colour scales
in the two panels. (a) Regime I: velocity field obtained at time t = 24 min = 1800 tR and averaged over
1 s. (b) Regime II: velocity field obtained at time t = 19 min = 1425 tR and averaged over 1 s.

overlap between the boxes). Note that due to the refraction of the laser plane by the
tank sides, there are two shadow zones where measurements are not possible (see the
grey areas in figure 3). As represented in figure 1, all the devices (acquisition computer,
camera, synchronizer, laser, pumps power supply, drivers and Raspberry) are attached to
the rotating frame. The rotary table operates thanks to an air cushion, allowing us to reach
high rotation rates even with a large non-equilibrated load (∼1000 kg).

A typical experimental run is as follows. We gradually increase the rotary table
rotation rate from rest up to 75 RPM (∼30 min). We then wait for the water to be
in solid body rotation which takes approximately 45 min, i.e. ∼ 13τE, where τE =
Ω−1E−1/2 is the Ekman spin-up time scale. Note that inertial oscillations are observed
even after spin-up, due to the tank’s misalignment and the slight non-circularity of its
cross-section. These oscillations generate typical radial root-mean-square velocities of

910 A18-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1000
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∼4 × 10−4 m s−1. These small amplitude and large-scale oscillations do not significantly
perturb the small-scale forced geostrophic motions. We then turn on the forcing of the
six rings simultaneously, potentially with different powers, in a stationary or random
state. For a typical run, we record images for 60 min, corresponding to 4500 tR, where
tR = 2π/Ω = 0.8 s is the rotation period. We record images with frame rates between 10
and 30 frames per second to resolve the fluid motions which are typically between 0.1 and
10 cm s−1 depending on the forcing amplitude.

The forcing was calibrated in the rotating system by measuring the root-mean-square
(RMS) velocity induced on the horizontal PIV plane by the forcing. This measurement
was realized for each ring separately and several pump powers just after the forcing was
turned on, i.e. before the jets develop. We then performed a linear fit of the induced RMS
velocity as a function of power to obtain a calibration law for each pump. Details about
the forcing calibration are given in appendix B. In the following, we denote the forcing
amplitude Uf , which corresponds to the mean of the RMS velocities of the six pumps
deduced from our calibration.

3. Experimental results

For all the experiments performed in our set-up, we observe instantaneous zonal flows
independently of the number of forcing rings turned on, their power and their state
(stationary or random). However, depending on the forcing amplitude, we observe two
different regimes of zonal flows described in the next sections. The results are presented
on the horizontal laser plane using the polar coordinates represented in figure 1, with
(uρ, uφ) the radial and azimuthal velocities and ζ = (∇ × u) · ez = (∂ρ(ρuφ)− ∂φuρ)/ρ
the vertical component of the vorticity.

3.1. Regime I: low-amplitude, locally forced jets
At low, stationary forcing amplitude, we observe the fast development of five prograde jets
– in the same direction as the tank’s rotation, uφ > 0 (figure 1) – and six retrograde jets.
We will refer to this regime as regime I.

To describe this regime, we chose a typical experiment where the pumps power are
respectively Pi = {7, 10, 20, 30, 45, 90} % of their nominal power, corresponding to a
forcing amplitude Uf = 2.4 × 10−3 m s−1 (see appendix B). Figure 4(a) represents the
temporal evolution (Hovmöller diagram) of the instantaneous azimuthal mean of the
azimuthal component of the velocity 〈uφ〉φ(ρ, t) – called zonal flow in the following of
the paper, whereas mean flow refers to the time-averaged velocity field. The jets develop
almost instantaneously (∼10 tR), and reach their saturating amplitude in about 100 tR
(another example is shown in figure 6 for t < 360 tR). Supplementary movie 2 (azimuthal
component of the velocity) and movie 3 (vorticity) illustrate the development of regime I.

The velocity and vorticity fields obtained after saturation are represented in figures 3(a)
and 5(a–c). The retrograde jets are uniform and quasi-axisymmetric, whereas the progade
jets are associated with clear non-axisymmetric perturbations. Consistently with the
direction of the zonal flow, the anticyclones – negative vorticity ζ – are located on the
outer radius flank of the prograde jets, whereas cyclones are located on their inner radius
side. In addition, the prograde jets are thinner than the retrograde ones. These observations
highlight the asymmetry between prograde and retrograde jets, generically observed in
these type of systems (e.g. Scott 2010; Scott & Dritschel 2012).
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Figure 4. Zonal flow and zonal mean potential vorticity in the two experimental regimes represented in figures 3 and 5. (a–c) Regime I. (a) Space–time diagram showing
the evolution of the instantaneous zonal flow radial profile 〈uφ〉φ(ρ, t) during the experiment. Dotted lines: location of the forcing rings. (b) Symbols: instantaneous zonal
flow at time t = 2500 tR. Black line: time-averaged zonal flow 〈uφ〉φ(ρ) from t = 1500 to 3000 tR. Dotted lines: location of the forcing rings. (c) Symbols: potential vorticity
instantaneous profile at time t = 2500 tR. Grey line: initial potential vorticity profile (hidden behind the symbols). (d–f ) Regime II (the same quantities are plotted).
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Figure 5. Instantaneous maps in regime I (a–c) and II (d–f ). The black circle marks the tank boundary, and
the shaded areas are the shadows where no measurements can be performed. The dashed curves in the top-left
quadrant of each subplot represent the forcing rings location. (a–c) Regime I at time t = 24 min = 1800 tR
and averaged over 1 s. (a) Azimuthal component of the velocity uφ . (b) Radial component of the velocity uρ .
(c) Vertical component of the vorticity ζ . (d–f ) Regime II at time t = 19 min = 1425 tR and averaged over
1 s. (d) uφ . (e) uρ . ( f ) ζ . Note the different colour scales for the two regimes.

The saturated zonal flow profile is plotted in figure 4(b) along with its time average, and
figure 4(c) shows the zonal mean of the potential vorticity 〈(ζ + f )/h〉φ . In the absence
of dissipation, we expect the material conservation of potential vorticity (PV) (Vallis
2006, § 4.5). In this limit, zonal flows formation can be viewed as a process of mixing
of the initial potential vorticity profile f /h(ρ). Dritschel & McIntyre (2008) showed that

910 A18-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1000


D. Lemasquerier, B. Favier and M. Le Bars

Regime uRMS (mm s−1) Ro = uRMS

fR
Ro
 = uRMS

f 

Roζ = ζmax

f
Re = uRMSR

ν
Re
 = uRMS


ν

I 1.59 1.78×10−4 1.20 × 10−3 1.91×10−2 671 100
II 16.0 2.07×10−3 1.39 × 10−2 8.91×10−2 7830 1170

Table 1. Typical instantaneous RMS velocity (3.1), Rossby and Reynolds global and local numbers. Here R is
the tank’s inner radius R = 0.49 m, and f = 2Ω = 15.7 rad s−1. For the local Rossby and Reynolds numbers,
we use the distance between two forcing rings as a length scale, 
 = 7.3 cm. Note that these values correspond
to two typical experiments, but may vary in each regime depending on the forcing amplitude.

this profile should be turned into a staircase where the prograde jets correspond to steep
gradients, and the retrograde jets correspond to weak gradients, i.e. zones of strong mixing.
Here, despite the visible segregation of vorticity (figure 5c), the initial vorticity profile is
almost not perturbed, showing that zonal jets can exist instantaneously even without this
process of potential vorticity mixing. Said differently, this regime is characterized by a
local Rossby number Roζ = ζ/f � 1 (see table 1); hence, the initial PV profile is not
expected to be strongly modified. The instantaneous root-mean-square velocity, defined as

uRMS =
[

1
N

N∑
i=1

|ui|2
]1/2

, (3.1)

where N is the number of PIV velocity vectors, is provided in table 1 along with the
global and local Rossby and Reynolds numbers of the flow. Here, uRMS is computed from
the velocity fields of figure 3. It is considered ‘instantaneous’ in opposition to the same
quantity computed after a very long time average ūRMS which will be used later in the
paper. Table 1 shows that the flow is barely turbulent in regime I (the local Reynolds
number being approximately 100), and highly constrained by rotation given the very small
Rossby numbers. Finally, the zonal flow contains 23 ± 5 % of the total kinetic energy.

In this regime, each prograde jet stands right above a forcing ring (see the dashed lines
in figures 4 and 5). The only exception is the inner ring (ring C1), which is geometrically
constrained due to its small radius and significantly perturbed by the peak at the centre of
the bottom plate (figure 2c). Despite this anomaly, the five other forcing rings are clearly
associated with a prograde jet. This leads us to hypothesize that the prograde jets are forced
locally by prograde momentum convergence towards the forcing radii. The local Reynolds
stresses generated by our forcing are then balanced by viscous effects. This mechanism of
zonal flow formation is reminiscent of the pioneering experiments of Whitehead (1975)
and De Verdiere (1979). Whitehead (1975) demonstrated that the generation of a train of
Rossby waves in a rotating tank with a paraboloidal free surface induces a prograde flow
at the radius of the forcing, with two weak retrograde flows on both sides of the forcing.
De Verdiere (1979) did the same observation with a forcing consisting in a ring of sink and
sources able to be azimuthally translated. Corresponding theoretical studies of Thompson
(1980) and McEwan, Thompson & Plumb (1980) then followed and accounted for the
mechanism of momentum convergence due to eddy forcing. It is now believed to be the
primary mechanism of westerlies formation in the mid-latitude atmosphere (Vallis 2006,
chapter 12). This mechanism will be further explored in § 4.

