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Multiple-scales perturbation methods are used to study wave interactions in mag-
netohydrodynamics (MHD), in one Cartesian space dimension, with application to
cosmic-ray-modified shocks. In particular, the problem of the propagation and in-
teraction of short wavelength MHD waves, in a large-scale background flow, mod-
ified by cosmic rays is studied. The wave interaction equations consist of seven
coupled evolution equations for the backward and forward Alfvén waves, the back-
ward and forward fast and slow magnetoacoustic waves and the entropy wave. In
the linear wave regime, the waves are coupled by wave mixing due to gradients in
the background flow, cosmic-ray squeezing instability effects, and damping due to
the diffusing cosmic rays. In the most general case, the evolution equations also
contain nonlinear wave interaction terms due to Burgers self wave steepening for
the magnetoacoustic modes, resonant three wave interactions, and mean wave field
interaction terms. The form of the wave interaction equations in the ideal MHD
case is also discussed. Numerical simulations of the fully nonlinear cosmic ray MHD
model equations are compared with spectral code solutions of the linear wave in-
teraction equations for the case of perpendicular, cosmic-ray-modified shocks. The
solutions are used to illustrate how the different wave modes can be generated by
wave mixing, and the modification of the cosmic ray squeezing instability due to
wave interactions. It is shown that the Alfvén waves are coupled to the magne-
toacoustic and entropy waves due to linear wave mixing, only in background flows
with non-zero field aligned electric current and/or vorticity (i.e. if B ·∇ × B� 0
and/or B ·∇ × u� 0, where B and u are the magnetic field induction and fluid
velocity respectively).

1. Introduction
Wave interactions in magnetohydrodynamics (MHD) and wave propagation in non-
uniform media have wide applications in space and laboratory plasma physics. In
particular, the propagation of linear waves in stratified media has an extensive
literature, ranging from the propagation of radio waves in the ionosphere (see
e.g. Budden 1985), to hydromagnetic wave propagation in the solar atmosphere
(Ferraro and Plumpton 1958) and in the solar wind (see e.g. Heinemann and
Olbert 1980; Barnes 1992). Weakly nonlinear wave interactions and resonant wave
interactions in MHD have recently been discussed by Ali and Hunter (1998).
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Heinemann and Olbert (1980) obtained bidirectional evolution equations describ-
ing the propagation of toroidal Alfvén waves in the solar wind, in which the back-
ward Alfvén wave is coupled to the forward Alfvén wave via large-scale gradients
in the background flow. Zhou and Matthaeus (1990) and others subsequently devel-
oped theories for Alfvénic turbulence in the solar wind that naturally incorporated
the interaction of the fluctuations with gradients in the background flow. In space
plasma physics, this is commonly known as wave mixing (see e.g. Tu and Marsch
1995). Alfvén wave ponderomotive forces have been invoked as an important el-
ement in accelerating the solar wind in both WKB models (see e.g. Alazraki and
Couturier 1971; Hollweg 1973, 1978; Jacques 1977; McKenzie 1994), and non-WKB
models of wave-accelerated winds (see e.g. Heinemann and Olbert 1980; Barkhu-
darov 1991; Lou 1993; MacGregor and Charbonneau 1994; Hollweg, 1996).

Wave interactions also play an important role in cosmic ray astrophysics. Chin
and Wentzel (1972) and Skilling (1975b,c) considered the role of three-wave resonant
interactions and wave cascades in cosmic ray propagation problems in the galaxy.
A squeezing instability for short-wavelength WKB sound waves in cosmic-ray-
modified flows and shocks was investigated by Dorfi and Drury (1985), Drury and
Falle (1986) and Zank and McKenzie (1987) (see also Berezhko 1986; Chalov 1988;
Webb 1989; and Kang et al. 1992). More general analyses of instabilities of obliquely
propagating modes in cosmic ray modified flows have been investigated by Berezhko
(1986) and Zank et al. (1990). In particular, Zank et al. (1990) showed that the waves
could be destabilized by squeezing and stratification effects, and by particle drifts.

Webb et al. (1997a,b,c; 1999) obtained equations describing the interaction of
short-wavelength sound waves and entropy waves in two-fluid cosmic ray hydrody-
namics, in a non-uniform large-scale background flow. In the high frequency limit,
the equations reduce to the evolution equations for WKB sound waves obtained
by Drury and Falle (1986) and Zank and McKenzie (1987). The equations also
contain the effects of wave mixing, describing the interaction of the waves with
each other due to gradients in the background flow, as well as nonlinear wave in-
teraction effects. The linearized wave evolution equations were used in Webb et al.
(1997a,b,c,1999) to study the effect of wave mixing on the cosmic ray squeezing
instability in cosmic-ray-modified shocks and flows.

Alfvénic models of cosmic-ray-modified shocks in which the Alfvén waves that
scatter the cosmic rays are generated in part by the cosmic ray streaming insta-
bility (Lerche 1967; Skilling 1975a) were developed by McKenzie and Völk (1982),
Völk et al. (1984) and Medina-Tanco and Opher (1990). The cosmic-ray-generated
Alfvén waves in this model were shown by McKenzie and Webb (1984), Zank (1989),
Begelman and Zweibel (1994) and Ko and Jeng (1994) to drive one of the modified
slow magnetoacoustic waves unstable. McKenzie and Völk (1982) and Völk et al.
(1984) restricted their attention to parallel shocks, where the role of Alfvén waves
on the shock structure is maximal, whereas Medina-Tanco and Opher (1990) studied
the role of cosmic-ray-generated waves in general oblique MHD shocks. Ko (1992)
and Ko and Jeng (1994) have considered a hydrodynamical generalization of the
McKenzie and Völk (1982) model to include the effects of backward and forward
Alfvén waves and second-order Fermi acceleration effects.

The main aim of this paper is to investigate the role of wave–wave interactions in
magnetohydrodynamics (MHD), with application to cosmic-ray-modified shocks.
We use the MHD model of oblique cosmic-ray-modified shocks of Webb (1983) and
Webb et al. (1986) (see also Jun et al. 1994; and Frank et al. 1994). The model equa-
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tions reduce to those of one-fluid MHD if the cosmic ray terms in the equations are
dropped. Thus the wave interaction equations for standard MHD are obtained as
a limiting case by dropping the cosmic ray terms in the equations. It is important
to note the physical limitations of using a fluid dynamical description, rather than
a collisionless, kinetic plasma description (note that this criticism also applies to
Monte Carlo models). In particular, the model does not incorporate Landau damp-
ing of magnetoacoustic modes due to wave–particle interactions (see e.g. Barnes
1966, 1979). The damping rates γL = −=(ω)/<(ω) (where ω is the wave frequency)
of the magnetoacoustic waves in general increase with the plasma beta (see e.g. Fig-
ure 4 of Barnes (1979), where γL is plotted as a function of the angle θ between the
wave vector k and the background magnetic field B for the cases β = 1 and β = 5).
The Landau damping for the fast-mode wave exhibits two peaks associated with
stochastic heating of the thermal protons (θ ≈ 10◦) and heating of the electrons
(θ ≈ 85–90◦) in β ≈ 1 plasmas. For perpendicular propagation (θ = 90◦), there is
no linear Landau damping of the fast mode (this corresponds to waves propagating
normally to the shock in a perpendicular cosmic-ray-modified shock). In collision-
less plasma theory, the entropy-wave-like modes with <(ω) = 0 are Landau-damped
(Barnes 1979). In general, without carrying out detailed calculations, it is difficult
to assess whether the cosmic ray squeezing instability is sufficiently vigorous to
overcome Landau damping. In a more complete theory, one should also take into
account the full momentum spectrum of the cosmic rays, obtained by solving the
cosmic ray transport equation (see e.g. Parker 1965) consistent with the total mo-
mentum equation for the system, in which the cosmic rays exert a force on the
background flow via their pressure gradient.

The model and equations are presented in Sec. 2. Section 3 provides a discussion
of the eigenvalues and eigenvectors of the MHD equations, which are central to the
derivation of the wave interaction equations. The form of the eigenvectors depends
on the dependent variables, or the state vector used in the analysis. Two state vec-
tors for the MHD background fluid (omitting cosmic ray effects) are used, namely
Ψ̃
′

= (ρ,uT,BT, S)T and the conserved densities state vector Ψ̃ = (ρ, ρuT,BT, ρS)T,
where ρ, u, B and S denote the density, fluid velocity, magnetic induction and en-
tropy of the MHD fluid. The relationships between the wave amplitudes {aj}, and
the right- and left-eigenvectors, the state vector perturbations, and the eigenvector
symmetries are discussed. The formal derivation of the wave interaction equations
is developed in Sec. 4. Section 5 discusses nonlinear and three-wave resonant in-
teractions, and the relation of the wave equations to previous work on three-wave
resonant interactions of coherent MHD waves (see e.g. Sagdeev and Galeev 1969;
Chin and Wentzel 1972; Ali and Hunter 1998). Section 6 considers the wave mixing
equations, describing the interaction of linear short-wavelength MHD waves in a
large-scale background flow. The wave interaction coefficients describe squeezing
instability effects due to the large-scale cosmic ray pressure gradient (see e.g. Drury
and Falle 1986), cosmic ray damping due to diffusive cosmic ray transport (see e.g.,
Ptuskin 1981), and wave mixing effects due to gradients and time variations in the
background flow. The wave interaction coefficients generalize the corresponding
coefficients obtained by Webb et al. (1997a), describing the interaction of short-
wavelength sound waves and entropy waves in cosmic-ray-modified flows. The rela-
tionship of the wave mixing equations for the Alfvén waves for planar MHD flows to
the equations obtained by Heinemann and Olbert (1980) and Zhou and Matthaeus
(1990) for Alfvén waves and Alfvénic turbulence in the solar wind is delineated. It
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turns out that for wave propagation in one Cartesian space dimension, the Alfvén
waves are coupled to the magnetoacoustic and entropy waves only in flows with
non-zero field-aligned electric current and/or vorticity (i.e. B·∇ × B � 0 and/or
B·∇ × u � 0). The form of the wave mixing equations for the degenerate cases
where the wave vectors k ‖ B and k ⊥ B are discussed in detail. Numerical simula-
tions of the fully nonlinear two-fluid MHD equations are compared with solutions
of the wave mixing equations for the case of perpendicular cosmic-ray-modified
shocks in Sec. 7. Section 8 concludes with a summary and discussion.

2. Model and equations
We use the two-fluid MHD model for cosmic-ray-modified flows of Webb (1983) and
Webb et al. (1986). The cosmic rays are assumed to be a hot gas with a substan-
tial pressure pc, but with negligible mass flux and momentum density compared
with the thermal gas. The cosmic rays are scattered by waves or turbulence in the
background flow, and the phase velocity of the waves is assumed to be negligible
compared with the fluid speed (for further discussion of the two-fluid model for the
non-magnetized case, see also Axford et al. 1977, 1982; Drury and Völk 1981).

For a model in which the physical variables depend only on the position coordi-
nate x of a rectangular Cartesian coordinate system (x, y, z) and on the time t, the
equations governing the system of cosmic rays, thermal gas and magnetic field B
may be written in the form

∂ρ

∂t
+
∂

∂x
(ρux) = 0, (2.1)

∂

∂t
(ρux) +

∂

∂x

(
ρu2

x + pc + pg +
B2
y +B2

z

2µ

)
= 0, (2.2)

∂

∂t
(ρuy) +

∂

∂x

(
ρuxuy − BxBy

µ

)
= 0, (2.3)

∂

∂t
(ρuz) +

∂

∂x

(
ρuxuz − BxBz

µ

)
= 0, (2.4)

∂By
∂t

+
∂

∂x
(uxBy − uyBx) = 0, (2.5)

∂Bz
∂t

+
∂

∂x
(uxBz − uzBx) = 0, (2.6)

∂

∂t
(ρS) +

∂

∂x
(ρSux) = 0, (2.7)

∂pc
∂t

+ ux
∂pc
∂x

+ γcpc
∂ux
∂x
− ∂

∂x

(
κ
∂pc
∂x

)
= 0. (2.8)

In the above equations ρ, u, pg and S denote the thermal gas density, fluid velocity,
pressure and entropy respectively, pc, γc and κ denote the cosmic ray pressure,
adiabatic index and hydrodynamical diffusion coefficient, B denotes the magnetic
field induction, and µ is the magnetic permeability. For an ideal gas, the gas entropy
S has the form

S = Cv ln
(
pg
ργg

)
, (2.9)
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where Cv is the specific heat at constant volume and γg = Cp/Cv is the ratio of
specific heats for the thermal gas.

Equations (2.1)–(2.9) can be combined to yield the total energy equation for the
system:

∂W

∂t
+
∂Fx
∂x

= 0, (2.10)

where

W = Eg + Ec + 1
2ρu

2 +
B2

2µ
(2.11)

is the total energy density, and

F = ( 1
2ρu

2 + Eg + pg)u +
1
µ

[B2u− (u · B)B] + Fc (2.12)

is the total energy flux. In (2.11) and (2.12)

Eg =
pg

γg − 1
, Ec =

pc
γc − 1

, (2.13)

Fc = u(Ec + pc)−K·∂Ec
∂x

(2.14)

define the internal energy densities Eg and Ec for the thermal and cosmic ray gases,
K is the cosmic ray diffusion tensor (note that κ = Kxx), and Fc is the cosmic ray
energy flux.

Note that (2.1)–(2.7) are in conservative form. The system of equations (2.1)–(2.8)
can be written in the form

∂Ψi

∂t
+
∂F i

∂x
= −∂pc

∂x
δi2, i = 1, . . . , 7, (2.15)

∂pc
∂t

+
Mx

ρ

∂pc
∂x

+ γcpc
∂

∂x

(
Mx

ρ

)
− ∂

∂x

(
κ
∂pc
∂x

)
= 0 (2.16)

(δi2 is the Kronecker delta), where M = ρu is the momentum density of the thermal
gas and

Ψ = (ρ,Mx,My,Mz, By, Bz, σ, pc)T, σ = ρS, (2.17)

defines the state vector of the system. The fluxes {F i : i = 1, . . . , 7} in (2.15) are

F 1 = Mx, (2.18a)

F 2 =
M 2
x

ρ
+ pg + 1

2b
2
0(B2

y +B2
z), (2.18b)

F 3 =
MxMy

ρ
− b2

0BxBy, (2.18c)

F 4 =
MxMz

ρ
− b2

0BxBz, (2.18d)

F 5 =
MxBy −MyBx

ρ
, (2.18e)

F 6 =
MxBz −MzBx

ρ
, (2.18f)

F 7 =
Mxσ

ρ
, (2.18g)

where b0 = µ−1/2 in (2.18).
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Equations (2.15)–(2.18) may also be written in terms of the dimensionless vari-
ables

ρ̄ =
ρ

ρ0
, M̄ =

ρu
ρ0V0

, p̄g =
pg
pg0

, p̄c =
pc
pg0

, (2.19a)

B̄ =
B
B0
, κ̄ =

κ

V 2
0 L

, S̄ =
S

Cv
, σ̄ = S̄ρ̄, (2.19b)

x̄ =
x

L
, t̄ =

t

T
. (2.19c)

The characteristic length (L) and time (T ) scales and characteristic wave speed V0

are chosen so that

V0T

L
= 1, V0 =

(
pg0

ρ0

)1/2

. (2.20)

Equations (2.15)–(2.18) also have the same form in the dimensionless variables
(2.19), provided that we choose

b0 =
(

B2
0

µρ0V 2
0

)1/2

. (2.21)

In (2.20), V0 is the isothermal sound speed.
The cosmic rays may be scattered both by resonant wave–particle interactions

and by random walk of the field lines (see e.g. Jokipii 1971). The general form of
the energetic particle diffusion coefficient kxx, in the kinetic transport equation for
cosmic rays (see e.g. Krymsky 1964; Parker 1965; Skilling 1975a) is of the form

kxx = κ‖ cos2 θBn + κ⊥ sin2 θBn, (2.22)

where κ‖ and κ⊥ are the particle diffusion coefficients parallel and perpendicular
to the background magnetic field B, and θBn is the angle between the background
magnetic field and the x axis, or shock normal. The parallel diffusion coefficient κ‖
is determined by resonant wave–particle interactions, whereas the perpendicular
diffusion coefficient κ⊥ is determined both by resonant wave–particle interactions
and by random walk of the field lines. For slab turbulence, in which the magnetic
fluctuations are perpendicular to B, κ⊥ is determined by random walk of the field
lines. In this case, one finds κ‖ ∝ 1/Pw, where Pw = (δB)2/8π is the Alfvén wave
pressure, whereas the perpendicular diffusion coefficient κ⊥ is proportional to the
power at zero frequency. The hydrodynamically averaged diffusion coefficient κ is
an average of kxx over the energetic particle momentum spectrum (see e.g. Drury
and Vólk 1981). Drury and Falle (1986) note that if resonant wave–particle inter-
actions are the main scattering mechanism then the hydrodynamically averaged
diffusion coefficient κ ∝ 1/Pw. From the compression of pre-existing Alfvén waves
in the highly supersonic flow upstream of a cosmic-ray-modified shock, Pw ∝ ρ3/2,
suggesting that κ ∝ ρ−3/2 for the case where kxx is dominated by κ‖. However,
Alfvén wave excitation by the resonant streaming instability will also contribute
to Pw (see e.g. McKenzie and Völk 1982).

On the other hand, in a quasiperpendicular shock, kxx ≈ κ⊥ (θBn ≈ 1
2π in (2.22)).

