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In theoretical treatments of turbulent fountains, the entrainment of ambient fluid
into the top of the fountain, hereinafter fountain-top entrainment Qtop (m3 s−1), has
been neglected until now. This neglect, which modifies the energetic balance in a
fountain, compromises the predictive ability of existing models. Our aim is to quantify
Qtop by shedding light on the physical processes that are responsible for fountain-top
entrainment. First, estimates for Qtop are obtained by applying, in turn, an entrainment
closure in the vein of Morton et al. (Proc. R. Soc. Lond., vol. 234, 1956, pp. 1–23)
and then of Shrinivas & Hunt (J. Fluid Mech., vol. 757, 2014, pp. 573–598) to
the time-averaged fountain top. Unravelling the assumptions that underlie these
approaches, we argue that neither capture the dynamical behaviour of the flow
observed at the fountain top; the top being characterised by quasi-periodic fluctuations,
during which large-scale eddies reverse and engulf parcels of ambient fluid into the
fountain. Therefore, shifting our mindset to a periodical framework, we develop a
new phenomenological model in which we emphasise the role of the fluctuations
in entraining external fluid. Our model suggests that Qtop is similar in magnitude to
the volume flux supplied to the fountain top by the upflow (Qu), i.e. Qtop ∼ Qu, in
agreement with experimental evidence. We conclude by providing guidance on how
to implement fountain-top entrainment in existing models of turbulent fountains.

Key words: jets, plumes/thermals, turbulent convection

1. Introduction
A fountain is formed as dense fluid is ejected vertically upwards from a localised

source into a lighter environment. Gravity opposes the rise of the flow, thus, close
to some terminal height, the flow collapses back under gravity to shroud the upflow.
During this collapse, ambient fluid is entrained into the fountain top, which causes the
flow to dilute. Our focus in this paper is to assess the rate of this entrainment, which
we refer to as ‘fountain-top entrainment’. Herein, we consider axisymmetric fountains
in uniform and quiescent surroundings that are miscible, Boussinesq, fully turbulent
and that may be regarded as forced (Turner 1966; Kaye & Hunt 2006).

Along with jets and plumes, fountains represent a canonical example of environ-
mental flows. These elegant flows occur extensively in nature and in engineering, from
the evaporative cycles observed atop cumulus clouds (Turner 1966) to the dilution
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of industrial waste in the ocean (Koh & Brooks 1975). An account of their wider
applications can be found in the review article by Hunt & Burridge (2015).

Several theoretical models describing the time-averaged behaviour of forced
fountains have emerged since the seminal study by Turner (1966). These models
each define the fountain in terms of an upflow and a counterflow, the latter being
characterised either implicitly (Carazzo, Kaminski & Tait 2010; Mehaddi et al.
2015) or explicitly (McDougall 1981; Bloomfield & Kerr 2000). Strikingly, with the
exception of McDougall (1981), all have omitted to include a region near the top of
the fountain where the flow is allowed to reverse under the influence of buoyancy
(hereinafter ‘cap’). Significantly, none explicitly model entrainment into the fountain
via the fountain top.

This omission comes as somewhat of a surprise. Indeed, the issue of lateral
entrainment and of appropriately parameterising this entrainment lies at the heart
of the modelling of fountains (see, e.g., the discussion in Carazzo et al. (2010)).
There is no obvious reason why entrainment into the cap should receive less rigorous
a treatment. Notably, the experimental measurements of Lin & Linden (2005), the
large eddy simulations of Devenish, Rooney & Thomson (2010) and the direct
numerical simulations of Williamson, Armfield & Lin (2011) have each indicated
that entrainment into the cap is by no means negligible. Devenish et al. (2010), for
instance, simulated the rise of a plume through a stably stratified environment. Beyond
the height of neutral buoyancy, the plume became negatively buoyant and thereby
reached a terminal height before reversing as a fountain. The amount of ambient
fluid entrained through the reversing plume top (effectively, a fountain top) was then
calculated as the difference between the flux of volume supplied to the plume top
from the upflow (Qu) and that leaving the plume top in the counterflow (Qc), i.e. as
Qtop = Qc − Qu. Over the investigated range, they found that Qtop/Qu = 1–3. Though
exceeding the values measured by Lin & Linden (2005), who report Qtop/Qu=0.5–0.8,
Devenish et al. (2010, p. 98) acknowledge that this discrepancy is primarily due to
the volume fluxes being measured at different heights. In the absence of a unifying
theoretical framework and a systematic empirical means for isolating the cap from
the remainder of the fountain, such differences in convention are to be expected.
Adjusting their notation to be consistent with the formalism of Lin & Linden (2005),
and indeed with the notation adopted in § 2, one obtains Qtop/Qu ≈ 1. Despite some
uncertainty surrounding the precise value of Qtop, this broad agreement suggests that
fountain-top entrainment is of a similar magnitude as the incident volume flux Qu.

With this scale for Qtop in mind, it becomes clear that neglecting to account for
fountain-top entrainment will upset the internal balance of fluxes in an established
fountain. Without the additional dilution at the top, the counterflow remains relatively
undiluted and, hence, relatively energetic. This results in an enhanced shear rate at
the interface between the upflow and the counterflow. Notably, this implies that a
greater fraction of the momentum in the upflow is lost in turbulent exchanges. One
immediate consequence of this excess loss would be a reduction in predicted rise
height. McDougall’s (1981) model, for instance, which features a non-entraining cap,
necessitates the introduction underneath the cap of a cylindrical region of arbitrary
height to achieve rise heights that compare favourably with measurements. The
importance of including fountain-top entrainment was also upheld by Devenish et al.
(2010), who showed that the model predictions of Bloomfield & Kerr (2000) could
be improved by allowing for a finite volume of fluid to be entrained during flow
reversal. Here, the authors did not specify how external fluid was entrained. Instead,
entrainment was achieved numerically by formulating Qc as a multiple (>1) of Qu.
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(By comparison, Bloomfield & Kerr’s original formulation assumes Qc = Qu.) For
Qc = 2Qu, the predicted volume fluxes accurately matched those in their reversing
plume simulations. Again, this hints at Qtop ∼Qu.