Finally, let us mention that the relaxation dynamics of this regime is consistent with the
observation of De Verdiere (1979): when the forcing is stopped, the fluctuating velocities
are dissipated more rapidly than the mean flow.
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Zonal jets at the laboratory scale

3.2. Regime II: high-amplitude large jets
At high, stationary forcing amplitude, regime I develops as a transient before the system
reaches a statistically stationary state with stronger and broader zonal jets, hereafter called
regime II.

To describe this regime, we chose a typical experiment where the pumps power are
respectively Pi = {26, 33, 60, 80, 100, 100} % of their nominal power, corresponding to a
forcing amplitude Uf = 4.0 × 10−3 m s−1 (see appendix B). The Hovmöller diagram of
this experiment is represented in figure 4(d). The steady jets of the first regime reorganize
into three prograde and three retrograde jets. Note that in other experiments, the saturated
flow can count four prograde jets instead of three, as will be discussed in § 3.3. This
spontaneous transition from regime I to regime II is slow, and the statistically steady state
is obtained after a transient of about 800 tR. Furthermore, it involves zonal flows merging
events visible in the Hovmöller plots of figures 4(d) and 6. The reorganization of the jets
during this transition also shows that they become more independent of the forcing pattern:
in the final steady state of regime II, the jets have a typical width which is twice that of
the jets in regime I, and their radial position can be shifted compared to the position of the
forcing rings. A retrograde flow is even observed above some forcing rings, for instance,
above C1 and C3. Thus, in this regime, the system self-organizes at a global scale, and the
idea of a direct local forcing is not relevant anymore. Supplementary movie 4 illustrates
the development of regime II, and movie 1 shows the particles motion when the system is
in steady state.

The velocity field obtained after saturation is represented in figure 3(b), and the
corresponding maps of velocity and vorticity are plotted in figure 5(d–f ). The prograde
jets are still meandering between cyclones on their right and anticyclones on their left,
but these vortices are now large-scale ones. As can be seen in figure 3(a), the vortices
forced above the inlets and outlets have a typical diameter of ∼3 cm in regime I, whereas
in regime II (panel (b)), we observe fewer vortices, with a typical diameter of ∼8 cm.
The instantaneous RMS velocity (table 1) is about 10 times higher than in the experiment
described for regime I. The global and local Rossby numbers are still very small, i.e.
the flow is still highly constrained by rotation, but the Reynolds number is multiplied by
10, hence, the flow can now be considered fully turbulent. The fraction of kinetic energy
contained in the zonal flow in this experiment reaches 58 ± 8 %. Figure 4( f ) shows that the
PV mixing is increased in this second regime and consistently with Dritschel & McIntyre
(2008), the prograde jets correspond to steepening of the PV profile. But again, the small
vorticity of our experiment does not allow an efficient mixing process, though the jets are
strong and contains most of the kinetic energy.

3.3. Nature of the transition: a first-order subcritical bifurcation
In this section we investigate the nature of the transition between the two previously
described experimental regimes.

Figure 6 shows a Hovmöller diagram representing the evolution of the zonal flow profile
〈uφ〉φ(ρ, t) during a single experiment as well as the corresponding evolution of the total,
zonal and fluctuating kinetic energy defined respectively as

K = 1
N

N∑
i=1

|ui|2, (3.2)
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Figure 6. Experiment illustrating the bistability between regimes I and II: the forcing is initially of
low amplitude and stationary, so that we start in regime I (Pi = {14, 20, 46, 72, 100, 100} %, Uf = 3.3 ×
10−3 m s−1). At t = 360 tR, a finite perturbation is created by varying the third forcing ring power randomly
around its initial value, leading to the transition to regime II (Pi = {14, 20, 46 ± 20, 72, 100, 100} %). At
t = 1600 tR, the forcing is set back to its initial state but the flow remains in regime II. At time t = 2250 tR,
a second finite-amplitude perturbation is performed (Pi = {14, 20, 46, 72 ± 20, 100, 100} %) (a). Hovmöller
plot: zonal flow profile as a function of time. (b) Total (K), zonal (Kz) and fluctuating (Kf ) kinetic energy as a
function of time.

Kz = 1
N

N∑
i=1

〈uφ〉2
φ,i, (3.3)

Kf = K − Kz, (3.4)

where N is the number of PIV velocity vectors. The experiment plotted in figure 6 is
initialized with a stationary forcing (Uf = 3.3 × 10−3 m s−1), leading to a steady state in
regime I. After 360 tR, this forcing is perturbed at finite amplitude by turning the third
ring into a random state. Here, it consists in changing its power every 3 s to random
values uniformly distributed in a range centred around ±20 % of its initial power. After
such a perturbation, figure 6(a) shows that the system bifurcates towards the second
regime through merging events and increasing zonal flow amplitude. Note that without this
perturbation, the system would be locked in regime I, as shown by a separate experiment
performed with the exact same forcing, at least up to t = 1875 tR. During the transition, the
fraction of kinetic energy contained in the zonal flow increases from 21±7 % to 48±9 %
(figure 6b). This second value is significantly lower than the one mentioned previously for
regime II since the forcing of this experiment is weaker. After the transition, the system
remains attached to this new steady state even when the forcing is set back to its initial
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Zonal jets at the laboratory scale

stationary state at time t = 1600 tR. These observations demonstrate that two stable states
coexist for this particular forcing and suggest that the transition between the two regimes
is of subcritical nature.

To further investigate this bistability, we perform series of experiments where we
increase or decrease the forcing step by step. We wait significantly between each step
for the system to relax towards a new steady state (typically 20 min, i.e. 1500 tR). We then
measure the corresponding mean flow amplitude defined as the RMS velocity computed
on a time-averaged velocity field,

ūRMS =
[

1
N

N∑
i=1

|ui|2
]1/2

, (3.5)

where · denotes the time average over the whole duration of the record once the flow
has reached the statistically steady state. Typically, the time average is performed over
200 to 1000 tR depending on the duration of the record. Figure 7(a) represents the
mean flow amplitude (3.5) as a function of the forcing amplitude Uf as defined in
appendix B. Typical maps of the time-averaged zonal velocity are represented in panel (b).
For low values of the forcing amplitude, regime I is observed with the six prograde
jets structure and ūRMS ∼ 2.5 × 10−3 m s−1. As the forcing amplitude increases, the jets
structure does not change but their amplitude increases smoothly. When the forcing further
increases, a sharp transition occurs around Uf ≈ 3.32 × 10−3 m s−1 corresponding to a
bifurcation from regime I to regime II: both the jets size and amplitude increase abruptly
(ūRMS ∼ 7.5 × 10−3 m s−1). Once in regime II, the amplitude of the jets continues to
increase with the forcing amplitude. When the forcing amplitude is gradually decreased,
the bifurcation from regime II to regime I is again abrupt, but obtained at a lower forcing
Uf ≈ 3.11 × 10−3 m s−1. These hysteresis experiments confirm that the two regimes
coexist in a given forcing range Uf ∈ [3.11, 3.32] × 10−3 m s−1. The particular forcing
of the experiment represented in figure 6 (Uf = 3.3 × 10−3 m s−1) belongs to the bistable
range in which the first regime is metastable. In § 4 we propose a model to explain this
hysteresis phenomenon.

Finally, we note a significant variability in the mean flow amplitude in regime II. The
grey points in figure 7(a), located at Uf = 4 × 10−3 m s−1, correspond to nine experiments
where we apply the exact same forcing (Pi = {26, 33, 60, 80, 100, 100}%), starting from
solid body rotation. Despite the similarity of the forcing, the flow may evolve towards
different statistically steady states where the mean flow amplitude and scale are roughly
the same, but the position of the jets differ. Based on 15 realizations, we have identified
three different steady states with permutations between the location of the prograde jets,
as represented in figure 7(b). The last point of the yellow curve in figure 7(a) is in
configuration 2. It is located below the others probably because it had not reached its
steady state when the measurements were performed (500 tR after the forcing change in
contrast to 1500 tR for the grey points). Note that we have never observed spontaneous
transitions between these three states, even during day-long experiments (38 000 tR). The
origin of this multi-stability is beyond the scope of the present study, but will be the focus
of future investigations. In particular, its link with the multi-stability observed recently in
numerical simulations of stochastically forced barotropic turbulence (Bouchet, Nardine &
Tangarife 2019a; Bouchet, Rolland & Simonnet 2019b) should be addressed.

It is of interest to compute the transition rates between the two regimes. On figure 8 we
plot the evolution of the total kinetic energy for transitions from regime I to regime II and
vice versa in order to compute the corresponding time scales. Transitions in the direction
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Figure 7. (a) Experimental hysteresis loop. The time-averaged RMS velocity of the flow ūRMS (3.5) is plotted
as a function of the forcing amplitude Uf (see appendix B). The top and right axes correspond to associated
non-dimensional quantities. On the right axis, we use the Reynolds number based on the mean flow RMS
velocity, Re = ūRMS
/ν (
 = 7.3 cm is the distance between two forcing rings). For the top axis, we use the
typical velocity expected at the transition Ut (see § 4.4 and (4.34)). For each curve, the forcing is either increased
(reddish) or decreased (bluish) step by step. The different colours are different experiments. The shaded area
is the bistable zone. The grey points in regime II correspond to experiments initialized with the exact same
forcing and for which saturation leads to three possible jets configurations represented in panel (b). The last
point of the yellow curve is in configuration 2, but may not have reached its stationary state. (b) Time-averaged
zonal velocity maps in regime I and II. In regime II multiple steady states can be obtained for the same forcing.
The configurations 1, 2, 3 correspond to the points labelled accordingly in panel (a).