If κ⊥ is dominated by random walk of the field lines (Jokipii 1971, equation (65)),
one can show that κ⊥ ∝ (δB/B)2. From the wave mixing equations for Alfvén
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waves (see e.g. Zhou and Matthaeus 1990), one can show that δB ∝ ρ in a quasi-
perpendicular shock. Because both δB ∝ ρ and B ∝ ρ, it follows that κ ∼ const in
a quasiperpendicular shock.

These arguments suggest that

κ = κ(ρ) (2.23)

is a function of the background density ρ. It turns out that the squeezing instability
for short-wavelength sound waves in cosmic-ray-modified shocks, first investigated
in detail by Drury and Falle (1986), is sensitive to the form of κ(ρ). More specifically,
the squeezing instability depends on the value of the parameter

ζ =
∂ ln κ
∂ ln ρ

. (2.24)

The instability growth rate also depends on the cosmic ray pressure gradient, and
is substantially enhanced for a low-temperature background thermal gas. This is
discussed in further detail in the following analysis.

In the following analysis, we take the hydrodynamical, cosmic ray diffusion co-
efficient κ = κ(ρ), and we use the dimensionless variables (2.19), but, in an abuse
of notation, we omit the overbars on the dimensionless variables.

3. The magnetohydrodynamic eigenequations

Before proceeding with the derivation of wave interaction equations for the two-
fluid MHD cosmic ray model, it is useful to have at hand the eigenvalues and
eigenvectors of the MHD equations. The MHD eigenvectors depend on the state
vector (i.e. dependent variables) used in the analysis. We consider two different
state vectors that are useful in deriving the wave interaction equations in Sec. 4.
We consider the state vector

Ψ̃
′
= (ρ, ux, uy, uz, By, Bz, S)T, (3.1)

and the conserved densities state vector

Ψ̃ = (ρ,Mx,My,Mz, By, Bz, σ)T, (3.2)

where M = ρu is the mass flux and σ = ρS is the conserved entropy density. The
eigenvalues and eigenvectors are obtained in Sec. 3.1. Section 3.2 provides formulae
relating the wave amplitudes to the total perturbations of the MHD fluid. The rela-
tionships between the wave amplitudes and the individual wave mode contributions
to the total perturbations are discussed. Section 3.3 discusses discrete symmetries
that map eigenvectors onto eigenvectors. These symmetries imply symmetries be-
tween the wave interaction coefficients obtained in Secs 5 and 6.

3.1. Eigenvalues and eigenvectors

In terms of Ψ̃
′
, the MHD equations may be written in the form

∂Ψ̃
′

∂t
+ A′·∂Ψ̃

′

∂x
= 0, (3.3)
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where

A′ =



ux ρ 0 0 0 0 0
a2
gρ
−1 ux 0 0 b2

0Byρ
−1 b2

0Bzρ
−1 pgρ

−1

0 0 ux 0 −b2
0Bxρ

−1 0 0
0 0 0 ux 0 −b2

0Bxρ
−1 0

0 By −Bx 0 ux 0 0
0 Bz 0 −Bx 0 ux 0
0 0 0 0 0 0 ux


. (3.4)

The right-eigenvectors {R′s} and left eigenvectors {L′s} of the matrix A′ satisfy the
eigenvector equations

L′s·(A′ − λsI) = 0, (3.5a)

(A′ − λsI)·R′s = 0, (3.5b)

where the eigenvalues {λs} satisfy the eigenvalue equation

det(A′ − λsI) = 0. (3.6)

The eigenvectors are normalized so that

L′s·R′j = δsj , (3.7)

where δsj is the Kronecker delta.
Evaluating the determinant (3.6) yields the eigenvalue equation in the form

det(A′ − λI) = −λ̃(λ̃2 − b2
x)[λ̃4 − (a2

g + b2)λ̃2 + a2
gb

2
x] = 0, (3.8)

where λ̃ = λ− ux denotes the phase speed of the waves in the fluid frame, and

b2 = b2
x + b2

⊥, bx =
b0Bx
ρ1/2

, b⊥ =
b0B⊥
ρ1/2

. (3.9)

In (3.9), bx is the phase speed of the Alfvén wave in the fluid frame. In general,
there are seven distinct solutions for λ in (3.8), namely

λ1 = ux − cf , λ2 = ux − bx, λ3 = ux − cs, λ4 = ux, (3.10a)

λ5 = ux + cs, λ6 = ux + bx, λ7 = ux + cf , (3.10b)

where cf , cs and bx denote the fast magnetoacoustic, slow magnetoacoustic, and
Alfvén speeds respectively. The fast and slow phase speeds cf and cs satisfy the
magnetoacoustic dispersion equation

c4 − (a2
g + b2)c2 + a2

gb
2
x = 0. (3.11)

The eigenvalue λ4 = ux in (3.10) corresponds to the entropy wave, or contact dis-
continuity eigenmode.

Following the approach of Brio and Wu (1988), Zachary and Colella (1992) and
Roe and Balsara (1996), we normalize the right- and left-eigenvectors {R′s} and
{L′j} so that a well-defined set of eigenvectors is obtained for the degenerate cases
of parallel propagation for which B = (Bx, 0, 0)T and perpendicular propagation for
which B = (0, By, Bz)T. It is useful to use the notation

R′1 = R′−f , R′2 = R′−A, R′3 = R′−s , R′4 = R′e, (3.12a)

R′5 = R′+s , R′6 = R′+A, R′7 = R′+f , (3.12b)
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and a similar relabelling of the left-eigenvectors, where the subscripts f , s, A and e
denote respectively the fast magnetoacoustic, slow magnetoacoustic, Alfvén and
entropy wave eigenmodes, and the superscripts − and + denote the backward
and forward waves.

The matrix (3.4) has non-normalized right- and left-eigenvectors for the
magnetoacoustic modes of the form

r′(ma) =
(

1,
c

ρ
,− cbxb⊥

(c2 − b2
x)ρ

,
c2b⊥

(c2 − b2
x)b0ρ1/2

, 0
)T

, (3.13)

l′(ma) =
ρ

a2

(
a2

ρ
, c,− cbxb⊥

c2 − b2
x

,
c2b0b⊥

(c2 − b2
x)ρ1/2

,
a2

γg

)
, (3.14)

where the superscript (ma) denotes the magnetoacoustic mode, a ≡ ag is the gas
sound speed, b⊥ = byey + bzez is the same as in (3.9), and c denotes one of the
solutions of the magnetoacoustic dispersion equation (3.11). To obtain a well-
defined set of normalized eigenvectors for the degenerate cases of parallel (k ‖ B)
and perpendicular (k ⊥ B) propagation, we consider the eigenvectors

R′(ma) = krr′(ma), (3.15a)

L′(ma) = kll′(ma). (3.15b)

The eigenvectors {R′(ma)} and {L′(ma)} form an orthonormal set for the magnetoa-
coustic modes if we choose

krkl =
a2|c2 − b2

x|
2c2(c2

f − c2
s)
, (3.16)

(see also Roe and Balsara 1996). The condition (3.16) for the fast and slow modes
yields the equations

krfk
l
f = 1

2α
2
f , krsk

l
s = 1

2α
2
s, (3.17)

where αf and αs are defined by the equations

αf =
(
a2 − c2

s

c2
f − c2

s

)1/2

, αs =
(
c2
f − a2

c2
f − c2

s

)1/2

. (3.18)

The parameters αf and αs are the same as those used by Roe and Balsara (1996).
They satisfy the auxiliary equations

α2
f + α2

s = 1, αfαs =
ab⊥

c2
f − c2

s

. (3.19)

Note also that cfcs = a|bx|.
The choices

krf = αf , klf = 1
2αf , krs = αs, kls = 1

2αs, (3.20)

yield well-defined eigenvectors (3.15) for the degenerate cases. Using the normal-
ization constants (3.20), we obtain

R′±f =
(
αf ,±αfcf

ρ
,∓αscs

ρ
sgn(bx) β⊥,

αsaβ⊥
b0ρ

1
2

, 0
)T

, (3.21)

L′±f =
1
2

(
αf ,±αfcfρ

a2 ,∓ραscs sgn(bx)
a2 β⊥,

b0ρ
1
2αsβ⊥
a

,
αfρ

γg

)
(3.22)
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for the fast-mode eigenvectors, where

β⊥ =
B⊥
B⊥

= βyey + βzez, (3.23)

ex, ey and ez are unit vectors along the x, y and z axes, and sgn(bx) denotes the
sign of bx. Similarly, we find

R′±s =
(
αs,±αscs

ρ
,±αfcf

ρ
sgn(bx) β⊥,−

αfaβ⊥
b0ρ1/2

, 0
)T

, (3.24)

L′±s =
1
2

(
αs,±αscsρ

a2 ,±ραfcf sgn(bx)
a2 β⊥,−

b0ρ
1/2αfβ⊥
a

,
αsρ

γg

)
(3.25)

for the slow-mode eigenvectors.
A well-defined set of eigenvectors for the Alfvén modes is

R′±A =
(

0, 0,∓b0βz

ρ
1
2

,±b0βy

ρ
1
2

, βz,−βy, 0
)T

, (3.26)

L′±A =
1
2

(
0, 0,∓ρ

1
2 βz
b0

,±ρ
1
2 βy
b0

, βz,−βy, 0
)
. (3.27)

Similarly, for the entropy wave,

R′e =
(

1, 0, 0, 0, 0, 0,−γg
ρ

)T

, (3.28)

L′e = − ρ

γg
(0, 0, 0, 0, 0, 0, 1) (3.29)

are the normalized eigenvectors.
Now consider the form of the eigenvectors for the case where the state vector is

the conserved densities state vector (3.2). In this case the MHD equations may be
written in the form

∂Ψ̃
∂t

+ A · ∂Ψ̃
∂x

= 0. (3.30)

The matrix A in (3.30) is given by the formula

Aij =
∂F i

∂Ψj
, (3.31)

where the {F i} are the MHD fluxes in (2.18). Using (3.31), the matrix A is given
by

A =



0 1 0 0 0 0 0
a2
g − u2

x − σpgρ−2 2ux 0 0 b2
0By b2

0Bz pgρ
−1

−uxuy uy ux 0 −b2
0Bx 0 0

−uxuz uz 0 ux 0 −b2
0Bx 0

−(uxBy − uyBx)ρ−1 Byρ
−1 −Bxρ−1 0 ux 0 0

−(uxBz − uzBx)ρ−1 Bzρ
−1 0 −Bxρ−1 0 ux 0

−σuxρ−1 σρ−1 0 0 0 0 ux


.

(3.32)
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The matrix A in (3.32) is related to the matrix A′ in (3.4) by the transformation

A = Q ·A′ · P, Q = P−1, (3.33a)

Pαβ =
∂Ψ̃′α

∂Ψ̃β
, Qαβ =

∂Ψ̃α

∂Ψ̃′β
. (3.33b)

In the perturbation analysis in Sec. 4, we use perturbations of Ψ̃ and Ψ̃
′
of the form

δΨ̃ = εΨ̃
(1)

+O(ε2), δΨ̃
′
= εΨ̃

′(1) +O(ε2) (3.34)

where

Ψ̃
(1)

=
7∑
s=1

asRs, Ψ̃
′(1) =

7∑
s=1

a′sR
′
s, a′s = as, (3.35)

and ε is a small parameter ordering the perturbation expansion. In (3.35), the wave
amplitudes as and a′s are chosen to be the same. For a′s = as, the eigenvectors of
the matrix A are related to those of the matrix A′ by the equations

Rs = Q · R′s, (3.36a)

Lj = L′j ·P. (3.36b)

Note that the {Lj} and the {Rs} satisfy the orthonormality conditions Lj ·Rs = δjs.
The matrix P in (3.33) has the form

P =



1 0 0 0 0 0 0
−uxρ−1 ρ−1 0 0 0 0 0
−uyρ−1 0 ρ−1 0 0 0 0
−uzρ−1 0 0 ρ−1 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0

σρ−2 0 0 0 0 0 ρ−1


. (3.37)

Similarly, the matrix Q = P−1 has the form

Q =



1 0 0 0 0 0 0
ux ρ 0 0 0 0 0
uy 0 ρ 0 0 0 0
uz 0 0 ρ 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
S 0 0 0 0 0 ρ


. (3.38)

Using the transformation matrices (3.37) and (3.38) and the eigenvectors (3.21)
and (3.22) in (3.36b), we obtain the conserved densities eigenvectors for the fast
mode in the form

R±f =
(
αf , αf (ux ± cf ), αfuy ∓ αscs sgn(bx)βy, αfuz ∓ αscs sgn(bx)βz,

αsaβy
b0ρ1/2

,
αsaβz
b0ρ1/2

, αfS

)T

, (3.39)
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L±f =
1
2

(
αf

(
1− S

γg

)
∓ αfcfux

a2 ± αscs sgn(bx)
a2 β⊥ · u⊥,

±αfcf
a2 ,∓αscs sgn(bx)

a2 βy,∓αscs sgn(bx)
a2 βz,

αsb0ρ
1/2

a
βy,

αsb0ρ
1/2

a
βz,

αf
γg

)
, (3.40)

where αf , αs and β⊥ are given by (3.18) and (3.23), and

u⊥ = uyey + uzez. (3.41)

Similarly, the slow-mode eigenvectors have the form

R±s =
(
αs, αs(ux ± cs), αsuy ± αfcf sgn(bx)βy, αsuz ± αfcf sgn(bx)βz,

−αfaβy
b0ρ1/2

,−αfaβz
b0ρ1/2

, αsS

)T

, (3.42)

L±s =
1
2

(
αs

(
1− S

γg

)
∓ αscsux

a2 ∓ αfcf sgn(bx)
a2 β⊥ · u⊥,

±αscs
a2 ,±αfcf sgn(bx)

a2 βy,±αfcf sgn(bx)
a2 βz,

−αfb0ρ
1/2

a
βy,−αfb0ρ

1/2

a
βz,

αs
γg

)
. (3.43)

The Alfvén eigenvectors are

R±A = (0, 0,∓b0ρ
1/2βz,±b0ρ

1/2βy, βz,−βy, 0)T, (3.44)

L±A =
1
2

(
∓uzβy − uyβz

b0ρ1/2
, 0,∓ βz

b0ρ1/2
,± βy

b0ρ1/2
, βz,−βy, 0

)
. (3.45)

The entropy wave eigenvectors are

Re =
(
1, ux, uy, uz, 0, 0, S − γg

)T
, (3.46)

Le =
1
γg

(S, 0, 0, 0, 0, 0,−1) . (3.47)

The above eigenvectors are in general well defined as B⊥ → 0 (parallel propagation
limit), provided that we specify the manner in which By and Bz tend to zero.

Both sets of eigenvectors (3.21)–(3.29) and (3.39)–(3.47) corresponding to the
state vectors Ψ̃

′
and Ψ̃ (see (3.1) and (3.2)) may be used in the perturbation anal-

ysis in Sec. 4. The wave interaction coefficients of physical interest turn out to be
independent of which state vector is used in the perturbation analysis, provided
that the wave amplitudes as are chosen to be the same in both cases (see Appendix
A).

3.2. Wave amplitudes and eigenvector relations

In this section, we relate the wave amplitudes {aj : j = 1, . . . , 7} to the total MHD
fluid perturbations, which have the form

δΨ̃
′
=
(
δρ, δux, δuy, δuz, δBy, δBz, δS̄

)T
= ε(ρ1, u1

x, u
1
y, u

1
z, B

1
y, B

1
z, S̄

1)T. (3.48)
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Using the orthogonality relations L′j ·R′s = δjs and (3.35) yields the formulae

aj = L′j · Ψ̃
′(1) ≡ L′j · (ρ1, u1

x, u
1
y, u

1
z, B

1
y, B

1
z, S̄

1)T (3.49)

for the wave amplitudes {aj}. The total perturbations δΨ̃
′(1) may in turn be split

up into contributions from the different wave modes, by noting that

ajR′j =
(
ρj , ujx, ujy, ujz, Bjy, Bjz, S̄j

)T
, j = 1, . . . , 7. (3.50)

In (3.50), the ρj , uj , Bj and S̄j denote the density, velocity, magnetic induction and
entropy perturbations due to the different wave modes. There are two degenerate
eigenvalue cases, namely when B = (Bx, 0, 0)T and B = (0, By, Bz)T. Particular care
needs to be exercised for the case B = (Bx, 0, 0)T for which k ‖ B, since in this case
one of the magnetoacoustic modes becomes incompressible, and behaves like the
Alfvén mode, but with a phase shift in the eigenrelations between δu⊥ and δB⊥.

3.2.1. Case B � (Bx, 0, 0)T. Use of the left-eigenvectors (3.22), (3.25), (3.27) and
(3.29) in (3.49) yields the formulae

a1 = a−f , a7 = a+
f , a3 = a−s , a5 = a+

s , (3.51a)

a2 = a−A, a6 = a+
A, a4 = ae (3.51b)

for the different wave modes, where

a±f =
1
2

[
αf

(
ρ1 +

ρS̄1

γg

)
± αfcfρ

a2 u1
x +

b0ρ
1/2αs
a

β⊥ ·
(

B1
⊥ ∓

csρ
1/2

ab0
u1
⊥

)]
, (3.52)

a±s =
1
2

[
αs

(
ρ1 +

ρS̄1

γg

)
± αscsρ

a2 u1
x −

b0ρ
1/2αf
a

β⊥ ·
(

B1
⊥ ∓

cfρ
1/2

ab0
u1
⊥

)]
, (3.53)

a±A =
1
2

[
(βzB1

y − βyB1
z)∓

ρ1/2

b0
(βzu1

y − βyu1
z)
]

≡ −1
2

ex · β⊥ ×
(

B1
⊥ ∓

ρ1/2

b0
u1
⊥

)
, (3.54)

a4 ≡ ae = −ρS̄
1

γg
(3.55)

give the wave amplitudes for the fast, slow, Alfvén and entropy waves in terms of
the total MHD fluid perturbations.