Devenish et al.’s (2010) adjustment, albeit ingenious, is purely numerical. As
such, it cannot provide an explanation of the physical mechanisms underlying
the entrainment process. Without physical substantiation, the associated choice of
multiplicative factor appears somewhat arbitrary. Nevertheless, their approach reaffirms
the need to account for fountain-top entrainment in theoretical treatments of forced
fountains. As exemplified by McDougall (1981), the inclusion of an entrainment
flux Qtop is central to developing a suitable model for the region of flow reversal
and, hence, for a forced fountain in general (see, e.g., the models of Bloomfield &
Kerr (2000) and Carazzo et al. (2010), for whom the absence of a cap is cause for
breakdown close to the steady-state rise height). Thus, by evaluating Qtop we pave
the way towards providing a complete model for a forced fountain.

The aim of this paper is twofold: (i) to identify the physical processes by which
ambient fluid is entrained into the fountain top, and (ii) to estimate the ensuing rate
of entrainment Qtop. We continue with a detailed inspection of the dynamics of the
flow at the fountain top in § 2.1. Two independent estimates of Qtop are then derived
based on arguments developed by Morton, Taylor & Turner (1956) (§ 2.2) and by
Shrinivas & Hunt (2014) (§ 2.3). During these derivations, careful attention is paid
to what each formulation implies for the bulk flow. Arguing that neither capture the
primary entraining mechanism that is observed in practice, in § 2.4 we develop a new
phenomenological model that takes into account the role of rise-height fluctuations
in the engulfment of external fluid. Drawing from our model, we then show how to
implement the entraining fountain top in existing descriptions for forced fountains.
Finally, in § 3 we contrast our findings and discuss what should be regarded as a
suitable value for Qtop.

2. Fountain-top entrainment models
2.1. Description of the fountain top

Before concentrating on the modelling of entrainment into the cap, it is helpful to first
consider the general aspects of the fountain top.

In its instantaneous nature, there is no well-defined region of flow reversal
(cf. figure 1a). Instead, the flow atop a fountain appears to be highly irregular.
Observations reveal that the pulsating fountain top undergoes large-amplitude
fluctuations, shedding blobs or lobes of fluid. These lobes subsequently descend
around the upflow to form the counterflow. A comprehensive study of the fountain
top undertaken by Burridge & Hunt (2013) clarifies the picture (see also Pantzlaff
& Lueptow 1999). Burridge & Hunt (2013) analysed the time series of rise height
produced by the motion of the fountain front. They found that there was a discernible
rhythm, or periodicity, to the dominant mode of fluctuations occurring at the fountain
top. For forced fountains, the dominant period of fluctuation was found to correspond
approximately to the timescale of (large) eddies forming on the scale of the upflow
radius at (the level of) the fountain top. Thereafter, these eddies collapse onto the
counterflow, completing the fluctuation cycle. Thus, Burridge & Hunt (2013) argue
that the fluctuations atop forced fountains can be assimilated as quasi-periodic cycles
of formation and collapse of large-scale eddies.

To date, no attempt has been made (to the authors’ knowledge) to implement
fluctuations into a model for fountains. By the same token, the potential links
between these fluctuations and the entrainment of ambient fluid at the fountain top
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1.8 cm

0.6 cm

11.8 cm z

(a) (b) (c)

FIGURE 1. Structure of a turbulent forced fountain. (a) Instantaneous snapshot of an
aqueous-saline fountain (source diameter 0.6 cm) with steady-state rise height and vertical
extent of a characteristic large-scale fluctuation marked (cf. measurements by Burridge &
Hunt (2013)). (b) Time-averaged image of the same fountain. The modelled, time-averaged
fountain-top morphology is depicted in (c). The dotted lines in (b) and (c) outline the
approximate boundaries of upflow, fountain top and counterflow.

have seemingly been overlooked. In immiscible fountains, the reversing flow absorbs
large pockets of surrounding fluid into the body of the fountain (Friedman et al.
2007). A similar phenomenon takes place in miscible fountains: as large-scale eddies
spill off the fountain top, they wrap up external fluid into billow-like structures.
Thereby, ambient fluid is entrained into the body of the fountain. It therefore seems
essential that a faithful model for fountain-top entrainment incorporates the effects of
fluctuations.

Next, the question of the shape of the fountain top must be addressed. To the
experimentalist who has observed these flows in controlled laboratory tests, this
question is relatively straightforward to answer. This is mirrored by the fact that
across the literature, schematics of fountains are depicted similarly: namely with
an approximately hemispherical structure at their top (e.g. Turner 1966; Mizushina
et al. 1982; Cresswell & Szczepura 1993; Burridge & Hunt 2012). The broadly
hemispherical morphology is also apparent from figure 1(b), which was obtained by
averaging over time instantaneous snapshots, such as that shown in figure 1(a). Thus,
in line with a long history of observations, we adopt a time-averaged description
of the cap as a hemisphere of height zt, as illustrated in figure 1(c). At its base,
the cap is fed by an incoming volume flux of dense fluid from the fountain upflow,
Qu ∝ πb2

uwu, characterised by a reduced gravity g′u = g(ρu − ρa)/ρa. Here, bu, wu and
ρu denote the radius, velocity and density of the upflow, respectively, at a height
corresponding to the onset of flow reversal, and ρa the ambient density (figure 1c).
For convenience, we adopt a top-hat profile for wu, thus Qu=πb2

uwu. A local Froude
number, indicative of the relative strengths of inertial and buoyant forces in the cap,
can be formed as

Fru = wu√
bug′u

. (2.1)

This balance between the two competing forces determines the dynamics of the
(time-averaged) fountain top and needs to be specified. In order to select a sensible
value for Fru, we may reason as follows. We know that a (large) eddy of nominal
width 2bu will reverse at the fountain top when the gravitational downward pull
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A phenomenological model for fountain-top entrainment 199

exceeds the upward thrust of momentum. The height at which the flow starts to
reverse can therefore be defined by the ‘tipping’ point wu=

√
2bug′u, i.e. by Fru=

√
2.

