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We present experiments on the instability and fragmentation of volumes of heavier
liquids released into lighter immiscible liquids. We focus on the regime defined by
small Ohnesorge numbers, density ratios of the order of one, and variable Weber
numbers. The observed stages in the fragmentation process include deformation of
the released fluid by either Rayleigh–Taylor instability (RTI) or vortex ring roll-up
and destabilization, formation of filamentary structures, capillary instability, and drop
formation. At low and intermediate Weber numbers, a wide variety of fragmentation
regimes is identified. Those regimes depend on early deformations, which mainly
result from a competition between the growth of RTI and the roll-up of a vortex ring.
At high Weber numbers, turbulent vortex ring formation is observed. We have adapted
the standard theory of turbulent entrainment to buoyant vortex rings with initial
momentum. We find consistency between this theory and our experiments, indicating
that the concept of turbulent entrainment is valid for non-dispersed immiscible fluids
at large Weber and Reynolds numbers.

Key words: breakup/coalescence, drops, plumes/thermals

1. Introduction
Buoyancy-driven fragmentation of one liquid in another immiscible liquid likely

occurred on a massive scale during the formation of the terrestrial planets. For
example, it is thought that Earth acquired much of its present mass through
high-speed collisions between planetary embryos, in which both of the impacting
objects consisted of a silicate mantle and a metallic core (Melosh 1990; Yoshino,
Walter & Katsura 2003; Schersten et al. 2006; Ricard, Sramek & Dubuffet 2009).
The enormous energy release following these impacts resulted in prodigious melting,
creating an environment in which dense liquid metal blobs fell and subsequently
fragmented within deep molten silicate magma oceans (Tonks & Melosh 1993;
Pierazzo, Vickery & Melosh 1997). Less violent but still dramatic present-day
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Fragmentation of a buoyant liquid volume in another liquid 479

analogues of this phenomenon include releases of petroleum into the ocean through
well discharges, such as occurred in 2010 during the Deepwater Horizon disaster
(Camilli et al. 2012; McNutt et al. 2012; Reddy et al. 2012).

Most fluid fragmentation processes involve a regular sequence of steps, including
deformation or destabilization of the initial mass, formation of filamentary structures
called liquid ligaments, and breakup of ligaments usually involving capillary
instabilities (e.g. Hinze 1955; Marmottant & Villermaux 2004; Villermaux & Bossa
2009). The destabilizing mechanisms generally set the mean size of the resulting
drops, whereas ligament dynamics plays a dominant role in determining the resulting
drop size distribution (Marmottant & Villermaux 2004; Bremond & Villermaux
2006; Villermaux & Bossa 2009, 2011). A principal control parameter in any
fluid fragmentation process is the Weber number We, which measures the relative
importance of the dynamic pressure and the capillary restoring pressure. Breakup,
the final fragmentation stage, is usually divided into primary and secondary breakup.
Primary breakup refers to the stage where the initial liquid volume divides into several
disconnected blobs or drops. If the Weber number of the resulting blobs (based on
the blob size and blob velocity) is larger than the critical value for breakup Wec,
secondary breakups occur. The critical Weber number Wec is generally on the order
of 10 but it varies with the flow regime in the surrounding fluid, especially with the
Reynolds number (Hinze 1955). Another main control parameter is the Ohnesorge
number Oh, which measures the importance of viscous forces versus interfacial forces
and inertia. Very large Weber and Reynolds numbers and values of Oh much smaller
than unity are the relevant regimes for planetary formation.

Fragmentation of a finite volume of liquid at low Oh has been extensively
studied in air (reviewed in Pilch & Erdman 1987; Faeth, Hsiang & Wu 1995;
Gelfand 1996; Guildenbecher, Lopez-Rivera & Sojka 2009; Theofanous 2011). A rich
variety of fragmentation regimes has been identified, including vibrational breakup,
bag breakup, multimode breakup, shear breakup, and catastrophic breakup (the
terminology varies from one study to the other). Recently, Theofanous, Li & Dinh
(2004) and Theofanous & Li (2008) have proposed another categorization based on
only two main fragmentation regimes: the Rayleigh–Taylor (RT) piercing regime,
in which early deformations result from Rayleigh–Taylor instabilities (RTI), which
appear when an interface between two fluids of different density is subjected to an
acceleration directed towards the lighter fluid, and the shear-induced entrainment
regime, interpreted as the suppression of RTI due to straining motions associated
with the global shear. In general, the Weber number is the main control parameter
governing transitions between the different fragmentation regimes.

Fragmentation of a buoyant liquid volume at density ratio on the order of one
(i.e. in a liquid–liquid system) has received less attention. The maximum Weber
numbers reached in three-dimensional numerical simulations (Ichikawa, Labrosse
& Kurita 2010) of the breakup of drops falling in another immiscible liquid is
approximately 10–15. Axisymmetric simulations reach higher Weber numbers and
are useful to compute the early deformations of a blob falling under gravity (Han &
Tryggvason 1999; Ohta & Sussman 2012; Samuel 2012) or impulsively accelerated
(Han & Tryggvason 2001) in another liquid. However, such simulations do not
capture the entire fragmentation process since ligament formation and breakup are
inherently non-axisymmetric. Baumann et al. (1992) have conducted finite-volume
experiments in immiscible liquid–liquid systems at Weber numbers ranging from
0.3 to 11 000. The value of Oh is on the order of one or larger in most of their
experiments and only two satisfy We> 100 and Oh� 1. Baumann et al. (1992) focus
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480 M. Landeau, R. Deguen and P. Olson

on viscous immiscible vortex rings that form at Re 6 61. Instabilities developing
on these vortex rings are interpreted as RTI. Several experimental studies of drop
breakup in liquid–liquid systems due to shock-induced flows have reported drag and
breakup time measurements, summarized in Pilch & Erdman (1987) and Gelfand
(1996). Among those studies, Patel & Theofanous (1981) show that their breakup
time data are consistent with drop piercing by RTI. Yang & Yang (1990) identify a
regime where the drop volume grows by turbulent entrainment.

At large scales, immiscible liquid–liquid plumes (Deguen, Olson & Cardin 2011),
at large Weber and Reynolds numbers, are morphologically similar to their miscible
equivalents. This suggests that integral models developed for miscible turbulent flows,
including models of turbulent thermals and vortex rings, can describe the dynamics of
immiscible flows.