Using the right-eigenvectors {R′j} and (3.50), we obtain the formulae

ρ1 = αfa1, ρ3 = αsa3, ρ4 = a4, ρ5 = αsa5, ρ7 = αfa7 (3.56)

for the density perturbations of the fast and slow modes (ρ1, ρ3, ρ5, ρ7) and the
entropy wave (ρ4) in terms of the wave amplitudes {aj}. Similar formulae for the
fluid velocity, magnetic induction and entropy perturbations {uj ,Bj , S̄j} may also
be obtained from (3.50).

Similarly, for the Alfvén modes, (3.50) yields the results

Bjy = βzaj , Bjz = −βyaj , (3.57a)

aj = βzBjy − βyBjz ≡ ex · (β⊥ × Bj), j = 2, 6, (3.57b)

relating a2 and a6 to the magnetic field perturbations B2 and B6.
The formulae (3.51)–(3.57) also apply for the degenerate-eigenvalue case where
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Bx = 0 (i.e. k ⊥ B). It is straightforward to determine the special form of the
eigenrelations (3.51)–(3.57) for the degenerate-eigenvalue cases for which k ‖ B and
k ⊥ B, by taking the appropriate limits in (3.51)–(3.57).

3.3. Eigenvector symmetries

The eigenvectors {Rj} and {Lj} may be regarded as functions of the parameters
y = (cf , cs, b0, a). Under the transformation

Ta : y ≡ (cf , cs, b0, a) 7→ (−cf ,−cs,−b0,−a), (3.58)

the forward wave eigenvectors are mapped onto the corresponding backward wave
eigenvectors. In other words,

Lj(Tay) = Lj′ (y), Rj(Tay) = Rj′ (y), j′ = 8− j. (3.59)

There are other maps, similar to (3.58), obtained by interchanging the parameters
y and/or changing the sign of the parameters, that map eigenvectors onto eigenvec-
tors. These maps imply symmetry relations between the nonlinear wave interaction
coefficients (Sec. 5), and the linear wave mixing coefficients (Sec. 6). An alternative
suggestive notation for Ta is

Ta =
(

cf cs b0 a
−cf −cs −b0 −a

)
, (3.60)

where the first row in (3.60) is the domain and the second row is the range.
The map

Tb : y ≡ (cf , cs, b0, a) 7→ (cf , cs,−b0,−a) (3.61)

maps the backward Alfvén wave eigenvectors onto the forward Alfvén wave eigen-
vectors, but leaves the magnetoacoustic eigenvectors invariant, i.e.

Rj(Tby) = Rj′ (y), j = 2, 6, j′ = 8− j, (3.62a)

Rj(Tby) = Rj(y), j� 2, 6. (3.62b)

Similarly,

Tc : y ≡ (cf , cs, b0, a) 7→ (−cf ,−cs, b0, a) (3.63)

maps the forward magnetoacoustic eigenvectors onto the backward magnetoacous-
tic eigenvectors, but leaves the Alfvén and entropy wave eigenvectors invariant.
Thus

Rj(Tcy) = Rj′ (y), j� 2, 6, j′ = 8− j, (3.64a)

Rj(Tcy) = Rj(y), j = 2, 4, 6. (3.64b)

A further interesting map is

Td : y ≡ (cf , cs, b0, a) 7→ (cs,−cf ,−b0, a). (3.65)

Td maps the slow magnetoacoustic eigenvectors onto the fast magnetoacoustic
eigenvectors and vice versa, in the manner

R1(Tdy) = R3(y), R3(Tdy) = R7(y), R7(Tdy) = R5(y), R5(Tdy) = R1(y).
(3.66)

The map Td maps the backward Alfvén wave onto the forward Alfvén wave eigen-
vectors, and vice versa:

R2(Tdy) = R6(y), R6(Tdy) = R2(y). (3.67)
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Other maps can be constructed by composition of Ta, Tb, Tc and Td. For example,

T 2
d =

(
cf cs b0 a
−cf −cs b0 a

)
≡ Tc, (3.68a)

T 3
d =

(
cf cs b0 a
−cs cf −b0 a

)
. (3.68b)

It is of interest to note that

T 2
a = T 2

b = T 2
c = T 4

d =
(
cf cs b0 a
cf cs b0 a

)
≡ I, (3.69)

where I is the identity map. The left-eigenvectors {Lj} transform in the same way
as the right-eigenvectors in (3.62)–(3.69).

4. Short-wavelength waves in non-uniform flows
In this section, we use the method of multiple scales to derive equations describing
weakly nonlinear wave interactions, and linear wave mixing for short-wavelength
waves in a non-uniform large-scale background flow. A similar study of wave propa-
gation for the two-fluid cosmic ray model, without MHD effects, was carried out by
Webb et al. (1997a). We emphasize that wave interactions for the pure MHD case
are obtained by simply dropping the cosmic ray terms in the equations. At lowest
order in the perturbation analysis, one finds that cosmic ray pressure perturbations
play no role in the analysis. At the next order, one obtains the standard eigenvalues
and eigenvector solutions of ideal MHD. At the following order, one obtains wave
evolution equations describing linear wave mixing of the different eigenmodes due
to the non-uniform background flow, instability and damping terms due to the
cosmic rays, and nonlinear interaction effects.

From (2.15) and (2.16), the equations governing the system can be written in the
matrix form:

∂Ψ
∂t

+ A(Ψ) · ∂Ψ
∂x
− ∂

∂x

[
K̂(Ψ) · ∂Ψ

∂x

]
= 0, (4.1)

where the matrix

K̂ij = κ̄δi8δ
j
8, (4.2)

represents the effects of cosmic ray diffusion. As discussed in (2.23) et seq., we take
κ̄ = κ̄(ρ) in the following analysis. The 8× 8 matrix A in (4.1) has components:

Aij = Aij =
∂F i

∂Ψj
, i, j = 1, . . . , 7, (4.3a)

Ai8 = Ci = δi2, i = 1, . . . , 7, (4.3b)

A8j = Dj , j = 1, . . . , 8, (4.3c)

where

C = (0, 1, 0, 0, 0, 0, 0)T,

D = (−a2
cux, a

2
c, 0, 0, 0, 0, 0, ux), (4.4)

and

ac =
(
γcpc
ρ

)1/2

(4.5)

defines the ‘cosmic ray sound speed’ ac.
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The Jacobian matrix A in (4.3) contains the MHD effects in the model, and is
given by (3.32). The MHD eigenvalues and eigenvectors of the matrix A are given
in (3.32) et seq. These play an important role in the following analysis.

4.1. The perturbation expansion

Consider the evolution of weakly nonlinear short-wavelength waves, with length
scale L1 and time scale T1 in a large-scale background flow, with length and time
scales L and T , where L � L1 and T � T1. We develop a weakly nonlinear geo-
metrical optics expansion for the waves in the perturbation parameter

ε =
L1

L
≡ T1

T
(0 < ε� 1), (4.6)

of the form

Ψ = Ψ(0) + εΨ(1) + ε2Ψ(2) + . . . , (4.7)

where the background state Ψ(0) = Ψ(0)(x̄, t̄) depends on the slow variables (x̄, t̄)
whereas the wave perturbations {Ψ(i)(x̄, t̄; ξ, τ ) : i > 1} depend on both the slow
variables x̄ and t̄ and on the fast variables:

ξ =
x̄

ε
, τ =

t̄

ε
. (4.8)

The normalized diffusion coefficient κ̄ = O(1) in (2.19). Using the derivative trans-
formations

∂

∂t̄
=
∂

∂t̄
+

1
ε

∂

∂τ
, (4.9a)

∂

∂x̄
=

∂

∂x̄
+

1
ε

∂

∂ξ
, (4.9b)

and the perturbation expansion (4.7) in (4.1) yields the equations[(
∂

∂t̄
+

1
ε

∂

∂τ

)
+ [A0 + (εΨ(1) + ε2Ψ(2) + . . .) ·∇ΨA

+ 1
2 (εΨ(1) + ε2Ψ(2) + . . .)(εΨ(1) + ε2Ψ(2) + . . .) :∇Ψ∇ΨA + . . .]·

(
∂

∂x̄
+

1
ε

∂

∂ξ

)
−
(
∂

∂x̄
+

1
ε

∂

∂ξ

){
[K̂0 + (εΨ(1) + ε2Ψ(2) + . . .) ·∇ΨK̂ + . . .] ·

(
∂

∂x̄
+

1
ε

∂

∂ξ

)}]
(Ψ(0) + εΨ(1) + ε2Ψ(2) + . . .) = 0. (4.10)

As in Webb et al. (1997a), the O(1/ε2) balance of terms in (4.10) is automatically
satisfied, since Ψ(0) is independent of ξ. The O(1/ε) balance in (4.10) requires that
κp1

c,ξξ = 0, and since we require p1
c to be sublinear in ξ for a uniform expansion, it

follows that

p1
c = 0 (4.11)

is the appropriate solution for p1
c. The balance equations at O(1) may be split up

into the equations

∂Ψ(0)

∂t̄
+ A0 · ∂Ψ(0)

∂x̄
− ∂

∂x̄

(
K̂0 · ∂Ψ(0)

∂x̄

)
= 0 (4.12)
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for the non-uniform background state Ψ(0), and the O(1) balance for the wave
perturbations

∂Ψ(1)

∂τ
+ A0 · ∂Ψ(1)

∂ξ
− ∂

∂ξ

[
Ψ(1) ·∇ΨK̂ ·

(
∂Ψ(0)

∂x̄
+
∂Ψ(1)

∂ξ

)
+K̂0 ·

(
2
∂Ψ(1)

∂x̄
+
∂Ψ(2)

∂ξ

)]
= 0. (4.13)

Taking into account the form of the diffusion term in (4.1), and introducing the
state vector

Ψ̃ = (ρ,Mx,My,Mz, By, Bz, σ)T (4.14)

for the MHD background thermal fluid, the first seven equations in (4.13) reduce
to:

∂Ψ̃
(1)

∂τ
+ A0 · ∂Ψ̃

(1)

∂ξ
= 0, (4.15)

where the matrix A0 = A(Ψ(0)) is given by (3.32). The eighth equation in (4.13),

γcp
0
c

∂u1

∂ξ
−
(
κ̄0
∂2p2

c

∂ξ2 +
∂κ̄

∂ρ

∂ρ1

∂ξ

∂p0
c

∂x̄

)
= 0, (4.16)

couples the second-order cosmic ray perturbation p2
c to u1.

Following the approach of Majda and Rosales (1984) and Webb et al. (1997a),

the solutions for Ψ̃
(1)

and Ψ̃
(2)

are expanded in terms of the eigenvector solutions
associated with the matrix A of the form

Ψ̃
(1)

=
7∑
s=1

as(x̄, t̄, θs)Rs, (4.17)

Ψ̃
(2)

=
7∑
s=1

bs(x̄, t̄, θs, τ )Rs, (4.18)

where {as} and {bs} determine the wave amplitudes, and

θs = ksξ − ωsτ, λs =
ωs
ks
, (4.19)

are the phase and phase speed of the sth wave mode. The matrix A is given by
(3.32). The phase velocities {λs : s = 1, . . . , 7} in (4.19) are the MHD wave eigen-
velocities listed in (3.10). The right-eigenvectors {Rs} and left-eigenvectors {Lj} of
the matrix A are given in (3.39)–(3.47).

At O(ε), the first seven equations in (4.10) yield the matrix equation

∂Ψ̃
(2)

∂τ
+ A0 · ∂Ψ̃

(2)

∂ξ
+ G = 0, (4.20)

where

G =
∂Ψ̃

(1)

∂t̄
+A0·∂Ψ̃

(1)

∂x̄
+C

∂p2
c

∂ξ
+Ψ̃

(1)·∇Ψ̃C
∂p0

c

∂x̄
+Ψ̃

(1)·∇Ψ̃A·
(
∂Ψ̃

(0)

∂x̄
+
∂Ψ̃

(1)

∂ξ

)
. (4.21)
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The eighth equation in (4.10) at O(ε) is

∂p2
c

∂τ
+ D ·

(
∂Ψ(2)

∂ξ
+
∂Ψ(1)

∂x̄

)
+ Ψ(1) ·∇ΨD ·

(
∂Ψ(0)

∂x̄
+
∂Ψ(1)

∂ξ

)
− ∂

∂x̄

(
κ̄
∂p2

c

∂ξ
+ ρ1 ∂κ̄

∂ρ

∂p0
c

∂x̄

)
− ∂

∂ξ

[
κ̄

(
∂p2

c

∂x̄
+
∂p3

c

∂ξ

)
+ρ1 ∂κ̄

∂ρ

∂p2
c

∂ξ
+
(
ρ2 ∂κ̄

∂ρ
+ 1

2 (ρ1)2 ∂
2κ̄

∂ρ2

)
∂p0

c

∂x̄

]
= 0. (4.22)

The vectors C and D in (4.21) and (4.22) are defined in (4.4).

Substituting the solution ansatz (4.17) and (4.18) for Ψ̃
(1)

and Ψ̃
(2)

in (4.20),
and multiplying (4.20) on the left by the left-eigenvector Lj , yields the system of
equations

∂bj(θj , τ )
∂τj

+ Lj · G = 0, j = 1, . . . , 7, (4.23)

where ∂/∂τj ≡ (∂/∂τ )|θj . As in Majda and Rosales (1984) and Webb et al. (1997a),
we require that bj(θj , τ )/τ → 0 as τ →∞ in order that the perturbation expansion
remain uniform for times τ = O(1/ε). Using this latter condition, and integrating
(4.23) with respect to τ , with θj held fixed, yields the averaged evolution equations:

〈Lj · G〉j = 0, j = 1, . . . , 7, (4.24)

governing the short-wavelength wave modes on the long time scale. The averaging
in (4.24) is defined by

〈f〉j = lim
τ→∞

1
τ

∫ τ

0
f |θjdτ ′, (4.25)

(i.e. the average defined in (4.24) is carried out with θj held fixed). The averaged
wave equations (4.24) are integro-differential evolution equations of the type ob-
tained by Majda and Rosales (1984) describing three-wave resonant interactions
for weakly nonlinear hyperbolic waves.

4.2. Wave evolution equations prior to averaging

The wave evolution equations prior to averaging may be written in the form

∂bj(θj , τ )
∂τ

+ T
(1)
j + T

(2)
j = 0, j = 1, . . . , 7, (4.26)

where

T
(1)
j = Lj ·

(
∂Ψ̃

(1)

∂t̄
+ A0 · ∂Ψ̃

(1)

∂x̄
+ C

∂p2
c

∂ξ
+ Ψ̃

(1) ·∇Ψ̃C
∂p0

c

∂x̄

+Ψ̃
(1) ·∇Ψ̃A · ∂Ψ̃

(0)

∂x̄

)
, (4.27)

T
(2)
j = Lj ·

(
Ψ̃

(1) ·∇Ψ̃A · ∂Ψ̃
(1)

∂ξ

)
. (4.28)

Next, note from (4.16) that

∂p
(2)
c

∂ξ
=
ρa2
c

κ̄
u1
x −

ζ

ρ

∂p0
c

∂x̄
ρ1 ≡

7∑
s=1

[
ρa2
c

κ̄
(R2

s − uxR1
s)−

ζ

ρ

∂p0
c

∂x̄
R1
s

]
as, (4.29)
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where ζ ≡ ∂ ln κ/∂ ln ρ (see (2.24)) and Rjs denotes the jth component of Rs. Using

(4.29) and the eigenexpansion (4.17) for Ψ̃
(1)

in (4.27), we obtain

T
(1)
j =

∂aj
∂t

+
∂

∂x̄
(λjaj) +

7∑
s=1

Λjsas (4.30)

for the linear wave mixing term (4.27), where

Λjs = −∂λs
∂x̄

δjs + Lj ·
[
∂Rs
∂t̄

+ λj
∂Rs
∂x̄

+ Rs ·∇Ψ̃A · ∂Ψ̃
(0)

∂x̄

+Rs·∇Ψ̃C
∂p0

c

∂x̄
+ C

(
a2
c

κ̄
(R2

s − uxR1
s)−

ζ

ρ

∂p0
c

∂x̄
R1
s

)]
(4.31)

are the wave mixing coefficients. The nonlinear wave–wave interaction term (4.28)
may be written in the form

T
(2)
j =

7∑
p=1

7∑
q=1

Γjpqaq
∂ap
∂ξ

, (4.32)

where the interaction coefficients Γjpq are given by

Γjpq = Lj · (Rq ·∇ΨA · Rp). (4.33)

Noting that the MHD fluxes Fα in (2.18) have continuous second partial deriva-
tives, and, using Aαβ = ∂Fα/∂Ψ̃β ((4.3)), one finds that the nonlinear interaction
coefficients Γjpq in (4.32) and (4.33) are symmetric in the indices pq. The Γjpq are
in general asymmetric if one does not use the conserved densities state vector (3.2)
in the perturbation analysis. In particular, the wave interaction coefficients Γjpq
obtained in Webb et al. (1997a) are non-symmetric in the last two indices p and
q. However, after averaging (4.23) to obtain (4.24), many of the nonlinear terms
have a zero average, and the remaining terms can be described by wave interaction
coefficients Γ̂jpq, which are symmetric in the last two indices p and q.

By differentiating the right-eigenvector equation

(A− λpI) · Rp = 0 (4.34)

in the directions of the right-eigenvectors, the interaction coefficients Γjpq in (4.33)
can be written in the form

Γjpq = δjpRq ·∇Ψλp + (λp − λj)Lj · (Rq ·∇ΨRp). (4.35)

From (4.35), we find

Γjjj = Rj ·∇Ψλj , (4.36a)

Γjjq = Rq ·∇Ψλj , q� j, (4.36b)

for the nonlinear interaction of the jth wave with itself and with the qth mode
(q� j).