A similar argument is developed by McDougall (1981), who initiates his cap at the
height at which conditions locally in the upflow are characterised by Fru =

√
2.

2.2. Morton–Taylor–Turner entrainment closure
When faced with a flow for which (macroscopic) entrainment is a prominent feature,
it is tempting to rely on the closure popularised by Morton et al. (1956) (hereinafter
MTT). MTT postulated that the entrainment velocity across the outskirts of a jet or a
plume is directly proportional to the time-averaged centreline velocity. The constant of
proportionality, the entrainment coefficient α, varies across applications, but typically
α ≈ 0.1. Their ‘entrainment assumption’ has since been successfully applied to many
different types of flow; see Turner (1986) for a review. Crucially, our interest lies
primarily in describing the physical phenomena responsible for entrainment into the
cap. In the following, we apply MTT’s closure to the fountain cap and discuss its
appropriateness with regard to the dynamics of a forced fountain.

In order to apply MTT, we seek a characteristic vertical velocity, ŵ, in the cap. As
relatively dense fluid from the upflow rises through the buoyancy-dominated cap, it
experiences a downward acceleration g′u. Some fluid elements reach the crest of the
cap (r= 0, z= zt, figure 1), where the vertical velocity has reduced to zero. Eventually,
these fluid elements reverse direction and are accelerated under gravity. Assuming
that pressure remains hydrostatic throughout the cap, an estimate of ŵ is obtained on
applying the Bernoulli equation along a streamline from the crest to a point at height
z. This yields

ŵ=√2g′u(zt − z). (2.2)

The characteristic entrainment (or inflow) velocity is therefore

û= α√2g′u(zt − z). (2.3)

In order to evaluate the entrained volume flux Qtop, we must integrate the inflow
velocity (2.3) over the cap. For a hemispherical geometry, the radius of the cap bt
is given by b2

t (z)+ z2 = z2
t . Thus, integrating leads to an entrainment flux of

Qtop = 2πα

∫ zt

0
bt(z)ŵ(z) dz= 4α

√
2

15
(8
√

2− 7)︸ ︷︷ ︸
δ

z5/2
t

Frub5/2
u

Qu, (2.4)

where δ = 0.163 (to three decimal places) with α = 0.1, and Qu(= πb2
uwu) is the

volume flux supplied to the cap by the upflow. In (2.4), the factor multiplying Qu
is a constant whose numerical value evidently depends on the geometry of the cap
and on the characteristic local balance between inertia and buoyancy.

In a similar configuration, Shrinivas & Hunt (2014) (see § 2.3) obtained an
expression for zt (namely zt = 0.94buFr2

u) based on the assumption that there was
an efficient conversion of kinetic to potential energy in the cap. Although their study
pertains to localised interfacial mixing induced by an impinging jet, later we motivate
why it is reasonable to apply directly some of their results to a fountain cap, rather
than solely to an impingement dome for which their model was developed. Therefore,
for Fru =

√
2, (2.4) evaluates to

Qtop = 0.525Qu. (2.5)
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Equation (2.5) is promising in that it confirms our intuition that Qtop should scale
on Qu. That said, one should be mindful of applying MTT to the fountain top. In
plumes, a typical entrainment event consists of peripheral eddies engulfing ambient
fluid into the plume (Turner 1986). The MTT entrainment assumption gives a time-
averaged representation of this engulfment process. As outlined in § 2.1, we indeed
expect ‘engulfment’ to be the primary driver of fountain-top entrainment. There is
a difference, however, between ‘engulfment’ in the context of slender flows such as
plumes, and in the context of a fountain top. Slender flows have eddies on their
perimeter that entrain patches of external fluid into the bulk flow as they propagate.
Significantly, these eddies do not occupy the whole cross-section of the flow (e.g. plate
166 in Van Dyke (1982)). By contrast, observations of the dominant fluctuation mode
suggest that the instantaneous fountain top consists of single large-scale eddies shed
in succession (e.g. Burridge & Hunt (2013)). It is therefore unclear a priori that the
same closure should hold in a flow which, like the fountain top, comprises one such
notional eddy. A related concern is the requirement within the MTT closure to define
a meaningful time-averaged velocity. In the fluctuating fountain top, where the velocity
changes sign over the course of a fluctuation, the existence of such a time-averaged
velocity is questionable.

2.3. Entrainment by baroclinic vortices
An alternative account of the time-averaged entrainment process in fountain tops
may be drawn from the work of Shrinivas & Hunt (2014) (hereinafter SH14). In the
context of a two-layer stratified system, SH14 present a closure for the entrainment
caused by a jet weakly impinging on a density interface. This localised impingement
penetrates the interface as a recirculating bulge (or ‘dome’) which, as we shall
see, shares notable similarities with a fountain top. In their account, inspired from
experiments by Shy (1995) and Cotel et al. (1997), external fluid is entrained into a
dome through the action of small baroclinic vortices located on the dome’s periphery
(figure 2). Herein, we briefly recount some of the SH14 arguments to motivate why
their closure warrants inspection and to illustrate the fundamental differences between
their conceptual picture and an MTT-based approach.

