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A number of recent studies have demonstrated the existence of so-called large-
and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region
of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant
streamwise coherence, and have been shown to modulate the amplitude and frequency
of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In
contrast, the extent to which analogous modulation occurs in inertia-dominated
flows subjected to convective thermal stratification (low Richardson number) and
Coriolis forcing (low Rossby number), has not been considered. And yet, these
parameter values encompass a wide range of important environmental flows. In
this article, we present evidence of amplitude modulation (AM) phenomena in the
unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in
AM to changes in the topology of coherent structures with increasing instability.
We perform a suite of large eddy simulations spanning weakly (−zi/L = 3.1) to
highly convective (−zi/L = 1082) conditions (where −zi/L is the bulk stability
parameter formed from the boundary-layer depth zi and the Obukhov length L) to
investigate how AM is affected by buoyancy. Results demonstrate that as unstable
stratification increases, the inclination angle of surface layer structures (as determined
from the two-point correlation of streamwise velocity) increases from γ ≈ 15◦ for
weakly convective conditions to nearly vertical for highly convective conditions.
As −zi/L increases, LSMs in the streamwise velocity field transition from long,
linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to
turbulent Rayleigh–Bénard convection. These changes in the instantaneous velocity
field are accompanied by a shift in the outer peak in the streamwise and vertical
velocity spectra to smaller dimensionless wavelengths until the energy is concentrated
at a single peak. The decoupling procedure proposed by Mathis et al. (J. Fluid
Mech., vol. 628, 2009a, pp. 311–337) is used to investigate the extent to which
amplitude modulation of small-scale turbulence occurs due to large-scale streamwise
and vertical velocity fluctuations. As the spatial attributes of flow structures change
from streamwise to vertically dominated, modulation by the large-scale streamwise
velocity decreases monotonically. However, the modulating influence of the large-scale
vertical velocity remains significant across the stability range considered. We report,
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finally, that amplitude modulation correlations are insensitive to the computational
mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.

Key words: atmospheric flows, turbulent boundary layers, turbulent convection

1. Introduction

Turbulent flows are ubiquitous in the environment, where the accurate prediction
of turbulent transport of momentum, heat, water vapour and other passive scalars
has practical importance for diverse applications such as renewable energy (Calaf,
Meneveau & Meyers 2010; Calaf, Parlange & Meneveau 2011), urban meteorology
(Cheng & Castro 2002; Coceal et al. 2007; Philips, Rossi & Iaccarino 2013;
Anderson, Li & Bou-Zeid 2015; Giometto et al. 2016, 2017), transport within
vegetation canopies (Chester, Meneveau & Parlange 2007; Chamecki, Meneveau
& Parlange 2009; Finnigan, Shaw & Patton 2009; Bailey & Stoll 2013), flow over
complex landscapes (Bou-Zeid, Meneveau & Parlange 2005; Anderson & Meneveau
2011; Anderson & Chamecki 2014) and evapotranspiration (Penman 1948; Brutsaert
& Stricker 1979; Parlange, Eichinger & Albertson 1995). These flows are notable for
their ‘asymptotic’ inertial conditions, where turbulence is produced by mechanical
shear (i.e. Reτ = uτ zi/ν ∼ O(107), where uτ is the shear velocity, zi is the flow
depth and ν is the kinematic viscosity) and buoyancy (low Richardson number), and
influenced by Coriolis accelerations (low Rossby number). One key challenge in
atmospheric science and related disciplines is developing accurate models to represent
the effects of turbulent transport in weather, climate and hydrological prediction
models. The main scaling hypothesis that has served as a cornerstone of atmospheric
boundary layer research for over half a century is Monin–Obukhov (MO) similarity
theory (Obukhov 1946; Monin & Obukhov 1954), developed for an atmospheric
surface layer (or ASL, the lowest 10–15 % of the atmospheric boundary layer) over
flat, horizontally homogeneous terrain. MO similarity introduces a correction to the
logarithmic law of the wall to account for the effects of thermal stratification. Under
the MO hypothesis, the wall-normal distance z, the friction velocity uτ , the buoyancy
parameter g/Θ0 and the kinematic surface heat flux Q0 = w′θ ′ are taken to be the
relevant scales in the dimensional analysis (where θ is potential temperature, Θ0 is a
reference potential temperature and g is acceleration due to gravity.) Upon applying
the Buckingham 5 theorem, one can show that a statistical quantity of interest
normalized by the MO scales (φ) is predicted to depend on only the MO stability
parameter (ζ = z/L), where

L=
−u3

τΘ0

κgQ0
(1.1)

is the Obukhov length and κ is the von Kármán constant. Use of MO similarity is
widespread in the atmospheric and hydrologic sciences and related disciplines, where
it is used to estimate turbulent fluxes of quantities that cannot be measured directly
by eddy covariance (Baldocchi, Hincks & Meyers 1988; Cline 1997; Moncrieff et al.
1997), to parametrize turbulent fluxes in numerical weather, climate and hydrological
forecasting models (e.g. Deardorff 1972b; Louis 1979), and to impose the lower
boundary condition in large eddy simulations of the atmospheric boundary layer
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Buoyancy effects on LSMs and amplitude modulation 137

(e.g. Deardorff 1972a; Moeng 1984; Kumar et al. 2006). In this article we shall
denote the streamwise, spanwise and wall-normal coordinates as x = {x, y, z}, with
velocity components u = {u, v, w}. Resolved-scale quantities from the large eddy
simulations (LES) we shall consider in this work will be denoted with a tilde,
e.g. ũ={ũ, ṽ, w̃}. We furthermore shall use the Reynolds averaging convention, where
a total resolved-scale variable is decomposed into ensemble mean and fluctuating parts,
e.g. ã= A+ ã′.

The framework provided by MO similarity has been highly successful for predicting
the statistics of many turbulent quantities, including the dimensionless mean wind
shear φm and temperature gradient φh (Businger et al. 1971; Högström 1988), velocity
and temperature spectra under stable conditions (Kaimal et al. 1972; Kaimal &
Finnigan 1994), the vertical velocity spectrum under unstable conditions (Kaimal
et al. 1972) and the vertical velocity and temperature variances under unstable and
stable conditions (Kaimal & Finnigan 1994). (Some quantities such as the variances
and spectra of the horizontal velocity components are known not to be MO-similar;
e.g. see Kaimal et al. (1972) and Panofsky et al. (1977).) However, over the past
several decades an alternative view of wall turbulence has emerged that has cast the
discussion of turbulent transport in terms of organized (or coherent) structures, which
are persistent in space and time and can be responsible for a significant fraction
(50 % or more) of the momentum flux and turbulent kinetic energy close to the
wall (Corino & Brodkey 1969; Wallace, Eckelmann & Brodkey 1972; Willmarth &
Lu 1972; Guala, Hommema & Adrian 2006; Balakumar & Adrian 2007; Wallace
2016). These structures are significant, as their spatial extent far exceeds the depth
of the flow, zi. This evolution in perspective has been influenced by findings in the
fundamental wall turbulence community.

In order to meaningfully compare atmospheric boundary layer (ABL) turbulence
with canonical smooth-wall turbulent boundary layers, brief remarks are needed on the
vertical structure of both flows. The ABL, which exhibits asymptotically large Reτ ,
is comprised of a shear-dominated inner (or surface) layer (0 . z/zi . 0.1) and a
buoyancy- and Coriolis-influenced inertial layer (z/zi & 0.1). In contrast, canonical
smooth-wall turbulent boundary layers are comprised of a viscous-dominated inner
layer, which resides beneath the outer (logarithmic) layer (the presence of outer-layer
structures is predicated upon Reτ , where preceding studies have reported Reτ & 2000
as a threshold for the formation of large-scale outer-layer motions; (Hutchins &
Marusic 2007a)). The viscous-dominated inner layer is occupied by an inner cycle
(Kline et al. 1967; Bandyopadhyay & Hussain 1984; Schoppa & Hussain 2002; Del
Alamo et al. 2004), which has now been well studied with experimental measurement
and numerical simulation. The extent to which the inner and outer layer are coupled
is, itself, the topic of ongoing inquiry.

Autogeneration processes within the inner layer, in which hairpin vortices
(Theodorsen 1952; Head & Bandyopadhyay 1981; Adrian 2007) eject low-momentum
fluid vertically (u′ < 0, w′ > 0), thereby initiating the formation of successive
hairpins encapsulating zones of relatively low-momentum fluid, has been well studied
(Meinhart & Adrian 1995). On the other hand, large-scale structures in the logarithmic
or outer layer can influence small-scale turbulence in the inner layer through sweeps
of high-momentum fluid toward the wall (u′> 0, w′< 0) Studies over the past several
decades (Kovasznay, Kibens & Blackwelder 1970; Brown & Thomas 1977; Nakagawa
& Nezu 1981; Murlis, Tsai & Bradshaw 1982; McLean 1990; Wark & Nagib 1991;
Adrian, Meinhart & Tomkins 2000; Ganapathisubramani, Longmire & Marusic 2003;
Tomkins & Adrian 2003; Del Alamo et al. 2004) have focused on these so-called
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large-scale motions (LSMs), elongated regions of high- and low-momentum fluid
present in the logarithmic layer at high Reynolds numbers that extend approximately
O(zi) in the streamwise direction. LSMs are attributed to packets of hairpin vortices
that occur in streamwise succession, have similar propagation speeds, and increase in
size in the streamwise direction (e.g. Adrian 2007).

