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Abstract

We compared the reliability and bias of genomic evaluation of Holstein bulls for milk, fat, and
protein yield with two methods of genomic best linear unbiased prediction (GBLUP) and sin-
gle-step GBLUP (ssGBLUP). Four response variables of estimated breeding value (EBV),
daughter yield deviation (DYD), de-regressed proofs based on Garrick (DRPGR) and
VanRaden (DRPVR) were used as dependent variables. The effects of three weighting methods
for diagonal elements of the incidence matrix associated with residuals were also explored.
The reliability and the absolute deviation from 1 of the regression coefficient of the response
variable on genomic prediction (Dev) using GBLUP and ssGBLUP methods were estimated in
the validation population. In the ssGBLUP method, the genomic prediction reliability and
Dev from un-weighted DRPGR method for milk yield were 0.44 and 0.002, respectively. In
the GBLUP method, the corresponding measurements from un-weighted EBV for fat were
0.52 and 0.008, respectively. Moreover, the un-weighted DRPGR performed well in
ssGBLUP with fat yield values for reliability and Dev of 0.49 and 0.001, respectively, compared
to equivalent protein yield values of 0.38 and 0.056, respectively. In general, the results from
ssGBLUP of the un-weighted DRPGR for milk and fat yield and weighted DRPGR for protein
yield outperformed other models. The average reliability of genomic predictions for three
traits from ssGBLUP was 0.39 which was 0.98% higher than the average reliability from
GBLUP. Likewise, the Dev of genomic predictions was lower in ssGBLUP than GBLUP.
The average Dev of predictions for three traits from ssGBLUP and GBLUP were 0.110 and
0.144, respectively. In conclusion, genomic prediction using ssGBLUP outperformed
GBLUP both in terms of reliability and bias.

Genomic selection has been adopted as a standard tool for genetic evaluation in different live-
stock species (Misztal et al., 2020). In genomic selection, there is a need to establish a reference
population comprised of animals with phenotypic records and genotypes for single-nucleotide
polymorphism (SNP) markers. Usually, the target phenotypic values of the reference popula-
tion are called response variables. Historically, the estimated breeding values (EBVs) of ani-
mals were predicted from the phenotypic and pedigree information and then in the
reference population, the EBVs were used as response variables to estimate the effects of
SNPs. The genomic estimated breeding values (GEBV) of animals were predicted from the
sum of these effects. Finally, the candidate animals were selected according to their GEBVs.
Nowadays, the methodology of genomic selection benefits from the construction of a genomic
relationship matrix (G) (VanRaden, 2008), which consists of genomic relationships of the ani-
mals and allows conceptual comparisons between pedigree-based and genome-based predic-
tions. Meanwhile, the information regarding the relations of a dairy bull is used for the
prediction of his EBV and also for creating the G matrix. Therefore, if the EBV is used as a
response variable, it causes double-counting of information (Garrick et al., 2009).

To avoid double-counting of information derived from the bull’s relatives, the daughter
yield deviation (DYD) and de-regressed proofs (DRP) are proposed as response variables.
The DYD of a bull is derived from the information of its daughters only and is the average
performance of the daughters adjusted for all fixed effects as well as the EBV of mates of
the bull (Mrode, 2014). Therefore, using DYD as a response variable for genomic evaluation
does not cause the problem of double-counting of information. The DRP is estimated from the
EBV, which is obtained by dividing the EBV of the animal by its reliability (Goddard, 1985) or
setting up the complete mixed model equations (MME) for all animals in the pedigree (Jairath
et al., 1998). Thus, to simplify and prevent reconstructing the complete MME, simpler
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strategies have been proposed (Garrick et al., 2009; VanRaden
et al., 2009). In genomic evaluation of animals, comparing these
different response variables from the bias point of view is an
important issue. In a study on Chinese Holstein cattle, the results
of using the EBV, DRPGR (Garrick et al., 2009) and DRPJR
(Jairath et al., 1998) as response variables for genomic evaluation
were compared. The DRPJR outperformed DRPGR and EBV in
terms of accuracy and unbiasedness (Song et al., 2018).