Interested in the mixing dynamics of a jet, Shy (1995) performed a series of
experiments in which a turbulent jet impinged on an interface across which there
was a buoyancy jump 1g′. When the impingement was weak, the interface distorted
locally into a dome-like structure. For sufficiently energetic impingements, the jet
penetrated the interface into a region of lower density fluid as a fountain. Using
laser-induced fluorescence, Shy was able to distinguish fractions of the fountain
which had mixed with the surroundings from fractions which had merely been
‘stirred’. In his flow visualisation, a fluorescent layer, indicative of mixing, persisted
around the dark bulk silhouette of the fountain. Around the fountain top specifically,
this fluorescent layer was thin, hinting that eddies responsible for the entrainment of
ambient fluid were mostly confined to a thin region around its periphery. Later, Cotel
et al. (1997) confirmed that for moderately energetic impingements (again forming
a dome) this narrow layer was comprised of small, sustained baroclinic vortices.
Performing several rotations in place before dislodging, these persistent eddies were
responsible for drawing ambient fluid into the dome. A diagram of this conceptual
picture is shown in figure 2(a).

Significantly, this picture suggests a physical origin for entrainment that is different
from MTT: the primary entraining mechanism observed is a near-steady drawing in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.233


A phenomenological model for fountain-top entrainment 201

r

z

R

(a) (b)

FIGURE 2. (Colour online) Diagram of the shear-driven entrainment model. Confined to a
thin vortical layer (shaded region), baroclinic vortices, shown in (a), drive a volume flux
Qtop of external fluid of density ρa into the dome. In (b), mean flow streamlines through
the vortical layer are illustrated. After Shrinivas & Hunt (2014, figure 5).

of external fluid effectuated by the sustained rotation of small vortices, rather than a
quasi-periodical engulfment event averaged over time (as in MTT).

There is, however, more than a passing resemblance between the ‘entrainment dome’
formed when a jet-like flow impinges on a density interface and the time-averaged
fountain top in uniform surroundings: both flows are dominated by their buoyancy
and are approximately hemispherical in shape. Their close connection is reinforced
on considering that, if one increases the forcing at the interface (or decreases the
buoyancy jump), the entrainment dome naturally transitions into a fountain top.
This is apparent in the experiments of Shy (1995) and, to a lesser extent, in
those of Lin & Linden (2005). Thus, in light of these similarities and seeking a
time-averaged entrainment closure, it seems natural to inspect the rate of entrainment
which baroclinic eddies drive into the fountain top.

In the arguments that follow we distinguish between 1g′, the reduced gravity
across a density interface and pertinent to the interfacial dome, and g′u, the reduced
gravity at the onset of flow reversal in a fountain (in an unstratified environment),
and characteristic of the buoyancy in the cap. Similarly, we use ‘dome’ to designate
the interfacial dome, depicted in figure 2, and ‘cap’ to refer to the top of a fountain
rising through a uniform environment.

If there were not a sustained flux of vorticity into the dome, the baroclinic torque,
a torque resulting from the misalignment of pressure and density isolines, would
‘unwrap’ the dense dome into a horizontal surface. The upflow provides the dome
with a sustained influx of vorticity that maintains the persistent rotation of eddies,
or vortices, within the vortical layer. The steady vorticity equation for a baroclinic
vortex revolving at mean radial and vertical velocity, uv(z) and wv(z), respectively, is
given by

uv

(
dΩv

dr
− Ωv

r

)
+wv

dΩv

dz
= |∇ρ ×∇P|

ρ2
a

, (2.6)

where P(z) designates the pressure in the environment, assumed hydrostatic, and Ωv(z)
the vorticity of a baroclinic vortex. In (2.6), the left-hand side represents the rate
of rotation induced by the upflow. This is counteracted by the right-hand side, the
baroclinic torque acting on the dome. Vortex stretching is absent because the time-
averaged morphology of the dome is unchanging. SH14 established that uv/wv � 1,
such that (2.6) simplifies to

wv

dΩv

dz
≈ |∇ρ ×∇P|

ρ2
a

, (2.7)
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without significantly affecting the analysis: neglecting the contribution of uv modifies
their final estimate of the entrained volume flux by less than 2 % (Shrinivas & Hunt
2014).

The small baroclinic vortices, driving entrainment at a mean velocity ue(z), are
fuelled by an incident vorticity flux from the upflow over a length scale bu. Thus,
their mean circulation scales as Γv ∝ uebu and their vorticity Ωv scales as

Ωv ∝ Γvb2
u

∝ ue

bu
. (2.8)

The baroclinic vorticity is generated at a mean rate

|∇ρ ×∇P|
ρ2

a

∝ (ρu − ρa)/bu · ρag
ρ2

a

= 1g′

bu
. (2.9)

Substituting for Ωv from (2.8) and for the baroclinic torque from (2.9) into the
vorticity equation (2.7) yields

due

dz
∝ 1g′

wv

. (2.10)

It remains to determine wv. To that end, consider the mean flow within the dome,
illustrated in figure 2(b). As in § 2.2, the ascent of fluid in the cap is stifled by its
negative buoyancy. Due to the combined action of the weak inflow engendered by
the entrainment flux and of the internal recirculation, some fluid is steered into the
vortical layer and begins rotating at a velocity {uv,wv}; cf. streamline R on figure 2(b).
Therefore, applying the Bernoulli equation along streamline R, we approximate wv as

wv ≈
√

21g′(zt − z), (2.11)

since the radial velocity uv has negligible magnitude. Using (2.11), equation (2.10)
becomes

ue = αwv, (2.12)

where α denotes a constant of proportionality.
Equation (2.12), which states that the mean entrainment velocity is proportional

to the mean vertical velocity of a vortex, is formally identical to the entrainment
velocity (2.3) found in § 2.2: remarkably, the MTT entrainment closure is recovered.
This assertion comes despite the different entrainment mechanism at the start of
the argument. Thus, if one were to assume that the SH14 dome is an appropriate
representation of the time-averaged fountain top, with reference to (2.5) we retrieve
Qtop = 0.525Qu (taking, for consistency, α = 0.1).