II → I (decreasing power) are accompanied by an exponential decay of the total kinetic
energy

K = K0 + (K∞ − K0) e−t/τ , (3.6)

where K0 is the kinetic energy in the initial steady state, and K∞ the kinetic energy reached
in the final steady state after the transition. We plot in figure 8(b) the time evolution
of the normalized kinetic energy for three transitions with different initial and/or final
steady states. Despite these differences, it is clear that the three transitions have the same
characteristic time τII→I ≈ 150 tR. The picture is different for transitions in the direction
I → II (figure 8c). The kinetic energy increases in a non-trivial way before saturating
in a new steady state. We compare this evolution for three transitions starting from the
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Figure 8. Evolution of the total kinetic energy K during transitions from regime I → II (red curves) and
II → I (blue curves). The normalized total kinetic energy is plotted as a function of time in units of rotation
period. (a) Qualitative location of the transitions on the hysteresis loop. (b) Transitions from II → I. The time
is initialized at the moment when the forcing was changed from a super-critical one to a subcritical one. The
normalized kinetic energy decays on a time scale τ obtained from an exponential fit (lines). (c) Transitions
from I → II, starting from the same initial state.

same initial state in the first regime (red dot I in figure 8(a)), but evolving towards three
different steady states in regime II (II1,2,3 in figure 8(a)). Note that I → II1 corresponds to
a finite-amplitude perturbation of a steady state in regime I inside of the bistable range. We
plot in figure 8(c) the kinetic energy normalized the same way as for II → I transitions.
This time, the curves do not collapse. We observe that the closer (in terms of forcing
amplitude) the second steady state, the longer the transition. The transition I → II3 is, for
instance, about three times faster than the transition I → II1.

These differences highlight an asymmetry in the transition mechanism depending on
its direction. We propose the following interpretation. In the case II → I the transition
resembles a classical relaxation following a linear dissipation process. If the Reynolds
stresses sustaining the strong jets abruptly decrease when the forcing decreases, the linear
friction dominates the zonal flow evolution equation ∂t〈uφ〉φ = −α〈uφ〉φ (see (4.1) and
(A10)), where α is a linear friction, and the zonal flow decreases exponentially. We then
expect the time scale of this transition to be of the order of the Ekman friction time scale
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τE = α−1 = Ω−1E−1/2. In our case, τE ≈ 206 rotation periods, which is consistent with
τII→I ≈ 150 tR determined previously. On the contrary, in the case I → II, we expect
a nonlinear mechanism leading to a non-trivial increase of the zonal flow amplitude.
Contrary to the linear friction, this mechanism depends on the forcing amplitude – as
may be intuited from the theoretical model developed in § 4. The higher the forcing, the
faster we expect the transition to occur.

4. Theoretical model for the transition: a Rossby-wave resonance

The goal of this section is to derive a simple model to explain the transition observed in the
experiment, and the associated bistability. To do so, we use the classical quasi-geostrophic
(QG) approximation to reduce the experiment to its two-dimensional (2-D) β-plane analog
(Vallis 2006, p. 67). Because of the fast background rotation, or equivalently, the small
Rossby number of the system, the geostrophic balance dominates the experimental flow.
As a consequence, the flow is quasi two dimensional. The curvature of the free surface
as well as the friction over the bottom (Ekman pumping) induce three-dimensional
(3-D) effects. Nevertheless, the weakness of these effects allows their incorporation
into quasi-two-dimensional physical models. We derive the conventional QG model
corresponding to our experimental set-up in appendix A for completeness, ‘conventional’
meaning that we retain only the linear contributions from these 3-D effects. Note that in
addition to this QG approximation, we make the rigid lid approximation and neglect the
temporal fluctuations of the free surface, i.e. we do not take into account gravitational
effects at the interface.

We use the cylindrical coordinates (ρ,φ,z) with z oriented downward, and (eρ, eφ, ez)
the corresponding unit vectors (figure 1). We consider the flow of an incompressible fluid
of constant kinematic viscosity ν and density ρf , rotating around the vertical axis at a
constant rate Ω = Ωez, withΩ > 0 (the turntable rotates in the clockwise direction). The
fluid is enclosed inside a cylinder of radius R, and the total fluid height is h(ρ). We denote
the velocity field as u = (uρ, uφ, uz)eρ,eφ,ez , and the vertical component of the vorticity is
ζ = (∇ × u) · ez = (∂ρ(ρuφ)− ∂φuρ)/ρ. Under the QG approximation, the experimental
flow can be described by the classical 2-D barotropic vorticity equation on the β-plane,
i.e.

∂ζ

∂t
+ uρ

∂ζ

∂ρ
+ uφ
ρ

∂ζ

∂φ︸ ︷︷ ︸
Advection

+ βuρ︸︷︷︸
β−effect

= −αζ︸︷︷︸
Ekman friction

+ ν∇2ζ︸ ︷︷ ︸
Bulk dissipation

, (4.1)

with β the topographic β parameter resulting from the radial variations of the fluid height
and α the linear Ekman friction parameter,

β = − f
h

dh
dρ
, (4.2)

α = E1/2f
2

(4.3)

(see appendix A). In this 2-D framework we decompose the velocity into a zonal mean
flow plus fluctuations using the standard Reynolds decomposition

uφ = 〈uφ〉φ(ρ, t)+ u′
φ(ρ, φ, t) = U + u′

φ, (4.4)
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Zonal jets at the laboratory scale

uρ = 〈uρ〉φ(ρ, t)+ u′
ρ(ρ, φ, t) = u′

ρ, (4.5)

ζ = 〈ζ 〉φ(ρ, t)+ ζ ′(ρ, φ, t) = 1
ρ

∂(ρU)
∂ρ

+ ζ ′, (4.6)

where 〈·〉φ = 1/2π
∫ 2π

0 · dφ is the zonal mean. Here, we neglect the O(E1/2) mean radial
velocity associated with the Ekman pumping, consistently with the choice of keeping only
the linear Ekman friction term (see, for example, the discussion in Sansón & Van Heijst
2000). The zonal average of the azimuthal component of the Navier–Stokes equation (A2)
leads to the zonal mean zonal flow evolution equation

∂U
∂t

= −
〈

u′
ρ

∂u′
φ

∂ρ
+ u′

ρu′
θ

ρ

〉
φ︸ ︷︷ ︸

R(ρ,t)

+ D(ρ, t), (4.7)

where D contains both the frictional and bulk dissipation of the zonal flow. Using the zero
divergence of the horizontal velocity, the source term R can be expressed as the divergence
of the Reynolds stresses, or equivalently, as an average vorticity flux

R(ρ, t) = − 1
ρ2

∂〈ρ2u′
ρu′
φ〉φ

∂ρ
= −〈u′

ρζ
′〉φ. (4.8)

Hence, the zonal flow equation

∂U
∂t

= R(ρ, t; U)+ D(ρ, t; U), (4.9)

shows that in the absence of direct forcing, the zonal flow requires a source term
which is provided through the Reynolds stresses divergence, alternatively called the eddy
momentum flux. To explain the generation of the zonal flow in our experiment, this
momentum flux R needs to be modelled. The Reynolds stresses are likely to be influenced
by the zonal flow U that they generate through a feedback mechanism. Determining
whether the feedback of the mean flow on the source term R is positive or negative would
allow us to investigate the possibility of bistability. This is the goal of the present section.

We follow the same approach as in Herbert, Caballero & Bouchet (2020) which
focuses on transition to super-rotation based on the mechanism described by Charney &
DeVore (1979) in the framework of topographically forced zonal flows in the mid-latitude
atmosphere (see also Pedlosky 1981; Held 1983; Weeks et al. 1997; Tian et al. 2001).
We determine the Reynolds stresses divergence R by computing the linear response to a
stationary forcing on a β-plane with a background zonal flow. We show that the resulting
Reynolds stresses exhibit a resonant amplification leading to a possible bistability. We
finally compare this mechanism with the experimental observations.

4.1. Linear model for the Reynolds stresses
In this section we determine the Reynolds stresses divergence R and its sensitivity to the
zonal flow. To do so, we compute the linear response to a stationary forcing on the β-
plane, in the presence of a background zonal flow U. Besides, we adopt a local approach
by assuming a length scale separation between the wavelength of the forcing and the spatial
variations of the zonal flow. We also assume homogeneity by considering an infinite fluid
domain in both directions. This approach allows us to
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(i) forget about the geometrical effects inherent to the cylindrical geometry and work in
equivalent 2-D local cartesian coordinates (x, y) (see figure 1);

(ii) assume that the background flow U is constant in (x, y), which is only true locally,
inside of a single jet.