In miscible fluids, a finite buoyant mass is called a thermal when its impulse
originates entirely from the buoyancy force, and a buoyant vortex ring when an
initial momentum is allowed. As pointed out by Turner (1957, 1964), a thermal can
be regarded as a special case of a buoyant vortex ring. The more general term vortex
ring refers to a ring-shaped structure formed by closed-loop vorticity lines. At high
Reynolds numbers, the dynamics of turbulent thermals with small or large density
differences (Morton, Taylor & Turner 1956; Wang 1971; Escudier & Maxworthy 1973;
Baines & Hopfinger 1984; Thompson, Snyder & Weil 2000) and non-buoyant vortex
rings (Maxworthy 1974) is successfully described using the concept of turbulent
entrainment, originally proposed by Taylor (1945) and Morton et al. (1956), who
hypothesized that the rate of growth of a turbulent buoyant mass is proportional to
its velocity and surface area.

The concept of turbulent entrainment has been used to describe the dynamics of
two-phase flows in which one phase is dispersed in the other in the form of solid
particles (Rahimipour & Wilikinson 1992; Bush, Thurber & Blanchette 2003) or air
bubbles (Milgram 1983; Leitch & Baines 1989; Bettelini & Fannelop 1993). However,
the turbulent entrainment concept applied to immiscible systems that are initially non-
dispersed has received less attention. It has been used to describe the dynamics of air
jets in liquid (Weimer, Faeth & Olson 1973; Loth & Faeth 1989, 1990). Epstein &
Fauske (2001) applied this concept to various liquid–gas and liquid–liquid flows and
developed an erosion model of a liquid drop immersed in a gas or another liquid with
an initial velocity lag. They argue that their model is consistent with published data
of total breakup time.

In this paper we describe results of a systematic experimental study on the
fragmentation of a finite liquid volume into lighter immiscible liquid at low Oh, at
moderate Reynolds numbers (Re> 103 in most experiments) and for Weber numbers
up to ∼103. Our main objective is to characterize the different fragmentation regimes
in parameter space. Two experimental configurations are used. In the first, the
velocity of the released fluid originates entirely from the density difference between
the two immiscible fluids (immiscible equivalent of thermals). In the second, an initial
excess in velocity is introduced (immiscible equivalent of buoyant vortex rings). The
experimental apparatus and techniques are described in § 2. In § 3 we study the early
stages of evolution in terms of velocity and deformation. The different fragmentation
regimes are characterized in § 4 from the study of the subsequent evolution, prior to
capillary instabilities and breakup. Results on ligament formation and primary breakup
are reported in § 5. At sufficiently high Weber numbers, the flow reaches a turbulent
regime whose dynamics is compared, in § 6, with predictions from a model based on
the concept of turbulent entrainment and on an analogy with miscible thermals and
vortex rings.
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FIGURE 1. (Colour online) Experimental set-up. (a) Side view of the apparatus in the
Immersed configuration; (b) side view of the apparatus in the Surface configuration.
(c) Visualization techniques and sketch of an experiment with variables measured as a
function of time. Symbols I and II refer to backlighting and light-induced fluorescence
imaging techniques, respectively. The camera records the side view of the flow depicted
in (c).

2. Experimental procedure
2.1. Experimental set-up

The experimental set-up is shown in figure 1(a,b). A tank of width 25 cm and height
50 cm is filled with a low-viscosity silicone oil, referred to as the ambient fluid in the
following. A denser fluid (detailed below), immiscible in oil, is held in a vertically
oriented plastic tube that is closed at the lower extremity by a latex membrane. The
denser fluid is released by rupturing the membrane with a needle inserted into the
tube from above, as in the experiments by Lundgren, Yao & Mansour (1992). The
rupture lasts less than 0.04 s.

The volume of released fluid V is such that the height of fluid in the tube is equal
to the tube internal diameter D. Six tubes are used, with D ranging from 1.28 to
7.62 cm. In the Immersed configuration (figure 1a) the tube is initially immersed in
the ambient fluid and it is initially held at the surface of the ambient fluid in the
Surface configuration (figure 1b).

The systematic study has been conducted using backlighting, as depicted in
figure 1(c). A blue dye (food colouring) is added in the released fluid. The flow
is made visible by backward illumination through a diffusive screen and recorded
by a colour video camera at 24 frames per second. Other flow visualization images
are obtained using light-induced fluorescence (figure 1c). The experimental apparatus
is illuminated from the side by a light sheet and a fluorescent dye (rhodamine) is
added to the released fluid, imaging a cross-section of the falling fluid. The light
sheet, whose thickness varies from 5 to 7 mm inside the tank, is produced using a
flash lamp and a black, opaque screen with a narrow vertical opening of 0.32 cm. In
the following, the backlighting imaging technique is used unless otherwise noted.

In order to vary the density ratio between the ambient and released fluids, different
oil-immiscible fluids are used: a mixture of ethanol and water, water, a solution
of sodium chloride (NaCl) and a solution of sodium iodide (NaI). Their physical
properties are given in table 1. NaI solution is of particular interest. First, it provides
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Fluids Density Viscosity Interfacial tension
(kg m−3) (m2 s) (mN m−1)

Silicone oil 820± 0.2 % 1.2× 10−6 ± 10 %
Ethanol + Water 843.5± 0.1 % 2.6× 10−6 ± 10 % 2.6± 40 %
Water 1000± 0.05 % 10−6 ± 10 % 31.2± 3 %
NaCl solution 1175–1192± 0.06 % 1.6× 10−6 ± 10 % 23.3± 4 %
NaI solution 1536–1607± 0.07 % 1.3× 10−6 ± 10 % 17–21± 10 %
Water + Triton X-100 1000± 0.1 % 10−6 ± 10 % 3.3± 15 %
NaI sol. + Triton X-100 1260–1578± 0.06 % (1.1–1.3)× 10−6 ± 10 % 4.4–4.8± 10 %

TABLE 1. Fluid properties.

for large density contrasts between the ambient and released fluids, up to the density
of silicone oil, without much increase in viscosity. Second, it can be used to match
the refractive index of silicone oil (n= 1.384± 0.006 at 20 ◦C), which is required to
obtain satisfactory images with light-induced fluorescence. Interfacial tension between
silicone oil and the released fluid, σ , is measured using a Du Noüy tensiometer. A
non-ionic, oil-insoluble surfactant (trade name ‘Triton X-100’) is added to water and
to the NaI solution in several experiments. Equilibrium interfacial tension decreases
with surfactant concentration until it reaches the critical micelle concentration, after
which it saturates to a constant value. The value given in table 1 is used hereafter.
The highest possible concentration of surfactant c ≈ 4 ml l−1, above which a stable
emulsion would be formed in the tank, is used in this study. However, we note that
the dynamic interfacial tension may locally be larger than the equilibrium interfacial
tension.