Here too, caution is advisable. Some aspects of the entraining mechanism proposed
by SH14 for the dome appear to be incompatible with the flow atop a fountain.
Pertinently, the SH14 closure, or at least route to closure, would rely on the presence
of sustained baroclinic vortices surrounding the fountain top. This requirement may
seem somewhat contrived, even in a time-averaged sense, in a fountain top that
is perpetually fluctuating. As a whole, the entrainment process presumed in SH14
(a steady, regular drawing in of external fluid), though successful in describing
entrainment in an interfacial dome, does not comply well with the engulfing events
that are observed in forced fountains (e.g. Burridge & Hunt 2013).

In light of these concerns, it is advisable to search for different methods to quantify
entrainment. Ideally in the context of forced fountains, an entrainment closure should
replicate the characteristic large-scale fluctuations at the fountain top. This forms the
focus of § 2.4.
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z

(a) (b) (c)

t

FIGURE 3. First half-cycle, 06 t6Tp/2: schematic depicting three stages in the formation
of a fountain top by a filling process. (a) Initially, the cap is empty. (b) The cap gradually
forms due to the inflow Qu from below. In (c), the cap has reached the peak fluctuation
height zm. The dashed line depicts the outline of the cap at maximal volume.

2.4. Entrainment by vortical engulfment
So far, we have considered two separate approaches to evaluate fountain-top
entrainment: MTT and SH14, each based on very distinct conceptualisations of the
bulk flow. A noteworthy preliminary result is that they both predict Qtop = 0.525Qu.

There remain, however, open questions regarding the pertinence of either approach
when applied to the fountain top. These questions centre around how meaningful it
is to adopt a time-averaged representation of the fountain top. Indeed we argue that
fluctuations play a fundamental role in engulfing external fluid into the fountain body.
It then seems difficult to reconcile this fluctuating behaviour with a time-averaged
view of the flow.

Seeking a time-averaged entrainment closure has the obvious benefit that entrainment
through the cap may be expressed as an entrainment rate, Qtop, rather than an entrained
volume, Vtop. However, for the purposes of developing the arguments that follow (and
indeed to alleviate some of the previous concerns), it is useful to shift our mindset
from a time-averaged to a periodical representation of the cap.

Once we adopt a periodical framework, the fluctuations can readily be implemented
into an entrainment model. To achieve this, we represent fluctuations conceptually as
periodical cycles of ‘filling’ (first half-cycle) and ‘draining’ (second half-cycle) of the
cap, during which the fountain top forms and collapses, respectively. Simultaneously,
the cap rises during the first half-cycle and subsequently falls back in the second half-
cycle. The two stages are depicted schematically in figures 3 and 4, respectively.

We now consider, in turn, how external fluid is absorbed into the cap during
formation and collapse. Suppose that, in the first instance, the cap gradually ‘fills up’
via the volume flux supplied by the upflow. The kinetic energy provided by this influx
is stored as potential energy in the growing cap; simultaneously, it enables the cap
to rise to the maximal quasi-steady fluctuation height zm = z(Tp/2) (figure 3c), where
the time t = Tp/2 denotes the end of the first half-cycle. Based on the assumption
that this raising of the cap results from a conversion of kinetic to potential energy,
we may write

zm = AbuFr2
u, A= const. (2.13)

The rise to a height zm concludes the first half of a single oscillation cycle. At
this stage, the amount of fluid entrained (i.e. for 0 6 t 6 Tp/2) by engulfment is
expected to be negligible. In practice, we expect some fluid to spill weakly from the
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z

(a) (b) (c)

t

FIGURE 4. Second half-cycle, Tp/2 6 t 6 Tp: schematic depicting three stages in the
collapse of a fountain top by a draining process. (a) The cap has reached a maximal
volume at the peak height of a fluctuation cycle and starts to drain. (b) As the cap
collapses, vortical motion entrains ambient fluid into the counterflow by engulfment. The
cap is fully depleted in (c). Dashed outline as in figure 3.

Model

FIGURE 5. (Colour online) Illustration of the modelling approach whereby the engulfment
is driven by a thin vortex ring of circulation Γ with core at height zc(t) (the italicised
subscript ‘c’ reading ‘core’) across a cylindrical stem of radius bu. To avoid ill-posedness,
the vortex-induced velocity Uv follows the velocity of a Rankine vortex.

fountain top and to roll up into tiny billows at its rear, although their contribution to
entrainment is likely to be small. The actual entrainment is probably occurring at a
smaller scale, akin to that in SH14. However, as discussed, the applicability of their
model to a periodical framework is questionable. Therefore, it seems reasonable to
neglect entrainment altogether during the first half-cycle. We will see later that our
conclusions are largely unaffected by this assumption.

In the second half-cycle, the collapsing cap wraps around and thereby engulfs
ambient fluid as it falls. To describe this engulfment mechanism, a new model is
needed.