Using the fact that Aij = ∂F i/∂Ψj , the term involving ∇Ψ̃A in (4.31) may be
written in the form

Lj · (Rs ·∇Ψ̃A) · ∂Ψ̃(0)

∂x̄
=
∂λs
∂x̄

δjs + (λs − λj)Lj ·∂Rs
∂x̄

. (4.37)

https://doi.org/10.1017/S0022377898007399 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377898007399


314 G. M. Webb et al.

Using (4.37) and noting that Ci = δi2 (see (4.3)), in (4.31) results in the expressions

Λjs = Lj ·
(
∂Rs
∂t̄

+ λs
∂Rs
∂x̄

)
+ L2

j

[
(R2

s − uxR1
s)
a2
c

κ
− ζ

ρ

∂pc
∂x̄

R1
s

]
(4.38)

for the wave mixing coefficients. The relatively simple form of the wave mixing
coefficients in (4.38) is a consequence of using the conserved densities state vector
Ψ̃ of (3.2). The formulae (4.38) are central results of this paper, and are used to
determine the wave mixing coefficients in Sec. 6.

In the pure MHD case, when there are no cosmic ray effects (i.e. if pc ≡ 0), the
wave mixing coefficients have the form

Λjs = Lj · dRs
dts

, (4.39)

where
d

dts
=
∂

∂t̄
+ λs

∂

∂x̄
(4.40)

is the time derivative along the sth wave mode characteristic. If the background
flow is an MHD simple wave associated with λ = λp then the background state

vector Ψ̃
(0) ≡ Ψ̃

(0)
(ϕ) depends only on the simple wave phase ϕ satisfying the

unidirectional wave equation

∂ϕ

∂t̄
+ λp

∂ϕ

∂x̄
= 0 (4.41)

(see e.g. Boillat 1970; Webb et al. 1998). Because the eigenvectors depend only on
ϕ, we find

Λjs = Lj · dRs
dϕ

(
∂ϕ

∂t̄
+ λs

∂ϕ

∂x̄

)
≡ (λs − λp)Lj · dRs

dϕ

∂ϕ

∂x̄
. (4.42)

Thus if the background flow is a simple wave associated with the pth eigenmode
then Λjp = 0, and the small-amplitude waves of the pth family do not contribute
to the evolution of the other small-amplitude wave modes with λs�λp.

4.3. Averaged wave evolution equations

From Webb et al. (1997a), the wave evolution equations (4.24) after averaging may
be written in the form

∂aj
∂t̄

+
∂

∂x̄
(λjaj) + Λjjaj +

∑′

s

Λjs〈as〉 + 〈T (2)
j 〉j = 0, j = 1, . . . , 7, (4.43)

where
∑′

s denotes summation over the index s for all modes except s = j. The
mean wave amplitudes 〈as〉 depend only on the slow variables x̄ and t̄. The wave
interaction coefficient Λjj used above differs from that used in Webb et al. (1997a),
where the wave interaction equations equivalent to (4.43) were written in a slightly
different form. The mean nonlinear interaction term 〈T (2)

j 〉j can be expressed in
both a non-conservative form

〈T (2)
j 〉j = Γ̃jjjaj

∂aj
∂θj

+
∑′

q

Γ̃jjq〈aq〉∂aj
∂θj

+
∑′

p<q

∑′

q

Γ̄jpq〈aqa′p〉j (4.44)
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and a conservative form

〈T (2)
j 〉j = kj

∂

∂θj

(
Γjjj

a2
j

2
+
∑′

q

Γjjq〈aq〉aj +
∑′

p<q

∑′

q

Γ̂jpq〈aqap〉j
)
, (4.45)

where the interaction coefficients Γ̃jpq, Γ̄jpq and Γ̂jpq are given by

Γ̃jpq = kpΓjpq, (4.46a)

Γ̄jpq = Γ̃jpq − µpjqΓ̃jqp ≡ kp(λp − λj)Lj ·[Rq,Rp], (4.46b)

Γ̂jpq =
1
kj

(µjqpΓ̃jpq + µjpqΓ̃jqp)

≡ (λq − λj)(λp − λj)
(λq − λp) Lj ·[Rq,Rp], (4.46c)

and

[Rq,Rp] = Rq ·∇ΨRp − Rp ·∇ΨRq. (4.47)

In (4.44) and (4.45) we use the notation a′p = ∂ap(θp)/∂θp, and assume that λp�λq.
Note that the coefficients Γjjq are given by (4.36).

In (4.46), the coefficients {µjpq} are given by

µjpq =
kj(λj − λp)
kq(λq − λp) ≡

νpj
νpq

, (4.48a)

νpq = (λp − λq)kpkq. (4.48b)

For three-wave resonant interactions of the jth, pth and qth wave modes (j� p�

q), the resonance conditions may be written in the form

θj = µjpqθq + µjqpθp (4.49)

(see e.g. Anile et al. 1993; Webb et al. 1997a; Ali and Hunter 1998). Since θj =
kjξ − ωjτ , (4.49) imply the equivalent equations

ωj = µjpqωq + µjqpωp, (4.50a)

kj = µjpqkq + µjqpkp, (4.50b)

where

ωj = kjλj , ωp = kpλp, ωq = kqλq, (4.51)

are the dispersion relations for the waves (see (4.19)). The condition for periodic
hyperbolic waves with frequencies and wavenumbers (ωp, kp) and (ωq, kq) to reso-
nantly interact in (4.49) is that µjpq and µjqp should be rational.

The means 〈aqa′p〉j in (4.45) are defined by

〈aqa′p〉j = lim
T→∞

1
T

∫ T

0
aq

(
kqθj + νjqτ

kj

)
a′p

(
kpθj + νjpτ

kj

)
dτ

≡ lim
|Tjp|→∞

1
Tjp

∫ αjp+Tjp

αjp

aq

(
νqpθj + νjqθp

νjp

)
a′p(θp) dθp, (4.52)

where

Tjp =
Tνjp
kj

, αjp =
kpθj
kj

, θj = kjξ − ωjτ. (4.53)

The means 〈aqap〉 are defined similarly, but with a′p replaced by ap in (4.52). The
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double summations over p and q in (4.44) and (4.45) are over all wave modes p, q
with p < q and p� q� j. The nonlinear wave interaction terms in (4.44) and (4.45)
split into three types, namely the interaction of the jth wave with itself (the Γjjj
term), the interaction of the jth wave with the mean wave field of the other waves
(the Γjjq terms), and the three-wave resonant interaction terms (the Γ̂jpq terms).
In (4.52), the phase θq of aq is given by

θq = µqpjθj + µqjpθp, (4.54)

which is precisely the condition for three-wave resonant interaction.
The conservative wave–wave interaction coefficients Γ̂jpq in (4.46) are symmetric

in the indices p and q. If one uses the state vector Ψ̃ of (3.2) in the perturbation
analysis then the interaction coefficients {Γjpq} are also symmetric in the indices
p and q. In this latter case, (4.46) yields

Γ̂jpq = Γjpq. (4.55)

However, if one uses a different state vector, for example Ψ̃
′

= (ρ,uT, By, Bz, S)T,
then the interaction coefficients Γ′jpq calculated using (4.33) are in general asym-
metric in the indices p and q (see also Webb et al. (1997a) for the gas dynamical
case). In Appendix A, it is shown that both the wave mixing coefficients {Λjs}
and the nonlinear wave interaction coefficients Γjjq and Γ̂jpq are invariant under a
change of state vector of the form Ψ̃

′
= Φ(Ψ̃), provided that the wave amplitudes

as are chosen to remain the same (i.e. a′s = as).

5. Nonlinear and resonant wave interactions
An early discussion of three-wave resonant interactions in MHD was given by
Sagdeev and Galeev (1969). More recently, Ali and Hunter (1998) have developed
three-wave resonant interaction equations for magnetohydrodynamic waves in one
Cartesian space dimension. In the present section, we discuss how the Ali and
Hunter equations arise in the present development. We also discuss the Alfvén
wave decay instability (see e.g. Sagdeev and Galeev, 1969) due to the three-wave
resonant interaction between two Alfvén waves and a slow magnetoacoustic wave
in a low-beta plasma.

5.1. Wave interaction equations

From (4.43) and (4.45), the averaged wave evolution equations (4.43) may be written
in the form

∂aj
∂t̄

+
∂

∂x̄
(λjaj) + Λjjaj +

∑′

s

Λjs〈as〉

+ kj
∂

∂θj

(
Γjjj

a2
j

2
+
∑′

q

Γjjq〈aq〉aj +
∑′

p<q

∑′

q

Γ̂jpq〈aqap〉j
)

= 0, (5.1)

where 1 6 j 6 7. The equations given in Ali and Hunter (1998) are equivalent to
(5.1), when the wave mixing coefficients Λjj and Λjs are set equal to zero, and the
mean wave interaction terms (the Γjjq terms) are set equal to zero. In this case,
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(5.1) reduces to

∂aj
∂t̄

+
∂

∂x̄
(λjaj) + kj

∂

∂θj

(
Γjjj

a2
j

2
+
∑′

p<q

∑′

q

Γ̂jpq〈aqap〉j
)

= 0, j = 1, . . . , 7, (5.2)

In the present discussion, we emphasize the symmetry properties of the interaction
coefficients, and consider the more general case where the waves have non-zero
means. Our interaction coefficients reduce to those of Ali and Hunter when we use
their wave amplitudes and eigenvectors.

In (5.1) and (5.2), the nonlinear interaction processes consist of the Burgers self-
wave interactions (the Γjjj terms), mean wave field interactions (the Γjjq terms
with q � j) and three-wave resonant interactions (the Γ̂jpq terms). As noted in
(4.54) et seq., the interaction coefficients may be determined by using either the
conserved densities state vector Ψ̃ in (3.2) or another appropriate state vector (e.g.
Ψ̃
′
= (ρ,uT, By, Bz, S)T) in the analysis.

The Burgers interaction coefficients {Γjjj} and mean wave interaction coeffi-
cients {Γjjq : q� j} may be determined from (4.33) or (4.36). Using the compu-
tational algebra language Maple (see e.g. Char et al. 1992), the Burgers self wave
interaction coefficients {Γjjj} may be written in the form

Γ111 = −αfcf
ρ

βf , Γ222 = 0, Γ333 = −αscs
ρ

βs, (5.3a)

Γ444 = 0, Γ555 = −Γ333, Γ666 = 0, Γ777 = −Γ111, (5.3b)

where

βf = 1
2 [(γg + 1)α2

f + 3α2
s], βs = 1

2 [(γg + 1)α2
s + 3α2

f ], (5.4a)

αf =
(
a2
g − c2

s

c2
f − c2

s

)1/2

, αs =
(
c2
f − a2

g

c2
f − c2

s

)1/2

. (5.4b)

Note that the compressive magnetoacoustic, self wave interaction coefficients Γ111,
Γ333, Γ555 and Γ777 are non-zero, whereas the Alfvén and entropy wave coefficients
Γ222, Γ666 and Γ444 are zero. One can show that the interaction coefficients {Γjjp}
are antisymmetric with respect to reversal of the wave speeds, namely

Γjjp = −Γj′j′p′ , j′ = 8− j, p′ = 8− p, (5.5)

where 1 6 j 6 7 and 1 6 p 6 7.
The non-zero mean wave field interaction coefficients {Γjjp : p� j} for j 6 4

are given by the equations

Γ113 = −αs
ρ

[(βf − 2)cf + cs], Γ114 =
cf
2ρ
, (5.6a)

Γ115 = −αs
ρ

[(βf − 2)cf − cs], Γ117 = −αfcf (βf − 2)
ρ

, (5.6b)

Γ221 =
αf (|bx| − 2cf )

2ρ
, Γ223 =

αs(|bx| − 2cs)
2ρ

, (5.6c)

Γ224 =
|bx|
2ρ

, Γ225 =
αs(|bx| + 2cs)

2ρ
, Γ227 =

αf (|bx| + 2cf )
2ρ

, (5.6d)

Γ331 = −αf
ρ

[(βs − 2)cs + cf ], Γ334 =
cs
2ρ
, (5.6e)
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Γ335 = −αscs(βs − 2)
ρ

, Γ337 = −αf
ρ

[(βs − 2)cs − cf ], (5.6f)

Γ441 = −αfcf
ρ

, Γ443 = −αscs
ρ

, (5.6g)

Γ445 =
αscs
ρ

, Γ447 =
αfcf
ρ

. (5.6h)

For j > 4, the non-zero mean wave interaction coefficients may be determined by
using the results (5.6) in conjunction with the symmetry relations (5.5).

The three-wave resonant interaction coefficients {Γ̂jpq}may be determined from
(4.46). An alternative expression for the Γ̂jpq, using (4.46), is

Γ̂jpq =
λj − λq
λp − λqΓjpq +

λp − λj
λp − λqΓjqp, (5.7)

where Γjpq is given by (4.33). Using the result (5.7) and (4.33), the non-zero three-
wave resonant interaction coefficients for j < 4 are given by the equations

Γ̂126 = −αfcfb
2
0

2a2
g

, Γ̂135 = −αfcf (βs − 1)
ρ

, Γ̂137 = −αscf (βf − 1)
ρ

, (5.8a)

Γ̂147 = − cf
2ρ
, Γ̂157 = −αscf (βf − 1)

ρ
, (5.8b)

Γ̂216 = −αf |bx|
2ρ

, Γ̂236 = −αs|bx|
2ρ

, Γ̂246 = −|bx|
2ρ

, (5.8c)

Γ̂256 = −αs|bx|
2ρ

, Γ̂267 = −αf |bx|
2ρ

, (5.8d)

Γ̂315 = −αfcs(βs − 1)
ρ

, Γ̂317 = −αscs(βf − 1)
ρ

, Γ̂326 = −αscsb
2
0

2a2
g

, (5.8e)

Γ̂345 = − cs
2ρ
, Γ̂357 = −αfcs(βs − 1)

ρ
. (5.8f)

The resonant wave interaction coefficients Γ̂4pq in the entropy wave evolution equa-
tion are all zero. The non-zero resonant wave interaction coefficients {Γ̂jpq} for
j > 4 can be obtained by using (5.8) and the symmetry relations

Γ̂jpq = −Γ̂j′p′q′ , j′ = 8− j, p′ = 8− p, q′ = 8− q, (5.9)

associated with interchanging the roles of the backward and forward waves. The
non-conservative, asymmetric interaction coefficients Γ̄jpq in (4.46) may be ob-
tained by using the relations

Γ̄jpq =
kp(λp − λq)
λj − λq Γ̂jpq (5.10)

and the results (5.8) and (5.9) for Γ̂jpq. The resonant wave interaction equations
presented in Ali and Hunter (1998) were written in terms of the asymmetric inter-
action coefficients Γ̄jpq.

5.2. Examples of three-wave resonant interactions

There are a variety of resonant triads governed by the wave interaction equa-
tions. In order for three-wave resonant interactions to occur, two conditions must
apply, namely the resonant wave interaction coefficients Γ̂jpq must be non-zero
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and the resonance conditions (4.50) for the wave triad must be satisfied. Ali and
Hunter (1998) point out that only four types of resonant triads are possible: slow–
fast magnetoacoustic wave interaction; Alfvén–magnetoacoustic wave interaction;
Alfvén–entropy wave interaction; and magnetoacoustic–entropy wave interaction.
For the case of resonant periodic waves, the coefficients {µjpq} in the resonance
conditions (4.49) and (4.50) must be rational numbers, i.e.

ωj = mωq + nωp, kj = mkq + nkp, µjpq = m, µjqp = n, (5.11)

where m and n are rational numbers. The simplest resonance conditions are ob-
tained by taking m and n to be integers, and the wave amplitudes {as} are taken
to be 2π-periodic functions of the wave phases θs. We discuss two resonant triad
examples below. We restrict our discussion to the pure MHD case, in which there
are no cosmic ray effects, and assume a constant background state.

5.2.1. Alfvén–magnetoacoustic wave interaction. As an example of resonant wave
interactions, consider the interaction of the backward and forward Alfvén waves
with the forward slow magnetoacoustic wave in a low-beta plasma, in which bx > ag.
We first consider the strictly hyperbolic case when all the wave speeds are distinct,
and then consider the degenerate case when B = (Bx, 0, 0)T, in which the Alfvén
and fast magnetoacoustic speeds coincide.

(a) The strictly hyperbolic case. From (5.11), the tri-resonance condition occurs
when

ω2 = mω6 + nω5, k2 = mk6 + nk5. (5.12)

Using (4.48b)–(4.51), the resonance conditions (5.12) are satisfied for

k2 = − (bx − cs)m
bx + cs

k6, k5 = − 2bxm
(bx + cs)n

k6. (5.13)

In particular, for the case m = −1 and n = 1, we have

k2 =
bx − cs
bx + cs

k6, k5 =
2bx

bx + cs
k6, ω2 = ω5 − ω6. (5.14)

Galeev and Sagdeev (1969) have considered a similar example, in which a large-
amplitude Alfvén wave (with frequency ω6), interacts resonantly with a small-
amplitude sound wave (with frequency ω5), and with a small-amplitude Alfvén
wave (of frequency ω2). Because bx > cs, the resonance conditions (5.14) imply
that ω6 > ω5 > 0 and ω6 > |ω2| (note that ω2 < 0). Under these circumstances, the
backward Alfvén wave (a2) and the forward slow magnetoacoustic wave (a5) are
subject to an instability (Galeev and Sagdeev 1969). For the resonant interaction
case described by (5.12)–(5.14), the wave interaction equations (5.1) reduce to

∂a2

∂t
− bx ∂a2

∂x
+ k2

∂

∂θ2

(
αs(bx + 2cs)

2ρ
〈a5〉a2 − αsbx

2ρ
〈a5a6〉2

)
= 0, (5.15)

∂a5

∂t
+ cs

∂a5

∂x
+ k5

∂

∂θ5

(
αscsβs

2ρ
a2

5 +
αscsb

2
0

2a2
g

〈a2a6〉5
)

= 0, (5.16)

∂a6

∂t
+ bx

∂a6

∂x
+ k6

∂

∂θ6

[
αs(2cs − bx)

2ρ
〈a5〉a6 +

αsbx
2ρ
〈a5a2〉6

]
= 0, (5.17)

where we assume a constant background state, with ux = 0. Using (3.56) and (3.57),
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we obtain the equations

B2y = βza2, B2z = −βya2, (5.18a)

B6y = βza6, B6z = −βya6, (5.18b)

ρ5 = αsa5 (5.18c)

relating the magnetic field perturbations B2 and B6 for the backward and forward
Alfvén waves and the density perturbation ρ5 for the slow magnetoacoustic wave
to the wave amplitudes a2, a5 and a6.