Genomic breeding values can be predicted with one of two
models of GBLUP or ssGBLUP. The GBLUP has the same form
as the conventional BLUP model, but the inverse of the numer-
ator relationship matrix (A−1) is replaced by the inverse of the
genomic relationship matrix (G−1) (Hayes et al., 2009). Using
the genomic relationship, the proportion of chromosome seg-
ments shared by individuals can be estimated. The reason is
that high-density genotyping identifies genes identical in state
(Forni et al., 2011). However, in the ssGBLUP approach, the A
matrix is replaced by the H matrix which combines G and A
matrices (Misztal et al., 2009). In some cases, A and G matrices
are not on the same scale (Misztal, 2017) and one needs to use
optimal scaling factors to blend G−1 with the inverse of the pedi-
gree relationship matrix (A−1

22 ) for the genotyped animals
(Vitezica et al., 2011; Misztal et al., 2013).

Generally, the reliability of predicted response variables is not
the same. Thus, in genomic predictions, the weighted analyses
are carried out to account for heterogeneous residual variances
among bulls due to differences in reliabilities of response variables.
Therefore, the performance of ssGBLUP and GBLUP can be
affected not only by the type of response variable but also by
weighting of residuals. In a study of genomic prediction, in
which the DRP was used as the response variable, the reliability
of GEBV from ssGBLUP was 2.1% higher than reliability from
GBLUP (Gao et al., 2012). In another study, the use of ssGBLUP
based on the DRP response variable led to slightly higher reliability
than GBLUP (Koivula et al., 2012). Thus, this study aimed to esti-
mate the reliability of genomic prediction with two methods of
GBLUP and ssGBLUP, using four response variables including
EBV, DYD, and two DRPs with weighted and un-weighted resi-
duals. We used the data of Iranian Holstein dairy cattle.

Materials and methods

Data

The phenotypic performance, pedigree, and genotypes of Iranian
Holstein cattle were provided by the Animal Breeding Center of
Iran. The dataset consisted of 651 985 and 479 268 and 425 151
records of milk (MY), fat (FY) and protein (PY) yield, respect-
ively, from cows of sires born in the years 1989–2014. There
were 101 bulls genotyped with low-density (<20 k), 749 bulls
with medium-density (>20 and <60 k), and 759 bulls with high-
density (>60 k) SNP chips. SNPs with minor allele frequency
(MAF) less than 0.01, call rate for each marker less than 0.95
and Hardy-Weinberg equilibrium less than α/n (α equals 0.05
and n is the number of SNPs) were removed by the QCf90 soft-
ware (Misztal et al., 2002). Then, all genotypes were imputed to
40 k by FImpute software (Sargolzaei et al., 2014). Finally, 1609
genotyped bulls and 41 135 SNPs were retained for analysis.

The de-regressed proof was estimated by two methods of
de-regression, namely those of Garrick et al. (2009) and
VanRaden et al. (2009). The DYD was calculated as described
in Mrode (2014). Then, they were used as response variables for

GEBV prediction. The two de-regression methods and DYD
which were used in this study calculated as follows:

Vanraden method (DRPVR).

DRPi = EBVi − PAi

R2
i

[ ]
+ PAi

where DRPi is DRP for bull i, PAi average EBV of parents of bull i,
EBVi is the estimated breeding value of bull i, R2

i is reliability of
DRPi and is calculated with:

R2
i =

ERCPi

ERCPi + ERCPAi + 1

where ERCPi is the effective record contributions of progeny for
the bull i, ERCPAi is the effective record contributions for parent
of bull i. They were estimated with the following formulae
(VanRaden and Wiggans, 1991):

ERCPi = l
RELEBVi

(1− RELEBVi )

[ ]
− ERCPAi

ERCPAi = l
RELPAi

(1− RELPAi )

where λ = (1 − h2)/h2, RELEBVi is reliability of EBVi and RELPAi is
reliability of PAi.

Garrick method (DPRGR)
The equations solved to get DRP for each animal are as follows
(Garrick et al., 2009):

Z
′
PAZPA + 4l −2l

−2l Z′
iZi + 2l

[ ]
PA
EBV

[ ]
= y∗PA

y∗i

[ ]

The elements of the matrices are:

Z
′
PAZPA = l(0.5a− 4)+ 0.5l

�������������
(a2 + 16/d)

√

a = 1/(0.5− R2
PA)

Z
′
iZi = dZ

′
PAZPA + 2l(2d− 1)

d = (0.5− R2
PA)/(1− R2

EBV )

y∗i =−2l PAi + (Z
′
iZi + 2l)EBVi

DRPi = (y∗i /Z
′
iZi)+ PAi

The reliability of DRP was calculated as:

R2
DRPi = 1− l/(Z

′
iZi + l)

122 Mohamadreza Afrazandeh et al.

https://doi.org/10.1017/S0022029922000395 Published online by Cambridge University Press

https://doi.org/10.1017/S0022029922000395


Daughter yield deviation method (DYD)
The DYD was calculated as below (Mrode, 2014).