Figure 5 illustrates the modelling approach that we have taken. Whilst its application
to the fountain top is novel, a similar approach has been used to describe entrainment
in the near-field of fires (Cetegen 1998) and, qualitatively, in jets (Sreenivas & Prasad
2000). The swirling motion induced by the inflow of ambient fluid and simultaneous
collapse of the fountain top is modelled by a thin vortex ring to which we assign a
diameter 2bu and a constant strength Γ (m2 s−1). This vortex ring induces a lateral
velocity Uv which drives a volume flux across an extension of the upflow. For
simplicity, this extension is modelled as a cylindrical stem of perimeter 2πbu and of
height zc. The position of the core of the vortex ring, zc(t), varies over the course of
one half-cycle from z= zm at t= Tp/2 to z= 0 at t= Tp.
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Since we only consider Uv along the perimeter of a vertical cylinder, we can express
Uv as Uv(z), with 06 z6 zc(t). The profile of Uv(z) is shown qualitatively on figure 5.
To bypass the difficulty of the velocity tending to infinity on the vortex core, we
specify a length scale zsb over which the flow rotates as a solid body. This is formally
known as a Rankine vortex (Saffman 1992, p. 22), where zsb is generally introduced
to account for viscous effects. We shall see later that the choice of zsb is immaterial
to the final solution, provided that it is small. The velocity induced by a vortex ring
with a viscous core of extent zsb follows

Uv(Z )=


Γ

2πZ

(
Z

zsb

)2

, 0<Z < zsb,

Γ

2πZ
, Z > zsb,

(2.14)

where Z (t)= zc(t)− z is a local coordinate pointing radially outward from the vortex
core (figure 5). The total volume Vtop entrained over a duration t is therefore

Vtop = 2πbu

∫ t

0
I dt′, I =

∫ Zc(t)

0
Uv dZ . (2.15)

Substituting for Uv from (2.14), we evaluate the inner integral of (2.15) as

I = Γ

2π

(∫ zsb

0

Z

z2
sb

dZ +
∫ Zc(t)

zsb

1
Z

dZ

)
=F + G , (2.16)

where
F = Γ

4π
and G = Γ

2π
ln

zc(t)
zsb

(2.17a,b)

represent contributions to I (2.15) over the solid body of rotation (F ) and over the
free vortex (G ), respectively. Denoting the vertical velocity of the core as wc and
making the substitution of variables dt′ = dzc/wc transforms the integral (2.15) into

Vtop = 2πbu

(∫ zsb

0

F

wc
dzc +

∫ zc,max

zsb

G

wc
dzc

)
, (2.18)

where zc,max designates the maximal height attained by the core of the cap over one
complete cycle. Given that the collapsing cap experiences a reduced gravity g′u, we
may express its vertical velocity as

wc =
√

2g′u[zc,max − zc(t)]. (2.19)

Substituting for wc from (2.19) and for F and G from (2.17) into (2.18), on
integrating we obtain

Vtop = Vtop,F + Vtop,G , (2.20)

with
Vtop,F = buΓ√

2g′u
(
√

zc,max −
√

zc,max − zsb) (2.21)

and

Vtop,G = buΓ√
2g′u

(
4
√

zc,max arctanh

√
zc,max − zsb

zc,max
− 4
√

zc,max − zsb

)
. (2.22)
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It remains to estimate the bounds of integration zsb and zc,max, and to specify the
form of the vortex circulation Γ . Over one draining cycle, as depicted on figure 4,
we readily recover

zc,max = zm = AbuFr2
u. (2.23)

As alluded to previously, the precise form of zsb is inconsequential. For convenience,
we may assume that it scales on the length scale pertinent to the fountain top, i.e.

zsb = BbuFr2
u, (2.24)

with B � A to ensure that zsb is suitably small (zsb/zm � 1). Further, in order to
determine Γ , we use the knowledge that the upflow velocity wu (at level z = 0)
generates circulation over an area πb2

u. It follows that Γ ∝πbuwu, i.e.

Γ =Cπbuwu, (2.25)

where C is an order one constant. Crucially, knowing the form of Γ enables us to
evaluate the total volume entrained by engulfment into the fountain top over one half
of an oscillation cycle of duration Tp/2. Substituting (2.25) and the bounds (2.23) and
(2.24) into (2.20) yields our estimate

Vtop = βCπb2
uwu√

2g′u
, β = Fru

√
bu

√
A

(
4 arctanh

√
A− B

A
− 5

√
A− B

A
+ 1

)
. (2.26)

Two comments need to be made on (2.26) so as to ascertain its validity. First, β > 0
for all positive values of B< A, so that the entrained volume Vtop is always positive.
Second, we recall that the length scale zsb was introduced as a modelling artefact
which, ideally, should approach zero. Whilst the factor β is unbounded in the limit
as B→ 0, for small but finite B, β is well-behaved. Indeed, arctanh(x) asymptotes to
infinity slowly as x→ 1. These two points are illustrated in figure 6, where we plot
β against B/A. Moreover, for small B, Vtop,F→ 0 (2.21). Given Qu=πb2

uwu, we may
approximate the entrained volume as

Vtop ≈
(

4 arctanh

√
A− B

A
− 4

)
Fru

√
bu

√
A

CQu√
2g′u
∝ C
√

A√
2

Qu
wu

g′u
. (2.27)

In (2.27) the ratio wu/g′u represents a timescale Tu that is indicative of the fluctuation
period. In terms of average entrainment rates therefore, we recover that

Qtop ∝Qu. (2.28)

Equation (2.28) shows that the rate of entrainment through the fountain top is
a constant fraction of the volume flux provided by the upflow. Thus, our model
for vortical entrainment predicts the same functional dependence as models based
on MTT or SH14. In the case of MTT, this functional agreement should perhaps
not come as a surprise. The entraining mechanism which forms the basis of (2.27)
resembles MTT: large eddies, whose size and velocity scale on the mean flow, engulf
ambient fluid. The main novelty and indeed primary outcome of our approach is
that, by coupling the engulfing motion with the large-amplitude fluctuations that
typify a forced fountain top, equation (2.27) faithfully replicates the phenomenology
that is observed in practice. Significantly, one key implication of this agreement is
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FIGURE 6. Numerical value of the factor β (thick line) normalised by Fru
√

bu

√
A against

different ratios B/A for A= 0.9. Also plotted are the contributions to β of the individual
terms in (2.26) (thin lines, annotated).

that a time-averaged description of entrainment successfully captures the dynamic
processes in the fountain top. This result enables the direct implementation of a
mechanistic approach for fountain-top entrainment into a (three-region) model for
a forced fountain. First, one replaces McDougall’s (1981) cap with a hemispherical
fountain top (figure 1c) diluting at a rate Qtop. Then, following McDougall’s lead,
but crucially including the additional dilution, one obtains a modified set of outflow
conditions for fluid leaving the fountain top. Given that these conditions drive the
counterflow, the effects of fountain-top entrainment are incorporated into a complete
description for a forced fountain. The details of this implementation, which lie beyond
the desired scope of this paper, can be found in Hunt & Debugne (0000).