Equations (5.15)–(5.17) show that the waves are coupled to each other, both by
the mean wave field of the slow magnetoacoustic wave and also via the resonant
wave interactions (the 〈apaq〉j terms). The Burgers self wave interaction term (a2

5)
for the slow mode wave in (5.16) results in the generation of higher-order harmonics
as the wave steepens, and considerably complicates the nature of the wave interac-
tions. However, if one considers the initial value problem for (5.15)–(5.17) in which
a5 = 0, a2 � 0 and a6 � 0 at time t = 0, and assuming 〈a5〉 = 0, then at early
times (5.15)–(5.17) may be approximated by the three-wave resonant interaction
equations

∂a2

∂t
− bx ∂a2

∂x
− k2

∂

∂θ2

(
αsbx
2ρ
〈a5a6〉2

)
= 0, (5.19)

∂a5

∂t
+ cs

∂a5

∂x
+ k5

∂

∂θ5

(
αscsb

2
0

2a2
g

〈a2a6〉5
)

= 0, (5.20)

∂a6

∂t
+ bx

∂a6

∂x
+ k6

∂

∂θ6

(
αsbx
2ρ
〈a5a2〉6

)
= 0. (5.21)

To analyse (5.19)–(5.21) further, we use the phase representation

aj = Aj exp(iθj) +A∗j exp(−iθj), j = 2, 5, 6, (5.22)

for the wave perturbations, where the complex wave amplitudes Aj depend only on
the slow variables x and t. Using the representation (5.22) now allows the determi-
nation of the resonant interaction terms 〈apaq〉j in terms of the wave amplitudes
As. Thus, for example,

〈a5a6〉2 =
1

2π

∫ 2π

0
a5(θ2 + θ6)a6(θ6) dθ6

= A5A
∗
6 exp(iθ2) +A∗5A6 exp(−iθ2), (5.23)

where we have used the resonance relation θ5 = θ2 + θ6 for the wave phases. Using
similar results for 〈a2a6〉5 and 〈a5a2〉6 in (5.19)–(5.21) yields the three-wave resonant
interaction equations

∂A2

∂t
− bx ∂A2

∂x
− ik2

αsbx
2ρ

A5A
∗
6 = 0, (5.24)

∂A5

∂t
+ cs

∂A5

∂x
+ ik5

αscsb
2
0

2a2
g

A2A6 = 0, (5.25)

∂A6

∂t
+ bx

∂A6

∂x
+ ik6

αsbx
2ρ

A5A
∗
2 = 0 (5.26)

for the complex wave amplitudes {Aj}.
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The three-wave resonant interaction equations (5.24)–(5.26) (or modified versions
thereof) have received considerable attention in the mathematical physics litera-
ture, since the equations comprise an integrable Hamiltonian system, in which the
initial value problem may be solved by the inverse scattering method. In the present
application, we are interested in the evolution of the waves for the case whereA5 = 0
at time t = 0. At early times, the resonant interaction term A5A

∗
2 in (5.26) may be

neglected, and (5.26) has a general solution of the form A6 = A6(x + bxt). Taking
A6 = const, (5.24) and (5.25) may be reduced to the linear wave equation[(

∂

∂t
+ cs

∂

∂x

)(
∂

∂t
− bx ∂

∂x

)
− k2k5

α2
scsb

2
0bx

4ρa2
g

|A6|2
]
A2 = 0. (5.27)

Equation (5.27) admits solutions of the form A2 ∝ exp[i(Kx− νt)], provided that
ν satisfies the dispersion relation

ν2 +K(bx − cs)ν −K2bxcs + ζ|A6|2 = 0. (5.28)

In (5.28), the parameter ζ is given by

ζ =
bx(bx − cs)α2

sbxcs
2(bx + cs)2ρa2

gµ
k2

6, (5.29)

where we have used the resonance relations (5.14), and µ is the magnetic perme-
ability. Equation (5.28) has complex solutions for ν for long-wavelength waves with
wavenumbers

K2 <
4ζ|A6|2

(bx + cs)2 . (5.30)

Hence long-wavelength waves for A2 and A5 satisfying (5.30) are unstable, and
experience wave growth. In the long-wavelength limit (K = 0), (5.28) has solutions

ν = ±iζ1/2|A6|, (5.31)

showing that the instability growth rate increases with the Alfvén wave amplitude
|A6|. Similar results are discussed by Sagdeev and Galeev (1969), who emphasize
that it is necessary that ω6 > |ω2|, |ω5| for the instability to occur. Sagdeev and
Galeev (1969) interpret the latter results quantum mechanically in terms of con-
servation of energy for the wave quanta involved.

(b) The non-strictly hyperbolic case B = (Bx, 0, 0)T. Now consider the interaction
of the forward slow-mode wave (a5) with the backward and forward Alfvén waves
(a2 and a6), in a low-beta plasma (bx > ag), for the degenerate case where B =
(Bx, 0, 0)T. As B⊥ = (B2

y + B2
z)

1/2 → 0, the fast and slow magnetoacoustic speeds
reduce to

cf = bx, cs = ag. (5.32)

In this limit, the fast mode is incompressible and the fast-mode wave speed cf and
the Alfvén speed bx coincide. Thus for B = (Bx, 0, 0)T and bx > ag, the eigenvalues
are

λ1 = λ2 = ux−bx, λ3 = ux−ag, λ4 = ux, λ5 = ux+ag, λ6 = λ7 = ux+bx.
(5.33)

The parameters αf and αs, and the parameters βf and βs (see (5.4)), describing
the Burgers self wave interactions have the values

αf = 0, αs = 1, βf = 3
2 , βs = 1

2 (γg + 1). (5.34)
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Because of the degeneracy of the eigenvalues, both the Alfvén and fast-mode waves
can have the same phases. It is straightforward to write down the most general
system of equations (5.2) having three resonant phases θ2, θ5 and θ6 involving the
wave amplitudes {a1, a2, a5, a6, a7}. Using the complex magnetic field perturbations

B− = B1y +B2y + i(B1z +B2z)

≡ (βy + iβz)
(

ag
b0ρ1/2

a1 − ia2

)
, (5.35)

B+ = B6y +B7y + i(B6z +B7z)

≡ (βy + iβz)
(

ag
b0ρ1/2

a7 − ia6

)
(5.36)

and ρ5 ≡ a5 as the wave perturbation variables, the wave interaction equations
(5.2) reduce to(

∂

∂t
− bx ∂

∂x

)
B− − bx

2ρ
k2

∂

∂θ2

(〈ρ5B
+〉2
)

= 0, (5.37)(
∂

∂t
+ ag

∂

∂x

)
ρ5 + k5

∂

∂θ5

[
(γg + 1)ag

8ρ
ρ2

5 +
b2

0

4ag
〈B−B+∗ +B+B−∗〉5

]
= 0, (5.38)(

∂

∂t
+ bx

∂

∂x

)
B+ +

bx
2ρ
k6

∂

∂θ6

(〈ρ5B
−〉6
)

= 0, (5.39)

where the asterisk denotes the complex conjugate. In (5.37)–(5.39), the wave am-
plitudes are assumed to have zero means (i.e. 〈as〉 = 0), and ux = 0 is assumed. It is
of interest to note that (5.37)–(5.39) allow for the possibility of circularly polarized
Alfvén waves, whereas the non-degenerate equations (5.15)–(5.17) for constant βy
and βz apply to plane-polarized Alfvén waves.

The above completes our discussion of resonant wave interactions in magnetohy-
drodynamics. A more complete classification of three-wave resonant interactions
in MHD is given in Ali and Hunter (1998).

6. Wave mixing equations
For linear wave propagation in inhomogeneous media in which nonlinear and
second-order terms are negligible, (4.26) and (4.30) yield the linear wave mixing
equations

∂aj
∂t

+
∂

∂x
(λjaj) +

7∑
s=1

Λjsas = 0, j = 1, . . . , 7, (6.1)

describing the interaction of the waves with each other due to the inhomogeneous,
large-scale background flow. From (4.38), the wave mixing coefficients in (6.1) are
given by

Λjs = Lj ·dRs
dts

+ L2
j

[
(R2

s − uxR1
s)
a2
c

κ
− ζ

ρ

∂pc
∂x

R1
s

]
, (6.2)

where d/dts ≡ ∂/∂t + λs∂/∂x is the time derivative along the sth wave mode
characteristic. Explicit formulae for the {Λjs} are presented in Sec. 6.1. The eigen-
vector symmetries discussed in Sec. 3.3 are used to obtain symmetry relations for
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the Λjs. Section 6.2 discusses the form of the wave mixing equations for planar
MHD flows, in which B = (Bx, By, 0)T and u = (ux, uy, 0)T. In this case, the Alfvén
waves are decoupled from the magnetoacoustic and entropy waves. The degenerate-
eigenvalue cases where (a) B = (Bx, 0, 0)T and u = (ux, 0, 0)T, for which k ‖ B, and
(b) B = (0, By, 0)T and u = (ux, 0, 0)T, for which k ⊥ B, are also discussed. Al-
ternative forms of the wave mixing coefficients (6.2) can be obtained by using the
background flow equations (2.1)–(2.8) to eliminate time derivatives.

6.1. Wave mixing coefficients

Using the formulae (3.39)–(3.47) for the right- and left-eigenvectors {Rj} and {Lj}
in (6.2) yields the wave mixing coefficients for the backward fast-mode wave equa-
tion in (6.1) in the form

Λ11 =
1
2

[
−α

2
fcf

a2

dux
dt1

+
d ln a
dt1

+ α2
s

d

dt1
ln
(

a

ρ1/2

)
+
α2
f

γg

dS̄

dt1

+
αsαfcs
a2 β⊥ ·

du⊥
dt1

+
α2
fc

2
f

a2

(
a2
c

κ
+

ζ

ρcf

∂pc
∂x

)]
, (6.3a)

Λ12 =
b0ρ

1/2αs(a + cs)
2B2
⊥a2

(
By

dBz
dt2
−Bz dBy

dt2

)

≡ b0ρ
1/2αs(a + cs)

2B2
⊥a2

(bxB ·∇× B−BxB ·∇× u), (6.3b)

Λ13 =
1
2

[
−αsαfcf

a2

dux
dt3

+
α2
scs
a2 β⊥ ·

du⊥
dt3

+
αsαfcfcs

a2

d

dt3
ln
(
cs
cf

)
−αsαf d

dt3
ln
(

a

ρ1/2

)
+
a2 + cscf

a2 αsαf
d

dt3
ln
(
αs
αf

)
+
αsαf
γg

dS̄

dt3
+
αsαfcfcs

a2

(
a2
c

κ
+

ζ

ρcs

∂pc
∂x

)]
, (6.3c)

Λ14 =
1

2a2

(
−αfcf dux

dt
+ αscsβ⊥ ·

du⊥
dt

+ αfcf
ζ

ρ

∂pc
∂x

)
, (6.3d)

Λ15 =
1
2

[
−αsαfcf

a2

dux
dt5

+
α2
scs
a2 β⊥ ·

du⊥
dt5
− αsαfcfcs

a2

d

dt5
ln
(
cs
cf

)
−αsαf d

dt5
ln
(

a

ρ1/2

)
+
a2 − cfcs

a2 αfαs
d

dt5
ln
(
αs
αf

)
+
αsαf
γg

dS̄

dt5
+
αsαfcfcs

a2

(
−a

2
c

κ
+

ζ

ρcs

∂pc
∂x

)]
, (6.3e)

Λ16 =
b0ρ

1/2αs(a− cs)
2B2
⊥a2

(
By

dBz
dt6
−Bz dBy

dt6

)

≡ −b0ρ
1/2αs(a− cs)

2B2
⊥a2

(BxB ·∇× u + bxB ·∇× B), (6.3f)
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Λ17 =
1
2

[
−α

2
fcf

a2

dux
dt7
− d ln a

dt7
+ α2

s

d

dt7
ln
(

a

ρ1/2

)
+
αsαfcs
a2 β⊥ ·

du⊥
dt7

+
α2
f

γg

dS̄

dt7
+
α2
fc

2
f

a2

(
−a

2
c

κ
+

ζ

ρcf

∂pc
∂x

)]
. (6.3g)

In (6.3), we have provided two alternative forms for Λ12 and Λ16. The expressions
for Λ12 and Λ16 involving B ·∇× u and B ·∇×B are obtained by using Faraday’s
law (2.5) and (2.6) to eliminate time derivatives.

In order to assess the role of cosmic ray squeeezing instabilities (see e.g. Dorfi
and Drury 1985; Drury and Falle 1986; Zank and McKenzie 1987) it is useful to
eliminate the dux/dtj terms in the {Λjs} by using the normal momentum equation
(2.2). Thus, for example, the expression for Λ11 in (6.3) can be written in the form

Λ11 =
1
2

{
α2
fc

2
f

a2

(
a2
c

κ
+
ζ + 1
ρcf

∂pc
∂x

)
+
α2
fc

2
f

a2

[
1
ρcf

∂

∂x

(
pg +

B2
⊥

2µ

)
+
∂ux
∂x

]

+
d

dt1
ln a + α2

s

d

dt1
ln
(

a

ρ1/2

)
+
α2
f

γg

dS̄

dt1
+
αsαfcs
a2 β⊥ ·

du⊥
dt1

}
. (6.4)

For steady flows, we may replace d/dt1 by λ1∂/∂x in (6.4). The expression (6.4) for
Λ11 suggests that if the cosmic ray pressure gradient ∂pc/∂x is sufficiently large
and negative, i.e.

a2
c

κ
+
ζ + 1
ρcf

∂pc
∂x
� 0, (6.5)

then the backward, fast-mode wave can be driven unstable. Similar instability cri-
teria were obtained by Dorfi and Drury (1985), Drury and Falle (1986) and Zank
and McKenzie (1987), for short-wavelength sound waves in the supersonic flow up-
stream of a cosmic-ray-modified shock.

The wave mixing coefficients {Λ2s} for the backward Alfvén wave in (6.1) are
given by the formulae

Λ21 =
1

2b0ρ1/2B2
⊥

[
αfB⊥

(
Bz

duy
dt1
−By duz

dt1

)
+ αs(a + cs)

(
Bz

dBy
dt1
−By dBz

dt1

)]
≡ 1

2b0ρ1/2B2
⊥
{[αfbxb⊥ − αs(a + cs)cf ]B ·∇× B

+[αs(a + cs)Bx − αfB⊥cf ]B ·∇× u}, (6.6a)

Λ22 =
1
4
d ln ρ
dt2

≡ −1
4
∂

∂x
(ux − 2bx), (6.6b)

Λ23 =
1

2b0ρ1/2B2
⊥

[
αsB⊥

(
Bz

duy
dt3
−By duz

dt3

)
− αf (a + cf )

(
Bz

dBy
dt3
−By dBz

dt3

)]
≡ 1

2b0ρ1/2B2
⊥
{[αsbxb⊥ + αf (a + cf )cs]B ·∇× B

−[αscsB⊥ + αf (a + cf )Bx]B ·∇× u}, (6.6c)

https://doi.org/10.1017/S0022377898007399 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377898007399


MHD wave interactions and cosmic-ray-modified shocks 325

Λ24 =
1

2b0ρ1/2B⊥

(
Bz

duy
dt
−By duz

dt

)
≡ b0Bx

2ρ3/2B⊥
B ·∇× B, (6.6d)

Λ25 =
1

2b0ρ1/2B2
⊥

[
αsB⊥

(
Bz

duy
dt5
−By duz

dt5

)
+ αf (cf − a)

(
Bz

dBy
dt5
−By dBz

dt5

)]
≡ 1

2b0ρ1/2B2
⊥
{[αsbxb⊥ + αfcs(cf − a)]B ·∇× B

+[αscsB⊥ + αf (cf − a)Bx]B ·∇× u}, (6.6e)

Λ26 = −1
4
d ln ρ
dt6

≡ 1
4
∂

∂x
(ux + 2bx), (6.6f)

Λ27 =
1

2b0ρ1/2B2
⊥

[
αfB⊥

(
Bz

duy
dt7
−By duz

dt7

)
+ αs(a− cs)

(
Bz

dBy
dt7
−By dBz

dt7

)]
≡ 1

2b0ρ1/2B2
⊥
{[αfbxb⊥ + αs(a− cs)cf ]B ·∇× B

+[αfcfB⊥ + αs(a− cs)Bx]B ·∇× u}. (6.6g)

In (6.6), the wave mixing coefficients linking the Alfvén wave to the entropy wave
and the magnetoacoustic waves are in general non-zero if the background flow has
non-zero field-aligned current (B ·∇×B� 0) and/or non-zero field aligned vorticity
(B ·∇× u� 0). For purely one-dimensional flow, dependent on (x, t),

B ·∇ × B = Bz
∂By
∂x
−By ∂Bz

∂x
, (6.7a)

B ·∇ × u = Bz
∂uy
∂x
−By ∂uz

∂x
. (6.7b)

For planar MHD flows in which the background magnetic field B = (Bx, By, 0)T

and fluid velocity u = (ux, uy, 0)T are restricted to the (x, y) plane, B ·∇ × B = 0
and B ·∇× u = 0. For such flows, the Alfvén wave evolution equations in (6.1) are
decoupled from the magnetoacoustic and entropy waves. Webb (1983) and Webb
et al. (1986) used a planar MHD model to describe cosmic-ray-modified shocks.