In some experiments, water is used in place of silicone oil and a NaCl solution
(table 1) is released. Such experiments are used in § 6 as a reference system.

2.2. Diagnostic techniques
Preliminary processing (method detailed in appendix A) is first applied to video
images (obtained using backlighting) to get binary images. Then, the centroid and
velocity of the released fluid are automatically computed.

We found that the 2D centroid obtained from binary images gives too much weight
to structures that are located in the rear of the released fluid (membrane of released
fluid that remains attached to the tube or wake). Such structures contain a negligible
amount of the total released fluid volume whereas they may represent a non-negligible
area on a two-dimensional projection. Instead, we measure a vertical position z that
takes into account mass distribution in three dimensions:

z=

∑
i,j

zi,j log (Ii,j/I0i,j)∑
i,j

log (Ii,j/I0i,j)
, (2.1)

where the pixels (i, j) form the region occupied by the released fluid in the binary
image, zi,j is the pixel vertical position, Ii,j is the pixel intensity in the original image
and I0i,j the pixel intensity in the back field image. The origin z= 0 corresponds to
the lower end of the tube. If the light is monochromatic and the two fluids have
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the same refractive index, according to the Beer–Lambert law, z is then equal to the
depth of the real 3D centroid of the released fluid. We checked that the dependence of
log (I/I0) on the thickness ly occupied by released fluid in the direction perpendicular
to the image is close to linear if the green band of the image is considered in the
range relevant for our experiments. When a nonlinear relationship of the form ly =
a log (I/I0)+ b log (I/I0)

2 + c log (I/I0)
3 with b=O(a)=O(c) is considered, z differs

by less than 1 % from the value obtained with (2.1). Other sources of discrepancy are
due to reflection of light on the immiscible interface. According to Fresnel’s equations,
the reflectivity of the immiscible interface is less than 4 × 10−4 in our experiments.
Given a rough estimation of the number of droplets and their size, we estimate that
the fraction of incident energy reflected on the interface is less than 1 % in most
experiments and less than 5 % in the most turbulent experiments. Finally, curvatures
of the immiscible interface act as lenses and concentrate light in some portions of the
image when the refractive index of the released fluid does not match the refractive
index of the ambient fluid. These effects are probably the main source of discrepancies
between z and the real 3D centroid.

From z measurements, we estimate the velocity u= dz/dt of the released fluid as a
function of time.

The MATLAB Image Processing toolbox is used to identify the different connected
objects and their equivalent radii in binary images. First, the holes in a given object
are filled to create a simply connected object. Second, this object is divided into two
parts by a vertical axis. Each part is then rotated 180◦ about the axis to form two
half-bodies of revolution. The vertical axis is chosen to pass through the centroid of
the resulting 3D object. In general, the 3D object so constructed consists of two half-
bodies of revolution, but in the special case of an image with bilateral symmetry, the
3D object would be perfectly axisymmetric. The volume of this 3D object is given
by V =∑ij π(xij − x̄)Sij where xij and Sij are the pixel horizontal position and pixel
surface and x̄ is the horizontal position of the centroid of the resulting 3D object. The
equivalent radius of the connected object, r, is defined by V = 4

3πr3.
Uncertainties on z and r measurements are mainly due to their sensitivity to the

threshold used to generate binary images (see appendix A). The frame rate of the
video camera also affects uncertainties in u. Uncertainties on z, r and u measurements
are typically less than approximately 5 %, 5 % and 5–10 %, respectively. In the
following (unless otherwise stated), error bars for input dimensionless quantities
indicate measurement uncertainties and error bars for output dimensionless quantities
correspond to the maximum of measurement uncertainties or standard deviations
obtained in series of experiments conducted at the same input parameter values.

2.3. Input dimensionless numbers
In Immersed experiments, four input dimensionless numbers govern the dynamics:

Bo= 1ρgR2

σ
, Oh=

√
ρrνr√
σR

, P= 1ρ
ρa
,

νr

νa
. (2.2a–d)

Here Bo is the Bond number, Oh the Ohnesorge number, 1ρ is the density difference
between the ambient and released fluids, g the acceleration due to gravity, R the
equivalent spherical radius of the released fluid, ν kinematic viscosity, ρ density. The
subscript a and r denote the ambient and released fluid, respectively. Bo measures the
importance of the buoyancy force versus interfacial forces. In Surface experiments
additional dimensionless numbers are introduced since the released fluid is initially
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surrounded by air. We are interested in the fragmentation of released fluid in oil
and we do not consider interfacial effects involving air. The density and viscosity
ratios between air and silicone oil should be added to the above set of dimensionless
numbers, however their values remain constant in all the experiments.

Experiments have been conducted for 24 different sets of input dimensionless
numbers in the Immersed configuration and 30 sets in the Surface configuration. Bo
and P lie in the ranges ∼4–1430 and ∼0.029–0.96 respectively, Oh varies from
∼10−3 to ∼10−2 and νr/νa from 0.8 to 2.2. Since Oh� 1 we expect viscosity to
have little influence on the fragmentation regime, in agreement with previous studies
on drop fragmentation (Hinze 1955; Pilch & Erdman 1987 and reviews in Gelfand
1996 and Guildenbecher et al. 2009). In this study, we thus concentrate on the effects
of Bo and P, which are independent of viscosity.

3. Early stages of evolution: post-release conditions
In this section we study the velocity and deformation of the released fluid at a short

distance from the tube (z. 2R) for the two experimental configurations used.

3.1. Weber number scaling: post-release velocity
The definitions of the Weber and Reynolds numbers involve a characteristic velocity
U such that

We= ρrU2R
σ
; Re= UR

νa
. (3.1a,b)

In this subsection, we define U and extract a scaling law for We as a function of the
input dimensionless numbers Bo and P.