We can gain some insight into the magnitude of Qtop by giving estimates for A and
Tu. The relative lack of internal fountain statistics prevents us from deducing these
estimates purely from the literature. In appendix A, we show how data from Burridge
& Hunt (2013) can be coupled with our model for forced fountains (presented in a
complementary paper, Hunt & Debugne (0000)) to yield A ≈ 0.9 and Tu ≈ 0.1Tp.
From these estimates and taking β ≈ 10Fru

√
bu

√
A (figure 6), we can deduce

the approximation Qtop/Qu ≈ 0.81C. Given that the magnitudes of β and C are
independent in the limit of a vanishingly thin vortex ring (B → 0), it is difficult
to assign a precise value to C, however, by construction we expect C ∼ 1 (2.25).
Therefore, our model for vortical engulfment suggests Qtop/Qu ∼ 1.

3. Discussion and conclusions
We have presented a novel approach to assess how external fluid is entrained into

a fountain cap. By taking into account the role of rise-height fluctuations at the
fountain top in the engulfment of external fluid, our model (2.27) closely mimics the
dynamic behaviour of a (forced) fountain top. We predict that the entrained volume
flux is a constant fraction of the incoming volume flux (as indeed follows from
elementary dimensional considerations) and an order-of-magnitude estimate of (2.27)
suggests that Qtop ∼ Qu. This result is consistent with the large-eddy simulations of
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Devenish et al. (2010) (Qtop ≈ Qu) and with the experimental measurements of Lin
& Linden (2005) (Qtop/Qu= 0.5–0.8). Moreover, the oscillatory and engulfing motion
encompassed within our model is in accord with observations (Friedman et al. 2007;
Burridge & Hunt 2013).

Relatively few assumptions underpin our model (§ 2.4). Notably, we have assumed
that:

(i) over the course of a fluctuation, kinetic energy is converted into potential energy
(and vice versa);

(ii) the rotational motion of a typical engulfment event can be modelled as the inflow
produced by a vortex ring of strength Γ ∝ buwu.

From (i), we deduced the relevant length scale (2.13) and velocity (2.19). Energy
losses that occur during the reversal of a lobe of fluid are implicit in the quantity
A (2.13). Then, (ii) constitutes the main modelling approach: it is an approximation
based on an idealised representation of entrainment as induced by a single translating
vortex ring. Together, (i) and (ii) allow one to reduce the process of engulfment at
the fountain top to a tractable form (2.27). Significantly, our closure (2.27) combines
a fountain’s fluctuating nature with a mechanistic account of entrainment.

Ideally, an estimate of the constants A, B and C would enable the direct
implementation of (2.27), which, from a phenomenological viewpoint, seems to
provide a more faithful account of fountain-top entrainment. Whilst the magnitude
of A can be inferred from the fluctuation height data provided by Burridge & Hunt
(2013) (appendix A), the physical interpretation of the constants B and C is less
clear. Nor is it straightforward to devise an experiment by which to measure these
constants. Nevertheless, there is evidently a strong connection between our theoretical
description (2.27) and the entrainment closure of MTT (2.5), both starting from the
engulfing motion by large-scale eddies, and both subsequently predicting Qtop ∼ Qu.
We might therefore reasonably anticipate that evaluation of (2.27) should lead to a
similar result as (2.5).

This outcome bolsters the inclusion into full-fledged models of forced fountains
(as per § 2.4) of a time-averaged fountain top, modelled as a hemispherical cap and
entraining ambient fluid at a rate Qtop = 0.525Qu. This rate of entrainment, which
emerges from MTT, is not a figure that is set in stone (in reference to fountain tops).
Future theoretical refinements or new insights arising from a series of dedicated
experiments may well refine its numerical value. In the meantime, and indeed in light
of the arguments developed herein, it would seem reasonable to take Qtop = 0.5Qu.

As an aside, it is interesting to contemplate that this is the same closure used
to quantify interfacial entrainment in SH14. Although both flows differ profoundly,
the entrainment mechanisms underlying SH14 and the present model need not be
incompatible. In the absence of a density interface, the thickness of the thin vortical
layer in SH14 is likely to increase towards bu, which is akin to the cap consisting
of one large eddy entraining fluid during a typical engulfment event. Alternatively,
instabilities may prompt the growth of the small baroclinic vortices into larger eddies,
whereby we again recover an engulfing mechanism. The actual picture for fountain-top
entrainment likely lies somewhere between both descriptions; both the phenomena
modelled in SH14 and in the present study are relevant.
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Appendix A. Estimates of A and Tu from Burridge & Hunt (2013)
In this appendix we seek to assess the approximate magnitudes of A and Tu. In their

experimental study of the fountain top, Burridge & Hunt (2013) relate the average
vertical extent of a fluctuation δz to the time-averaged width of the cap b̃ss by

δz= 1.81b̃ss. (A 1)

In order to acquire meaningful statistics, Burridge & Hunt (2013) performed their
averages only over intervals during which the instantaneous front of the fountain was
above its steady-state height. This precaution means it is not clear how their variables
relate to the corresponding variables in this paper. Nevertheless, given that we wish
to extract only their magnitude, it is reasonable to equate the variables δz ≈ zm and
b̃ss ≈ bu. Then, for Fru =

√
2, we have

A= δz

b̃ssFr2
u

≈ 0.9. (A 2)

Unfortunately we cannot rely solely on data from Burridge & Hunt (2013) to link
Tu to the dominant period of fluctuation Tp. Burridge & Hunt (2013) report the latter
in terms of source variables as Tp = 2w0/g′0. However, unlike plumes which accept
closed-form solutions, in fountains it is not known how local variables (which define
Tu) relate to their source values.