For the basis (ex, ey, ez) to be direct, with ez downward and ex zonal, in the same
direction as eφ , ey has to be oriented towards the axis of rotation (figure 1). We denote
u = (u, v)ex,ey the 2-D cartesian velocity components, and ζ = ∂xv − ∂yu the associated
vorticity. The β-plane barotropic vorticity equation (4.1) reduces to

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ βv + αζ = ν∇2ζ + q(x, y), (4.10)

with α defined by (4.3) and

β = − f
h

dh
dy
. (4.11)

Note that in this cartesian framework β is now positive (dyh < 0). We have added
an arbitrary stationary forcing q(x, y) representing a vorticity source. We linearize this
equation around a uniform background zonal flow U = U ex by setting u = U + u′ with
|u′| � |U |, and keeping only first-order terms:

∂ζ ′

∂t
+ U

∂ζ ′

∂x
+ βv′ + αζ ′ = ν∇2ζ ′ + q(x, y). (4.12)

We drop the primes in the following and define the streamfunctionψ (u = −∂yψ , v = ∂xψ

and ζ = ∇2ψ) such that
∂

∂t
∇2ψ + U

∂

∂x
∇2ψ + β

∂ψ

∂x
+ α∇2ψ − ν∇2∇2ψ = q(x, y). (4.13)

We perform a spatial Fourier transform of this equation in both x and y leading to

∂ψ̂

∂t
+ [iω(k, l)+ ωE(k, l)] ψ̂ = − q̂(k, l)

k2 + l2
, (4.14)

where ψ̂ and q̂ are the Fourier coefficients associated with ψ and q, and k = (k, l)ex,ey

the wave vector. We denote ω the Rossby waves angular frequency, Doppler shifted by the
advection by the zonal flow

ω = kU − kβ
k2 + l2

, (4.15)

(Vallis 2006, p. 230) and ωE the damping rate due to the viscous dissipation in the bulk
and the bottom friction

ωE = α + ν(k2 + l2). (4.16)

Note that there is no gravity effects (or deformation radius) in the Rossby waves dispersion
relation because we make the rigid lid approximation (appendix A). This is justified in the
present work since the short wave limit is valid for the forced waves. The solution to (4.14)
with the initial condition ψ̂(k, l, t = 0) = 0 is

ψ̂(k, l, t) = −q̂(k, l)
(k2 + l2)(iω(k, l)+ ωE)

[
1 − exp(−(iω + ωE)t)

]
. (4.17)

The inverse Fourier transform F−1 of ψ can be computed numerically to retrieve the
physical streamfunction ψ at a time t for a given forcing. Similarly, the vorticity and
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velocity components can be computed using

ζ(x, y, t) = F−1
(
−(k2 + l2)ψ̂(k, l, t)

)
,

u(x, y, t) = F−1
(
−ilψ̂(k, l, t)

)
,

v(x, y, t) = F−1
(

ikψ̂(k, l, t)
)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.18)

The Reynolds stresses term R( y, t; U) is then easily computed as

R( y, t; U) = − ∂

∂y
〈uv〉x = 〈vζ 〉x. (4.19)

The sign difference in the second equality compared to expression (4.8) in cylindrical
coordinates comes from ey pointing inward whereas eρ is pointing outward.

4.2. Comparison of the linear model with experimental results
To confirm that the reduced QG approximation is an appropriate model for the experiment,
we compare the linear solution with the very beginning of experiments where only one
forcing ring is turned on. Note that a good agreement is expected since in our experiments,
Roζ = ζ/f � 1 (table 1), which is the main assumption of the QG approximation. To carry
this comparison, we first set all the model parameters to the experimental ones, that is,

β = − f
h

dh
dy

∼ 50 m−1 s−1,

α = 1
2

fE1/2 ∼ 5.6 × 10−3 s−1,

U = 0 m s−1.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.20)

When the pump is activated, the fluid is at rest in the rotating frame (solid body rotation). In
addition, we design the forcing term to mimic the experimental forcing on the chosen ring:
for the third ring, it corresponds to a line of 18 vortices (9 cyclones and 9 anticyclones)
regularly spaced onto a perimeter of 2πR3 ≈ 0.688 m. We chose to represent each vortex
by a Gaussian one, leading to

q(x, y) = qm

18∑
i=1

(−1)i exp
(

−(x − xi)
2 + ( y − yi)

2

r2
v

)
, (4.21)

with qm the forcing amplitude, rv the radius of the vortices and (xi, yi) the centre location
of each vortex. The vortices’ radius is set to 2/5 times the spacing between two vortices
based on the experimental measurements. To estimate the forcing amplitude qm that we
should use to better represent the experimental regime, we measure the vorticity linear
growth rate above the forcing injection points and adjust qm so that the growth rate
obtained with the linear model is comparable to the experimental one. This method leads
us to use qm = 0.5 s−2.

Figure 9 shows a comparison between an experiment and the linear model 2 s after
the third forcing ring was turned on at its maximum power. The experimental flow and the
linear solution are qualitatively and quantitatively very close. They both exhibit a westward
stretching of each vortex, westward meaning in the retrograde direction compared to
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Figure 9. Comparison between the experimental flow and the linear QG model. (a–d) Experimental flow
measured 2 s after the third forcing was turned on. The experimental data, originally obtained in a cylindrical
geometry, is remapped for the sake of comparison with our cartesian model. Here R3 is the radius of the
third forcing ring. Only eight vortices are visualized, but the third ring contains 18 vortices. (e–h) Solution
of the linear model (4.17) at time t = 2 s. The model parameters (α, β, qm, kf and U) are estimated from the
experimental parameters. (a,e) Zonal velocity perturbation. (b, f ) Radial velocity perturbation (note that uρ
should be compared with −v). (c,g) Vorticity. (d,h) Reynolds stresses divergence (zonal flow acceleration).

the background rotation (decreasing φ in the experiment, decreasing x in the cartesian
model). The dispersive nature of the Rossby waves emitted by the vortex are responsible
for this chevron pattern pointing eastward, as explained by Firing & Beardsley (1976),
Flierl (1977), Chan & Williams (1987) in the case of isolated vortices. In particular, the
long Rossby waves which propagate westward faster than short waves are responsible
for the westward stretching. This response can also be understood as the deformation of
each vortex into a so-called β-plume. Stommel (1982) first described β-plumes when
trying to understand the circulation induced by rising water from hydrothermal vents

910 A18-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1000


Zonal jets at the laboratory scale

(m s–2) 1 ∂ 〈ρ2u′
ρu′

φ〉φ
∂ρ

(m s–2)
∂ 〈u′

 v
′〉x

∂y
–

(a) (b)

0

0

5–5

–0.06

–0.04

–0.02

0.02

0.04

0.06

0

–0.06

–0.04

–0.02

0.02

0.04

0.06

0 5–5

y 
(m

)

ρ
–

R j (
m

)

(×10–4) (×10–4)

ρ2
–

Figure 10. Comparison of the Reynolds stresses divergence between the experiment and the linear model
solution. (a) Experimental Reynolds stresses divergence (4.8). (b) Reynolds stresses divergence computed from
the linear model (4.19). Both the experiment and the linear model show the generation of a prograde jet at the
forcing location, flanked with two retrograde jets.

in the Pacific, and his theory was further developed by Davey & Killworth (1989) who
considered the evolution of buoyancy sources on a β-plane. In both cases, the convergence
or divergence of fluid around the perturbation generates cyclonic or anticyclonic motions
which are subsequently elongated westward due to the emission of Rossby waves (see the
review and experiments by Afanasyev & Ivanov (2019)). As a consequence, an east–west
asymmetry in the radial component develops, which is clear in figure 9(b, f ): the advection
of the background potential vorticity leads to a weakening of the flow on the west (left)
side of each vortex, and a strengthening on their east (right) side, for both cyclones and
anticyclones. More interesting for us is the fact that this asymmetry leads to a prograde
momentum convergence towards the region of generation of the vortices as demonstrated
by figure 9(d,h). Figure 10 compares the Reynolds stresses divergence profile in the
experiment and in the linear solution. There is indeed an eastward acceleration of the
zonal flow in the forcing region, located between two westward acceleration regions. This
mechanism thus explains the experimental regime I, i.e. the formation of prograde jets
flanked by two retrograde jets above each forcing ring. Vallis (2006, chapter 12) provides
an overview of this mechanism in the framework of barotropically forced surface westerlies
in the atmosphere. Our experiment then shows that this mechanism is robust since the
generated prograde jets persist at later times, even in the nonlinearly saturated regime.

4.3. Resonance of the Reynolds stresses and associated feedback
The previous section shows that our experiment can be successfully described by a simple
2-D QG model incorporating only the β-effect and the bottom friction, at least in the linear
regime. We can thus use this model to investigate the feedback that the zonal flow can have
on the Reynolds stresses divergence R and study the possibility of bistability. This is the
goal of the present section.

For simplicity, we now forget about the specific geometry of the experimental forcing,
and use a generic forcing consisting of a doubly periodic array of vortices with a
wavelength comparable to the experimental one, i.e.

q(x, y) = qm cos(kf x) cos(lf y), (4.22)
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with qm = 0.5 s−2 the forcing amplitude and kf = lf the forcing wavenumber. In the
following, we work with kf = 63 rad m−1 corresponding to a typical forcing wavelength
of 10 cm. We show in appendix C that the forcing scale has only a small influence on
the physical mechanism presented. The linear response obtained with this forcing is the
superposition of the response to each forcing line, with a prograde acceleration above each
forcing horizontal line, and retrograde accelerations in between.

To study the feedback of the zonal flow, we solve for the stationary linear response
to this forcing ((4.17) with t → +∞) for various amplitudes of the background zonal
flow U. We recall the local nature of our analysis: the background zonal flow U should
be seen as the – uniform – zonal flow at the core of a jet. For each solution, we extract
the streamfunction amplitude |ψ̂ | and the Reynolds stresses divergence at y = 0, and
represent them in figure 11 as a function of the zonal flow U. Given the amplitude of
the streamfunction

|ψ̂ | = qm

k2
f + l2f

(
ω(kf , lf )2 + ωE(kf , lf )2

)−1/2
, (4.23)

we expect a resonance of the linear response when ω = 0, or, in other words, when the
directly forced Rossby waves are stationary, i.e.