More recently, studies have also identified so-called very-large-scale motions
(VLSM), elongated regions in the logarithmic layer that extend O(10 zi) in the
streamwise direction (Kim & Adrian 1999; Guala et al. 2006; Balakumar & Adrian
2007; Hutchins & Marusic 2007a; Marusic & Hutchins 2008) and occur due to
streamwise coalescence of hairpin vortex packets. VLSMs can be detected from
the outer peak in the premultiplied streamwise velocity spectra (Kim & Adrian
1999). They may exhibit spanwise meandering in the instantaneous velocity field
(Hutchins & Marusic 2007a), and have a significant influence on the near-wall
cycle through modulation of small-scale turbulent fluctuations (Mathis, Hutchins
& Marusic 2009a; Chung & McKeon 2010). The initial identification of VLSMs
and subsequent studies in turbulent channel flow (Del Alamo et al. 2004; Chung
& McKeon 2010), pipe flow (Guala et al. 2006; Wu, Baltzer & Adrian 2012) and
boundary layers (Tomkins & Adrian 2003; Hambleton, Hutchins & Marusic 2006;
Hutchins & Marusic 2007a,b; Lee & Sung 2011) did not occur until recently due
to limitations in the Reynolds numbers attainable in laboratory studies and direct
numerical simulations (Marusic et al. 2010b). VLSMs have also been observed in the
near-neutrally stratified atmospheric surface layer (Kunkel & Marusic 2006; Hutchins
& Marusic 2007a; Guala & McKeon 2011; Hutchins et al. 2012; Fang & Porté-Agel
2015; Jacob & Anderson 2017) at high Reynolds number (Re ∼ O(107–108)). A
comprehensive discussion of these structures can be found in several review articles
in the literature (Cantwell 1981; Robinson 1991; Panton 2001; Adrian 2007; Marusic
et al. 2010b; Jiménez 2018). This article is directed towards the study of LSMs and
VLSMs in inertia-dominated (high Reτ ), rotating (low Rossby number, Ro), unstably
stratified (low Richardson number, Ri) ABL turbulence. This general combination
of parameters encompasses a wide variety of important geophysical flows, although
herein we choose cases replicating turbulence in terrestrial planetary boundary layers.

Both LSMs and VLSMs have received an increasing amount of attention in recent
studies of turbulence in smooth-walled channels, boundary layers and pipes due to
the observation that they modulate the amplitude (Mathis et al. 2009a,b; Marusic,
Mathis & Hutchins 2010a) and frequency (Ganapathisubramani et al. 2012; Baars
et al. 2015; Baars, Hutchins & Marusic 2016, 2017; Pathikonda & Christensen 2017;
Awasthi & Anderson 2018) of small-scale turbulent fluctuations. This observation
has led to the development of a simple predictive model for flow statistics in the
inner layer (Marusic et al. 2010a; Mathis, Hutchins & Marusic 2011), requiring as
the only input the large-scale velocity signal from the outer region. Other studies
have demonstrated that this amplitude modulation phenomenon is not restricted to
turbulent shear flows over smooth walls, but also occurs in rough-wall turbulent flows
(Anderson 2016; Squire et al. 2016; Pathikonda & Christensen 2017; Awasthi &
Anderson 2018). Further motivation for investigating LSMs and VLSMs has come
from recent studies in wall turbulence (Marusic & Kunkel 2003; Hultmark et al. 2012;
Marusic et al. 2013) that have provided evidence that that the profile of streamwise
turbulent fluctuations in the inertial region can be described by a universal scaling
law of the form

u′2

u2
τ

= B1 − A1 ln(z/zi), (1.2)
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Buoyancy effects on LSMs and amplitude modulation 139

based on predictions from the attached eddy hypothesis (Townsend 1976; Perry &
Chong 1982; Perry, Henbest & Chong 1986). Although the data support a universal
value of A1 ≈ 1.25 (Marusic & Kunkel 2003; Smits, McKeon & Marusic 2011;
Hultmark et al. 2012; Marusic et al. 2013), B1 has been found to be dependent
on flow conditions and geometry (e.g. Marusic et al. 2013; Meneveau & Marusic
2013). Recently Banerjee & Katul (2013) used a spectral budget model to connect
B1 to the largest scales of motion in a wall-bounded flow suggesting that VLSMs are
responsible for the non-universal behaviour of B1 and thus contribute to the mean
profile of u′2. In the atmospheric boundary layer, the corresponding hypothesis is that
the failure of the horizontal velocity variances and spectra to follow MO similarity
(Kaimal et al. 1972; Panofsky et al. 1977) is due to the presence of VLSMs (e.g.
Banerjee et al. 2015). While much of the aforementioned work has been devoted to
understanding the extent to which LSMs and VLSMs modulate flow statistics in the
viscous sublayer of flows over smooth walls, the focus of the present work is on
how large-scale coherent structures in the outer layer modulate small-scale turbulence
in the roughness sublayer in unstably stratified wall turbulence over aerodynamically
rough surfaces.

1.1. Effects of unstable stratification
Because turbulence statistics and coherent structures both undergo significant changes
as a fluid becomes unstably stratified, it is unclear whether previous results on
modulation phenomena and inner–outer interactions in neutrally stratified turbulent
shear flows can be extended to the unstably stratified case. Buoyancy has significant
effects on many properties of turbulence, including the integral scales (Kaimal et al.
1972; Sullivan et al. 2003; Salesky, Katul & Chamecki 2013), the turbulent kinetic
energy (TKE) budget and the partitioning of TKE between its components (u′2, v′2

and w′2) (Wyngaard & Coté 1971; Frenzen & Vogel 1992, 2001; Salesky, Chamecki
& Bou-Zeid 2017), the velocity and temperature spectra (Kaimal et al. 1972; Kaimal
& Finnigan 1994) and the structure functions (Chamecki et al. 2017).

In addition to changes in mean properties of turbulence, significant changes in
coherent structures also occur due to buoyancy. In neutrally stratified flows, the
inclination angle of structures in the logarithmic region (interpreted as the inclination
of hairpin vortex packets from the horizontal, Brown & Thomas 1977) is typically
found to be γ = 15◦ (Carper & Porté-Agel 2004; Marusic & Heuer 2007) and
invariant with respect to Reynolds number (Marusic & Heuer 2007). The inclination
angle has been investigated through two-point correlations of streamwise velocity, or
cross-correlations between streamwise velocity and surface shear stress (with lags
in the streamwise and wall-normal directions) (e.g. Kovasznay et al. 1970; Brown
& Thomas 1977; Rajagopalan & Antonia 1979; Boppe & Neu 1995; Christensen &
Adrian 2001; Carper & Porté-Agel 2004; Ganapathisubramani et al. 2005; Marusic &
Heuer 2007; Morris et al. 2007; Hutchins et al. 2012). The structure inclination angle
emerges as a parameter in some wall models for LES (Piomelli et al. 1989; Marusic,
Kunkel & Porté-Agel 2001) which have been found to have superior performance
over models where the inclination angle is neglected (Piomelli et al. 1989; Piomelli &
Balaras 2002). Furthermore, γ also appears as a parameter in a predictive model for
streamwise velocity statistics in the near-wall region (Marusic et al. 2010a; Mathis
et al. 2011). As the atmosphere becomes increasingly unstable (increasing −ζ ), the
inclination angle increases to 50◦ or more (Hommema & Adrian 2003; Carper &
Porté-Agel 2004; Chauhan et al. 2013). This steepening is physically consistent with
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the underlying mechanism in which turbulent buoyant plumes change the momentum
balance of the flow and induce a greater vertical transport. Moreover, since LSMs –
presumed to be the ‘building blocks’ of which VLSMs are composed – are responsible
for modulating near-wall dynamics, changes in their structural characteristics must
have direct implications for amplitude modulation. In more direct terms, assume for
discussion that each LSM has a height zi with inclination, γ . A cursory estimate for
their length can then be deduced via L1 = zi/ tan(γ )≈ 3zi. Individual LSMs generally
undergo a quasi-streamwise coalescence (Kim & Adrian 1999; Balakumar & Adrian
2007; Dennis & Nickels 2011a,b), resulting in spatially meandering very-large-scale
motions (VLSM) (Hutchins & Marusic 2007a) with streamwise extent, L2/zi ≈ 21.
The existence of VLSMs has been well documented in pipes (Lee & Sung 2011;
Hellström, Ganapathisubramania & Smits 2015), channels (Fang & Porté-Agel 2015;
Jacob & Anderson 2017) and boundary layers (Ganapathisubramani et al. 2003; Wu
& Christensen 2007, 2010).

Using LES results, Salesky et al. (2017) demonstrated that the root-mean-square
(r.m.s.) horizontal resolved-scale vorticity in the ASL decreases with increasing bulk
stability parameter −zi/L (where zi is the convective boundary-layer depth, i.e. the
outer length scale), whereas the r.m.s. vertical resolved-scale vorticity increases
with −zi/L (their figure 11). These prior observations suggest that surface layer
structures become more steeply inclined with increasing −ζ with hairpin vortex
packets occurring under weakly convective conditions and vertical buoyant thermals
(γ ≈ 90◦) occurring in free convection. Visual evidence of hairpin vortex packets
becoming inclined with increasing −ζ was provided by Hommema & Adrian (2003)
through smoke visualizations in the convective atmospheric surface layer.

Significant topological changes also occur in large-scale turbulent structures as
the convective boundary layer (CBL) becomes increasingly unstable. When surface
heat fluxes are small and mean shear is large (small values of −zi/L), updrafts in
the convective boundary layer tend to organize into quasi-two-dimensional linear
structures (often termed horizontal convective rolls, or HCRs) that are aligned
within 10◦–20◦ of the geostrophic wind direction (supporting results can be found
in § 3.2) (e.g. LeMone 1973, 1976; Moeng & Sullivan 1994; Weckwerth et al. 1997;
Weckwerth, Horst & Wilson 1999; Khanna & Brasseur 1998; Young et al. 2002;
Salesky et al. 2017). However, when surface heat fluxes are large, but mean wind
shear is weak (large −zi/L), updrafts tend to organize into open cells (Agee, Chen
& Dowell 1973; Atkinson & Zhang 1996; Salesky et al. 2017), similar to turbulent
Rayleigh–Bénard convection in laboratory flows. The transition from horizontal
convective rolls to open cells was investigated with LES by Salesky et al. (2017),
who found that although the transition occurs gradually over a range of −zi/L, the
most significant changes in large-scale structures occur from near-neutral conditions
up to about −zi/L= 15–20. This article is motivated by the overarching question: if
LSMs are present for increasingly unstable conditions – albeit, with varied spatial
characteristics across the range of −zi/L – should the conceptual arguments of
amplitude modulation remain valid? Results demonstrate that inner-layer modulation
by LSMs aloft continues to occur. However, modulation by large-scale streamwise
velocity decreases monotonically with increasing −zi/L, whereas modulation by
large-scale vertical velocity remains significant as long as there is sufficient scale
separation between the inner and outer peaks in the spectrograms.