For pure MHD flows (with no cosmic rays), one of the simplest background flows
that has non-zero field-aligned current and vorticity is an Alfvén simple wave. It
is of interest to note that the magnetoacoustic simple waves are characterized by
zero field-aligned current and vorticity. This suggests that a study of wave mixing
phenomena in which the background flow consists of an MHD simple wave should
provide further insight into the wave mixing process. It should be emphasized that
there are other MHD flows and equilibria besides the Alfvén simple waves that have
non-zero field-aligned current and vorticity.

The wave mixing coefficients {Λ3s} for the backward slow magnetoacoustic wave
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are given by the equations

Λ31 =
1
2

[
−αsαfcs

a2

dux
dt1
− α2

fcf

a2 β⊥ ·
du⊥
dt1

+
αsαfcfcs

a2

d

dt1
ln
(
cf
cs

)
−αsαf d

dt1
ln
(

a

ρ1/2

)
+
a2 + cfcs

a2 αfαs
d

dt1
ln
(
αf
αs

)
+
αsαf
γg

dS̄

dt1
+
αsαfcfcs

a2

(
a2
c

κ
+

ζ

ρcf

∂pc
∂x

)]
, (6.8a)

Λ32 =
b0ρ

1/2αf (a + cf )
2B2
⊥a2

(
Bz

dBy
dt2
−By dBz

dt2

)
≡ b0ρ

1/2αf (a + cf )
2B2
⊥a2

(BxB ·∇× u− bxB ·∇× B), (6.8b)

Λ33 =
1
2

[
−α

2
scs
a2

dux
dt3

+
d ln a
dt3

+ α2
f

d

dt3
ln
(

a

ρ1/2

)
+
α2
s

γg

dS̄

dt3

−αsαfcf
a2 β⊥ ·

du⊥
dt3

+
α2
sc

2
s

a2

(
a2
c

κ
+

ζ

ρcs

∂pc
∂x

)]
, (6.8c)

Λ34 =
1

2a2

(
−αscs dux

dt
− αfcfβ⊥ ·

du⊥
dt

+ αscs
ζ

ρ

∂pc
∂x

)
, (6.8d)

Λ35 =
1
2

[
−α

2
scs
a2

dux
dt5
− d ln a

dt5
+ α2

f

d

dt5
ln
(

a

ρ1/2

)
− αsαfcf

a2 β⊥ ·
du⊥
dt5

+
α2
s

γg

dS̄

dt5
− α2

sc
2
s

a2

(
a2
c

κ
− ζ

ρcs

∂pc
∂x

)]
, (6.8e)

Λ36 =
b0ρ

1/2αf (a− cf )
2B2
⊥a2

(
Bz

dBy
dt6
−By dBz

dt6

)
≡ b0ρ

1/2αf (a− cf )
2B2
⊥a2

(bxB ·∇× B +BxB ·∇× u), (6.8f)

Λ37 =
1
2

[
−αsαfcs

a2

dux
dt7
− α2

fcf

a2 β⊥ ·
du⊥
dt7
− αsαfcfcs

a2

d

dt7
ln
(
cf
cs

)
−αsαf d

dt7
ln
(

a

ρ1/2

)
+
a2 − cscf

a2 αsαf
d

dt7
ln
(
αf
αs

)
+
αsαf
γg

dS̄

dt7
− αsαfcfcs

a2

(
a2
c

κ
− ζ

ρcf

∂pc
∂x

)]
. (6.8g)

The above formulae for {Λ3s} are similar in form to those for the backward fast
magnetoacoustic wave, {Λ1s} in (6.3) (see also (6.9) et seq. for a discussion of a map
between the {Λ1s} and the {Λ3s}).

The wave mixing coefficients for the entropy wave, {Λ4s}, are given by

Λ41 = −αf
γg

dS̄

dt1
≡ αfcf

γg

∂S̄

∂x
, (6.9a)
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Λ43 = −αs
γg

dS̄

dt3
≡ αscs

γg

∂S̄

∂x
, (6.9b)

Λ45 = −αs
γg

dS̄

dt5
≡ −αscs

γg

∂S̄

∂x
, (6.9c)

Λ47 = −αf
γg

dS̄

dt7
≡ −αfcf

γg

∂S̄

∂x
, (6.9d)

Λ42 = Λ44 = Λ46 = 0. (6.9e)

Thus the entropy wave is modified by the magnetoacoustic waves only if
∂S̄/∂x� 0. Note that the entropy wave is not affected by the Alfvén waves, because
Λ42 = Λ46 = 0.

6.1.1. Mixing coefficient symmetries. For j > 4, one can use the wave speed reversal
symmetry Ta in (3.58)–(3.59) for the eigenvectors, coupled with the formula (6.2),
to obtain the results

Λjs(y) = Λj′s′ (−cf ,−cs,−b0,−a), j′ = 8− j, s′ = 8− s. (6.10)

Equations (6.10) give the wave mixing coefficients {Λjs} for j > 4, where y ≡
(cf , cs, b0, a), in terms of the mixing coefficients for j 6 4.

From (3.61), Tb : y 7→ (cf , cs,−b0,−a) maps the Alfvén wave eigenvectors onto
the reverse Alfvén wave eigenvectors, but leaves the entropy wave and magne-
toacoustic wave eigenvectors invariant. This map, coupled with (6.2), yields the
symmetry relations

Λ16(y) = Λ12(Tby), Λ36(y) = Λ32(Tby), Λ46(y) = Λ42(Tby), (6.11a)

Λ56(y) = Λ52(Tby), Λ76(y) = Λ72(Tby) (6.11b)

for the wave mixing coefficients.
From (3.63) and (3.64), Tc : y 7→ (−cf ,−cs, b0, a) maps the magnetoacoustic

eigenvectors onto the reverse magnetoacoustic eigenvectors. Using this map in (6.2)
yields the symmetry relations

Λ25(y) = Λ23(−cf ,−cs, b0, a), Λ27(y) = Λ21(−cf ,−cs, b0, a), (6.12a)

Λ65(y) = Λ63(−cf ,−cs, b0, a), Λ67(y) = Λ61(−cf ,−cs, b0, a), (6.12b)

for the Alfvén wave mixing coefficients {Λ2s} and {Λ6s}.
From (3.65)–(3.67), Td : y 7→ (cs,−cf ,−b0, a) maps the slow-mode eigenvectors

onto the fast-mode eigenvectors, and vice versa, and maps the Alfvén wave eigen-
vectors onto the reverse Alfvén wave eigenvectors. This map applied to (6.2) yields
the symmetry relations

Λ31(y) = Λ15(Tdy), Λ32(y) = Λ16(Tdy), Λ33(y) = Λ11(Tdy), (6.13a)

Λ34(y) = Λ14(Tdy), Λ35(y) = Λ17(Tdy), Λ36(y) = Λ12(Tdy), (6.13b)

Λ37(y) = Λ13(Tdy). (6.13c)

Hence the backward slow-mode wave mixing coefficients may be obtained from the
backward fast-mode coefficients by using (6.13). By using the map Td, one can also
derive the relations

Λ43(y) = Λ41(Tdy), Λ46(y) = Λ42(Tdy), Λ47(y) = Λ43(Tdy) (6.14)
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for the entropy wave mixing coefficients.
The symmetry relations (6.11)–(6.14) for the wave mixing coefficients {Λjs}, as-

sociated with the maps Tb, Tc and Td, may be verified directly from (6.3), (6.6),
(6.8) and (6.9). One can check the validity of the formulae (6.3)–(6.14) for the wave
mixing coefficients by using the linearized conservation equations (2.1) and (2.3)–
(2.7).

6.2. Planar MHD flows

In this subsection, we consider the form of the wave mixing equations for the case
of planar MHD flows, in which B = (Bx, By, 0)T and u = (ux, uy, 0)T. In this case,
B ·∇ × B = 0, and B ·∇ × u = 0, and the Alfvén wave mixing equations in (6.1)
decouple from the mixing equations for the magnetoacoustic and entropy waves.
We first consider the non-degenerate case where all the eigenvalues are distinct
(Bx � 0, By � 0), and then consider the degenerate-eigenvalue cases (a) k ‖ B,
where B = (Bx, 0, 0)T and u = (ux, 0, 0)T, and (b) k ⊥ B where B = (0, By, 0)T and
u = (ux, 0, 0)T.

6.2.1. The non-degenerate caseBx� 0 andBy� 0. In this case, the magnetoacoustic
and entropy waves satisfy the wave mixing equations

∂aj
∂t

+
∂

∂x
(λjaj) +

∑
s�2,6

Λjsas = 0, j = 1, 3, 4, 5, 7, (6.15)

where the sum over s in (6.15) is for s = 1, 3, 4, 5, 7 corresponding to the magneto-
acoustic and entropy waves.

The Alfvén waves satisfy the separate wave mixing equations

∂a2

∂t
+
∂

∂x
(λ2a2) + Λ22a2 + Λ26a6 = 0, (6.16)

∂a6

∂t
+
∂

∂x
(λ6a6) + Λ26a2 + Λ66a6 = 0, (6.17)

where

Λ22 = − 1
4Dx(ux − 2bx), Λ26 = 1

4Dx(ux + 2bx), (6.18a)

Λ62 = 1
4Dx(ux − 2bx), Λ66 = − 1

4Dx(ux + 2bx), (6.18b)

and Dx ≡ ∂/∂x.
Using (3.54) and the right-eigenvectors (3.26) yields the equations

a2 = − 1
2 sgn(By)

(
B1
z +

ρ
1
2

b0
u1
z

)
≡ −sgn(By)B2z, (6.19a)

a6 = − 1
2 sgn(By)

(
B1
z −

ρ
1
2

b0
u1
z

)
≡ −sgn(By)B6z (6.19b)

for the Alfvén wave amplitudes a2 and a6, in terms of the total magnetic and velocity
fluctuations B1

z and u1
z. In (6.19), B2z and B6z are related to the corresponding

velocity fluctuations u2z and u6z by the eigenequations

u2z = b0ρ
−1/2B2z, u6z = −b0ρ

−1/2B6z. (6.20)

Using the alternative notation

δB−z = B2z, δu−z = u2z, δB+
z = B6z, δu+

z = u6z, (6.21)
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the Alfvén wave mixing equations (6.16) and (6.17) may be written in the more
compact form

∂δB±

∂t
+
∂

∂x
[(ux ± bx)δB±]± 1

4Dx(ux − 2bx)δB− ∓ 1
4Dx(ux + 2bx)δB+ = 0, (6.22)

where δB± = (0, 0, δB±z )T, and the superscripts − and + refer to the backward and
forward Alfvén waves respectively.

It is of interest to compare the evolution equations (6.22) with the transport
equations

∂Z±

∂t
+ (u∓ VA) ·∇Z± + 1

4∇ · (u± 2VA)Z±

+
(
∇u± ∇B

(4πρ)1/2
− 1

4 I∇ · (u± 2VA)
)
· Z∓ = Q±, (6.23)

for Alfvénic turbulence in the solar wind obtained by Zhou and Matthaeus (1990),
where

Z± = δu± b0δB
ρ1/2

, b0 = (4π)−1/2, (6.24)

define the Elsässer variables Z±; Q± are nonlinear source terms for the short-scale
turbulent fluctuations, and VA = B/(4πρ)1/2 is the Alfvén velocity. The transport
equations (6.23) for planar MHD flows, with Q± = 0, reduce to

∂Z±

∂t
+ (ux ∓ bx)

∂Z±

∂x
+ 1

4Dx(ux ± 2bx)Z± − 1
4Dx(ux ± 2bx)Z∓ = 0, (6.25)

where Z± = (0, 0, Z±z )T in the present case. Using the eigenrelations (6.20), it is
straightforward to verify that the wave mixing equations (6.22) are equivalent to
the Elsässer variable wave mixing equations (6.25).

6.2.2. Canonical energy equation for Alfvén waves. Consider the form of the Alfvén
wave mixing equations (6.22) for the special case of a steady background flow. In
this case, the mass continuity equation, and the fact that Bx is constant, yield the
results

ux = ux0
ρ0

ρ
, bx = bx0

(
ρ0

ρ

)1/2

, (6.26)

relating the x component of the fluid velocity ux and the Alfvén speed bx to the
density ρ (note that ux0, ρ0, and bx0 are constants). Following the approach of
Heinemann and Olbert (1980), the Alfvén wave mixing equations (6.22) may be
written in the form

∂f

∂t
+ (ux − bx)

∂f

∂x
= (ux − bx)ψxg, (6.27)

∂g

∂t
+ (ux + bx)

∂g

∂x
= (ux + bx)ψxf, (6.28)

where

f = δB−z (ux − bx)ρ1/4, g = δB+
z (ux + bx)ρ1/4, ψ = 1

4 ln ρ. (6.29)

Equations (6.27)–(6.29) show that the backward and forward waves are coupled
owing to the gradients in the background flow.
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The wave mixing equations (6.27) and (6.28) may be combined to yield the canon-
ical wave energy equation for both backward and forward Alfvén waves in the form:

∂

∂t

(
g2

ux + bx
− f2

ux − bx

)
+
∂

∂x
(g2 − f 2) = 0. (6.30)

Equation (6.30) may be written in the more suggestive form

∂

∂t

(
ω−A−A + ω+A+

A

)
+
∂

∂x
[(ux − bx)ω−A−A + (ux + bx)ω+A+

A] = 0, (6.31)

where the equations

A±A =
E±A
ω′±

, ω′± = ±kbx, ω± = k(ux ± bx), (6.32)

define the Alfvén wave action densities A±A in terms of the physical wave energy
densities

E±A =
(δB±z )2

4π
, (6.33)

and ω′± and ω± denote the wave frequencies measured in the fluid frame and the
fixed frame respectively. In a quantum mechanical interpretation of (6.31), A±A
correspond to the number densities of wave quasiparticles for the backward and
forward Alfvén waves, and ~ω±A±A are the corresponding canonical wave energy
densities, where ~ = h/2π, and h is Planck’s constant (see also the discussion in
Heinemann and Olbert 1980). The canonical wave energy equation or generalized
wave action equation (6.31) can be generalized to the case of a time-dependent
background flow, but in that case there are further terms on the right-hand side of
the equation, dependent on time derivatives of the background variables.

6.2.3. The degenerate case k ‖ B. For the case where k ‖ B (i.e. k = (k, 0, 0)T and
B = (Bx, 0, 0)T) one of the magnetoacoustic speeds coincides with the Alfvén speed
|bx|. In the limit as |B⊥| → 0 (B⊥ = (0, By, Bz)T), there are two possibilities to
consider, namely

a > |bx| : cs → |bx|, cf → a; (6.34a)

a < |bx| : cs → a, cf → |bx|. (6.34b)

Note that there is a triple degeneracy in the eigenspeeds when a = |bx|, which has
interesting implications for nonlinear wave interactions between the Alfvén and
magnetoacoustic waves at this point (see e.g. Brio 1989; Hada 1993; Webb et al.
1995). The form of the wave mixing coefficients depends on the manner in which
|B⊥| → 0. For the sake of definiteness, we consider the limiting case where

B = (Bx, By, 0)T, a > |bx|, cs → |bx|, cf → a, (6.35)

and By → 0. The background flow velocity is assumed to be directed along the x
axis (i.e. u = (ux, 0, 0)T). In the above limit, the eigenvalues are

λ1 = ux − a, λ2 = λ3 = ux − bx, λ4 = ux, (6.36a)

λ5 = λ6 = ux + bx, λ7 = ux + a, (6.36b)

where we assume bx > 0. Thus the slow magnetoacoustic and Alfvén speeds coin-
cide, and the fast magnetoacoustic speed equals the gas sound speed a.
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The wave mixing equations (6.1) in the above case split into three separate, non-
interacting subsystems in the limit as By → 0. The first subsystem describes the
interaction of the backward and forward sound waves (ρ1 and ρ7) and the entropy
wave (ρ4); the second system describes the backward and forward Alfvén waves,
and the third describes the backward and forward slow magnetoacoustic waves.
The sound waves and entropy wave satisfy the wave mixing equations

∂ρ1

∂t
+

∂

∂x
(λ1ρ1) + Λ11ρ1 + Λ14ρ4 + Λ17ρ7 = 0, (6.37a)

∂ρ4

∂t
+

∂

∂x
(λ4ρ4) + Λ41ρ1 + Λ44ρ4 + Λ47ρ7 = 0, (6.37b)

∂ρ7

∂t
+

∂

∂x
(λ7ρ7) + Λ71ρ1 + Λ74ρ4 + Λ77ρ7 = 0, (6.37c)

where ρ1, ρ4 and ρ7 are the wave density perturbations (note that αf = 1 and αs = 0
in the present case). The wave interaction coefficients in (6.37) may be written in
the form

Λ11 =
1
2

(
3− γg

2
R+
x −

agS̄x
γg − 1

+
a2
c

κ
+
ζ + 1
ρag

∂pc
∂x

)
, (6.38a)

Λ14 =
1
2

[
R+
x −R−x

2
− agS̄x
γg(γg − 1)

+
ζ + 1
ρag

∂pc
∂x

]
≡ − 1

2ag

dux
dt

+
ζ

2ρag

∂pc
∂x

, (6.38b)

Λ17 =
1
2

[
γg − 3

2
R−x +

(γg − 2)agS̄x
γg(γg − 1)

+
ζ + 1
ρag

∂pc
∂x
− a2

c

κ

]
, (6.38c)

Λ41 = −Λ47 =
agS̄x
γg

, (6.38d)

Λ44 = 0, (6.38e)

Λ71 =
1
2

[
γg − 3

2
R+
x −

(γg − 2)agS̄x
γg(γg − 1)

− ζ + 1
ρag

∂pc
∂x
− a2

c

κ

]
, (6.38f)

Λ74 = −Λ14, (6.38g)

Λ77 =
1
2

(
3− γg

2
R−x +

agS̄x
γg − 1

+
a2
c

κ
− ζ + 1

ρag

∂pc
∂x

)
, (6.38h)

where ζ = ∂ ln κ/∂ ln ρ (see (2.24)), dux/dt = ∂ux/∂t+ux∂ux/∂x is the x component
of the fluid acceleration vector, and

R± = ux ± 2ag
γg − 1

(6.39)

are the Riemann invariants of isentropic gas dynamics. The wave mixing equations
(6.37) and wave mixing coefficients (6.38) are the same as those in Webb et al.
(1997a) for two-fluid cosmic-ray-modified flows in which the magnetic field plays
no dynamical role.