The characteristic velocity classically used at high Reynolds numbers is the terminal
velocity, a balance between buoyancy and form drag forces, which gives U ∝√gPR.
However, this scaling is not appropriate for our experiments since fragmentation
processes start before the released fluid has reached its terminal velocity (expected
between 10–20R). In addition, at fixed Bo and P, the vertical velocity at short
distances z is larger in the Surface configuration than in the Immersed configuration.
This results from the buoyancy force being initially larger in the Surface configuration
since it involves the density difference between the released fluid and the air, rather
than 1ρ. This velocity excess is not accounted for by the terminal velocity scaling,
which predicts the same characteristic velocity in both configurations.

Another natural scaling, which is adopted here, emerges from a balance between the
rate of change in released fluid momentum and buoyancy forces, by assuming that a
given portion of the mechanical work generated by buoyancy forces (potential energy)
is converted into kinetic energy of the released fluid during its fall.

3.1.1. Immersed configuration
In the Immersed configuration, this scaling takes the form

1
2ρru2 ∝1ρg(z+D/2), (3.2)

where the distance to the tube end z is initially equal to −D/2. Scaling (3.2) implies
that the characteristic velocity U should be defined at a given distance from the tube
Z. The choice of Z is partly arbitrary but two conditions have to be met: the released
fluid is entirely off the tube at z= Z and drop formation has not yet started. Z = 2R
satisfies both conditions in our experiments.
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z = 2R

U=u(z)

(b)

a4Bo (1 + a5/P)
101 103102

101

103

102

Bo

We

101

101

103

103

102

102

(a)

FIGURE 2. (a) Weber number versus Bond number in the Immersed configuration using
U= u(z= 2R) as illustrated in the insert. The least squares best fit (3.3) is shown by the
black line. (b) Weber number measured in Surface experiments with U= u(z= 2R) versus
Weber number predicted by the least squares best fit (3.5) and (3.6). �, 0.826 P6 0.96;
�, P≈ 0.54; N, P≈ 0.43; H, P≈ 0.22; •, P≈ 0.03.

The potential/kinetic energy balance (3.2) implies We∝ Bo, which is in agreement
with the experimental data shown in figure 2(a). We obtain the following least squares
best fit:

We= a1Bo, a1 = 0.76± 0.04, (3.3)

with a mean deviation of 17 % relative to the experimental data. A Monte Carlo
method of error propagation was used to estimate the standard deviation of a1 from
50 synthetic data sets formed of pseudorandom numbers within the experimental error
bars, one number for each data point in figure 2(a).

3.1.2. Surface configuration
In the Surface configuration it is not straightforward to estimate the mechanical

work generated by buoyancy forces. For example, the buoyancy force involves the
density difference with the surrounding air ρr − ρair ≈ ρr at initial times, but once
the fluid is entirely immersed in the ambient fluid, it depends only on 1ρ. Assuming
that the mechanical work generated by buoyancy forces can be written as a sum of
two independent terms, originating from the former contributions, and assuming that
a portion of this work is converted into kinetic energy, we obtain

ρrU2 = a21ρgR+ a3ρrgR, (3.4)

where a2 and a3 are two constants to be fitted. In terms of dimensionless numbers
(3.4) amounts to

We= a4Bo
(

1+ a5

P

)
, (3.5)

where a4 = a2 + a3 and a5 = a3/(a2 + a3). The experimental results are shown in
figure 2(b). We find the following least squares best-fit values:

a4 = 0.52± 0.07 and a5 = 0.07± 0.03, (3.6a,b)

with a mean deviation of 22 % relative to the experimental data. Standard deviations
in a4 and a5 are estimated using the same method as for a1 in (3.3).
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We have found scaling laws for We as a function of the input dimensionless
numbers which fit reasonably well with the experimental data. As a consequence,
Bo and We can substitute for each other and the physical processes can be studied
alternatively in a (Bo, P) or (We, P) diagram. We will mainly concentrate on the
(We, P) diagram since, as shown in § 4, it is well suited for comparisons between
fragmentation regimes in the Immersed and Surface configurations. Re varies from
∼500 to ∼104 in our experiments, with Re> 103 in a large majority of experiments
(90 %). We do not concentrate on the effect of Re since, as we have already argued
in § 2, viscosity is expected to have little influence on the fragmentation regime. This
is confirmed by estimations of the capillary number Ca= νrρrU/σ , which measures
the ratio of viscous forces to interfacial forces: Ca remains much smaller than 1 in
our experiments (in the range ∼0.005–0.1).

3.2. Early deformations and destabilizations: post-release shape
Once the released fluid exits the tube, it starts to deform and change shape. A wide
variety of shapes is observed directly after the release (z. 2R), as illustrated in figures
3(a–c) and 5. The present section aims at understanding the physical mechanisms
involved.

3.2.1. Immersed configuration
Figure 3(a–e) illustrate the initial deformations of the released fluid in the Immersed

configuration at different Weber numbers. At We ≈ 10 (a) the released fluid flattens
into a pancake shape due to dynamic pressure forces while non-axisymmetric
perturbations are damped. At We ≈ 30 (b,d,e) non-axisymmetric perturbations grow
and at We ≈ 1.5 × 103 (c) these non-axisymmetric structures develop a mushroom
shape, which is morphologically similar to RTI.

We first compare these with the classical inviscid analysis of the RTI of
a horizontally unbounded interface between two immiscible fluids (Bellman &
Pennington 1954; Chandrasekhar 1961). Choosing a coordinate system that moves
with the released fluid, the governing equations are left unchanged if g is replaced
by g− du/dt. The uncertainties on du/dt measurements are too large for any scaling
law to be extracted, but we estimate that its maximum value is on the order of
1–2 m s−2 and, therefore, as a first-order approximation, we neglect du/dt with
respect to g. Then, in the case of vertically unbounded layers, the growth rate γ of
small perturbations is given by

γ =
√

1ρ

ρa + ρr
gk− σ

ρa + ρr
k3, (3.7)

where k is the wavenumber of the disturbances at the interface. The most amplified
and critical wavenumbers are respectively given by

km =
√
1ρg
3σ

, (3.8)

kc =
√
1ρg
σ
. (3.9)

It can be shown that including viscous effects (see (113) from Chandrasekhar 1961,
Chapter X) has little effect on the values of km and kc at the parameter values relevant
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101

0.1

0.5

1.0

102 103

(b)

(d)

( f )

(a) (b) (c)

(e)

(c)