1.2. Amplitude modulation
In the present article, we shall employ the ‘decoupling procedure’ proposed by Mathis
et al. (2009a) for quantifying the extent to which amplitude modulation (AM) occurs.
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The decoupling procedure, which is based on the Hilbert transform, will be reviewed
briefly below. We contend that evidence of AM based on this procedure serves as
an indication that other measures of correlation (e.g. based on the wavelet transform,
Baars et al. 2015, 2017; Pathikonda & Christensen 2017; Awasthi & Anderson 2018)
would also indicate the presence of modulation of small-scale turbulence. We also
calculated the AM coefficients using the method of Baars et al. (2015) based on the
continuous wavelet transform. While some small quantitative differences in the two
methods exist (e.g. Baars et al. 2015; Awasthi & Anderson 2018), the qualitative
results and overall conclusions are similar.

Consider two variables that are each a function of wall-normal distance and time,
i.e. a= a(z; t) and b= b(zref ; t), where we wish to determine the amplitude modulation
of small-scale a (at height z) by large-scale b (at some reference height zref ). First,
the variables a and b are low-pass filtered to determine their respective large-scale
components, e.g. al(z; t) = Gzi ? a(z; t) where (?) denotes convolution and Gzi is a
filter function. We here employ a sharp spectral filter at cutoff scale zi, where zi again
denotes the outer length scale (here the convective boundary-layer depth zi). Prior
works have demonstrated that AM coefficients are not particularly sensitive to the
choice of cutoff length scale employed, provided that the filter length corresponds with
the spectral plateau separating the inner and outer peaks. The small-scale component
of each variable is then calculated via as(z; t) = a(z; t) − al(z; t). Next, we compute
the Hilbert transform of the small-scale a:

As(t)=H{as(t)} =
1
π
P
∫
+∞

−∞

as(τ )

t− τ
dτ , (1.3)

where H denotes the Hilbert transform operator and P is the Cauchy principal value.
A few brief remarks regarding the Hilbert transform operator are appropriate here.

From (1.3), one can see that As(t) is the convolution of the small-scale signal as(t)
with the quantity (1/πt), i.e. As(t) = as(t) ∗ (1/πt). From the Fourier convolution
theorem, one can show (Mathis et al. 2009a) that the Hilbert transformed signal As(t)
is equal to the original signal as(t) with Fourier components shifted −π/2 for positive
frequencies and +π/2 for negative frequencies. (For a more in-depth discussion of the
Hilbert transform, the reader is referred to Bendat & Piersol (2010). Use of the Hilbert
transform to detect amplitude modulation in an idealized signal is presented in Mathis
et al. (2009a).) Thus as(t) and As(t) form a harmonic conjugate pair and can be used
to define the complex analytic signal

Z(t)= as(t)+ iAs(t)= A(t)eiφ(t), (1.4)

which can be expressed in terms of an amplitude A(t) and a phase φ(t). From (1.4),
one can see that the Hilbert transform is useful for extracting instantaneous amplitude
and phase information from a temporal signal (e.g. Sreenivasan 1985; Hristov, Friehe
& Miller 1998; Tardu 2008; Mathis et al. 2009a). The envelope of the small-scale
variable as is given by the modulus of the complex analytic signal:

E(as)= A(t)=
√

a2
s (t)+A2

s (t) (1.5)

(e.g. Mathis et al. 2009a, and references therein). The envelope of as is then low-pass
filtered to determine its large-scale component, i.e. El(as)=Gzi ?E(as). Finally, the AM
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coefficient is given by the correlation coefficient between the large-scale component
of b and the filtered envelope of small-scale a:

Rbl,as(z, zref ; zi/L)=
b′l(zref ; t+ δτ(z; zref ))E′l(as(z; t))√

b′2l (zref ; t+ δτ(z; zref ))

√
E′2l (as(z; t))

. (1.6)

Here δτ(z; zref ) is an advective lag used to account for the structure inclination angle
when calculating the two-point AM coefficient. It is defined as

δτ(z; zref )=
zref − z

Uc tan γ
, (1.7)

where zref is the reference height for the two-point AM coefficient, Uc is a suitable
convection velocity and γ is the inclination angle of structures in the atmospheric
surface layer (Anderson et al. 2015). It follows from inspection of (1.6) that for
computation of the single-point correlation, zref = z and δτ(z; zref ) = 0. In addition
to dependence on height z and reference height zref , we shall demonstrate below
that in the convective boundary layer the AM coefficient also depends on the global
stability parameter zi/L. In the present work, we shall consider both single-point
AM coefficients (i.e. Rbl,as(z, z; zi/L)) to determine how large-scale motions amplitude
modulate small-scale turbulence at the same wall-normal location, as well as two-point
AM coefficients (i.e. Rbl,as(z, zref ; zi/L)) to determine how small-scale turbulence is
amplitude modulated by large-scale motions higher or lower in the CBL. In the
following sections we will consider amplitude modulation of small-scale quantities
by both large-scale streamwise velocity ul and vertical velocity wl.

Note that inclusion of Coriolis forcing during integration of the grid-filtered
(i.e. large eddy simulation) momentum transport equations induces a veering of
the mean wind direction with height relative to the Cartesian coordinate system of
the computational grid (e.g. Salesky et al. 2017, their figure 2(c)). This is typical
of low Rossby number flows such as planetary boundary layers, and is thus needed
during simulation to capture salient features of the flow. Before calculating statistics
(e.g. two-point correlations and AM coefficients) using time series data from the
virtual tower (discussed in § 2.2), we aligned the horizontal velocity components with
the mean wind direction at each height (e.g. Kaimal & Finnigan 1994, p. 236). This
was done by first calculating the mean wind angle

α(z)= tan−1

(
V1(z)
U1(z)

)
, (1.8)

where U1 and V1 are the mean velocity components in the Cartesian (x–y) coordinate
system of the LES computational grid. The rotated components of the velocity vector
(ũ2 and ṽ2) are related to the unrotated components via[

ũ2(z; t)
ṽ2(z; t)

]
=

[
cos α(z) sin α(z)
− sin α(z) cos α(z)

] [
ũ1(z; t)
ṽ1(z; t)

]
. (1.9)

This coordinate rotation ensures that our present analysis can be compared with prior
studies in neutrally stratified wall turbulence (i.e. channels, pipes and boundary layers).
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1.3. This article
The objectives of the present article are to investigate the extent to which the
amplitude modulation of small-scale turbulence occurs in turbulent shear flows
over rough walls with unstable stratification, and to ascertain how this modulation
changes as the topology of turbulent coherent structures changes with increasing
instability. We shall focus on dry, barotropic convective atmospheric boundary layers
and perform a suite of large eddy simulations spanning a range of stabilities (−zi/L)
from weakly to highly convective. Amplitude modulation of small-scale variables (us,
ws, and θs) as well as instantaneous fluxes (e.g. (uw)s and (wθ)s) by both large-scale
streamwise (ul) and vertical velocity (wl) will be considered following the decoupling
procedure of Mathis et al. (2009a) that is outlined in § 1.2. Note that the tilde
denoting resolved-scale quantities from LES results shall be omitted for convenience
of notation unless strictly necessary. Although amplitude modulation in the CBL has
not been investigated previously in this manner, amplitude modulation of turbulent
fluxes has been observed in the updrafts of horizontal convective rolls from aircraft
data (LeMone 1976), indicating that AM due to large-scale vertical velocity may
play an important role for turbulent transport in the CBL. We note that establishing
an explicit causal link between VLSMs and small-scale fluctuations is beyond the
scope of the present work. Rather, our goal is to characterize the extent to which the
topology of coherent structures in the CBL and modulation phenomena change with
stability in the convective atmospheric boundary layer.

This article is organized as follows: an overview of the large eddy simulation code
used in the present work and the ensemble of simulations analysed is given in § 2.
In § 3, we present our results, including mean profiles in § 3.1, visualizations of
instantaneous quantities in § 3.2, spectrograms in § 3.3, two-point correlation maps
in § 3.4 and amplitude modulation coefficients in § 3.5. Section 4 presents brief
conclusive remarks. For completeness, we also assessed the influence of the LES
computational mesh resolution. We report no discernible influence of grid resolution,
which is consistent with prior studies of AM in neutrally stratified channel flows
(Anderson 2016; Awasthi & Anderson 2018), but it is nonetheless relevant to show
that convective conditions do not introduce grid resolution sensitivity issues. These
results are shown in the Appendix.

2. Large eddy simulation and cases
2.1. Large eddy simulation code

The large eddy simulation code employed in the present work, described in Albertson
& Parlange (1999) and Kumar et al. (2006), solves the three-dimensional filtered
momentum and potential temperature equations written in rotational form. A
mixed spatial discretization is used, where horizontal derivatives are calculated
pseudospectrally, and second-order centred finite differences are used for the vertical
derivatives. The fully explicitly second-order Adams–Bashforth method is used for
time integration. Nonlinear terms are fully dealiased, following the 3/2 rule (Canuto
et al. 2012). The Lagrangian scale-dependent dynamic (LASD) subgrid-scale (SGS)
model (Bou-Zeid et al. 2005) is used for momentum, where the dynamic procedure
(Germano et al. 1991) is implemented by averaging over Lagrangian trajectories of
fluid parcels (Meneveau, Lund & Cabot 1996) to determine the optimal value of
the Smagorinsky coefficient. The SGS heat flux is modelled using a constant SGS
Prandtl number model: qsgs

j =−νsgs/Prsgs∂θ̃/∂xj where νsgs= (cs∆)
2
|S̃| is the SGS eddy
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viscosity, ∆ = (∆x∆y∆z)
1/3 is the LES filter width, |S̃| = (S̃ijS̃ij)

1/2 is the magnitude
of the resolved-scale strain rate tensor and cs is the dynamic Smagorinsky coefficient
obtained from the LASD model for momentum. The SGS Prandtl number is set to
Prsgs = 0.4 (Kang & Meneveau 2002; Kleissl et al. 2006).