It turns out that both the slow magnetoacoustic and Alfvén wave mixing equa-
tions in the limit as By → 0 (assuming a > bx) can be written in the form (6.22),
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where δB± = (0, 0, δB±z )T for the Alfvén modes, but δB± = (0, δB±y , 0)T for the
slow-mode waves. Note that the equations for δB±z (Alfvén modes) are decou-
pled from the equations for δB±y (slow mode waves). Similarly, one can show that
the Elsässer variable wave mixing equations (6.25) also apply to both the Alfvén
(Z± = (0, 0, Z±z )T) and the slow-mode (Z± = (0, Z±y , 0)T) waves.

6.2.4. The degenerate case k ⊥ B. For the case where B = (0, By, 0)T, u = (ux, 0, 0)T

and k = (k, 0, 0)T, with k ⊥ B, the eigenvalues are

λ1 = ux − cf , λ7 = ux + cf , λ2 = λ3 = λ4 = λ5 = λ6 = ux. (6.40)

The slow-, intermediate- and fast-mode wave speeds are given by the equations

cs = 0, bx = 0, cf = (a2 + b2
⊥)1/2, (6.41)

Because bx = cs = 0, the slow magnetoacoustic, Alfvén and entropy wave have the
same phase speed λ = ux, but have distinct eigenvectors. The above flow config-
uration corresponds to a cosmic-ray-modified perpendicular shock (see e.g. Webb
1983; Webb et al. 1986). The parameters αf and αs in (3.18) reduce to

αf =
a

cf
, αs =

b⊥
cf
, (6.42)

where cf is given by (6.41).
From (6.3), the non-zero wave mixing coefficients for the backward fast-mode

wave reduce to

Λ11 =
1
2

[
−αf
a

dux
dt1

+
d ln a
dt1

+ α2
s

d

dt1
ln
(

a

ρ1/2

)
+
α2
f

γg

dS̄

dt1
+
(
a2
c

κ
+

ζ

ρcf

∂pc
∂x

)]
, (6.43a)

Λ13 =
αs
2a

[
−dux
dt

+ αfa
d

dt
ln
(
By
a2

)
+
ζ

ρ

∂pc
∂x

]
, (6.43b)

Λ14 =
1
2a

(
−dux
dt

+
ζ

ρ

∂pc
∂x

)
, (6.43c)

Λ15 =
αs
2a

[
−dux
dt

+ αfa
d

dt
ln
(
By
a2

)
+
ζ

ρ

∂pc
∂x

]
≡ Λ13, (6.43d)

Λ17 =
1
2

[
−αf
a

dux
dt7
− d

dt7
ln a + α2

s

d

dt7
ln
(

a

ρ1/2

)
+
α2
f

γg

dS̄

dt7
−
(
a2
c

κ
− ζ

ρcf

∂pc
∂x

)]
. (6.43e)

From (6.8), the corresponding non-zero interaction coefficients for the backward
slow-mode wave simplify to

Λ31 =
αsαf

2

[
d

dt1
ln
(
ρ

By

)
+

1
γg

dS̄

dt1

]
, (6.44a)

Λ33 =
1
2

[
d ln a
dt

+ α2
f

d

dt
ln
(

a

ρ1/2

)]
, (6.44b)
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Λ35 =
1
2

[
−d ln a

dt
+ α2

f

d

dt
ln
(

a

ρ1/2

)]
, (6.44c)

Λ37 =
αfαs

2

[
d

dt7
ln
(
ρ

By

)
+

1
γg

dS̄

dt7

]
. (6.44d)

From (6.9), the non-zero interaction coefficients for the entropy wave are

Λ41 = −αf
γg

dS̄

dt1
≡ a

γg

∂S̄

∂x
, (6.45a)

Λ47 = −αf
γg

dS̄

dt7
≡ − a

γg

∂S̄

∂x
. (6.45b)

The non-zero wave mixing coefficients {Λjs} for j > 4 may be obtained by use
of the wave speed reversal symmetry (6.10), used in conjunction with the mixing
coefficients (6.43)–(6.45).

The wave mixing equations for the Alfvén waves reduce to (6.22), but with bx = 0,
i.e.

∂δB±

∂t
+
∂

∂x

(
uxδB±

)± 1
4Dx(ux)δB− ∓ 1

4Dx(ux)δB+ = 0, (6.46)

where δB± = (0, 0, δB±z )T. The Elsässer variable form of the wave mixing equations
(6.25) and the canonical wave energy equation for Alfvén waves in steady flows also
apply, but with bx = 0.

It is of interest to note that if the background flow is a steady cosmic-ray-
modified perpendicular shock, in which ∂S̄/∂x = 0 at a generic point in the flow
(i.e. S = const), then Λ31 = Λ37 = 0, because both ∂S̄/∂x = 0 and By ∝ ρ in a
steady perpendicular shock (see e.g. Webb 1983; Webb et al. 1986). Similarly, be-
cause ∂S̄/∂x = 0, the entropy wave interaction coefficients Λ41 = Λ47 = 0. This
implies that in a steady perpendicular shock, the slow magnetoacoustic waves are
unaffected by the fast-mode waves and the entropy wave. Even although the slow
magnetoacoustic waves are unaffected by the other waves, they act as source terms
in the fast magnetoacoustic wave equations. Similarly, the entropy waves are un-
affected by the other waves, but contribute as a source term in the fast magnetoa-
coustic equations. Wave interactions in a perpendicular cosmic-ray-modified shock
are explored numerically in the next section.

7. Numerical examples
In this section, we present examples of wave interactions in a perpendicular, cosmic-
ray-modified shock. A typical steady, smooth transition, perpendicular cosmic-ray-
modified shock is depicted in Fig. 1, which shows the variation of (ρ,uT,BT, pg, pc)T

in the shock frame, for a shock transition in which the long-wavelength Mach
number Ml0 = ux0/(a2

g0 + a2
c0 + V 2

A0)1/2 = 10, pc0 = pg0 = ρ0 = 1 far upstream
(x → ∞ far upstream). The adiabatic indices of the cosmic ray and thermal gases
γc = 1.5 and γg = 5

3 , and the hydrodynamically averaged diffusion coefficient
κ = 1 was assumed. Note that a constant diffusion coefficient is appropriate for
a perpendicular shock configuration, when the particle diffusive transport across
the magnetic field is due to random walk of the field lines (see (2.22) et seq.). The
shock transition in Fig. 1 was obtained by solving the steady-state shock structure
equation for cosmic-ray-modified shocks (see e.g. Webb 1983; Webb et al. 1986).
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Figure 1. A steady-state, smooth-transition, perpendicular cosmic ray modified shock in
which the fluid velocity u = (ux, 0, 0)T and magnetic field induction B = (0, By, 0)T are
perpendicular to each other throughout the shock transition. The figure shows the profiles
of (ρ, uT,BT, pg, pc)T throughout the shock. The diffusion coefficient κ = 1, γg = 5

3 and
γc = 1.5. Far upstream, the long-wavelength Mach number Ml0 = 10, and pc0 = pg0 = 1 are
the values of pc and pg far upstream as x→∞.

Note that uy = uz = 0 and Bx = Bz = 0 throughout the shock transition. We
study how a single wave mode, initially present in the upstream medium, generates
and interacts with the other wave modes. The waves are assumed to have their
wave vectors k = (kx, 0, 0)T along the x axis, perpendicular to the background
magnetic field B = (0, By, 0)T. For this configuration, the slow magnetoacoustic
phase speed cs = 0 and the Alfvén phase speed bx = 0, but the corresponding
group velocities Vgs = ±ab/(a2 + b2)1/2eb for the slow modes and VgA = ±b for
the Alfvén modes are non-zero, where eb is the unit vector along the magnetic
field.

Both spectral code solutions of the wave mixing equations (6.1) and analytical
solution results for the Alfvén and slow-mode waves are compared with fully non-
linear numerical solutions of the two-fluid MHD cosmic ray model equations (2.1)–
(2.8). The basic strategy in solving the initial value problem for the time-dependent
model equations (2.1)–(2.8) consists of two steps:

(a) solve the cosmic ray energy equation (2.8) for pc for a given flow velocity profile
(for example by using a Crank–Nicholson scheme or by using an explicit scheme
with subcycling);
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(b) solve the MHD equations (2.1)–(2.7) using the Zeus-2D MHD code (Stone and
Norman 1992a,b), suitably modified by the inclusion of the cosmic ray pressure
gradient.

For the smooth transition shock in Fig. 1, the gas entropy S is constant through-
out the structure. In this case, the wave mixing equations (6.1) split up into four
subsystems, namely the Alfvén wave interaction equations

∂a2

∂t
+

∂

∂x
(uxa2) +

1
4
∂ux
∂x

(a6 − a2) = 0, (7.1a)

∂a6

∂t
+

∂

∂x
(uxa6) +

1
4
∂ux
∂x

(a2 − a6) = 0, (7.1b)

the slow magnetoacoustic subsystem

∂a3

∂t
+

∂

∂x
(uxa3) + Λ33a3 + Λ35a5 = 0, (7.2a)

∂a5

∂t
+

∂

∂x
(uxa5) + Λ53a3 + Λ55a5 = 0, (7.2b)

the entropy wave equation

∂a4

∂t
+
∂

∂x
(uxa4) = 0, (7.3)

and the fast-mode equations:

∂a1

∂t
+

∂

∂x
(λ1a1) + Λ11a1 + Λ13a3 + Λ14a4 + Λ15a5 + Λ17a7 = 0, (7.4a)

∂a7

∂t
+

∂

∂x
(λ7a7) + Λ71a1 + Λ73a3 + Λ74a4 + Λ75a5 + Λ77a7 = 0. (7.4b)

The detailed forms of the wave interaction coefficients in (7.2)–(7.4) are given by
(6.43)–(6.45) and by the wave reversal symmetry relations (6.10). From (7.1)–(7.4),
the Alfvén waves, the slow magnetoacoustic waves and the entropy wave are unaf-
fected by the fast-mode waves. The slow magnetoacoustic and entropy waves act
as source terms in the fast-mode equations (7.4), and hence the fast-mode waves
can be generated from the slow-mode waves and the entropy wave by wave mixing.
However, the Alfvén waves cannot generate fast-mode waves by linear wave mixing,
since there are no Alfvén wave source terms in the fast-mode equations (7.4).

For the above configuration, the solutions for the Alfvén waves and slow-mode
waves can be obtained in closed form. Noting that bx = 0 in a perpendicular shock,
the Alfvén wave mixing equations (6.27)–(6.29) reduce to

∂f

∂t
+ ux

∂f

∂x
= ux

∂ψ

∂x
g, (7.5a)

∂g

∂t
+ ux

∂g

∂x
= ux

∂ψ

∂x
f, (7.5b)

where ψ = 1
4 ln ρ and

f = δB−z uxρ
1/4, (7.6a)

g = δB+
z uxρ

1/4. (7.6b)
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The general solutions of (7.5) are

f = A(θ)ρ1/4 +B(θ)ρ−1/4, (7.7)

g = A(θ)ρ1/4 −B(θ)ρ−1/4, (7.8)

where A(θ) and B(θ) are arbitrary functions of the phase variable

θ = ω

(
t−
∫ x

x0

dx

ux

)
(7.9)

(see Appendix B), and ω is a constant frequency. It is of interest to note from (7.7)
and (7.8) that

f 2 − g2 = 2AB, (7.10)

and hence f 2− g2 is constant if B(θ) ∝ 1/A(θ). Equation (7.10) is clearly related to
the wave action equation (6.30), where g2 − f 2 is the wave action flux. From (7.6),
the magnetic field perturbations δB±z for the backward and forward Alfvén waves
are of the form

δB±z = Â(θ)ρ̄∓ B̂(θ)ρ̄1/2, (7.11)

where

ρ̄ =
ρ

ρ0
, ux =

ux0

ρ̄
, (7.12a)

Â(θ) =
A(θ)
ux0

, B̂(θ) =
B(θ)

ux0ρ
1/2
0

, (7.12b)

and x = x0 is a fixed point in the flow. In particular, the choice Â = B̂ = 1
2δB

−
z0 sin θ

in (7.11) and (7.12) yields the solutions:

δB−z = 1
2δB

−
z0 sin θ(ρ̄ + ρ̄1/2), (7.13a)

δB+
z = 1

2δB
−
z0 sin θ(ρ̄− ρ̄1/2), (7.13b)

for δB−z and δB+
z .

Figure 2 shows an example of a spectral code solution of the Alfvén wave mixing
equations (7.1), for the case where δB−z ≡ B2z is initially specified at time t = 0 as a
sine wave profile far upstream of the shock of Fig. 1 (top panel). The solutions forB2z

and B6z are shown at two later times t2 = 0.03 ≡ 17.24td and t3 = 0.09 ≡ 51.71td,
where td = κ/u2

sh is the convection diffusion time scale and ush is the shock speed,
or upstream flow speed relative to the shock frame (lower two panels). The lower
panels show the interaction of the forward Alfvén waveB6z with the backward wave
B2z due to wave mixing. The amplitudes of both waves increase and the wavelengths
decrease as the waves pass through the shock transition into the downstream region.
Far downstream (bottom panel), both backward and forward waves have constant
wave amplitude and wavelength, and are advected downstream with the flow.

From (7.13), the ratio of the wave amplitudes far downstream of the shock is
given by

δB−zd
δB+

zd

=
r

1/2
c + 1

r
1/2
c − 1

, (7.14)

where rc = ρd/ρu is the shock compression ratio, and the subscripts u and d refer to
the upstream and downstream states. For the shock in Figs 1 and 2, δBzd = 0.0336,
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Figure 2. Spectral code solutions of the Alfvén wave mixing equations (7.1) for the case
where the backward Alfvén wave B2z ≡ δB−z is initially specified (at time t = t1 = 0) far
upstream of the shock of Fig. 1 (top panels). The magnetic field perturbations B2z and B6z

for the backward and forward Alfvén waves are shown at times t2 = 0.03 and t3 = 0.09.
Numerical solutions of the two-fluid equations (2.1)–(2.8) with the same initial conditions
yield solutions for B2z and B6z that are indistinguishable from the spectral code solutions.

δBzu = 0.0124 and the ratio δB−zd/δB
+
zd = 2.71. The shock compression ratio rc =

4.74. Hence the spectral code solutions yield a value for δB−zd/δB
+
zd that agrees

with the analytical solution result (7.14). The local length scale of the sinusoidally
varying profile in (7.13) is given by l = θ−1

x = ux/ω, and hence

ld =
lu
rc

(7.15)

gives the downstream scale length ld in terms of the upstream scale length lu and
the shock compression ratio rc. The ratio ld/lu = 0.21 from (7.15), is in reasonable
agreement with the spectral code solution results (ld = 0.0215 and lu = 0.105). The
decrease in the wavelength as the fluid compresses is apparent in the spectral code
solutions in Fig. 2.

The spectral code solutions of the wave mixing equations (7.1) were also compared
with numerical solutions of the two-fluid MHD cosmic ray model equations (2.1)–
(2.8). The numerical solutions are also plotted in Fig. 2, but the differences between
the two solutions are very small, and are not apparent in the figure.

Figure 3 shows spectral code solutions of the wave mixing equations (7.1)–(7.4)
for the case where the initial data consists of a backward slow-mode wave train
far upstream of the shock in Fig. 1. The left panels show the density perturbations
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Figure 3. Spectral code solutions of the wave mixing equations (7.1)–(7.4), for the case where
a backward slow-mode wave (ρ3) is specified far upstream, at time t = t1 = 0, of the cos-
mic-ray-modified shock in Fig. 1. The left panels show the density perturbations ρ3 and
ρ5 for the backward and forward slow-mode waves at times t2 = 0.03 (middle panel) and
t3 = 0.06 (bottom panel). The density perturbations ρ1 and ρ7 for the backward and forward
fast-mode waves are shown in the right panels.