DYDi =
∑k

i u prog∗nprog∗(2YDprog − âmate)∑k
i (uprog∗nprog)

+ PAi

where k is the number of daughters of the bull i, YDprog is the
deviation of performance of daughters of the bull i from the aver-
age of population. It adjusts production of daughters of the bull i
for all effects (except for additive animal genetic and error effect)
and âmate is breeding value of the bull i mate. If the mate of the
bull i is known the uprog is 1 and if it is not known equals 2/3.
The reliability of DYD was calculated with the following formulae
(VanRaden et al., 2009).

R2
DYD = DEprg

DEprg + 1

DEprg = R2
EBV

1− R2
EBV

− R2
PA

1− R2
PA

where R2
PA is the reliability of parent average EBV of the bull i

(R2
sire + R2

dam/4). The DEprg is the daughter equivalent from
daughters information.

GBLUP and ssGBLUP methods
Using the EBV, DYD, and two DRPs as response variables, the
GEBV of bulls was predicted with GBLUP and ssGBLUP meth-
ods. The statistical model is as:

y = 1m+ Zg + e

where y is the vector of response variable, μ is the total mean, 1 is
the vector with all elements of 1, Z is incidence matrix which con-
nects g to y, g is the vector of additive genetic effects of all geno-
typed bulls and e is the vector of residuals. The additive genetic
effects have a normal distribution with N(0, G s2

g), or
N(0, Hs2

g), s
2
g is the additive genetic variance and G represents

the genomic relationship matrix (VanRaden, 2008), and H is
matrix which combines G and A matrices. The dimensions of
matrices G and H were 1609 and 5133, respectively. e is the vector
of random residuals with a normal distribution N(0, Ds2

e ), s
2
e is

residual variance and D represents a diagonal matrix with bii = 1/
Wi, where Wi is the weight.

Since the G matrix was not positive definite, therefore 5% of A
matrix was added to 95% of G matrix. The H matrix blends the
pedigree and genomic information (Legarra et al., 2009). The
H−1 matrix is constructed as follows (Aguilar et al., 2010;
Christensen and Lund, 2010):

H−1 = 0 0
0 t(0.95G− 0.05A22)

−1 − vA−1
22

[ ]
+ A−1

The A−1 is inverse of the pedigree-based relationship matrix
and A−1

22 is the inverse of the subset of A for genotyped indivi-
duals. The A−1 consisted of individuals with genotype (1609
bulls) and the ancestors up to three generations ago. Therefore,
the dimensions of matrix A were 5133 × 5133. The τ and ω as
scaling factors were used for accounting for the reduced genetic
variance and different depths of pedigree, respectively, to make
G−1 compatible with A−1

22 and also A−1. Different values were

tested for τ and ω, so that the optimal scaling factors had the low-
est bias and the highest reliability for each response variable were
selected.

Weights
For GEBV predictions with two methods of GBLUP and
ssGBLUP, the residual variance matrix was weighted with three
different formulae:

(1) When EBV and DYD used as response variables, the diagonal
elements of D matrix were weighted with R2/1− R2, where
the R2 is the reliability of response variables. This weight is
called as Wclassic in the context.

(2) When DRPGR and DRPVR were used as response variables,
the ERCp was used as the weight (VanRaden and Wiggans,
1991).

(3) For DRPGR and DRPVR, a new formula was used for the esti-
mation of the weight (Garrick et al., 2009).

WGRi = (1− h2)/[(c+ (1− r2i )/(r
2
i ))× h2]

where, c is the proportion of genetic variance which is not cap-
tured by markers and c was 0.1 and r2i was calculated according
to Garrick et al. (2009).