The wall model is based on imposing Monin–Obukhov similarity in a local sense
(Kumar et al. 2006), with filtering at scale 2∆, which has been shown to better
reproduce the mean surface stress (Bou-Zeid et al. 2005). The upper boundary
condition is stress free with no flow through the upper boundary (∂(·)/∂x= ∂(·)/∂y=
w̃= 0|z=Lz , where Lz is the domain height), and a sponge layer is used in the upper
25 % of the domain following the method of Nieuwstadt et al. (1993) to prevent
the reflection of gravity waves from the upper boundary. The LES algorithm is
parallelized in vertical slabs using message passing interface (MPI).

2.2. Cases
Simulations were conducted on an {Lx, Ly, Lz} = {12 km, 12 km, 2 km} domain.
In order to maximize the generality of this work, simulations were conducted
at two resolutions with NxNyNz = 1603 and NxNyNz = 2563 grid points. The
relatively low-resolution cases feature spatial discretization of ∆x = ∆y = 75 m and
∆z = 12.5 m, while the relatively high-resolution cases feature ∆x = ∆y = 46.875 m
and ∆z = 7.8125 m. The selected resolutions are less than the highest resolution
environmental LES completed in recent times (Wilczek, Stevens & Meneveau
2015), but were nonetheless adequate for the purposes of this study. Note also that
the Appendix presents resolution sensitivity testing in the context of the inner–outer
correlation, where the results exhibit no discernible dependence upon resolution (this
has been widely reported in similar studies, for example Anderson (2016), Awasthi &
Anderson (2018)). Although previous studies have indicated that VLSMs can reach
20zi in streamwise extent (e.g. Kim & Adrian 1999; Hutchins & Marusic 2007a; Fang
& Porté-Agel 2015), we observe that the outer peak in the spectrograms shifts inward
as unstable stratification increases (see § 3.3), allowing us to relax the requirement for
the very large streamwise domain sizes (e.g. O(100zi), Fang & Porté-Agel 2015) that
are required in the neutrally stratified case. Furthermore, rotation has also been shown
to decrease the streamwise extent of VLSMs (R. Stoll, University of Utah, personal
communication). Due to the combined effects of buoyancy and rotation in our LES
(the Coriolis force is discussed below), we are able to fully capture the outer peak
in the spectrograms (see § 3.3) with horizontal domain sizes of Lx/zi = Ly/zi = 10–12.
Because others have simulated VLSMs in neutrally stratified atmospheric boundary
layers (−zi/L = 0) (Fang & Porté-Agel 2015; Jacob & Anderson 2017), there is no
need for us to repeat these simulations here.

The time step was set to ∆t = 0.05 s for the 1603 simulations and to ∆t = 0.03 s
for the 2563 simulations. Grid convergence for CBL simulations on this domain was
examined by Salesky et al. (2017), who found that first- and second-order moments
were well converged on the 2563 grid (for ∆= 25.8 m, where ∆= (∆x∆y∆z)

1/3), and
there was not a significant difference between mean vertical profiles on the 1603 grid
(∆ = 41.3 m) and the 2563 grid. We shall present instantaneous flow visualization,
correlation maps and spectrograms from simulations on the 2563 grid, and statistics
related to amplitude modulation on the 1603 grid. The long time integration required
to converge AM coefficients, which is of the order of 120 large eddy turnover times
(T` = zi/w?, where w? = (g Q0 zi/Θ0)

1/3 is the Deardorff convective velocity scale)
precludes performing the entire suite of simulations on the 2563 grid.
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Simulations were forced by a mean pressure gradient expressed in terms of
a constant geostrophic wind Ug = −(1/ρf )(∂P/∂y) that ranged between 1.0 and
15.0 m s−1 (in each case the v-component of geostrophic wind, Vg = (1/ρf )(∂P/∂x)
was set to zero). A constant kinematic surface heat flux Q0 was imposed in each
case, ranging between 0.03 and 0.24 K m s−1. By varying both Ug and Q0, we are
able to obtain an ensemble of simulations spanning weakly convective (small −zi/L)
to highly convective (large −zi/L) conditions. The Coriolis parameter was set to
f = 1.0× 10−4 s−1, corresponding to a latitude of ϕ = 43.3◦ N. In the present work,
we do not consider the Rossby number dependence of modulation phenomena; rather
our focus is on how these interactions vary with stability in canonical convective
atmospheric boundary layers in mid-latitudes. The aerodynamic roughness length was
set to z0 = 0.10 m, and the initial CBL depth was set to zi = 1000 m. Note that an
order of magnitude estimate of the ratio of z0 to roughness element height h can
be taken as z0/h= 0.1 (e.g. Raupach, Antonia & Rajagopalan 1991). Thus the ratio
zi/h = 0.1zi/z0 ∼ O(103), which is well within the range that outer similarity can
be considered valid (Raupach et al. 1991; Jiménez 2004; Flack, Schultz & Shapiro
2005; Volino, Schultz & Flack 2007; Wu & Christensen 2010). The present results
therefore are not sensitive to the value of z0 employed. The initial temperature profile
was imposed using the three-layer profile described in Sullivan & Patton (2011), i.e.

Θ(z)=


300 K, z 6 1000 m
300 K+ (z− 1000 m)Γ1, 1000 m 6 z< 1100 m
308 K+ (z− 1100 m)Γ2, z > 1100 m,

(2.1)

where Γ1 = 0.08 K m−1 and Γ1 = 0.003 K m−1. Simulations were run for 5 h of
dimensional time, that is 360 000 steps for LES on the 1603 grid and 600 000
steps for LES on the 2563 grid. The large eddy turnover time (T` = zi/w?) varied
from 1025 s under weakly convective conditions to 582 s under highly convective
conditions. Simulations required approximately 3650 core hours of computational time
for each 1603 ensemble member and 25 000 core hours for each 2563 simulation.

Previous studies conducted on neutrally stratified flows have found that averaging
over 5× 103 to 1× 104 large eddy turnover times (defined as T`= zi/U0 in the neutral
case) is required in order to converge statistics related to amplitude modulation (e.g.
Hutchins et al. 2009). Although the required averaging time is much less restrictive
for the unstably stratified flows we consider here (since buoyancy enhances turbulent
mixing), we found that averaging over ∼120T` is necessary in order to converge
statistics related to amplitude modulation. For simulations on the 1603 grid, an
ensemble of Ne = 10 members was run for each set of forcings (Ug and Q0) by
varying the random seed used to generate perturbations that are used to initialize
turbulence fields. Averaging was conducted both in time (over the last 4 h of each
simulation) as well as over all of the 10 ensemble members. This was done rather
than averaging solely in time, since CBLs are inherently non-stationary; that is, the
CBL will grow in time due to entrainment for a fixed surface heat flux. Several
additional simulations were run with a single ensemble member (Ne = 1) at 1603

resolution in order to estimate the surface structure inclination angle for additional
values of ζ ; these are also displayed in table 2. In order to assess the influence
of horizontal domain size on the calculated values of AM coefficients, we also ran
an additional ensemble of Ne = 10 simulations on a NxNyNz = 802

× 160 grid and
{Lx, Ly, Lz} = {6 km, 6 km, 2 km} domain for Ug= 15 m s−1 and Q0= 0.07 K m s−1.
We found that vertical profiles of the AM coefficients were nearly identical between
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FIGURE 1. (Colour online) Mean vertical profiles for simulations on a 2563 grid.
(a) Horizontal velocity Uh = (U2

+ V2)1/2, (b) potential temperature Θ , (c) total (resolved
+ SGS) heat flux, (d) horizontal velocity variance σh = (σ

2
u + σ

2
v )

1/2, (e) vertical velocity
variance σ 2

w, ( f ) resolved vertical velocity skewness. Note that quantities in (c–e) are
normalized using the mixed-layer velocity (w?) and temperature (θ?) scales.

the two domains (not shown), demonstrating that the present results are not an artefact
of limited horizontal domain size.

In addition to examining flow visualizations of instantaneous three-dimensional
fields in the following sections, we shall also utilize LES output from a virtual
tower where we output resolved-scale velocity ũi and potential temperature θ̃ for
all heights and times at a single location in the centre of the computational domain,
i.e. (x0=Lx/2, y0=Ly/2, z; t). These data will be used to calculate the AM coefficients
as defined in § 1.2, the wavelet spectra, and the structure inclination angles.

3. Results
3.1. Reynolds-averaged vertical profiles

In order to characterize the mean vertical structure of the CBL for different stability
states, Reynolds-averaged mean vertical profiles from the 2563 simulations are
displayed in figure 1. The mean horizontal velocity (Uh) can be found in figure 1(a),
the mean temperature in (b), the total (resolved + SGS) heat flux in (c), the horizontal
velocity variance in (d), the vertical velocity variance in (e) and the resolved vertical
velocity skewness in ( f ). In (c–e), quantities are normalized with the convective
velocity scale w? and temperature scale θ? = Q0/w?. One can see that the mean
horizontal velocity ranges from approximately 1 to 12 m s−1 throughout most of
the depth of the CBL and the mean temperature from approximately 301 to 305 K,
depending on the values of the forcings (Ug and Q0) imposed. The normalized
surface heat flux (c) is similar throughout the depth of the CBL for all simulations
considered, except that some differences are found near the inversion (where more
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weakly convective CBLs attain larger negative values in the heat flux). Our results
are consistent with previous LES studies (Conzemius & Fedorovich 2006) that have
demonstrated that the entrainment flux ratio AR = −w′θ ′zi/w′θ ′0 ≈ 0.2 in shear-free
convective boundary layers, but is larger in sheared convective boundary layers where
the additional TKE due to shear production is available to drive entrainment.