ρ3 and ρ5 for the backward and forward slow-mode waves at times t2 = 0.03 and
t3 = 0.06, whereas the right panels show the fast-mode wave density perturbations
ρ1 and ρ7 that have been generated by wave mixing. The wave coupling coefficients
(6.43) for the backward fast-mode wave (ρ1) and the corresponding coefficients for
the forward fast-mode wave (ρ7) indicate that fast-mode waves generated from
the slow-mode waves are subject to the cosmic ray squeezing instability, and to
wave damping due to the diffusing cosmic rays, and are modified by MHD wave
mixing effects. The backward fast-mode wave is amplified owing to the cosmic
ray squeezing instability, which is similar to the results obtained by Webb et al.
(1999) for the case of backward-propagating sound waves upstream of a cosmic-
ray-modified shock, in which the magnetic field plays no dynamical role, and for
which κ = const. Note that the forward fast-mode solution ρ7 is approximately 1

2π
out of phase with the backward fast mode solution ρ1.

The slow-mode solutions ρ3 and ρ5 in Fig. 3 are similar to the Alfvén wave so-
lutions depicted in Fig. 2. One can show that the solutions of the slow-mode wave
mixing equations (7.2) for the wave density perturbations ρ3 and ρ5 have the form

ρ3 =
α

3/2
s

uxa1/2
[As(θ)ρ1/4 +Bs(θ)ρ−1/4], (7.16a)
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Figure 4. Spectral code solutions of the wave mixing equations (7.4) for the backward (ρ1) and
forward (ρ7) fast-mode wave density perturbations are compared with numerical solutions of
(2.1)–(2.8) for the shock of Fig. 1, in which a forward fast-mode wave (ρ7) is initially specified
far upstream at time t = t1 = 0. The two lower panels show the spectral code solutions (solid
lines) and numerical solutions (dashed curves) at times t2 = 0.03 and t3 = 0.06.

ρ5 =
α

3/2
s

uxa1/2
[As(θ)ρ1/4 −Bs(θ)ρ−1/4], (7.16b)

where As(θ) and Bs(θ) are arbitrary functions of θ. Thus the slow-mode solutions
(7.16) and the solutions for ρ3 and ρ5 in Fig. 3 have similar wave forms to the Alfvén
wave solutions in Fig. 2.

Figure 4 shows spectral code solutions of the wave mixing equations (7.4) for the
case where a forward fast-mode wave (ρ7) is initially specified upstream of the shock
(top panel). The two lower panels show the spectral code solutions (solid lines) at
two later time instants t2 = 0.03 and t3 = 0.06. For comparison, the dashed curves
show solutions of the fully nonlinear two-fluid equations (2.1)–(2.8) with the same
initial conditions. The fully nonlinear solutions follow the wave mixing solutions
fairly well, except at late times (t = t3), where there is some discrepancy between
the solutions in the region x > 0.7. There is a significant wave growth due to the
steep cosmic ray pressure gradient in the middle of the shock transition. At late
times t = t3, the generated backward wave is more dominant than the forward
wave. Far downstream, both waves are strongly damped owing to the a2

c/κ terms
in the wave mixing coefficients.
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It is clear from (7.1)–(7.4), that fast-mode waves can be generated from entropy
waves initially present upstream of the shock.

8. Summary and discussion
The main aim of this paper has been a study of wave interactions in magnetohy-
drodynamics, with application to cosmic-ray-modified shocks.

The method of multiple scales has been used to obtain equations describing the
interaction of weakly nonlinear short-wavelength MHD waves in a non-uniform
large-scale background flow. The linear terms in the equations describe the inter-
action of the waves due to gradients and time dependence of the background flow
(wave mixing), wave damping due to the diffusing cosmic rays (Ptuskin 1981), and
squeezing instability terms associated with the large-scale cosmic ray pressure gra-
dient (see e.g. Dorfi and Drury 1985; Drury and Falle 1986; Zank and McKenzie
1987). The averaged wave evolution equations (4.43) also contain weakly nonlinear
interaction terms describing (a) Burgers self wave steepening for the magnetoa-
coustic modes; (b) three-wave resonant interactions; and (c) mean wave interaction
effects representing the interaction of a given wave mode with the mean wave field
of the other waves.

For the case of a uniform background flow, in which there are no cosmic ray and
mean wave field effects, the equations reduce to MHD wave interaction equations
obtained by Ali and Hunter (1998) (Sec. 5). The wave interaction equations of
Ali and Hunter (1998), consist of coupled integro-differential Burgers equations,
with integral terms describing the resonant interaction of two waves to generate
a third wave (or the decay of one of the waves into two lower-frequency waves), if
the resonance conditions are satisfied. Resonant interactions are more liable to be
significant for long nearly periodic wave trains than for short wave trains or pulses,
since the wave interactions are strengthened the longer the the waves interact.
For wave propagation in non-uniform media, the waves in resonance in a localized
region of (x, t) space will in general pass out of resonance, since the frequencies and
wavenumbers of the waves will detune in a non-uniform medium. Similar equations
were obtained by Majda and Rosales (1984) describing the resonant interaction of
sound waves and entropy waves in one Cartesian space dimension (see also Hunter
et al. (1986) for similar equations describing the resonant interaction of sound
waves, entropy waves and vortex eigenmodes in two or more space dimensions).
Galeev and Oraevski (1963) (see also Sagdeev and Galeev 1969) derived related
equations describing the resonant decay of a high-frequency Alfvén wave into a
lower-frequency Alfvén wave and a lower-frequency sound wave. The equations are
complementary to weak turbulence equations involving resonant wave interactions
(see e.g. Galeev and Karpman 1963; Zakharov et al. 1992).

For linear wave propagation in inhomogeneous media, one obtains wave mixing
equations of the form (6.1), namely

∂aj
∂t

+
∂

∂x
(λjaj) +

7∑
s=1

Λjsas = 0, j = 1, . . . , 7, (8.1)

where the {aj} denote the wave amplitudes and Vpj = λjex is the characteristic
eigen-velocity of the jth wave mode along the x axis. The wave mixing coefficients
{Λjs} in (8.1) depend on the gradients in the background flow, cosmic ray coupling
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effects due to the large scale cosmic-ray pressure gradient, and damping of the
waves due to the diffusing cosmic rays (Ptuskin 1981). The character of the cosmic
ray squeezing instability depends on the large-scale cosmic ray pressure gradient
and also on the parameter ζ = ∂ ln κ/∂ ln ρ, where κ = κ(ρ) is the effective hydrody-
namical cosmic ray diffusion coefficient and ρ is the density of the thermal gas. In
the case of MHD wave propagation in the absence of cosmic rays, the wave mixing
coefficients {Λjs} coupling the different wave modes have the simple form

Λjs = Lj ·dRs
dts

, 1 6 j 6 7, 1 6 s 6 7. (8.2)

In (8.2), the {Lj} and {Rs} are the left- and right-eigenvectors for the MHD equa-
tions, for the case where the conserved densities Ψ̃ = (ρ, ρuT, By, Bz, ρS)T are used
as the state vector, and d/dts = ∂/∂t + λs∂/∂x is the time derivative along the sth
wave mode characteristic (the more general form of the Λjs when cosmic ray effects
are included is given by (6.2)). For MHD wave propagation in one Cartesian space
dimension, there are 49 wave interaction coefficients in (8.2). The detailed expres-
sions for the {Λjs} in (6.3)–(6.10) reveal that the Alfvén waves are decoupled from
the magnetoacoustic and entropy waves for flows in which B ·∇×u = B ·∇×B = 0.
In particular, for planar MHD flows in which B = (Bx, By, 0)T and u = (ux, uy, 0)T,
the Alfvén wave equations are a special case of the wave mixing equations for Alfvén
waves, and Alfvénic turbulence in the solar wind (see e.g. Heinemann and Olbert
1980; Zhou and Matthaeus 1990).

The formula (8.2) also reveals the special role of simple wave background flows.
For a simple wave flow of the nth wave mode, dRn/dtn = 0, and hence Λjn = 0. In
this case, the nth wave mode does not affect the other modes with j�n. In general,
B·∇×u� 0, and B·∇×B� 0 for Alfvén simple waves. In this case, the Alfvén waves
are modified by their interaction with the magnetoacoustic and entropy waves, but
the magnetoacoustic waves and entropy waves, in turn, are not affected by the
Alfvén waves. On the other hand, magnetoacoustic simple waves are characterized
by zero field aligned current and vorticity (i.e. B ·∇ × u = B ·∇ × B = 0). In the
latter case, the Alfvén waves do not interact with the magnetoacoustic and entropy
waves, since the Alfvén wave interaction coefficients Λ2j , Λj2, Λ6j and Λj6, j� 2, 6,
are all zero.

Numerical simulations of the fully nonlinear two-fluid MHD equations (2.1)–(2.8)
have been compared with spectral code solutions of the wave mixing equations (6.1)
for the case of a steady-state perpendicular cosmic-ray-modified shock (Sec. 7).
These calculations complement a similar study of the wave mixing of sound waves
and entropy waves in cosmic-ray-modified shocks by Webb et al. (1999) for the case
where the magnetic field plays no dynamical role. Further simulations are needed
to more fully understand the role of the magnetic field in the wave mixing of the
MHD waves in oblique MHD cosmic-ray-modified shocks.

For wave propagation perpendicular to the magnetic field, the Alfvén waves,
the entropy wave and the slow magnetoacoustic phase speeds are all zero in the
reference frame of the background fluid. For this configuration, the wave mixing
equations split into four separate subsystems, namely (a) the Alfvén wave mixing
equations (7.1); (b) the slow-mode equations (7.2); (c) the entropy wave equation
(7.3); and (d) the fast-mode equations (7.4). The systems (a), (b) and (c) for the
Alfvén, slow and entropy waves are independent of each other, but the fast-mode
equations (7.4) contain source terms due to the slow-mode and entropy waves.
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It is of interest to note that, for wave propagation exactly perpendicular to
B, the fast-mode waves are not Landau-damped, but the slow-mode waves are
damped (Barnes 1966, 1979). For wave propagation oblique to the magnetic field,
both slow-mode and fast-mode waves are Landau-damped. Landau damping of the
magnetoacoustic waves in general increases with increasing the plasma beta. It is
in general difficult to assess the role of Landau damping of the waves, without
detailed calculations. In a more complete model, one should also take into account
the momentum spectrum of the cosmic rays, but these issues are beyond the scope
of the present paper.
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Appendix A
In this appendix, we show that the wave mixing coefficients {Λjs} of (4.31) and
(4.38) are invariant under a transformation of the form:

Ψ̃
′
= Φ(Ψ̃), (A 1)

where det(∂Ψ̃′α/∂Ψ̃β)� 0, provided that the wave amplitudes {a′s} are chosen to
be invariant under the transformation (i.e. a′s = as). We also show that the nonlinear
wave interaction coefficients Γjjq (4.36), and the symmetric interaction coefficients
Γ̂jpq, (4.46), are also invariant under the transformation, but the coefficients Γjpq
in (4.33) are in general not invariant under the transformation.

To prove the invariance of the linear wave mixing coefficients (Λ′js = Λjs), first
note from (4.31) that

Λ′js = −∂λs
∂x̄

δjs + L′j ·
[
∂R′s
∂t̄

+ λj
∂R′s
∂x̄

+ R′s ·∇Ψ̃′A
′ · ∂Ψ̃′(0)

∂x̄

+R′s ·∇Ψ̃′C
′ ∂p0

c

∂x̄
+ C′

(
a2
c

κ̄
(R2

s − uxR1
s)−

ζ

ρ

∂p0
c

∂x̄
R1
s

)]
(A 2)

is the general form of the wave mixing coefficients when Ψ̃
′

is used as the state
vector in the perturbation analysis. Using the results (3.33)–(3.36b), we have the
transformations:

A′ = P ·A · Q, C′ = P · C, R′s = P · Rs, L′j = Lj · Q, (A 3)

relating A′, C′, R′s and L′j to their corresponding forms when Ψ̃ is used as the state

vector. Note C is defined in (4.3), and C′ is the corresponding form for C when Ψ̃
′
is

used as the state vector.
Using the results (A 3) in (A 2) we find

L′j ·
∂R′s
∂t̄

= Lj · ∂Rs
∂t̄
− Lj ·Q·(Rs ·∇Ψ̃P)·

(
A· ∂Ψ̃

(0)

∂x̄
+ C

∂p0
c

∂x̄

)
, (A 4a)
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λjL′j ·
∂R′s
∂x̄

= λjLj ·
(
∂Rs
∂x̄

+ Q·(Rs ·∇Ψ̃P)· ∂Ψ̃
(0)

∂x̄

)
, (A 4b)

L′j ·(R′s ·∇Ψ̃′A
′)· ∂Ψ̃

′(0)

∂x̄
= Lj ·

[
Rs ·∇Ψ̃A· ∂Ψ̃

(0)

∂x̄
+ Q·(Rs ·∇Ψ̃P)·(A− λj I)· ∂Ψ̃

(0)

∂x̄

]
,

(A 4c)

L′j ·(R′s ·∇Ψ̃′C
′)
∂p0

c

∂x̄
= Lj ·Q·(Rs ·∇Ψ̃P)·C∂p

0
c

∂x̄
, (A 4d)

L′j ·C′ = Lj ·C. (A 4e)

Using the results (A 4) in (A 2) we find

Λ′js = Λjs, (A 5)

where Λjs is given by (4.31). If the state vector Ψ̃ is the conserved densities state
vector (3.2) then Λjs may be reduced to the simpler form (4.38).

To prove that the nonlinear wave interaction coefficients Γjjq are invariant under
(A 1), we note that

Γ′jjq = R′q ·∇Ψ̃′λj = (P · Rq) · (∇Ψ̃λj · Q) ≡ Rq ·∇Ψ̃λj = Γjjq, (A 6)

where we have used the fact that Q · P = I. To prove that the symmetric nonlinear
wave interaction coefficient Γ̂jpq is invariant under the transformation, we first
note from (4.46) that

Γ̂′jpq =
kj(λq − λj)(λp − λj)

λq − λp L′j · [R′q,R′p]. (A 7)

Using the transformation (A 3), we find

L′j · [R′q,R′p] = Lj · [Rq,Rp]. (A 8)

Using the result (A 8) in (A 7) implies that Γ̂′jpq = Γ̂jpq. However, the non-symmetric
wave interaction coefficients

Γ′jpq = L′j · (R′q ·∇Ψ̃′A
′ · R′p), (A 9)

in (4.33) are in general not invariant under the transformation (A 1). From (4.35),

Γ′jpq = (λp − λj)L′j · (R′q ·∇Ψ̃′R
′
p) (A 10)

for p� j. Using the transformation (3.36b) in (A 10), we find

Γ′jpq = Γjpq + (λp − λj)Lj · Q · (Rq ·∇Ψ̃P) · Rp, (A 11)

and hence, in general, Γ′jpq�Γjpq.

Appendix B
In this appendix, we discuss solutions of the Alfvén wave mixing equations (6.27)
and (6.28). For the case of a perpendicular cosmic-ray-modified shock, we derive
the exact wave mixing equation solutions (7.7) and (7.8).

For a steady background flow, (6.27) and (6.28) for f and g have solutions of the
form

f = F exp(iωt) + c.c., (B 1a)

https://doi.org/10.1017/S0022377898007399 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377898007399


344 G. M. Webb et al.

g = G exp(iωt) + c.c., (B 1b)

where F and G satisfy the ordinary differential equations

dF

dx
+

iω

ux − bxG = ψxG, (B 2a)

dG

dx
+

iω

ux + bx
G = ψxF. (B 2b)

Equations (B 2) can also be written in the form

dF̂

dx
= ψxĜ exp(iωφ), (B 3a)

dĜ

dx
= ψxF̂ exp(−iωφ), (B 3b)

where

F̂ = F exp(iωφ−), (B 4a)

Ĝ = exp(iωφ+), (B 4b)

φ± =
∫ x

x0

dx

ux ± bx , φ = φ− − φ+. (B 5)

Equations (B 3) may be combined to yield the integral

|F̂ |2 − |Ĝ|2 ≡ |F |2 − |G|2 = const, (B 6)

which is the Fourier-space wave action integral (for the case of Alfvén waves in the
solar wind, see e.g. Heinemann and Olbert 1980).

Because ψ = 1
4 ln ρ is a monotonic function of x in the smoothed upstream fore-

shock of a cosmic-ray-modified shock, (B 3) may be written in the form

dF̂

dψ
= Ĝ exp(iωφ), (B 7a)

dĜ

dψ
= F̂ exp(−iωφ), (B 7b)

where ψ is the new independent variable. From (B 7), we find that F̂ and Ĝ satisfy
the ordinary differential equations:

d2F̂

dψ2 − iω
dφ

dψ

dF̂

dψ
− F̂ = 0, (B 8a)

d2Ĝ

dψ2 + iω
dφ

dψ

dĜ

dψ
− Ĝ = 0, (B 8b)

For the case of a perpendicular cosmic-ray-modified shock, the Alfvén phase
speed bx = 0, and hence, from (B 5), φ+ = φ− and φ = 0. In this case, (B 8) reduce
to

d2F̂

dψ2 − F̂ = 0, (B 9a)

d2Ĝ

dψ2 − Ĝ = 0. (B 9b)
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From (B 7) and (B 9), the general solutions for F and G are

F̂ = Ã exp(ψ) + B̃ exp(−ψ), (B 10a)

Ĝ = Ã exp(ψ)− B̃ exp(−ψ), (B 10b)

where Ã(ω) and B̃(ω) are arbitrary functions of ω. The corresponding solutions
(B 1) for f and g have the form

fω = exp(iωθ)[Ã(ω)ρ1/4 + B̃(ω)ρ−1/4] + c.c., (B 11a)

gω = exp(iωθ)[Ã(ω)ρ1/4 − B̃(ω)ρ−1/4] + c.c. (B 11b)

Linear superposition of the Fourier mode solutions (B 11), and use of Fourier’s
theorem, now yields the solutions (7.7) and (7.8) for f and g.
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