U = β

k2
f + l2f

= −c, (4.24)

where c is the directly forced Rossby waves phase speed in the absence of zonal flow
(Vallis 2006, p. 542). The resonant amplification of the response amplitude is visible in
figure 11(a). Then, the amplitude of the Reynolds stresses is expected to be proportional
to the squared amplitude of the streamfunction (see (4.18) and (4.19)), leading to

|R|(U) ∝ |ψ̂ |2 ∝ 1
ω2 + ω2

E
∝ 1(

1 + U
c

)2

+ γ 2

, (4.25)

where γ is a non-dimensional parameter characterizing the Rossby waves damping

γ 2 =
(
ωE

kf c

)2

. (4.26)

For the problem to be analytically tractable, we chose to model the resonant curve R(U)
plotted in figure 11(b) with a parametrized Lorentzian. We thus forget about the spatial
structure of the momentum flux convergence, and set

R(U) = Rm
1

γ 2 +
(

1 + U
c

)2 . (4.27)

Doing so, we focus on the amplitude of the response rather than on the details due to our
particular choice of forcing. The important physical effects of the zonal flow, the β-effect
and the friction, are contained in the Lorentzian and influence the position and flatness
of the resonant peak. Figure 11(b) shows that the amplitude of the Reynolds stresses
is indeed largely dominated by this resonant amplification. Hence, we do not loose any
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Figure 11. (a) Streamfunction amplitude as a function of the background zonal flow U. Each symbol is a
solution of the linear model with a different background zonal flow. The black line is the corresponding
analytical amplitude in the case of a doubly periodic forcing (4.23). (b) Reynolds stresses at y = 0 as a function
of the background zonal flow U. Each symbol is a solution of the linear model with a different background
zonal flow. The black line represents the best fit of the Lorentzian given by (4.27) where the amplitude Rm is
a free parameter. In both panels, the vertical dashed black line shows the location of U = −c, where c is the
forced Rossby wave phase speed (4.24).

important feature by modelling R with (4.27) which has the advantage of making the
problem analytically tractable.

It is now clear that the momentum flux can lead to abrupt transitions: on the left side
of the resonant peak, any increase of a zonal flow U leads to an increased prograde
momentum convergence, and an increased acceleration of this zonal flow. We have thus
identified a potential positive feedback mechanism, provided that it is not cancelled by the
negative feedback of the viscous dissipation. Note that since the Rossby waves propagate
in the westward direction, this resonance can only occur in an eastward jet (U > 0).

4.4. Stationary solutions and linear stability
The linear QG model showed the resonant amplification of the wave-induced Reynolds
stresses when the zonal flow is such that the directly forced Rossby waves are stationary.
Our goal is now to verify whether this feedback of the zonal flow can explain the transition
and bistability observed in our experiment.

Consistently with our local approach, we consider a minimal model where the zonal flow
U(t) is assumed to be only time dependent, with no spatial modulation. Such a uniform
zonal flow is sustained by the Reynolds stresses divergence R and dissipated by the linear
friction due to the Ekman pumping, i.e.

∂U
∂t

= R(U)− αU, (4.28)

with R(U) the Lorentzian given by (4.27). The stationary solutions of this equation are
the roots of the third-order polynomial

P(U) = U3 + 2cU2 + (1 + γ 2)c2U − Rmc2

α
. (4.29)

Depending on the sign of the discriminant of P, one or three stationary solutions can
exist, as represented in figure 12. We denote U1, U2 and U3 those three solutions such
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Figure 12. Visualization of the stationary solutions (U1,U2,U3) of the zonal flow evolution equation
(4.28). Except the forcing amplitude, all the parameters are fixed and equal to the experimental parameters
(α = 5.6 × 10−3 s−1, kf = lf = 63 rad m−1, c = 6.3 × 10−3 m s−1, γ 2 = 1.99 × 10−4). (a) Illustrative case
of a small forcing amplitude Rm < R1 and a small friction or a too high friction. Note that U1 is very small,
but not zero. (b) Illustrative case of a forcing in the range Rm ∈ [R1,R2] and a small friction. (c) Illustrative
case of a high forcing amplitude Rm > R2 and a small friction. (d) Amplitude of the three stationary solutions
as a function of the forcing amplitude Rm. The black dots represent the unstable solution whereas the white
ones are stable. The shaded area is the bistable range, bounded by R1 and R2 (4.31).

that U1 < U2 < U3. For three stationary solutions to exist, i.e. bistability to be possible, a
necessary but not sufficient condition is

γ 2 < 1
3 . (4.30)

When this condition is satisfied, the sufficient condition for three solutions to exist is that

Rm ∈ [R1,R2] = − 2
27αc

[
9γ 2 + 1 −

√
Γ , 9γ 2 + 1 +

√
Γ

]
, (4.31)

with Γ = (1 − 3γ 2)3. Physically, the first condition (4.30) means that bistability can never
exist if the Rossby waves are too strongly damped. The second condition shows that even
when the friction is not too high, three stationary solutions exist only for a given range of
the forcing amplitude Rm. As represented in figure 12, if the forcing is too high, only
the super-resonant solution U3 exists. Conversely, if the forcing is too weak, only the
low-amplitude solution U1 can exist.

To investigate the linear stability of the stationary solutions, we go back to the zonal flow
evolution equation (4.28). We linearize the nonlinear operator R around the stationary
state Us and denote U′(t) = U(t)− Us the perturbed zonal flow, to obtain the perturbations
evolution equation

∂U′

∂t
= dR

dU

∣∣∣∣
Us

U′ − αU′. (4.32)

910 A18-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1000
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We seek U′ under the form U′ = U′
0 eσ t, where σ is the growth rate of the perturbation.

Substituting into (4.32) leads to

σ = dR
dU

∣∣∣∣
Us

− α. (4.33)

The stationary solution Us is unstable if and only if the growth rate σ > 0. This condition
is always verified for the second stationary solution U2 (the sub-resonant one), whereas
U1 and U3 are stable stationary solutions.

We plot in figure 12(d) the amplitude of the stationary solutions obtained for varying
forcing amplitudes Rm, all the other parameters being fixed and equal to the experimental
parameters (α = 5.6 × 10−3 s−1, kf = lf = 63 rad m−1, c = 6.3 × 10−3 m s−1, γ 2 =
1.99 × 10−4). The three stationary solutions branches are visible, and coexist only in a
given range of forcing amplitude bounded by R1 (purple line) and R2 (blue line) given
by (4.31). This figure also demonstrates the bistability and possibility of an hysteresis: for
an experiment with increasing forcing, the transition U1 → U3 happens for Rm = R2. At
this forcing, there is a saddle-node bifurcation (S2) through which U1 loses its stability.
But if the forcing amplitude is then decreased, the observed solution will remain U3
until the forcing reaches R1 < R2 where there is another saddle-node bifurcation (S1),
and we go back to the lower branch solution U1. Our model predicts that close to the
transition, the amplitude of the zonal flow on the lower branch is of U ≈ 2 mm s−1, and
U ≈ −c = 6.3 mm s−1 for the upper branch. Finally, this model allows us to define a
typical velocity expected at the transition, to compare with the forcing RMS velocity Uf
used to characterize the experimental hysteresis, on figure 7. From (4.31), the Reynolds
stresses at the transition are typically of Rm,t ∼ α|c|(1 + 9γ 2). A typical transition
velocity can be obtained supposing that the forcing is balanced by friction Ut ∼ Rm,t/α,
leading to

Ut ∼ |c|(1 + 9γ 2). (4.34)

If we use U∗
f = Uf /Ut as a non-dimensional forcing, then the transition should always

occur at U∗
f of order unity. The dependence on the β-effect, the friction and the forcing

scale are incorporated in c and γ . Note that the width of the bistable zone will however
vary depending on γ .

4.5. Comparison of the experimental to theoretical transition
In this section we report additional experimental observations that support the mechanism
of Rossby waves resonance.

First, the amplitudes of the zonal flow expected in the two steady states U1 and U3
are very close to the experimental ones, where U1 represents regime I and U3 regime
II, as can be seen in figure 7. Another way to see it is by comparing the zonal flow
amplitude with the phase speed of the – non-advected – directly forced Rossby waves: if
it is higher than −c, the system is in the super-resonant steady state, whereas if it is lower
than −c, the system is sub-resonant. In the experimental set-up, with kf ≈ 63 rad m−1 and
β ≈ 50 m−1 s−1, the phase speed of the directly forced Rossby waves is c ≈ −6.3 mm s−1,
without advection. First, figure 13 demonstrates that the forcing indeed excites Rossby
waves. The radial component of the velocity at a given radius exhibits patterns that move
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Figure 13. Rossby waves excited by the forcing. The third forcing ring (R3 = 0.214 m) is turned on at its
maximum power from time t = 0 to 75 tR. (a) Time evolution of the radial component of the velocity at a fixed
radius ρ = 0.17 m. (b) Same data band-passed filtered between 0.06 and 0.12 Hz. The slope of the dashed line is
the non-Doppler-shifted phase speed of the Rossby waves excited by the forcing (4.24) c ≈ −6.3 mm s−1. The
slope of the full line is the Doppler-shifted phase speed 〈uφ〉φ + c. It increases in absolute value since the zonal
flow increases when the forcing is turned on, and at the chosen radius the flow is retrograde, as represented on
the top panel.

in the retrograde direction (i.e. decreasing φ), with the same wavelength as the forcing and
at the Doppler-shifted speed 〈uφ〉φ + c. Then, given this typical phase speed c, figure 7
shows that in regime I the zonal flow is sub-resonant (ūRMS < −c), and super-resonant
in regime II (ūRMS > −c), which is consistent with our model. Furthermore, the model
predicts that when the forcing is decreased and U3 (regime II) loses its stability (S2 in
figure 12(d)), the zonal flow is quasi-resonant (〈uφ〉φ ≈ −c ) which is again compatible
with the measured velocity at the transition II → I in figure 7. Note that if this equilibrium
close to resonance can exist (U3), our analysis only gives an explanation for its origin,
ultimately, the nonlinearities are responsible for locking the system into a near-resonant
state. Note finally that the bistability range and zonal flow amplitudes are slightly varying
with the range of possible forcing wavenumbers for our experiment (figure 16(b) in
appendix C). For a closer match between the predicted zonal flow amplitudes and
the measured ones, we would choose kf = 57 rad m−1, which is reasonable given the
uncertainty in the relevant forcing scale in our set-up.