As found in previous studies (e.g. Salesky et al. 2017), a monotonic decrease in
horizontal velocity variance (σ 2

h /w
2
?) is observed with increasing −zi/L. However, the

vertical velocity variance (σ 2
w/w

2
?) does not exhibit similar monotonic behaviour. One

can see from figure 1(e) that a region of large σ 2
w/w

2
? occurs near the ground for the

weakly convective cases (small −zi/L), in addition to the maximum that occurs near
z/zi= 0.3–0.4. This low-level increase of σ 2

w/w
2
? near the ground has been observed in

other studies of the sheared convective boundary layer (Sykes & Henn 1989; Dosio
et al. 2003; Salesky et al. 2017) where it has been attributed to pressure redistribution
of σ 2

u (created by shear production near the ground) into σ 2
v and σ 2

w. From the plot
of vertical velocity skewness in figure 1( f ), one can see that the vertical velocity
in all of the CBLs considered has significant positive skewness, which corresponds
physically to narrow, intense updrafts and wider but weaker downdrafts. The skewness
of w increases monotonically (for z/zi 6 0.6) with decreasing −zi/L. The implications
of this interplay of buoyancy and shear for amplitude modulation as −zi/L increases
will be discussed below.

3.2. Instantaneous quantities
In order to characterize how LSMs in the CBL modulate small-scale turbulence, it is
instructive to first consider how structures in the instantaneous velocity field change
with bulk stability. Although qualitative in nature, such visualizations provide rich
insights on how the structural attributes of LSMs change with stratification. Figure 2
depicts instantaneous snapshots of the velocity field from a weakly (−zi/L = 3.1,
(a,c,e)) and a highly (−zi/L= 1082, (b,d, f )) convective CBL simulation on the 2563

grid. Snapshots of the instantaneous streamwise velocity ũ′/w? are displayed in the
x–y plane in figure 2(a) and (b) and the instantaneous vertical velocity is displayed in
figure 2(c) and (d), both plotted for z/zi= 0.1. The elevation of the x–y slices plotted
in figure 2(a–d) is denoted by a horizontal grey line in (e, f ). In (e, f ), the streamwise
velocity is plotted in the x′–z plane, where the x′–y′ axis can be found overlaid on
(a–d). The local x′–y′ coordinate system is added to highlight an LSM, which is
rotated counterclockwise relative to the x-axis by virtue of the Coriolis force.

One can see that for weakly convective conditions, the streamwise velocity field in
figure 2(a) is organized into high- and low-momentum streaks, which are typically
aligned 10◦–20◦ to the left of the geostrophic wind in the Northern Hemisphere
(LeMone 1973; Brown 1980). Corresponding updrafts and downdrafts in the vertical
velocity field, sometimes termed horizontal convective rolls (or HCRs) are visible
in figure 2(c). In figure 2(e), we display the streamwise velocity (here the velocity
component aligned with the roll axis) in the x′–z plane, where the x′–y′ axis is rotated
32◦ counterclockwise from the x–y axis. Also displayed in (e) are inclined lines that
indicate the characteristic inclination angle of surface-layer structures, γ = 17.7◦,
as calculated from the two-point correlation of streamwise velocity Ruu(1x, 1z)
(discussed below in § 3.4). In (e), a low-momentum region in the streamwise velocity
field is evident; ejections of low-momentum fluid occur in this region (as can be seen
from the velocity vectors overlaid on the plot). Under weakly convective conditions
the organization of the atmospheric surface layer is similar to what is found in the
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FIGURE 2. (Colour online) Instantaneous velocity field from 2563 simulations. Results are
plotted for a weakly convective CBL (−zi/L = 3.1) in (a,c,e) and a highly convective
CBL (−zi/L = 1082) in (b,d, f ). In (a,b), instantaneous streamwise velocity (ũ′/w?) is
displayed in the x–y plane, for z/zi= 0.10. In (c,d), instantaneous vertical velocity (w̃′/w?)
is displayed in the x–y plane, for z/zi = 0.10 (where the x′–y′ coordinate system is
displayed in (a–d)). In (e, f ) instantaneous streamwise velocity is displayed in the x′–z
plane with instantaneous u–w velocity vectors overlaid. The grey horizontal lines in (e, f )
denote z/zi = 0.10, and the solid black lines in (e) denote the structure inclination angle
γ = 17.7◦.

logarithmic region of a canonical wall-bounded turbulent shear flow, except that the
low-momentum zones are rotated counterclockwise relative to the geostrophic wind
and warm (θ ′ > 0) fluid concentrates in the low momentum zones (e.g. see figure 4
of Salesky et al. (2017)).
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Under highly convective conditions (−zi/L = 1082, (b,d, f )), the CBL exhibits
significantly different organization. Here the vertical velocity field organizes into
open cells (similar to turbulent Rayleigh–Bénard convection), as can be seen in
figure 2(d). The horizontal velocity field in figure 2(b) is comprised of ‘patches’
of high- and low-momentum fluid due to convergence and divergence into updrafts
and downdrafts. In contrast to the slightly inclined surface-layer structures seen
for weakly convective conditions in figure 2(e), here the structures are much more
inclined (indeed, nearly vertical) since the vertical velocity field is dominated by
updrafts and downdrafts. Thus as the CBL becomes increasingly convective, the
vertical velocity field transitions from horizontal convective rolls to open cells (see
Salesky et al. 2017, for a further discussion). With this, the VLSMs in the streamwise
velocity field vanish and are replaced with high- and low-momentum patches, and
the inclination angle of surface-layer structures increases from the ∼15◦ found in
neutrally stratified wall turbulence to nearly vertical (Hommema & Adrian 2003;
Carper & Porté-Agel 2004; Chauhan et al. 2013). Nonetheless, the concept that the
large-scale flow is composed of ‘building block’ structures persists across stability
regimes. At the near-neutral and near-free convective limits, these ‘building blocks’
resemble LSMs, and convective cells, respectively. In this sense, one may expect
that a large-scale amplitude modulation should be preserved across stability regimes,
but that the identity of the modulator will transition from the large-scale streamwise
velocity ul to the large-scale vertical velocity wl. Spectrograms are convenient for
describing the distribution of spectral density across wavelength and depth, and the
following section demonstrates how the flow attains a vertically dominant state at the
near-free convection limit.

3.3. Spectrograms
Previous studies of amplitude modulation in turbulent boundary layers (e.g. Kim
& Adrian 1999; Hutchins & Marusic 2007a,b; Mathis et al. 2009a,b; Anderson
2016) have found that spectrograms (premultiplied power spectra plotted as a
function of dimensionless wavelength and wall-normal distance) provide evidence
of very-large-scale motions if an outer peak exists at large wavelengths. In figure 3,
we present spectrograms from selected 2563 simulations for weakly (−zi/L = 3.1
(a,d,g)), moderately (−zi/L=17.7 (b,d,h)) and highly (−zi/L=1082 (c, f,i)) convective
conditions, for the streamwise velocity (kxΦuu/w2

? (a,b,c)), vertical velocity (kxΦww/w2
?

(d,e, f )) and for the vertical heat flux (kxΦwθ/w?θ? (g,h,i)). To these figures, we have
added horizontal and vertical lines to denote the AM filter scale (§ 1.2) and Obukhov
length, −L/zi, respectively.

The spectrogram of streamwise velocity under weakly convective conditions in
figure 3(a) exhibits both an inner peak and an outer peak, similar to what has been
found in high Reynolds number turbulent boundary layers in the absence of buoyancy.
Here the outer peak occurs at z/zi ≈ 0.1 and λx/zi ≈ 6, and may be interpreted as
the signature of VLSMs in the streamwise velocity field under weakly convective
conditions. The outer peak in this case is smaller than the typically reported value
of λx/zi ≈ 10 in flows where buoyancy is absent (e.g. Marusic et al. 2010b); this
occurs due to the combined effects of buoyancy and Coriolis. Recall that figure 2(a,c)
showed that structures undergo a rotation due to Coriolis, but for the purpose of
figure 3, the flow field is projected onto a spectrum of harmonic functions in x. This
likely manifests in the spectrograms as an existential shortening of the structures
at weakly convective cases. Nonetheless, we will show that the outer peak location
shifts monotonically, and for increasingly unstable conditions the influence of this
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FIGURE 3. (Colour online) Premultiplied spectrograms, plotted as a function of
dimensionless wavelength and height from 2563 simulations. Panels (a,d,g) are plotted for
−zi/L= 3.1, (b,e,h) are plotted for −zi/L= 17.7 and (c, f,i) are plotted for −zi/L= 1082.
Spectrograms of streamwise velocity (kxΦuu/w2

?) are displayed in (a–c), spectrograms of
vertical velocity (kxΦww/w2

?) are displayed in (d–f ) and spectrograms of vertical heat flux
(kxΦwθ/w?θ?) are displayed in (g–i). In each panel, the horizontal dashed line denotes the
cutoff wavelength used to separate the small scales from the large scales (λx= zi) and the
vertical dashed line denotes the normalized Obukhov length (i.e. −L/zi).

post-processing step diminishes since the flow attains a cell-like structure (figure 2b,d).
Other studies of neutrally stratified, Coriolis-free ABL turbulence (Fang & Porté-Agel
2015; Jacob & Anderson 2017) report VLSMs with longer streamwise extent (∼20zi),
and there is no need to repeat these cases in the present work.