To gain an estimate of Tu, we must therefore resort to model predictions. We
simulate time-averaged forced fountain behaviour by means of the model presented
in Hunt & Debugne (0000). This allows one to relate Tu to Tp as

Tu ≈ 0.12Tp. (A 3)

Note that estimates of A from the same model return A≈ 0.7, which broadly agrees
with (A 1).

REFERENCES

BLOOMFIELD, L. J. & KERR, R. C. 2000 A theoretical model of a turbulent fountain. J. Fluid
Mech. 424, 197–216.

BURRIDGE, H. C. & HUNT, G. R. 2012 The rise heights of low- and high-Froude-number turbulent
axisymmetric fountains. J. Fluid Mech. 691, 392–416.

BURRIDGE, H. C. & HUNT, G. R. 2013 The rhythm of fountains: the length and time scales of
rise height fluctuations at low and high Froude numbers. J. Fluid Mech. 728, 91–119.

CARAZZO, G., KAMINSKI, E. & TAIT, S. 2010 The rise and fall of turbulent fountains: a new model
for improved quantitative predictions. J. Fluid Mech. 657, 265–284.

CETEGEN, B. M. 1998 A phenomenological model of near-field fire entrainment. Fire Safety J. 31,
299–312.

COTEL, A. J., GJESTVANG, J. A., RAMKHELAWAN, N. N. & BREIDENTHAL, R. E. 1997 Laboratory
experiments of a jet impinging on a stratified interface. Exp. Fluids 23, 155–160.

CRESSWELL, R. W. & SZCZEPURA, R. T. 1993 Experimental investigation into a turbulent jet with
negative buoyancy. Phys. Fluids 5, 2864–2878.

DEVENISH, B. J., ROONEY, G. G. & THOMSON, D. J. 2010 Large-eddy simulation of a buoyant
plume in uniform and stably stratified environments. J. Fluid Mech. 652, 75–103.

FRIEDMAN, P. D., VADAKOOT, V. D., MEYER, W. J. & CAREY, S. 2007 Instability threshold of a
negatively buoyant fountain. Exp. Fluids 42, 751–759.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.233


210 A. L. R. Debugne and G. R. Hunt

HUNT, G. R. & BURRIDGE, H. C. 2015 Fountains in industry and nature. Annu. Rev. Fluid Mech.
47, 195–220.

HUNT, G. R. & DEBUGNE, A. L. R. Forced fountains. J. Fluid Mech. (in press).
KAYE, N. B. & HUNT, G. R. 2006 Weak fountains. J. Fluid Mech. 558, 319–328.
KOH, R. C. Y. & BROOKS, N. H. 1975 Fluid mechanics of waste-water disposal in the ocean. Annu.

Rev. Fluid Mech. 7, 187–211.
LIN, Y. J. P. & LINDEN, P. F. 2005 The entrainment due to a turbulent fountain at a density

interface. J. Fluid Mech. 542, 25–52.
MCDOUGALL, T. J. 1981 Negative buoyant vertical jets. Tellus 33, 313–320.
MEHADDI, R., VAUX, S., CANDELIER, F. & VAUQUELIN, O. 2015 On the modelling of steady

turbulent fountains. Environ. Fluid Mech. 15, 1115–1134.
MIZUSHINA, T., OGINO, F., TAKEUCHI, H. & IKAWA, H. 1982 An experimental study of vertical

turbulent jet with negative buoyancy. Wärme-Stoffübertrag. 16, 15–21.
MORTON, B. R., TAYLOR, G. & TURNER, J. S. 1956 Turbulent gravitational convection from

maintained and instantaneous sources. Proc. R. Soc. Lond. 234, 1–23.
PANTZLAFF, L. & LUEPTOW, R. M. 1999 Transient positively and negatively buoyant turbulent round

jets. Exp. Fluids 27, 117–125.
SAFFMAN, P. G. 1992 Vortex Dynamics. Cambridge University Press.
SHRINIVAS, A. B. & HUNT, G. R. 2014 Unconfined turbulent entrainment across density interfaces.

J. Fluid Mech. 757, 573–598.
SHY, S. S. 1995 Mixing dynamics of jet interaction with a sharp density interface. Exp. Therm.

Fluid Sci. 10, 355–369.
SREENIVAS, K. R. & PRASAD, A. K. 2000 Vortex-dynamics model for entrainment in jets and

plumes. Phys. Fluids 12, 2101–2107.
TURNER, J. S. 1966 Jets and plumes with negative or reversing buoyancy. J. Fluid Mech. 26,

779–792.
TURNER, J. S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its

application to geophysical flows. J. Fluid Mech. 173, 431–471.
VAN DYKE, M. 1982 An Album of Fluid Motion. Parabolic Press.
WILLIAMSON, N., ARMFIELD, S. W. & LIN, W. 2011 Forced turbulent fountain flow behaviour.

J. Fluid Mech. 671, 535–558.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.233

	A phenomenological model forfountain-top entrainment
	Introduction
	Fountain-top entrainment models
	Description of the fountain top
	Morton–Taylor–Turner entrainment closure
	Entrainment by baroclinic vortices
	Entrainment by vortical engulfment

	Discussion and conclusions
	Acknowledgements
	Appendix A. Estimates of A and Tu from Burridge & Hunt (2013)
	References