Genomic prediction
In this study, different datasets were prepared to assess prediction
performance for three traits: (1) a full dataset containing all
records of cows of which their sires born during years 1989–
2014, and EBV, DYD and two DRPs were calculated for bulls to
be used as benchmark; and (2) a reduced dataset included records
of cows of which their sires born during years 1989–2012 and
EBV, DYD and two DRPs were calculated for bulls to be used
in genomic prediction. Subsequently, bulls from the reduced data-
set were assigned to the reference population according to year of
birth (1989–2012) and bulls born during 2013–2014 were
assigned to validation population. The validation population
(used to assess genomic prediction reliability and bias) included
only genotyped bulls with no daughters in the reduced dataset,
but with at least 10 daughters in the full dataset. Table 1 provides
summary information such as number of bulls, the progeny, and
the size of reference and validation populations for three traits in
GBLUP and ssGBLUP methods.

Table 1. Number of bulls, progeny and the size of reference and validation
populations for milk (MY), fat (FY) and protein (PY) yields in GBLUP and
ssGBLUP methods

Number of progeny

Number of bulls

MY FY PY

10 ≤progeny <50 232 283 290

50 ≤progeny <150 275 273 273

150 ≤progeny <250 130 83 87

250 ≤progeny <350 68 81 79

progeny≥350 224 148 139

Reference population size 818 780 780

Validation population size 111 88 88
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Validation
The reliability of genomic predictions for the studied traits was
measured as the squared correlation between genomic prediction
(obtained with the reduced dataset) and response variable (EBV,
DYD or two DRPs from the full dataset) divided by the average
reliability of response variable in the validation datasets (Gao
et al., 2012).

To access the bias of genomic predictions for each method, the
following regression model was used:

RVi = b0 + b1 Xpi+ ei

where RV is the response variable (EBV, DYD or two DRPs),
obtained from the full dataset, of the ith validation bull; b0 is
the intercept; b1is the linear regression coefficient indicating
bias (bias in dispersion) of the predictions; Xp is the ith bull’s gen-
omic prediction obtained from the reduced dataset; and e is the
residual.

Results and discussion

Using the full dataset and the single-trait model, the estimates of
heritability (±standard error) for MY, FY and PY were 0.30

(±0.003), 0.21 (±0.004) and 0.24 (±0.004), respectively. The esti-
mates correspond with the results of another report which were
0.39, 0.29 and 0.31 for MY, FY and PY, respectively from
Holstein cattle of Canada (Oliveira et al., 2018). The average reli-
abilities of EBV and DRPVR for three traits were 0.80 and 0.79,
respectively. The response variable with the highest reliability
was EBV followed by DRPVR, DRPGR and DYD (Fig. 1).

The highest estimated correlation (r∼ 0.99) was observed
between DRPVR and EBV and the lowest correlation (r∼ 0.96)
was between DYD and EBV (Fig. 2). The average correlation
between DRPVR and EBV was 0.99 for three traits which showed
the estimates of DRPVR were almost the same as the estimates of
the EBV (Fig. 2).

Comparison of different response variables in genomic
prediction

The genomic prediction is affected by the accuracy of marker
effects estimation which depends on the information in response
variables. The reliability, bias and the absolute deviation from 1 of
the regression coefficient of the response variable on genomic pre-
diction (Dev) using GBLUP and ssGBLUP methods for the valid-
ation population are presented in Table 2. In ssGBLUP, the

Fig. 1. The reliability of response variables for milk (MY),
fat (FY) and protein (PY) yields. EBV, estimated breeding
value; DYD, daughter yield deviation; VR, de-regressed
proof estimated by VanRaden’s formula; GR,
de-regressed proof estimated by Garrick’s formula.

Fig. 2. The correlation of DYD, DRPGR and DRPVR with
EBV for milk (MY), fat (FY) and protein (PY) yields. EBV,
estimated breeding value; DYD, daughter yield devi-
ation; VR, de-regressed proof estimated by VanRaden’s
formula; GR, de-regressed proof estimated by Garrick’s
formula.
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reliability and Dev from un-weighted DRPGR for MY were 0.44
and 0.002, respectively. In GBLUP, the reliability and Dev from
un-weighted EBV for FY were 0.52 and 0.008, respectively.
Moreover, in ssGBLUP, the reliability and Dev of DRPGR in
un-weighted analysis for FY were 0.49 and 0.001, respectively.
In ssGBLUP, the reliability and Dev in weighted DRPGR analysis
for PY were 0.38 and 0.056, respectively (Table 2).