As −zi/L increases, one can see (e.g. in figure 3b) that the outer peak shifts
to smaller wavelengths, until only a single peak is found under highly convective
conditions in (c). These changes in the spectrograms correspond to the high- and
low-momentum streaks in the ũ′ field transitioning to patches of high and low
momentum fluid due to horizontal convergence and divergence from updrafts and
downdrafts in the vertical velocity field (see figure 2a,b).

Spectrograms of the vertical velocity kxΦww/w2
? are plotted in figure 3(d–f ). For

weakly convective conditions in (d), the spectrogram of vertical velocity also exhibits
an inner peak and an outer peak, with the outer peak found at λx/zi≈ 6 and z/zi≈ 0.5.
Here the outer peak corresponds to horizontal convective rolls that occur in the w̃′
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Ug Q0 zi |L| −zi/L uτ w?

1.0 0.24 1234 1.1 1082 0.15 2.12
9.0 0.24 1211 46.5 26.0 0.53 2.10

11.0 0.24 1211 68.5 17.7 0.60 2.10
15.0 0.24 1227 125.4 9.8 0.73 2.11
15.0 0.10 1086 251.0 4.3 0.69 1.52
15.0 0.07 1054 336.6 3.1 0.68 1.34

TABLE 1. Properties of large eddy simulations on 2563 grid, including geostrophic velocity
(Ug), kinematic surface heat flux (Q0), convective boundary-layer depth (zi), Obukhov
length (L), bulk stability parameter (−zi/L), friction velocity (uτ ) and Deardorff convective
velocity scale (w?).

Ug Q0 zi |L| −zi/L uτ w? Ne

1.0 0.24 1263 1.21 1041 0.16 2.13 10
10.0 0.24 1238 31.3 39.5 0.46 2.12 10
11.0 0.24 1238 38.6 32.1 0.50 2.12 1
13.0 0.24 1225 54.6 22.4 0.56 2.11 1
15.0 0.24 1238 73.8 16.8 0.61 2.12 10
15.0 0.14 1113 113.9 9.8 0.59 1.71 10
15.0 0.07 1050 337.4 3.1 0.68 1.33 10
15.0 0.03 1025 675.4 1.5 0.64 1.00 1

TABLE 2. Properties of large eddy simulations on 1603 grid, including geostrophic velocity
(Ug), kinematic surface heat flux (Q0), convective boundary-layer depth (zi), Obukhov
length (L), bulk stability parameter (−zi/L), friction velocity (uτ ), Deardorff convective
velocity scale (w?) and number of ensemble members (Ne).

field (see figure 2c). In contrast to the outer peak for streamwise velocity, which was
found in the shear-dominated region of the CBL, z<−L, the outer peak for vertical
velocity is found in the buoyancy-dominated region, i.e. z>−L. As the CBL becomes
increasingly convective, the outer peak for w̃′ shifts inward, until a single maximum
is found near z/zi ≈ 0.3 and λx/zi ≈ 1. Note that the height at which the outer peak
occurs is consistent with the maximum in σ 2

w/w
2
? at each stability, as can be seen

in figure 1(e). And although the outer peaks for kxΦuu/w2
? and kxΦww/w2

? occur at
different heights, they do occur at approximately the same wavelength at each stability.

A similar set of plots for the heat flux kxΦwθ/w?θ? can be found in figure 3(g–i).
Once again, an outer peak is found under weakly convective conditions (g) and
then shifts inward to smaller wavelengths as −zi/L increases. Spectrograms for the
intermediate cases (see tables 1 and 2) varied monotonically between the cases shown
in figure 3 and are not displayed here for the sake of brevity. The implications of
these changes in the spectral properties of the CBL with increasing −zi/L for flow
modulation phenomena will be discussed further in § 3.5.

3.4. Two-point correlations and inclination angles

In order to quantify changes in turbulence spatial structure with increasing instability,
we here consider the correlation structure of the resolved streamwise velocity field and
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FIGURE 4. (Colour online) Two-point correlation maps, Ruu, plotted as a function of
streamwise (1x/zi) and vertical (1z/zi) lags from 2563 simulations. In each panel, the
black squares indicate the value of 1x/zi that corresponds to the maximum correlation for
each value of 1z/zi. Solid lines are fit by linear regression to the maximum correlation
for points in the range 1z/zi ∈ [0, 0.2] and are used to calculate the inclination angle of
the surface-layer structures. The horizontal dashed line in each plot indicates the location
of the Obukhov length, i.e. −L/zi. (a) −zi/L= 3.1, (b) −zi/L= 17.7, (c) −zi/L= 1082.

structure inclination angles. Two-point correlation maps of streamwise velocity are
displayed in figure 4(a–c) for weakly, moderately, and highly convective conditions,
respectively (for consistency, the selected stratification values are identical to those
selected for figure 3). Here the two-point correlation of streamwise velocity is
calculated via

Ruu(1x, 1z)=
〈ũ′(x, y, z)ũ′(x+1x, y, z+1z)〉

σũ(x,y,z)σũ(x+1x,y,z+1z)
, (3.1)

(e.g. Chauhan et al. 2013). Taylor’s hypothesis is used to convert a temporal lag to a
spatial lag, e.g. 1x = Uc1t, where the convection velocity Uc is taken as the mean
velocity at z/zi = 0.2. Other values of the convection velocity were also considered
in the computation of Ruu; we found that this had negligible impact on the resulting
inclination angles. This same convection velocity will be used in the computation of
two-point amplitude modulation coefficients below. Recall, too, from § 1.2 and (1.8)–
(1.9), that we use a local coordinate system mapped to the mean flow direction at each
elevation, and thus the reported correlation and inclination angles are true indicators
of LSMs. That is, the reported statistics are not artificially shortened by virtue of a
Cartesian coordinate system that is oblique to the actual streamwise flow direction.

In figure 4, contours of Ruu are plotted as a function of the normalized horizontal
and vertical lag; the black squares denote the streamwise lag that corresponds to
the maximum correlation (i.e. 1x∗) for each vertical lag. In order to determine the
characteristic inclination of surface-layer structures at each stability, we perform a
linear regression of the form 1z= c11x∗ for 1z/zi ∈ [0,0.2] to determine the unknown
coefficient c1. The inclination angle is then given as γ = tan−1(c1). In figure 4, one
can see that as −zi/L increases, the region of maximum correlation goes from being
inclined in the +1x direction to nearly aligned with the 1z axis, indicating that the
steepness of surface layer structures increases with increasing −zi/L. This result is
thoroughly consistent with the qualitative results displayed in figure 2 and the shift
in the outer peak with increasing −zi/L that can be seen in figure 3: LSMs steepen
and approach the classical convective cells as −zi/L→∞.
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FIGURE 5. (Colour online) Inclination angle (γ ) of surface-layer structures calculated
from 1603 and 2563 LES results, plotted as a function of Monin–Obukhov stability
parameter −ζ . The fit proposed by Chauhan et al. (2013) is shown for comparison (solid
line); dashed lines indicate ±5◦ from this empirical curve. Also displayed are values of γ
calculated from unstable atmospheric surface-layer data from Carper & Porté-Agel (2004),
Marusic & Heuer (2007) and Chauhan et al. (2013).

The change in surface-layer structures with increasing instability can be seen more
clearly in figure 5, where the inclination angle γ is plotted as a function of the MO
stability variable −ζ = −z/L, at both grid resolutions. Also displayed in figure 5 is
the empirical fit from the atmospheric surface-layer data of Chauhan et al. (2013),

γ = γ0 + 7.3 ln(1− 70ζ ), (3.2)

where γ0 = 12◦, dashed lines indicating γ ± 5◦ from this fit, and data collected under
unstable conditions (ζ < 0) from several experimental studies are superimposed to
broaden the context of the results (Carper & Porté-Agel 2004; Marusic & Heuer 2007;
Chauhan et al. 2013). Here we observe that as −ζ increases, the inclination angle
increases from 10◦–15◦ to more than 50◦. While there is some scatter in the values
of γ calculated from the LES results, the scatter we observe is comparable to what
is found in the experimental data. This plot reinforces the conclusion that surface-
layer structures become more steeply inclined with increasing instability, which can
be interpreted as buoyancy modifying hairpin vortex packets to become lifted up from
the ground (e.g. Hommema & Adrian 2003). As discussed previously, spectrograms
indicate that LSMs persist to highly convective conditions (figure 3f ). As such, we
expect that inner-layer modulation by large-scale outer-layer structures should continue
with increasing −zi/L, as long as there is a separation between the inner and outer
peaks.