Bo

1 cm

1 cm 1 cm 1 cm

FIGURE 3. (Colour online) (a–c) Early deformations of the released fluid in Immersed
experiments for z . 2R: at (a) We ≈ 10, (b) We ≈ 30, and (c) We ≈ 1.5 × 103. The line
segment in (a) indicates the critical wavelength of RTI deduced from (3.11) whereas line
segments in (b) and (c) indicate the most amplified wavelength of RTI deduced from
(3.10). (d,e) Deformations in the aftermath of the membrane rupture, same experiment
as in (b) at two preceding times, separated by approximately 0.2 s. The needle used
to puncture the latex film is visible in panels (b) and (d). (f ) Estimated dimensionless
wavelength λ̃ = 1/

√
n as a function of Bo in Immersed experiments, where n is the

number of mushroom-shaped structures. �, 0.87 6 P 6 0.96; 4, P ≈ 0.43; O, P ≈ 0.22;◦, P ≈ 0.03. The black curve gives the most amplified wavelength predicted by (3.10).
Symbols (b) and (c) denote results obtained from the experiments shown in (b) and
(c). The allowable slope is within the ranges: (−0.3, −0.2) when considering all the
experiments, (−0.45,−0.25) for 0.876P60.96, (−0.4,−0.2) for P≈0.43, (−0.3,−0.15)
for P≈ 0.22 and (−0.5,−0.1) for P≈ 0.03.
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for our experiments. In terms of the dimensionless wavelength λ̃= 2π/kD, (3.8) and
(3.9) take the form

λ̃m = 2π
√

3√
Bo

R
D
, (3.10)

λ̃c = 2π√
Bo

R
D
. (3.11)

The most amplified wavelength predicted by (3.10) matches the size of non-
axisymmetric structures in figure 3(b,c). In figure 3(a) the predicted critical
wavelength λ̃cD is close to the tube diameter, which explains why RTI do not
develop at the front of the released fluid. The number of mushroom-shaped structures
n is evaluated in our experiments from backlighting images (e.g. figure 3b,c) and
the characteristic wavelength is estimated by λ̃ = 1/

√
n. When the size of the

mushroom-shaped structures is of the same order of magnitude as the tube diameter
(e.g. figure 3b), the number of structures that can be hidden on the back side
is small (included in the error bar). In contrast, when the size of the structures
is much smaller than the tube diameter, the lower bound on n is given by the
number of mushroom-shaped structures that can be counted on backlighting images
(e.g. figure 3c), and the upper bound is estimated by assuming that the back side hides
this same number. Alternatively, we could have estimated a characteristic wavelength
by measuring the mean width for the mushroom-shaped structures. However, the latter
method would be more subjective, because the instabilities are three-dimensional and
their width depends on the vertical section considered, and because the width of the
mushroom-shaped structures varies with time in a single experiment while the number
of waves remains the same. Figure 3(f ) shows that the resulting absolute values for
λ̃ are of the same order of magnitude as the theoretical predictions (3.10). However,
the allowable slope in figure 3(f ) is more shallow than the slope predicted by (3.10).
This discrepancy is somewhat reduced at a fixed P value (figure 3f ), though the
prefactors vary with P, in a way not predicted by (3.10).

Such differences between the experimental wavelength and (3.10) may be due to the
simplicity of the above model, in which several effects discussed below have been
neglected, or to initial vorticity perturbations due to the release mechanism. Indeed,
the membrane retraction induces an emulsified layer near the immiscible interface
(figure 3d); the layer forms in less than 0.04 s and is then swept around the sides
of the released fluid during the fall on the advective time scale (figure 3e). This
emulsified layer probably results from flapping of the membrane combined with wake
instabilities that involve shear boundary layers of opposite vorticity generated on the
upper and lower surfaces of the retracting membrane. Membrane rupture might then
affect the pattern of initial disturbances at the interface; however, showing We/Bo is
constant even for small Bo (figure 2a) indicates that the circulation generated during
the membrane rupture does not contribute significantly to the total circulation of the
released fluid.

A regime diagram of the initial deformations is shown in figure 4. Non-axisymmetric
perturbations emerge at Wec, which is located between ∼20 and ∼30 given the
uncertainties on We. From (3.11) we estimate that the number of mushroom-shaped
structures is equal to nc = 2 when the Bond number is equal to Boc = 8π2(R/D)2,
assuming λ̃c = 1/

√
nc. Applying the experimental scaling (3.3), we find Wec ≈ 20± 1,

which is broadly consistent with the experimental results. Overall, the early
non-axisymmetric perturbations emerging in our immersed experiments are in
reasonable agreement with RTI.
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We

0.01

0.10

1.00

P

2 101 102 103

Wec

1

2

3

ta
tRT

FIGURE 4. (We,P) diagram of the early stage deformation in the Immersed configuration.
�, axisymmetric deformations (no RTI); O, RTI. Dashed line: tentative boundary. The ratio
of the advective time scale to the RTI time scale ta/tRT is greyscale-coded in regions
where RTI are found, at We > Wec. Symbols (a–c) denote the experiments shown in
figure 3(a–c).

Several effects have been neglected in the above analysis of RTI. First, the fluid
layers are vertically bounded. It can be shown that this effect has a secondary impact
in the linear regime given the value of λ̃/D in our experiments and, (3.7), (3.8)
and (3.10) remain valid at first order. Second, the released fluid is confined in the
horizontal direction. Jacobs & Catton (1988) have shown that geometry does not
enter in the linear stability analysis of a fluid layer confined in a circular container of
diameter D and overlying a gas layer. A similar result holds in the case of two fluid
layers so that (3.7) remains valid. The circular geometry quantizes the possible values
of the wavenumber k: kD/2 has to be a zero of the Bessel functions of the first
kind. However this effect has little impact on our conclusions since the characteristic
dimensionless size of the most amplified waves follows the same general trend
∝ 1/
√

Bo as in (3.10). Finally, in the analysis leading to (3.7), the undisturbed state
is at rest in the moving coordinate system. In our experiments an axisymmetric basic
flow develops during the fall of the released fluid, advecting the growing RTI from
unstable regions at the front to stable regions at the rim. These effects have been
examined in previous studies on the 3D instability of bubbles rising through liquid.
Grace, Wairegi & Brophy (1978) proposed a semi-empirical model based on the idea
that breakup occurs if the characteristic time scale for RTI growth tRT = 1/γm, where
γm is the maximum growth rate, is small enough compared to the time available
for growth, i.e. the advective time scale, ta. Batchelor (1987) improved this model
by including a basic flow, assumed to be axisymmetric and irrotational, in the
stability analysis. He showed that the contractional motion in the direction normal to
the interface tends to decrease the amplitude of a disturbance while its wavelength
increases exponentially due to the extensional motion parallel to the interface. Because
of the latter effect, disturbances do not grow exponentially with a constant growth
rate. Similar effects are expected in our experiments, but the axisymmetric basic flow
is inherently time dependent, causing an increase in complexity. For this reason, we
treat advection and RTI as if they were two independent mechanisms, as in Grace
et al. (1978).
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Tube wall