The estimated reliabilities of the response variables are differ-
ent among the bulls. This variability is incorporated in D matrix
which could result in more reliable predictions (Vandenplas and
Gengler, 2015). Therefore, two weighting methods in D matrix
(WGR and ERCP) for DRPGR and DRPVR response variables
were compared. Also, the same weighting method (Wclassic) was
compared for EBV and DYD. The WGR is based on heritability,

Table 2. Reliabilities (R2), regression coefficients (b1) and the absolute deviation of the regression coefficients from 1.0 (Dev) for three traits of milk (MY), fat (FY) and
protein (PY) yields in GBLUP and ssGBLUP methods

GBLUP ssGBLUP

Trait Response variable Weight R2 b1 Dev R2 b1 dev

Milk EBV Wwithout 0.3154 0.814 0.186 0.3418 0.812 0.188

Wclassic 0.3233 0.742 0.258 0.3419 0.812 0.188

DYD Wwithout 0.3994 0.892 0.108 0.3995 0.892 0.108

Wclassic 0.4105 0.937 0.063 0.4108 0.938 0.062

DRPGR Wwithout 0.4048 0.913 0.087 0.4424 1.002 0.002

WGR 0.4201 1.018 0.018 0.4411 1.024 0.024

ERCP 0.4347 1.029 0.029 0.4497 1.046 0.046

DRPVR Wwithout 0.2395 0.814 0.186 0.2538 0.760 0.240

WGR 0.2589 0.838 0.162 0.2589 0.815 0.185

ERCP 0.2624 0.789 0.211 0.2655 0.840 0.160

Fat EBV Wwithout 0.5180 0.992 0.008 0.5639 0.938 0.062

Wclassic 0.5140 0.922 0.078 0.5639 0.938 0.062

DYD Wwithout 0.4691 0.983 0.017 0.4852 0.974 0.026

Wclassic 0.4963 1.098 0.098 0.4919 1.002 0.002

DRPGR Wwithout 0.5171 1.143 0.143 0.4914 1.001 0.001

WGR 0.5373 1.264 0.264 0.4933 1.025 0.025

ERCP 0.5357 1.248 0.248 0.4908 1.022 0.022

DRPVR Wwithout 0.3971 1.088 0.088 0.3998 0.961 0.039

WGR 0.3974 1.066 0.066 0.4049 1.023 0.023

ERCP 0.3936 1.017 0.017 0.4025 1.007 0.007

Protein EBV Wwithout 0.3648 0.750 0.250 0.3890 0.778 0.222

Wclassic 0.3595 0.718 0.282 0.3890 0.778 0.222

DYD Wwithout 0.3107 0.807 0.193 0.3107 0.807 0.193

Wclassic 0.3153 0.824 0.176 0.3157 0.826 0.174

DRPGR Wwithout 0.3263 0.817 0.183 0.3646 0.892 0.108

WGR 0.3512 0.926 0.074 0.3703 0.923 0.077

ERCP 0.3631 0.943 0.057 0.3788 0.944 0.056

DRPVR Wwithout 0.2290 0.722 0.278 0.2289 0.722 0.278

WGR 0.2485 0.766 0.234 0.2485 0.766 0.234

ERCP 0.2468 0.741 0.259 0.2468 0.741 0.259

Mean 0.3786 0.9207 0.1440 0.3878 0.9003 0.1098

De-regression was based on VanRaden (DRPVR), Garrick (DRPGR), Estimated breeding value (EBV) and Daughter yield deviation (DYD); Wclassic, WGR and ERCP represent three methods for
weighting diagonal elements of incident matrix of residual error in estimation of genomic breeding values; Wwithout shows the diagonal elements of incident matrix of residual error not
weighted; for genomic evaluation MY, FY and PY, the optimal scaling factors were τ = 1 and ω = 0.4, 0.2 and 0.5, respectively for EBV as response variable. for MY, FY and PY, the optimal scaling
factors were τ = 1, 0.2 and 1.3 and ω = 0.6, 0.6 and 0.1, respectively for DRPGR as response variable. for MY, FY and PY, the optimal scaling factors were τ = 1 and ω = 0.6, 0.6 and 1, respectively
for DRPVR as response variable. For MY, FY and PY, the optimal scaling factors were τ = 1.5, 1 and 1.5 and ω = 1, 0.7 and 1, respectively for DYD as response variable.
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reliability and portion of genetic variance not explained by mar-
kers (Garrick et al., 2009). In this study, the value of c for WGR

was assumed to be 0.1 according to other studies (Song et al.,
2018). If the c is very close to zero, the reliability of genomic pre-
diction is higher and the bias is lower (Song et al., 2018).