3.5. Modulation of small scales
We now consider the extent to which amplitude modulation occurs in the convective
atmospheric boundary layer. Before exploring the dependence of AM on height (z/zi)
and on stability (−zi/L), we first provide an example of the amplitude modulation of
small-scale streamwise velocity (us) by both large-scale streamwise (ul) and vertical
velocity (wl). This is done to illustrate the temporal variability of the quantities that
enter into the calculation of the AM coefficient in (1.3)–(1.7) (e.g. E′l(us), and ul or
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FIGURE 6. (Colour online) Time series depicting modulation of small-scale streamwise
velocity by large-scale streamwise velocity and large-scale vertical velocity for −zi/L =
3.1 simulation on 1603 grid at z/zi = 0.15. (a) Time series of small-scale (us) and
large-scale (ul) streamwise velocity and large-scale envelope of small-scale streamwise
velocity (El(us)), (b) time series of small-scale (ws) and large-scale (wl) vertical velocity,
(c) time series of the filtered envelope (El(us)) of small-scale velocity with large-scale
streamwise and vertical velocity also shown for comparison, (d) wavelet power spectra
of streamwise velocity normalized by frequency and streamwise velocity variance. Here
the dashed horizontal line denotes the cutoff frequency used to separate large from small
scales. The amplitude modulation coefficients at this height are Rul,us =−0.60 and Rwl,us =

0.62.

wl). In figure 6, we plot time series of streamwise and vertical velocity and wavelet
spectra for the −zi/L= 3.1 simulation on the 1603 grid, at z/zi= 0.15. In figure 6(a),
we display time series of the large-scale (ul) and small-scale (us) streamwise velocity
components as well as the large-scale envelope of the small-scale streamwise velocity
El(us). The corresponding large- and small-scale components of vertical velocity are
shown in (b). In (c), ul, wl and E′l(us) are included on the same plot, so one can
see visual evidence of the correlation between the large-scale velocity components
and the large-scale envelope of us. Finally in (d), we display wavelet power spectra
of the streamwise velocity, plotted as a function of large eddy turnover time. The
wavelet power spectrum is computed by first calculating the wavelet transform of the
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streamwise velocity u, defined via convolution with a spectrum of wavelet functions:

û(z; ts, t)=
∫

u(z, t′) ψ∗
(

t′ − t
ts

)
dt′, (3.3)

where ψ(ts, t) is the wavelet function with characteristic time scale, ts, and (·)∗ denotes
the complex conjugate. We employ the Morlet wavelet

ψ(t/ts)= eiωψ t/tse−|t/ts|
2/2, (3.4)

for its high-frequency resolution where the complex frequency |ωψ | = 6 (Baars et al.
2015). Given the complex wavelet coefficients, one can then calculate the wavelet
power spectrum:

Eu(z; ts, t)=
|û(z; ts, t)|2

ts
. (3.5)

In figure 6(c) there is visual evidence of a negative correlation between large-scale
streamwise velocity ul and the filtered envelope of small-scale u (E′l(us)). Here the
envelope of us increases due to modulation by a low-momentum LSM (i.e. ul< 0) and
decreases due to modulation by a high-momentum LSM (ul > 0). This is consistent
with previous studies of amplitude modulation in turbulent boundary layers in the
absence of buoyancy (e.g. Mathis et al. 2009a,b; Marusic et al. 2010a). At this
height, the single-point amplitude modulation coefficient is Rul,us = −0.60. From
figure 6(b,c), one can see that AM due to large-scale vertical velocity also occurs,
but here amplitude modulation is positive (Rwl,us = 0.62). We observe that small-scale
streamwise velocity fluctuations are excited in large-scale updraft regions (wl> 0) and
suppressed in large-scale downdraft regions (wl < 0), due to the positive correlation
between wl and the envelope of the small-scale velocity fluctuations (El(us)). It is
also interesting to consider how the energy content in u varies as a function of
frequency and time relative to ul and wl. One can see from figure 6(c,d) that regions
of wl > 0 and ul < 0 correspond to a shift of energy in Eu to higher frequencies (see,
e.g. tw?/zi = 4, 13–14, 16), reinforcing the picture that these large-scale structures
modulate small-scale turbulence. As noted in § 1.2, the horizontal velocity components
have been mapped to the local mean flow direction at each elevation, and thus the
physics associated with the passage of LSMs are accurately captured (for high Rossby
number cases, the local mean flow would be precisely aligned with the x axis).

Next, we turn our attention to how both single- and two-point amplitude modulation
coefficients depend on height (z/zi) and on atmospheric stability (−zi/L). Profiles of
the single- and two-point AM coefficients of us (a,b), ws (c,d) and θs (e, f ), and surface
fluxes (u w)s (g,h), and (w θ)s (i,j), can be found in figure 7, due to modulation by
large-scale u (a,c,e,g,i) w (b,d, f,h,j). In each panel solid lines are used to indicate
single-point AM coefficients, and dashed lines are used to indicate two-point AM
coefficients, where the reference height used to calculate the two-point coefficients,
zref /zi = 0.2, is indicated by the vertical grey line.

In figure 7(a), modulation of small-scale u by large-scale u, i.e. Rul,us , is displayed
for the suite of simulations on the 1603 grid. The smooth-wall channel flow data of
Mathis et al. (2009b) are also included in this panel for comparison. One can see
from this panel that the single-point AM coefficient attains positive values close to
the ground, and changes sign between z/zi= 0.05–0.1, depending on the stability. As
−zi/L increases, the magnitude of the single-point AM coefficient decreases, until the
modulation is negligible. Note that the most highly convective case (−zi/L = 1041)
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FIGURE 7. (Colour online) Single-point (solid lines) and two-point (dashed lines)
amplitude modulation coefficients from 1603 simulations. The vertical grey line in each
panel denotes the reference height (zref /zi = 0.2) used when calculating the two-point
coefficients. Panels (a,c,e,g,i) denote amplitude modulation by large-scale streamwise
velocity (ul) and panels (b,d, f,h,j) denote modulation by large-scale vertical velocity (wl).
(a,b) Modulation of small-scale streamwise velocity (us), (c,d) modulation of small-scale
vertical velocity (ws), (e, f ) modulation of small-scale temperature (θs), (g,h) modulation of
small-scale momentum flux (uws), (i,j) modulation of small-scale heat flux (wθ s). In (a),
black diamonds denote Rul,us from smooth-wall channel flow data (taken from Mathis et al.
2009b, their figure 3a).

has been omitted from these plots because the AM profiles are extremely noisy; this
appears to occur because there is no separation between the outer and inner peak and
the concept of amplitude modulation is no longer meaningful in this case.
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FIGURE 8. (Colour online) Depth-integrated single- (a,b) and two-point (c,d) AM
coefficients by large-scale streamwise (a,c) and vertical (b,d) velocity. Integrals are shown
on the ordinate and correlations are denoted on the abscissa, where the panel (a) inset
denotes the colour scheme (for clarity, the colour scheme is identical to that of figure 7).
Panel (a) includes the depth-integrated integral of the Mathis et al. (2009b) data points.

The behaviour of the two-point AM coefficients, indicated by the dashed lines,
is similar, except that (as expected) the two-point coefficients attain smaller values
farther from the reference height. These results indicate that as the outer peak in
the spectrogram of u shifts to smaller wavelengths, the scale separation between
the outer peak and inner peak decreases, such that the amplitude modulation of
small-scale turbulence is significantly reduced. Thus one can conclude that amplitude
modulation due to ul is a significant dynamical feature of weakly convective CBLs,
where VLSMs exist in the streamwise velocity field. However, as −zi/L increases,
surface-layer structures become shorter and more inclined, and amplitude modulation
due to ul becomes negligible.

Profiles of AM coefficients where modulation by large-scale vertical velocity is
considered are given in figure 7(b,d, f,h,j). In contrast to modulation by large-scale u,
amplitude modulation due to wl is positive throughout much of the depth of the
CBL, the magnitude of R is larger for most quantities, and R remains large as −zi/L
increases. Physically, this means that amplitude modulation by large-scale w occurs
both under weakly convective conditions, where the updrafts are organized into
long, linear features (HCRs) and under highly convective conditions, where buoyant
plumes occur and the w field organizes into open cells on large scales. As discussed
above, the physical interpretation is that small-scale turbulence is excited in updraft
regions, and suppressed in downdraft regions. This is conceptually analogous to the
intermittent periods of small-scale excitation and quiescence between large-scale low-
and high-momentum regions, respectively (Mathis et al. 2011).

In order to summarize the figure 7 result, and to assess the extent to which AM
occurs in the CBL in a global sense, we have also plotted depth-averaged values
of the AM coefficients, which are shown in figure 8. That is, we plot histograms
of the quantity R = (1/zi)

∫ zi

0 Rbl,as dz, where Rbl,as is the AM coefficient between
the large-scale quantity bl and the small-scale quantity as. Note that by definition,
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R ∈ [−1, 1] since Rbl,as ∈ [−1, 1]. This figure helps to better characterize global
changes in AM with −zi/L, since discerning differences in the figure 7 was difficult
in some cases. Figure 8(a,c) and (b,d) shows modulation of small-scale amplitude
by ul and wl, respectively; where values of R calculated from the single-point AM
coefficient are displayed in (a,b) and values calculated from the two-point AM
coefficient are displayed in (c,d). Perhaps the most striking result can be seen in
the single-point correlations of ul with small-scale quantities in (a), where |R| is
the largest for weakly convective (e.g. −zi/L = 3.1) conditions and AM becomes
negligible (R≈ 0) as −zi/L increases. This can be seen very clearly for Rul,us where
the neutral channel flow data (Mathis et al. 2009b) are displayed together with the
CBL LES results in (a).

In contrast, the average AM coefficients between wl and small-scale quantities
exhibit very little dependence on −zi/L for all quantities considered. This is true for
both single (b) and two-point (d) correlations, respectively. This demonstrates that
wl is a ‘buoyancy proof’ modulator and AM due to wl occurs in an global sense
as long as sufficient scale separation exists between the inner and outer peaks. It
is not surprising that, for near-neutral cases, both ul and wl modulate small-scale
quantities, since ul and wl are both so inherently tied to the identity of LSMs (where
low- and high-momentum regions exhibit {ul < 0, wl > 0} and {ul > 0, wl < 0},
respectively). As surface heating increases, however, and the flow structure transitions
to buoyant plumes (and u′ becomes decorrelated from w′, e.g. figure 2b,d), it is
entirely reasonable for wl to be the only plausible modulator. The correlations
demonstrate this, and the results are consistent with all preceding results shown here
(figures 2 to 5).

The effects of unstable stratification on LSMs and amplitude modulation are
summarized in the conceptual diagram presented in figure 9. A canonical neutrally
stratified high-Re boundary layer is depicted in figure 9(a), a moderately convective
ABL in (b) and a free convective ABL in (c). In (a,b), the surface layer is denoted
by the dashed horizontal line. (Note that the diagram is not drawn to scale in order to
emphasize AM within the surface layer.) For neutral stratification (a), the inclination
angle of the hairpin vortex packet is γ ≈ 15◦. In the surface layer (z/zi . 0.1), positive
AM of a small-scale signal occurs in regions where u′l > 0 and w′l < 0 and negative
AM occurs where u′l < 0 and w′l > 0. As the ABL becomes unstably stratified (b), the
inclination angle of surface-layer structures increases and LSMs become shorter than
what is found in the neutral case. Once again AM in the surface layer is positive in
regions where u′l > 0 and w′l < 0 and negative in regions where u′l < 0 and w′l > 0.
Finally, in the free-convective case (c), the LSMs shorten further and the inclination
angle of surface-layer structures is γ ≈ 90◦. In this case, ul is no longer an effective
modulator. Near the ground, positive AM does occur in regions where w′l < 0 and
negative AM occurs in regions where w′l > 0. Here it also should be noted that w′l > 0
regions are narrower than the w′l < 0 regions, due to the positive skewness of w (e.g.
figure 1f ).