Shear layer

1 cm

2 cm 2 cm

1 cm

t1

t2 > t1

(a)

(d)

(b)

(e)

(c)

FIGURE 5. (Colour online) (a,b,d,e) Early deformations in the Surface configuration.
(a,b) We ≈ 100, P ≈ 0.22. (b) z . R/4 (top) and z ≈ 2.5R (bottom). (d) We ≈ 300,
P≈ 0.96, z≈ R. (e) Obtained with light-induced fluorescence, We≈ 200, P≈ 0.54, z≈ 2R.
(c) Schematic representation of the generation of a shear layer and its roll-up to form a
vortex ring.

As a first approximation we use tRT = 1/γ (km), where γ and km are given by (3.7)
and (3.8). Taking R/U as a characteristic advective time scale ta we obtain

ta

tRT
= d1

Bo3/4

We1/2

√
1+ P
2+ P

, (3.12)

where d1 =
√

2/33/2. Making use of the experimental scaling equations (3.3), (3.12)
takes the form (used in figure 4)

ta

tRT
= d1We1/4

a3/4
1

√
1+ P
2+ P

, a1 = 0.76± 0.04. (3.13)

According to (3.13), ta/tRT varies weakly with P (figure 4), which is consistent with
no observed change in the deformation regime when varying P at a fixed We value.
Equation (3.13) predicts that RTI remain the dominant mechanisms when We increases,
which is also consistent with experimental observations (figure 4). Close to We=Wec,
ta/tRT ∼ 1, indicating that the effect of advection of RTI by the basic flow is probably
significant. This may be responsible for a short delay in the emergence of RTI (Wec
in figure 4) compared to the critical value We≈ 20 predicted from (3.11).

3.2.2. Surface configuration
In the Surface experiments, when We& 6, a vortex ring forms at the tube end, as

a result of the roll-up of a shear layer generated at the tube wall during the release
(figure 5a–c). Perturbations caused by the membrane rupture have no strong effect
on the shear layer roll-up since nearly axisymmetric rings are formed (figure 5a,b),
in agreement with the observations by Bond & Johari (2010) in the specific case
of miscible non-buoyant vortex rings. Contraction of the initial ring’s diameter is
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?
ta

tRT

P
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10 102 103

0.01

0.10

1.00

1

3

5

FIGURE 6. (We, P) diagram of the first deformations in the Surface configuration.•, oblate drops; ◦, vortex rings; ©O , mushroom-shaped structures, typical of RTI, are
observed at the front of a vortex ring. Dashed line: tentative boundary. The question mark
denotes an experiment in which no clear visualization of mushroom-shaped structures
was captured but waves of characteristic size consistent with the predicted wavelength
for RTI are observed. The ratio of the advective time scale to the RTI time scale ta/tRT
is greyscale-coded in regions where a vortex ring forms. Symbols (a,b,d,e) denote the
experiments shown in figure 5(a,b,d,e).

observed in most experiments at z ∼ 2R − 3R (figure 5b, see also supplementary
movie 1 available at http://dx.doi.org/10.1017/jfm.2014.202). A decrease in the ring
diameter after its formation has already been reported in experiments (Didden 1979)
and numerical simulations (Nitsche & Krasny 1994), and is due to the influence of
the tube orifice (Sheffield 1977; Didden 1979) or a secondary vortex of opposite
circulation formed on the tube end (Didden 1979). In our experiments, the release
process generates a strong wave at the surface of the tank, causing penetration of
ambient fluid into the tube after the release is completed, and possibly responsible for
the generation of a secondary vortex. Mushroom-shaped structures are observed at the
front of the vortex ring in experiments located at the highest P values (figures 5d,e
and 6).

Using the same argument as in § 3.2.1, we hypothesize that RTI emerge in Surface
experiments when the characteristic time for disturbance growth tRT is small compared
with the advective time scale ta. In previous experimental studies of non-buoyant
vortex rings generated by a piston (Gharib, Rambod & Shariff 1998) and in the
numerical study of the roll-up of a vortex sheet (Moore 1974), it has been shown
that the characteristic time scale for the formation of the vortex ring is few advective
times, suggesting that the competition between the growth of perturbations at the front
and their advection by the flow is a competition between the growth of disturbances
and the roll-up of the shear layer.

Once the released fluid is entirely immersed, the buoyancy force becomes the same
as in an equivalent Immersed experiment. At this stage, du/dt is smaller than ∼0.2 g
and, with the same assumptions and limitations as in § 3.2.1, ta/tRT is given by (3.12).
Making use of the scaling (3.5), we obtain

ta

tRT
= d1We1/4

a3/4
4 (1+ a5/P)3/4

√
1+ P
2+ P

, (3.14)
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where a4 = 0.52± 0.07 and a5 = 0.07± 0.03. Equation (3.14) predicts that, contrary
to the Immersed configuration, ta/tRT depends strongly on P, which explains why the
deformation regime changes in Surface experiments when varying P at a fixed We
(figure 6). Mushroom-shaped structures are found at the largest P and We values, in
regions where ta/tRT reaches its highest values, consistent with the hypothesis that
these structures result from RTI.

We note that, in Immersed experiments, a shear layer also starts to roll up during
the release, below the tube edge (figure 3c), for sufficiently large We (&50). However,
the roll-up of the shear layer is interrupted by RTI before any vortex ring can be
formed. In the Surface configuration, du/dt reaches 0.4 g in the aftermath of the
membrane rupture, a value larger than in the Immersed configuration because the
former case initially involves a density contrast ρr − ρair > 1ρ. First, this implies
that the initial effective acceleration a= g− du/dt is smaller in Surface experiments,
reducing the growth rate of RTI by a factor of approximately two. Second, larger
velocities are reached during the early stages of the fall and the total circulation of
the vortex sheet Γ is larger in the Surface configuration, which tends to decrease the
vortex sheet roll-up time. Such effects qualitatively explain why the vortex ring roll-up
can be completed in Surface experiments and not in Immersed experiments.