In cases where the EBV or DRPVR were used as response vari-
ables, the bias of prediction was the highest for MY and PY. These
results agree with reports from a simulation study on different
de-regression methods (Calus et al., 2016). The performance of
response variables of DRPVR and EBV are reported to be modest
(Calus et al., 2016). In this study, when DRPGR was used as the
response variable, the bias was lower compared with the
DRPVR. The results of another study showed the GEBV predicted
from EBV as response variable was biased (Guo et al., 2010). In a
simulation study, it was concluded that the de-regression by
DRPGR was superior compared to DRPVR method (Calus et al.,
2016). In the present study, the results show the bias of DYD is
low, which is because of no double-counting in the analysis.

Comparison of ssGBLUP and GBLUP methods in genomic
prediction

The effect of scaling factors in H when combining G−1(τ) and
A−1
22 (v) on validation reliabilities was low, but the effect on bias

was high. However, scaling factors were different for each
response variable and trait. The optimal scaling factors for EBV
and the three traits were τ = 1 and ω = 0.4, 0.2 and 0.5, respect-
ively. For DRPGR and the three traits, the optimal scaling factors
were τ = 1, 0.2 and 1.3 and ω = 0.6, 0.6 and 0.1, respectively. For
DRPVR regardless of studied trait, the optimal scaling factors
were τ = 1 and ω = 0.6, 0.6 and 1, respectively. For DYD, the opti-
mal scaling factors were τ = 1.5, 1 and 1.5 and ω = 1, 0.7 and 1,
respectively. The differences in τ and ω values for different
response variables and traits are due to differences in formula-
tions of response variables and the genetic architecture of traits.
The ideal scaling factors are specific according to the population
and trait (Oliveira et al., 2019). The scaling factors which are esti-
mated for milk, fat and protein of Iranian Holstein cattle can be
used or referred for this population by other researchers.

In ssGBLUP, the average reliability of genomic predictions for
the three traits was 0.39, which was 0.98% points higher than the
average reliability from the GBLUP method. Moreover, the bias of
predictions from ssGBLUP was lower than GBLUP. The average
Dev for the three traits was 0.11 in ssGBLUP and 0.14 in
GBLUP. The τ and ω parameters that are used for calculating H
showed that ω reduced bias in genomic prediction (Tsuruta
et al., 2011). It is suggested that the optimal scaling factors
decrease the possible inflation of genomic predictions (Misztal
et al., 2013). Using the optimal scaling factors in H matrix reduce
bias and increase the reliability of prediction (Oliveira et al.,
2019).

In the present study the number of bulls in the reference popu-
lation was relatively small (818 animals). The size of the reference
population in other studies was 3,045 (Gao et al., 2012) and 5,160
bulls (Song et al., 2018). The accuracy of genomic evaluation
depends on heritability of the trait, the method of prediction
and the number of animals in the reference population
(Goddard, 2009). Interestingly, the high reliability of predictions
from ssGBLUP indicates the method can be used for predictions
in populations with a small number of genotyped animals.

In the routine procedure of multi-step genomic evaluation, the
EBV, de-regressed EBV, direct genomic value (DGV) and finally

the GEBV is predicted. Also, in the multi-step, the G matrix is
used for prediction of DGV. In the present study, multi-step
method was used but instead of G matrix, the H matrix was
used for predictions. The results show that using the H matrix
increased the reliability and reduced the bias.

In conclusion, the type of response variable and weighting or
unweighting the residuals affects the prediction performance of
statistical methods. In ssGBLUP, the un-weighted DRPGR as the
response variable for MY and FY and weighted DRPGR for PY
outperformed other response variables. Generally, the ssGBLUP
method outperformed the GBLUP method both in terms of reli-
ability as well as bias.
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