Second, we have not yet discussed the inherent asymmetry between the prograde and
the retrograde jets in our model. Since the Rossby waves propagate in the retrograde
direction, their only way to become stationary and resonate with the fixed forcing is within
a prograde jet. This implies that the transition only occurs in the prograde jets which is
again consistent with our experimental observations. Indeed, the prograde jets govern the
dynamics, by increasing in amplitude and merging, whereas the retrograde flow seems to
adjust passively to the transition (e.g. figure 6). If we suppose that the forcing imparts no
net angular momentum to the fluid, then the integral of the angular momentum per unit
mass, ρ(uφ +Ωρ), over the domain should be constant. If an eastward acceleration is
produced by the transition then this convergence of prograde angular momentum should
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be balanced by negative angular momentum elsewhere (see the Reynolds stresses profile
in figure 10). The retrograde flows in our experiment seem to arise as such, which is
consistent with the fact that the retrograde flow is smooth whereas the prograde one
strongly interacts with vortices (figure 3).

Third, our model implies that the faster the Rossby waves, the stronger the forcing will
have to be to reach the transition (increasing Ut), and conversely for slower Rossby waves.
We performed experiments at 80 RPM and 60 RPM (not shown) instead of the 75 RPM
for which the bottom plate was designed. In these experiments, β is no longer uniform,
but slightly varying with radius. It is higher at 80 RPM due to the increased curvature
of the free surface (β80 ∈ [57, 73] m−1 s−1 with a mean at 65.5 m−1 s−1) and weaker
at 60 RPM (β60 ∈ [20, 30] m−1 s−1 with a mean at 22.8 m−1 s−1). As a consequence,
the forced Rossby waves are respectively faster and slower (|c| = 8.3 and 2.9 mm s−1).
Consistently with our model, we observed that for a similar forcing (Uf = 4.0 mm s−1),
regime II is obtained at 75 RPM whereas regime I is observed at 80 RPM. Conversely,
for a forcing at which regime I is observed at 75 RPM (Uf = 2.9 mm s−1), regime II
is obtained at 60 RPM. The transition thus occurs at larger forcing amplitudes for an
increased β-effect. For a more quantitative view of the sensitivity to the β-effect, we refer
the reader to appendix C.

Finally, we wish to discuss the local aspect of our model relatively to the experiment.
Our model only explains the local feedback mechanism inside of a given prograde jet.
How the global system responds is a different question. Based on the Rhines scale
LR ∼ (uRMS/β)1/2 (Rhines 1975), where we recall that uRMS takes into account all the
components of the flow (3.1), we do expect an increase of the jets width during the
transition, since the RMS eddy velocity increases. However, our model does not explain
why the jets merge during the transition. In addition, this model does not rule out the
possibility of the coexistence of regime I and regime II flows side by side. For instance,
the most external forcing ring in our experiment (above C6) has a greater pressure loss
because of the number of hoses (38) and it is possible that on this ring, the forcing is
never super-resonant. This suggests that regional stable equilibria, where both regimes can
be locally sustained in distinct regions of space, may exist. Finally, we observe that the
merger events during the transition are associated with a radial shift of the jets leading to
an uncorrelation between the jets position and the forcing rings. This further suggest that
a local approach will not be sufficient to explain the saturation in regime II. Instead, it
may be relevant to adopt a global approach based, for instance, on the turbulent properties
and energy transfer of anisotropic turbulence on a β-plane. This type of approach has
led to the development of the theory of zonostrophic turbulence (Galperin et al. 2019, and
references therein). Due to its fast rotation and owing to the Taylor–Proudman theorem, the
flow is quasi two dimensional and may bear an inverse turbulent energy cascade. Because
of the β-effect and associated Rossby waves, the energy transfer becomes anisotropic and
redirected towards zonal currents. Ultimately, the large-scale drag halts the expansion of
the inverse cascade (Sukoriansky et al. 2002, 2007). Determining whether such a theory
is valid to explain the nonlinear saturation in regime II is beyond the scope of the present
work, but will be investigated in a separate study. Note also that the spectral analysis which
can be found in Cabanes et al. (2017), Cabanes, Favier & Le Bars (2018) for the previous
version of the experiment and corresponding DNS supports the idea that the second regime
is close to zonostrophic turbulence. To conclude, we wish to underline that Cabanes
et al. (2017) probably only observed regime II in their experimental set-up because
their forcing was of larger amplitude than in the present study, thus, probably always
super-resonant.
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5. Conclusions and discussion

5.1. Experimental conclusions and future work
We have described an experimental set-up capable of generating robust zonal jets even in
the presence of boundary dissipation. In this set-up we observed a subcritical transition
between two different steady states with instantaneous zonal flows. In the first regime,
obtained for a weak forcing and a moderate local Reynolds number, the jets are steadily
forced by prograde momentum convergence towards the eddy forcing regions, through the
indirect action of Reynolds stresses. In the second regime, obtained for a strong forcing and
larger Reynolds numbers, the jets merge into higher amplitude zonal flows at a larger scale.
While the two regimes are obtained at different Reynolds numbers, they both correspond
to low Rossby number QG dynamics. The two regimes coexist in a small forcing range,
leading to bistability, and we are able to follow the corresponding hysteresis cycle. The
transition is found to be due to the resonance occurring when the forced Rossby waves
become stationary because of their advection by the zonal flow. Note that, in the present
work, we explain the bistability with the linear resonance mechanism originally explored
by Charney & DeVore (1979), which predicts two stable states with different waves and
zonal flow amplitudes. The bending of the same resonance due to weakly nonlinear effects
(Benzi et al. 1986; Malguzzi et al. 1996, 1997) is also a potential candidate to account
for the observed bistability. However, in this framework of nonlinear resonance, the two
regimes are expected to have similar zonal flow velocities, which is in contradiction with
our observations.

In laboratory experiments, bifurcations involving multiple zonal flows steady states have
been observed only a few times. Weeks et al. (1997) and Tian et al. (2001) observed
bistability in the context of mid-latitude atmospheric jets, following the same resonance
but with topography. However, in these experiments, the zonal flow is directly forced
by pumping fluid in at a larger radius than where it is pumped out. Bifurcations over
indirectly forced zonal flows were observed by Semin et al. (2018) in their experimental
model of the quasi-biennal oscillation, but in that case, the flow is laminar, and the low
forcing amplitude state is a state with no mean flow. In the present study, we describe
bistability between two steady states sustaining indirectly forced and multiple zonal jets.
Let us mention here that bistability has also been observed numerically in the context of
rotating thermal convection where zonal flows emerge due to the sphericity of the domain.
At intermediate Ekman numbers, the saturation of the convective instability can lead to
either a weak branch or a strong branch, both supporting zonal flows but which are much
more vigorous on the strong branch (Guervilly & Cardin 2016; Kaplan et al. 2017). The
question whether this bistability may be linked to a somewhat similar resonance involving
thermal Rossby waves is however far from trivial. For instance, there is no obvious reason
for the convective eddies that force the zonal flow to be stationary, and to which extent
they are decoupled from the zonal flow remains to be determined.

The results presented in this paper raise several questions which will be investigated
in future work. First, we wish to study the specificity of the observed transition to our
forcing pattern. Specifically, we want to investigate if this mechanism can hold when
we break the coherence of the vortices generated by our forcing, for instance, by adding
elbow connectors to the inlets and outlets. We also plan to replace the pumps with more
powerful ones to reach more extreme regimes: the present values of the Rossby number
(table 1) offer us the possibility to force stronger flows while remaining in regimes strongly
constrained by rotation.

Then, explaining the transition’s origin does not explain the nonlinear saturation in the
second regime, and its evolution as a global system. Understanding the final equilibrated
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Figure 14. Illustration of the jet’s instability for an experiment in regime II (Uf = 3.3 mm s−1): (a) t = 2412
to 2436 tR; (b) t = 2486 to 2511 tR; (c) t = 2568 to 2580 tR; (d) t = 2580 to 2593 tR; (e) t = 2593 to 2605 tR.
This sequence is also available as supplementary movie 5.

state in this regime, which is closer to the planetary ones, thus remains a challenge.
For instance, we mentioned that regime II is in fact multi-stable, with at least three
different jets configurations identified based on 15 realizations (figure 7b). The origin
of this multi-stability remains to be elucidated. In particular, it would be of interest to
compare it with the multi-stability observed in numerical simulations of stochastically
forced barotropic turbulent jets, where nucleation and coalescence are associated with
transitions between steady states with a different number of jets (Bouchet & Venaille 2019;
Bouchet et al. 2019b).

Future work is also needed to explain the long-term dynamics (or stability) of the
zonal flows. Such a task requires us to understand the complex interaction between the
small-scale transient turbulence and the slowly varying zonal flow, which is difficult given
the time scale separation between the two. In this regard, laboratory experiments have a
major role to play since they allow for measurements at high resolution over long times.
In our case, the long-term experiments (38 000 tR) that we performed show no radial
migration of the jets, except during merger events. The question whether this stability
is due to our axisymmetric forcing, or to the uniform β-effect remains to be addressed.
In this regard, it may be interesting to go back to a set-up close to that of Cabanes et al.
(2017) and explore the precise effect of a non-uniform β-effect by keeping the exact same
forcing with a flat bottom. In the literature, drifting, merging and nucleation of jets have
been described in various numerical models, e.g. in the framework of rotating thermal
convection (Guervilly & Cardin 2017) and stochastically forced barotropic jets on the
β-plane (Bouchet et al. 2019b). However, such long-term dynamics is not that common
in natural systems. For instance, jets on the gas giants are remarkably steady (Tollefson
et al. 2017), even if one jovian jet seems to have broken apart into vortices in 1939–1940
(Rogers 1995; Youssef & Marcus 2003). Similarly, in laboratory experiments, meridional
jet migration has only been described by Smith et al. (2014), and the authors underline that
it may be due to a long-term thermal equilibration.