4. Subsequent evolution: characterization of fragmentation regimes
In § 3.2 it was shown that the initial deformations and their sensitivity to P and

We can be qualitatively accounted for by a competition between growth of RTI and
advection by the flow. When the latter effect dominates, a vortex ring is formed.
In the present section the different fragmentation regimes are characterized from the
evolution following the initial deformations, and prior to drop formation. The resulting
(P,We) regime diagram, shown in figure 7, locates the regimes detailed below.

4.1. Low and intermediate Weber numbers: wide variety of regimes
4.1.1. We. 6

At the lowest Weber numbers (We ≈ 2–4) the released fluid takes the form of an
oscillating drop. Breakup starts at We ≈ 5, consistent with the critical value We = 6
predicted theoretically by Villermaux & Bossa (2009), and the flow reaches a regime
where the released fluid disintegrates into a few large drops as a consequence of large
amplitude oscillations at the natural frequency of the drop. This vibrational breakup
regime has been documented previously (e.g. Pilch & Erdman 1987; Gelfand 1996).

4.1.2. We& 6; no immiscible ring
For We & 6, if the released fluid does not roll up into a ring, the evolution that

follows the initial deformation and precedes ligament formation is the continuation of
the mechanisms identified in § 3.2.

The fragmentation regime in experiments located below the onset of RTI, shown
in figure 8, is named the jellyfish regime. In this regime, the absence of growing
RTI allows the flow to remain quasi-axisymmetric until the distance from the tube is
equal to a few initial diameters. The initial pancake shape (figure 8a) evolves into a
U-shaped membrane (figure 8b). Then, a portion of released fluid accumulates towards
the front, leaving the membrane thinner at the rear (figure 8c,d), which leads to the
formation of sheared filamentary structures near the rear (figure 8d). Similar structures,
categorized as a shear breakup mode, have been found by Han & Tryggvason (1999)
in axisymmetric simulations of drop deformation (see their figure 5). We note that a
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Turbulent 
thermal

RTpiercing

Turbulent 
vortex ring

(a)

(b)

FIGURE 7. Fragmentation regimes in (We, P) space in the Immersed (a) and Surface
(b) configurations. Symbols denote: , no fragmentation, oscillating drop; •, vibrational
breakup regime; �, jellyfish regime; O, RT piercing regime; �, turbulent regime;◦, vortex ring destabilization regime; ©O , intermediate regime between vortex ring
destabilization and RT piercing (mushroom-shaped structures, typical of RTI, are observed
at the front of a vortex ring); ©� , vortex ring evolving into a jellyfish regime. Plain lines:
tentative regime boundaries; dashed lines: progressive transitions.

vortex ring rolls up in experiments with miscible fluids at similar Reynolds number
(in the range 500–3300), suggesting that surface tension prevents the roll-up of the
shear layer in these experiments.

When the initial deformation is dominated by RTI (figure 9 and supplementary
movie 2), the subsequent evolution corresponds to the typical nonlinear evolution of
RTI and commonly involves shear instabilities. As a result, the released fluid mass
divides into several sub-volumes connected by filamentary structures (figure 9c,d).
The flow shares similarities with the multimode breakup regime as described in
experiments of aerobreakup and interpreted as a result of RTI (Harper, Grube & Chang
1972; Simpkins & Bales 1972; Joseph, Belanger & Beavers 1999; Theofanous et al.
2004; Theofanous & Li 2008; Zhao et al. 2010). Following Theofanous et al. (2004)
and Theofanous et al. (2007), this fragmentation regime is named RT piercing. The
transition from jellyfish to RT piercing in figure 7(a) corresponds to the onset of RTI.

4.1.3. We& 6; with an immiscible ring
When the initial deformation is dominated by the roll-up of a vortex ring, the

evolution prior to ligament formation is characterized by the development of additional
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1 cm

(a) (b) (c) (d)

FIGURE 8. (Colour online) Experiment in the jellyfish fragmentation regime, We ≈ 24,
P≈ 0.22. Immersed configuration, time intervals of approximately 0.25 s.

3 cm

(a) (b) (c) (d) (e)

( f )

FIGURE 9. (Colour online) Experiment in the RT piercing fragmentation regime,
We ≈ 50, P ≈ 0.22. Immersed configuration, time intervals on the order of 0.2 s. (e,f )
Close-ups corresponding to the square boxes in (c) and (d), respectively.

instabilities on the ring (figure 10 and supplementary movie 3). This vortex ring
destabilization regime is morphologically different from the RT piercing regime or
the jellyfish regime at similar We values. A plausible mechanism for the vortex ring
destabilization is an elliptical instability, often referred to as the Widnall instability,
which has been identified as the mechanism responsible for the destabilization of
miscible non-buoyant vortex rings (Widnall & Sullivan 1973; Widnall, Bliss & Tsai
1974; Widnall & Tsai 1977; Saffman 1978; Dazin, Dupont & Stanislas 2006a). It
results from the parametric resonance of neutrally stable modes of vibration, called
Kelvin waves, with an underlying quadrupole strain field induced by the vortex ring
on itself. Hattori & Fukumoto (2003) and Fukumoto & Hattori (2005) have shown

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.202


Fragmentation of a buoyant liquid volume in another liquid 495

3 cm

2 cm

(a) (b) (c) (d) (e)

( f ) (g) (h) (i ) ( j )

FIGURE 10. (Colour online) Experiments in the vortex ring destabilization regime. Surface
configuration. (a–e) We≈ 30, P≈ 0.22; (f –j) We≈ 70, P≈ 0.22. Arrows locate elongated
structures or filaments. Time intervals are approximately 0.2 s.

that a dipole field resulting from the curvature of the vortex ring can also induce
a parametric resonance between two Kelvin waves, called the curvature instability.
Hattori & Hijiya (2010) have studied the stability of fat vortex rings, which is the
relevant regime for our experiments, where the ratio of the core to vortex ring radius
is on the order of 0.4. They found that the Widnall instability dominates over the
curvature instability, but the combination of the elliptical deformation and the dipole
field initiate a third mode of instability whose growth rate exceeds the Widnall
instability near the boundary of the ring. The centrifugal instability is yet another
plausible candidate for the destabilization of our immiscible vortex rings. Finally, the
presence of a heavy vortex core can also trigger a RTI where the centrifugal force
plays the role of gravity.