Finally, we emphasize that the strongest correlation is found between wl and small-
scale momentum fluxes, (uw)s. Since (uw)s = u2

τ at the wall, this result may have
implications for development of surface flux models for use in wall-modelled LES
(Pope 2000; Marusic et al. 2010b).

4. Discussion and conclusions
Previous studies in high-Re wall-bounded turbulent shear flows (e.g. Kovasznay

et al. 1970; Brown & Thomas 1977; Nakagawa & Nezu 1981; Murlis et al. 1982;
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FIGURE 9. (Colour online) Conceptual diagram depicting the effects of buoyancy on
LSMs and amplitude modulation in boundary layers with unstable thermal stratification.
(a) Neutral case (canonical high-Re boundary layer). (b) Shear–buoyancy transition where
Ug 6= 0 and Q0 > 0. (c) Free convection where Ug = 0 and Q0 is finite. The figure is
not drawn to scale in order to emphasize amplitude modulation within the surface layer
(denoted by the horizontal dashed line). Note that x′ denotes the direction aligned with
the axis of the LSMs.

McLean 1990; Wark & Nagib 1991; Adrian et al. 2000; Ganapathisubramani et al.
2003; Tomkins & Adrian 2003; Del Alamo et al. 2004; Guala et al. 2006; Hambleton
et al. 2006; Hutchins & Marusic 2007b,a; Chung & McKeon 2010; Lee & Sung
2011; Wu et al. 2012) have revealed the existence of so-called large-scale and
very-large-scale motions, regions of high- and low-momentum fluid elongated in the
streamwise direction that populate the logarithmic layer and modulate the amplitude of
small-scale turbulent fluctuations (Mathis et al. 2009a,b; Marusic et al. 2010a). Using
a suite of large eddy simulations of canonical dry, barotropic CBLs at mid-latitudes
spanning weakly to highly convective conditions, we have investigated the extent to
which these coherent structures are modified by unstable stratification and how, in
turn, these structures influence amplitude modulation phenomena in the convective
atmospheric boundary layer. The main conclusions of this study are outlined below:

(i) The topology of turbulent coherent structures changes dramatically as the
CBL becomes increasingly unstable. Under weakly convective conditions
(small −zi/L), VLSMs occur in the streamwise velocity field, similar to
what is found in turbulent boundary layers in the absence of buoyancy. As
−zi/L increases, the streamwise velocity field transitions to patches of high-
and low-momentum fluid. Concurrent changes occur in the large-scale vertical
velocity field, from horizontal convective rolls under weakly convective conditions
to open cells under highly convective conditions (see Salesky et al. (2017) for a
further discussion on the roll to cell transition). In addition, the inclination angle
of hairpin vortex packets (as deduced from the two-point correlation of u) in
the atmospheric surface layer increases, from γ ≈ 15◦ for near-neutral conditions
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to nearly vertical under highly convective conditions. This is consistent with
the picture of hairpin vortex packets being lifted up away from the wall due to
buoyancy effects (Hommema & Adrian 2003).

(ii) Under weakly convective conditions, a distinct inner and outer peak can be seen
in the premultiplied spectrogram of u, with the outer peak located near λx/zi≈ 6,
providing spectral evidence of the existence of VLSMs. This value is smaller than
the λx≈ 20zi reported in neutrally stratified wall turbulence due to the combined
effects of unstable stratification and rotation in the convective boundary layer. As
−zi/L increases, the outer peak shifts to smaller wavelengths and lower heights,
until only a single peak is found at λx/zi≈ 1 under highly convective conditions
(i.e. the VLSMs are replaced by LSMs). A similar feature can be observed in
the spectrograms of w, where an inner and an outer peak both occur for weakly
convective conditions (with the outer peak of w located at λx/zi≈ 6), but the two
peaks shift together and eventually merge under highly convective conditions such
that the peak in energy is concentrated at a single wavelength (λx/zi ≈ 1) and
height (z/zi ≈ 0.3).

(iii) The extent to which amplitude modulation of small-scale turbulence is modified
by buoyancy was investigated using the decoupling procedure proposed by
Mathis et al. (2009a). Under weakly convective conditions, significant amplitude
modulation of small-scale fluctuating velocity, temperature and instantaneous
second-order moments occurs both due to large-scale streamwise velocity ul and
large-scale vertical velocity wl. As −zi/L increases and the separation between
the inner and outer peak in the u spectrum decreases, the degree of amplitude
modulation due to ul also decreases until it is negligible. However, amplitude
modulation due to wl was found to be significant for all stabilities considered,
as long as there was a sufficient separation between the inner and outer peak.

It should be noted that amplitude modulation due to large-scale vertical velocity
in the CBL has been observed previously from the aircraft data of LeMone (1976),
in the horizontal convective roll regime (see her figure 2). In particular, she found
that the magnitude of fluctuations in u′, v′, w′, θ ′, and absolute humidity ρ ′v as
well as instantaneous fluxes (u′w′, v′w′, w′θ ′ and ρ ′vw

′) increased dramatically when
the ‘roll-scale’ vertical velocity wl was positive. Other studies (Weckwerth, Wilson
& Wakimoto 1996) have highlighted the fact that the modulation of small-scale
turbulent fluctuations in HCR updraft regions can lead to coherent perturbations of
scalar quantities such as potential temperature and water vapour mixing ratio, and
play a significant role for the initiation of deep, moist convection. Our results are
consistent with these previous studies conducted in the atmospheric boundary layer
as well as with flow modulation phenomena that have been observed in neutrally
stratified turbulent shear flows (e.g. Mathis et al. 2009a,b; Marusic et al. 2010a).

Finally, it is appropriate to discuss our present results in the context of Monin–
Obukhov (MO) similarity theory, long considered to be the cornerstone of atmospheric
boundary-layer studies. In spite of its remarkable success (Businger et al. 1971;
Kaimal et al. 1972; Högström 1988; Kaimal & Finnigan 1994), deviations from MO
similarity are well documented in the literature (Kaimal et al. 1972; Panofsky et al.
1977; Khanna & Brasseur 1997; Johansson et al. 2001; Salesky & Chamecki 2012),
and the potential for generalizations is widely accepted. Two of the key assumptions
underlying MO similarity are those of horizontal statistical homogeneity, and the
attached eddy hypothesis (Townsend 1976), where the characteristic length scale of
turbulent motions is taken to be the distance from the wall z. Our present results
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FIGURE 10. (Colour online) Vertical profiles of amplitude modulation coefficients
from relatively high- (1603, solid profile) and low-resolution (803, dashed profile) LES.
Panels (a,b) denote modulation of small-scale streamwise velocity amplitude by large-scale
streamwise (ul) and vertical (wl) velocity, respectively. Profiles correspond to simulations
with identical forcings (Ug = 15 m s−1 and Q0 = 0.07 K m s−1), where slightly larger
values of −zi/L are found for simulations on the coarser grid (−zi/L= 4.4) than for the
finer grid (−zi/L= 3.1).

demonstrate that even in canonical convective atmospheric boundary layers, significant
spatial and temporal variability exists in instantaneous small-scale fluctuating
quantities due to amplitude modulation by LSMs (that scale on the outer length
scale zi). That is, surface-layer fluxes undergo a cyclic excitation and relaxation with
the passage of LSMs aloft. Thus modulation phenomena are superimposed upon
the ‘background values’ of the surface fluxes, thereby inducing significant spatial
and temporal variability in the fluxes. Accounting for LSMs and flow modulation
phenomena in models of geophysical flows (such as the atmospheric boundary layer)
may prove to be a fruitful area of future research.
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Appendix
Previous studies have comprehensively demonstrated that amplitude and frequency

modulation correlations are invariant to LES grid resolution (Anderson 2016;
Awasthi & Anderson 2018). However, these studies have focused on other aspects
of inner–outer interactions, and have not considered the dynamics of small-scale
modulation in the presently considered low Rossby and Richardson number flow
arrangements. We performed additional testing of resolution sensitivity, with results
shown in this appendix. Since these results do not contribute to physical insights
of structural attributes, etc., we elected to show these results separately from the
scientific narrative.

Figure 10(a,b) shows the single-point AM coefficient denoting modulation of us by
ul and wl, respectively, where the line colours are denoted on (a). The abscissa is log
scale, which has the effect of visually amplifying the figure space available to the
atmospheric surface layer (i.e. z/zi . 10−1), where resolution differences due to time
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averaging will be greatest. Nonetheless, in the bulk of the flow, it is clear that the
correlations are in close agreement – magnitude and profile.

Figure 10 corresponds with the same forcings (Ug = 15 m s−1 and Q0 =

0.07 K m s−1) for the simulations on the coarser (803) and finer (1603) grid. We
observed slightly larger values of −zi/L for the 803 simulation (i.e. −zi/L = 4.4)
than for the 1603 simulation (−zi/L = 3.1); however, this did not affect the
agreement between the AM coefficients at the two resolutions. We considered the AM
correlations between ul and wl and other quantities, at a range of −zi/L, and found
similar agreement. We elected not to show these results here for brevity. Further
evidence that the spatial nature of the flow is captured adequately at the resolution
we consider here can be found in figure 5, where the inclination angle of structures
is plotted for simulation results on the 1603 and on the 2563 grids.
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