Despite the apparent stability of the jets in our experiments, we would like to mention
that the prograde jets in regime II sometimes have a long-term fluctuating behaviour with
the repetition of cycles where the jets destabilize into vortices before recovering their
initial state, as illustrated by figure 14 and supplementary movie 5. More precisely, we
observed the growth of zonal perturbations of the zonal flow (figure 14b) followed by
vortices ‘surfing’ along the jet in the prograde direction (figure 14c–e). These zonal packets
of vortices may correspond to envelope Rossby solitary waves, and are also reminiscent
of nonlinear waves called ‘zonons’ which have been described within barotropic jets in
numerical simulations (Sukoriansky, Dikovskaya & Galperin 2008; Galperin, Sukoriansky
& Dikovskaya 2010; Sukoriansky et al. 2012; Bakas & Ioannou 2013). This long-term
dynamics will be the focus of future experiments.
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Finally, we wish to place our experiment in the framework of zonostrophic turbulence
previously mentioned (Galperin et al. 2019, and references therein). We have already
underlined in the introduction that the zonostrophy index in our experiment is larger than
previous experimental studies thanks to the fast rotation, and, hence, we are closer to the
gas giants’ regime. Cabanes et al. (2017) provide details about this index estimation, which
can also be found in appendix D for the present experiments. We have not yet discussed
a second criterion which is that the forcing should act at a scale smaller than the scale at
which the eddies start to feel the β-effect for a significant Kolmogorov–Kraichnan inertial
range to exist and an isotropic inverse cascade to develop. In environmental flows (oceans
and planetary atmospheres), typically, the forcing acts at a scale smaller than the scale of
turbulence anisotropisation Lβ by a factor 2 to 3 (Galperin et al. 2019, table 13.1). In our
experiment, we can estimate that the forcing scale is in fact about twice Lβ . The forcing
is thus directly influenced by the β-effect, which is quite clear on the fluid response at
the earliest times (figure 9). It is thus probable that we prevent an isotropic inverse energy
cascade – an anisotropic cascade is probably present since the jets scale remains larger
than the forcing scale. We might thus stand in the case where the process of jet formation
can be considered independently from the two-dimensional inverse energy cascade. That
being said, as demonstrated by Scott & Dritschel (2019) in the framework of potential
vorticity mixing, the late-time resulting jets profile is the same whether the forcing is
performed at large scale or at small scale, the important parameter being the zonostrophy
index Rβ . Here, Rβ ∈ [2.25, 2.84] (see appendix D for this estimation) which shows that
our experimental regimes are not friction dominated and explains that the observed jets
are highly energetic and instantaneous. If nevertheless one wishes to reach the regime of
a well-developed turbulent cascade, one way to increase the scale separation is to have
stronger flows. However, increasing U by a factor 10 would only increase Lβ by a factor
102/5 ≈ 2.5 (D3). The best option in order to study jets sustained by an inverse cascade
would be to decrease even more the forcing scale, which is then a further experimental
challenge.

5.2. Modelling and relevance for planetary systems
Finding an explicit expression for the Reynolds stresses is the basis of the
out-of-equilibrium statistical theories aiming at explaining zonal jets formation from an
homogeneous turbulent flow (see, e.g. Bakas & Ioannou 2013). Indeed, it yields to a
closed, deterministic system for the zonal flow dynamics. Here, a very simple framework
based on the QG approximation is sufficient to explain our experimental observations but
more sophisticated models where, for instance, the spatial modulations of the zonal flow
are taken into account are necessary to help understand observations at a global scale.

In the present study, the key mechanism is the local resonant amplification of the
Reynolds stresses by the zonal flow. It has been applied previously in two main geophysical
frameworks: mid-latitude atmospheric jets and equatorial super-rotation, which is a state
with a strong prograde jet at the equator. For the Earth’s atmosphere, the Rossby waves
resonance has been successfully employed to explain abrupt transitions of the jet stream
between blocked and zonal flows (Charney & DeVore 1979), and it is now considered as
a valuable candidate to explain extreme weather events in the past 20 years (Petoukhov
et al. 2013; Coumou et al. 2014). Then, in the case of equatorial jets, abrupt transitions to
super-rotation and bistability have been observed in global climate models and numerical
simulations. The same wave-jet resonance feedback as for mid-latitude jets, which arises
in response to a stationary equatorial heating, has been recently considered as a robust
mechanism for this transition (Arnold, Tziperman & Farrell 2011; Herbert et al. 2020).
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The fact that in those two frameworks, the resonance successfully explains observations at
a global scale is encouraging. However, to the best of our knowledge, such a mechanism
has never been studied for its potentiality to generate strong zonal jets in the broader
context of an eddy forcing, neither for its applicability to extra-equatorial jets on the gas
giants or in the Earth’s oceans.

First, we can briefly compare the zonal flow amplitudes relatively to the Rossby waves
intrinsic phase speed (4.24). If β can be quite easily estimated for planetary systems,
the relevant wavelength for the ‘forced’ Rossby waves is not trivial. In addition, the
gravity effects can be of importance for planetary applications, especially if the considered
jets are shallow, and the Rossby radius of deformation should be reintroduced in the
phase speed equation (4.24). For the mid-latitude jet stream, as previously mentioned,
bistability has been observed. The zonal flow is either sub-resonant or super-resonant
with topographically forced waves phase speed of typically 16 m s−1 in Charney, Shukla
& Mo (1981). In the Earth’s oceans, if we assume typical phase speeds of 0.25 m s−1

(Vallis 2006, p. 233), then the zonal flow could be sub-resonant since zonal jets in the
ocean have typical speeds of a few centimetres per second (Cornillon et al. 2019). For the
gas giants, we use the values reported in Galperin et al. (2019, table 13.1). The β-effect
is β ≈ 3 × 10−12 m−1 s−1, and the deformation radius is of about 2000 km (Vasavada
& Showman 2005). Using a large forcing wavelength based on the transitional scale,
kf = lf = 2πL−1

β with Lβ ≈ 6000 km (smaller wavelengths would lead to lower phase
speed), we obtain a phase speed of only 1.2 m s−1, meaning that all the jets would be
super-resonant since the typical jets velocities are of about 50 m s−1 (Sánchez-Lavega
et al. 2019). Let us stress out that for the present mechanism to hold in planetary systems,
there is the need for a partial decoupling between the forcing source and the jets, such
that the forced waves advected by the zonal flow can become resonant with the forcing.
For the Earth jet stream, this decoupling comes from the fact that the topography exciting
the waves is fixed, just like in our experiment. For Jupiter, the forcing origin is not clear.
It can take place in the weather layer due to moist convection or band-to-band horizontal
contrasts in heating, but it can also arise from the deep molecular convective interior of
the gas giant (Vasavada & Showman 2005). At which speed these structures propagate
relatively to the zonal flow is certainly not clear. All these questions require dedicated
studies, but the important point is that even with an unsteady forcing, propagating
azimuthally, the resonance mechanism should still hold provided that the forcing is not
passively advected by the zonal flow it generates.

In addition to this simple velocities comparison, the important parameter of the model is
γ 2 = (α/(kf c))2. This parameter compares the Rossby waves period 1/(kf c) to the friction
time scale 1/α, and we have shown that it should be small (4.30) for the super-resonant
solution or bistability to exist. The question whether such a mechanism is expected
for extra-tropical jets in planetary flows is beyond the scope of the present study and
would require an extensive systematic study. Besides, one should properly define the
bounds of the physical parameters for the model to still be self-consistent. We recall, for
instance, that the model is based on the linear response to a stationary forcing. Finally,
determining the relevant dissipation parameter for the Rossby waves is not trivial either,
and it cannot be reduced to a simple Ekman friction like in our experiment. That being
said, for completeness, we illustrate in appendix C the sensitivity of the bistability to
the model parameters (α, β, kf ). Let us briefly mention the case of the friction α, shown
in figure 16(a). Interestingly, the bistable range is shifted towards lower values of the
forcing amplitude as α → 0, meaning that for infinitely small friction, the super-resonant
solution U3 (regime II) would be obtained even at a very small forcing amplitude, while the
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sub-resonant solution U1 (regime I) would never be observed. Regime II is thus expected
in most planetary applications.

Supplementary movies. Supplementary movies 1–5 are available at https://doi.org/10.1017/jfm.2020.1000.
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Appendix A. Quasi-geostrophic approximation of the experiment

We use the cylindrical coordinates (ρ, φ, z) with z oriented downward and (eρ, eφ, ez)
the associated unit vectors (figure 1). We consider the flow of an incompressible fluid of
constant kinematic viscosity ν and density ρf , rotating around the vertical axis at a constant
rate Ω = Ω ez. In our set-up,Ω > 0 since the turntable rotates in the clockwise direction.
We denote the velocity field u = (uρ, uφ, uz)eρ ,eφ ,ez . The fluid is enclosed inside a cylinder
of radius R. The lower boundary is a rigid plate located at z = 0 and the upper boundary is
a free surface defined by z = −h(ρ). Note that here we assume that our experiment, which
have a parabolic free surface and a curved bottom, can be modelled with a flat bottom
and an exponential free surface. Doing so, we neglect the influence of the shape of the
bottom topography on the vertical velocity (see (A8)). For a bottom which is almost flat,
we expect these effects to be of small amplitude, but one should keep in mind that the
presently derived model is only valid for relatively smooth bottom topographies for which
we can use the expression of the Ekman pumping over a flat surface.

Because of fast background rotation, or equivalently, the small Rossby number of the
system, the geostrophic balance dominates the experimental flow. As a consequence,
the flow is quasi two dimensional, but the curvature of the free surface as well as the
friction over the bottom (Ekman pumping) induce three-dimensional effects. Nevertheless,
the weakness of these effects allows their incorporation into quasi-two-dimensional
physical models, the so-called ‘quasi-geostrophic’ models. In this section we derive
the conventional quasi-geostrophic model corresponding to our experimental set-up,
‘conventional’ meaning that we retain only the linear terms of these 3-D effects. This
reduced model allows us to:

(i) demonstrate that the free-surface curvature leads to a β-effect analogous to a linear
variation of the Coriolis parameter with radius (i.e. to a β-plane);

(ii) express the linear friction due to the Ekman pumping.

We start from the continuity and Navier–Stokes equations in the rotating frame and
assume that, because the system is dominated by the geostrophic balance, the horizontal
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velocity field is independent of height (∂zuρ = ∂zuφ = 0):

∂uρ
∂t

+ uρ
∂uρ
∂ρ

+ uφ
ρ

∂uρ
∂φ

− u2
φ

ρ
− fuφ = − 1

ρf

∂P
∂ρ

+ ν

(
∇2uρ − uρ

ρ2 − 2
ρ2
∂uφ
∂φ

)
, (A1)

∂uφ
∂t

+ uρ
∂uφ
∂ρ

+ uφ
ρ

∂uφ
∂φ

+ uφuρ
ρ

+ fuρ = − 1
ρf

1
ρ

∂P
∂φ

+ ν

(
∇2uφ − uφ

ρ2 + 2
ρ2
∂uρ
∂φ

)
,

(A2)

1
ρ

∂(ρuρ)
∂ρ

+ 1
ρ

∂uφ
∂φ

+ ∂uz

∂z
= 0. (A3)

Here ∇2· = ∂2
ρ · +∂2

φ · /ρ2 + ∂ρ · /ρ. The Coriolis parameter is f = 2Ω and P = p +
ρf gz − ρf f 2ρ2/8 is the reduced pressure incorporating the gravity and centrifugal effects.
Note that if we neglect the vertical dependence of the horizontal velocity, we keep it for the
vertical velocity w. Indeed, as previously explained, w is expected to strongly vary close
to the top and bottom boundaries, and we want to take into account these effects on the
horizontal velocity divergence.

The curl of the Navier–Stokes equation leads to the vorticity equation

∂ζ

∂t
+ uρ

∂ζ

∂ρ
+ uφ
ρ

∂ζ

∂φ
+ (ζ + f )∇h · u = ν∇2ζ, (A4)

where ζ = (∇ × u) · ez = (∂ρ(ρuφ)− ∂φuρ)/ρ is the vertical component of the vorticity
and ∇h · u is the horizontal divergence

∇h · u = 1
ρ

∂(ρuρ)
∂ρ

+ 1
ρ

∂uφ
∂φ

. (A5)

The last term on the left-hand side of (A4), the vortex stretching term, involves the
horizontal divergence of the flow which can be estimated from (A3) after integration
from z = −h(ρ) to z = 0 (z oriented downward) to unveil the Ekman pumping through
the vertical velocity:

∇h · u = − 1
h(ρ)

∫ 0

z=−h

∂uz

∂z
dz = uz|z=−h − uz|z=0

h(ρ)
. (A6)

The vertical velocity at the free surface uz|z=−h is given by the kinematic condition

uz|z=−h = −
(
∂h
∂t

+ uρ
∂h
∂ρ

+ uφ
ρ

∂h
∂φ

)
= −uρ

∂h
∂ρ
, (A7)

since h is axisymmetric and we neglect any temporal variations of the fluid height (rigid
lid approximation). The vertical velocity at the bottom uz|z=0 results from the no-slip
boundary condition generating an Ekman pumping. According to linear Ekman theory,
for a flat bottom and small Rossby number, the vertical velocity at the top of the boundary
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layer is proportional to the relative vorticity in the interior flow:

uz|z=0 = −1
2
δζ = −1

2
E1/2h0ζ. (A8)

Here δ = √
2ν/f is the thickness of the Ekman layer and E = 2ν/fh2

0 is the Ekman number,
h0 being the mean fluid height. The horizontal divergence (A6) is then

∇h · u = −uρ
h

dh
dρ

+ E1/2

2
ζ. (A9)

The squeezing and stretching of vorticity is hence due to both the changes in the fluid
depth and the vertical velocity induced by the Ekman boundary layer.

Substitution of the horizontal divergence (A9) in the vorticity equation (A4) yields

∂ζ

∂t
+ uρ

∂ζ

∂ρ
+ uφ
ρ

∂ζ

∂φ
−(ζ + f )

uρ
h

dh
dρ︸ ︷︷ ︸

Topographic β−effect

+ E1/2

2
(ζ + f )ζ︸ ︷︷ ︸

Ekman pumping

= ν∇2ζ. (A10)

As stated before, we stand in the limit where the local Rossby number of the flow
Ro = ζ/f is small, thus, ζ � f . Retaining only the linear part of the β-effect and
Ekman pumping, we retrieve the classical 2-D barotropic vorticity equation in the β-plane
approximation,

Dζ
Dt

+ βuρ︸︷︷︸
β−effect

+ αζ︸︷︷︸
Ekman friction

= ν∇2ζ︸ ︷︷ ︸
Bulk dissipation

, (A11)

with β the topographic β parameter resulting from the free-surface radial variations and
α the linear Ekman friction parameter:

β = − f
h

dh
dρ
, (A12)

α = E1/2f
2

. (A13)

This classical quasi-2-D model of our experiment is used in § 4 to explain the experimental
observations.

Appendix B. Experimental forcing calibration

The forcing was calibrated in situ on the horizontal laser plane used for PIV measurements,
while the system is in solid body rotation. For each pump Ci, we turn it on at a given
fraction of its maximum power. We measure the corresponding velocity field, and define
a region of interest (ROI) around the chosen ring, limited by two circles (rings Ci−1 and
Ci+1). We measure the total RMS velocity on this ROI, 1 to 3 seconds after the forcing
was turned on, i.e. when the forced vortices have reached their maximum vorticity but
before the zonal jets fully develop. This measurement was realized for each ring separately
and several pump powers. The corresponding data are represented in figure 15. We then
performed a linear fit of the induced RMS velocity as a function of power to obtain a
calibration law for each pump. In the main text, the forcing amplitude Uf corresponds
to the mean of the six RMS velocities deduced from our calibration, knowing the power
fraction for each pump.
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Figure 15. Calibration of the experimental forcing. Left to right and top to bottom: rings C1 to C6. The total
RMS velocity inside of a region of interest is plotted for each pump separately, and several fractions of the
pump maximum power (dots). The lines are the result of a linear fit between the induced velocity and the pump
power.

Appendix C. Sensitivity to the model parameters

Figure 16 illustrates the sensitivity of the bistable zone and the zonal flow amplitude to the
model parameters (the friction coefficient α, the β-effect and the forcing scale kf ).

Appendix D. Zonostrophy index of our experiments

In the context of eddy-driven jets in forced-dissipative experiments, two important length
scales can be introduced. First, the Rhines scale LR (Vallis 2006), which is the scale at
which the inertial term equates the β term, i.e.

LR ∝
(

uRMS

β

)1/2

, (D1)

where uRMS usually implies the root mean square eddy velocity. Under this scale, the
advective term dominates and above it the β-term is dominant. Originally defined in
Rhines (1975), it has often been associated with the width of zonal jets. A second scale
can be defined in the context of two-dimensional turbulence by equating the eddy turnover
time to the Rossby wave period

Lβ ∝
(
ε

β3

)1/5

, (D2)

where ε is the rate of upscale energy transfer within the turbulent energy cascade. This
scale characterizes the threshold of turbulence anisotropisation under the action of the
β-effect. Galperin et al. (2006) and Sukoriansky et al. (2007) demonstrated that the
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Figure 16. Sensitivity of the width of the bistable zone (left) and the zonal flow amplitude at the transition
(right) to the model parameters. Here R1 and R2 are respectively the lower and upper limits of the bistable
zone, in terms of forcing amplitude (see figure 12); U1,max and U3,min are the zonal flow amplitude at the
saddle-node bifurcation S2 and S1, respectively (figure 12). (a) Varying friction coefficient α. The vertical
dashed line shows the experimental friction. (b) Varying forcing wavenumber kf . The horizontal dashed lines
show the mean flow amplitude at the transitions measured experimentally. (c) Varying β parameter. The vertical
dashed line shows the experimental β.
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strength of the jets and the quality of their delineation can be classified depending on
the zonostrophy index Rβ defined as the ratio

Rβ = LR

Lβ
= β1/10

(
uRMS

)1/2
ε−1/5 ≈

(
βuRMS

Ω2

)1/10

E−1/10, (D3)

where ε is estimated from the rate of energy loss due to dissipation ε ≈ u2/τE, with τE =
Ω−1E−1/2 the Ekman spin-down time scale. The regime of strong and rectilinear jets –
so-called zonostrophic regime – is obtained when the scale at which the eddies start being
deformed by the Rossby waves (Lβ) is well separated from the scale of the final jets (LR),
i.e. for large zonostrophy index, Rβ > 2.5 (Galperin et al. 2010). With the experimental
parameters and the typical values of uRMS provided in table 1 for the two experimental
regimes, we obtain Rβ,I ≈ 2.26 and Rβ,II ≈ 2.84.
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