The maximum growth rates of the above instabilities are of the same order of
magnitude for miscible rings according to previous theoretical and numerical studies
(Widnall & Tsai 1977; Shariff, Verzicco & Orlandi 1994; Sipp et al. 2005; Hattori
& Hijiya 2010). Thus, one mechanism cannot be favoured over the others and
further investigation, especially accounting for surface tension, would be required
to identify the dominant mechanisms in our experiments. Azimuthal waves are seen
in our experiments (e.g. figure 10c) whereas the most unstable waves of RTI are
axisymmetric at small density contrast (Sipp et al. 2005).

In Surface experiments, transitions from one of the above regimes to another are
often progressive. When RTI grows at the front of a developing vortex ring, the flow
is a combination of RT piercing and vortex ring destabilization regimes (figure 7) and,
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in a few and isolated experiments at We6 20, a vortex ring forms but finally evolves
into a jellyfish fragmentation regime (figure 7).

We note that air entrained during the formation of some immiscible vortex rings
is responsible for the rising air bubbles seen in figure 10. Comparison between
experiments conducted at the same parameter values, with and without air bubbles,
indicates that the fragmentation regime is little affected by the presence of air bubbles.

4.2. High Weber numbers: turbulent regime
When We is increased above ∼100, a progressive transition leads to the turbulent
regimes illustrated in figure 11 (see also supplementary movie 4). The deformations
of the immiscible interface are chaotic and exhibit a wide range of length scales
(e.g. figure 11c,g). In the experiment shown in figure 11(a–h) initial deformations are
dominated by RTI (seen in (a) and (f )) whereas no RTI develops in the experiment
shown in figure 11(q–w) (Surface configuration, low P). The initial deformations in
figure 11(i–p) are more ambiguous: the waves in (i) do not have a clear mushroom-
shaped structure as in figure 11(a,f ), but their characteristic size is consistent with the
predicted wavelength for RTI and this experiment is located in a region of parameter
space where we expect RTI to emerge according to results from § 3.2. Despite the
different initial deformations, the large-scale flow has common features in the three
experiments: the released fluid is contained inside a coherent structure whose shape
is self-similar during the fall and which grows by entrainment of ambient fluid. This
behaviour is similar to the case of a fluid mass evolving in another miscible fluid
at high Reynolds number, as described by Batchelor (1954) and Scorer (1957) for
thermals, Maxworthy (1974) and Glezer & Coles (1990) for non-buoyant vortex rings,
and Turner (1957) for buoyant vortex rings. Again, the fragmentation regime is little
affected by the presence of air bubbles in the Surface configuration (figure 11i–w).

The geometry of the coherent structure in figure 11(q–w) can be approximated by an
oblate spheroid of large width to height ratio (≈1.8), much like miscible non-buoyant
vortex rings. In contrast, the coherent structure in figure 11(a–h) can be approximated
by a prolate spheroid, much like the shape of miscible turbulent thermals.

A cross-section of an immiscible thermal is shown in figure 12. It reveals
small-scale intermingling between released and ambient fluids in the entire thermal,
even though the two immiscible phases remain continuous. This demonstrates that
ambient fluid is entrained in the thermal before the released fluid breaks into
fragments. The immiscible interface has a fractal structure, as demonstrated in Deguen,
Landeau & Olson (2014). Comparison between figure 12 and images obtained in
equivalent miscible experiments (Bond & Johari 2010, see their figure 4, left, which
shows a turbulent thermal with Re ≈ 5000, P ≈ 0.05, at z ≈ 3R) demonstrates that
the large-scale internal structure of turbulent thermals is morphologically similar in
miscible and immiscible experiments.

5. Final fragmentation stage: breakup
5.1. Description of the physical processes

As in other fluid fragmentation processes (Hinze 1955), the deformations identified in
§§ 3 and 4 result in the formation of elongated and filamentary structures, or liquid
ligaments, (e.g. figures 8d, 9c–f, 10d, 11w) and their destabilization, probably through
capillary instabilities, leads to breakup. However the spatial distribution and formation
time of these ligaments differ from one fragmentation regime to another.
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FIGURE 11. (Colour online) Turbulent regime. (a–h) Immiscible turbulent thermal,
We ≈ 103, P ≈ 0.92. Immersed configuration, time intervals of approximately 0.2 s.
(i–w) Immiscible turbulent buoyant vortex rings. Surface configuration. (i–p) We ≈ 103,
P≈ 0.82, time intervals of approximately 0.2 s; (q–w) We≈ 200, P≈ 0.03, time intervals
of approximately 0.4 s. (f –h) (n–p) (v,w) Close-ups corresponding to the square boxes in
(a,c,e), (j–l) and (s,u), respectively.
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2 cm

FIGURE 12. Cross-section of an immiscible turbulent thermal, obtained using light-
induced fluorescence, modified from Deguen et al. (2014). We≈ 103, P≈ 0.54, Immersed,
z≈ 4R.

In the jellyfish (figure 8d) or the RT piercing (figure 9c–f and supplementary
movie 5) regimes thin filamentary structures connect larger blobs of released fluid.
In the vortex ring destabilization regime the azimuthal waves result in the formation
of thinner portions on the ring (figure 10c), which eventually break the ring in
separated blobs (between figure 10c,d). In the meantime, the azimuthal disturbances
are stretched by the mean shear flow, leading to the formation of spiralling filaments
located preferentially on the ring boundaries (arrows in figure 10 and supplementary
movie 6).

In the turbulent vortex ring regime at P ≈ 0.03, ligaments form at the external
boundary of the ring (figure 11u,w). The ligament formation, followed by their
breakup, is a multi-step process: the ring is progressively peeled, whereas the primary
breakup of the entire released fluid volume occurs in a single and brief event in the
turbulent regime for P& 0.2 (between figure 11d,e, and between figure 11j,l, see also
supplementary movie 7). In this case, as can be inferred from figure 11b,c and from
the cross-section in figure 12, breakup probably results from capillary instabilities on
filamentary structures stretched by the turbulent flow in the entire thermal volume.
However, higher temporal and spatial resolution is required to test this interpretation.

5.2. Breakup length
The dimensionless breakup length LB, is defined as the dimensionless distance from
the tube at which the number of objects in binary images starts to increase (see
figure 13). It marks the beginning of primary breakup. Most of the drops formed in
the rear of the released fluid from the rupture of a membrane that remains attached
to the tube (e.g. figures 8b,c, 9b) or from breakup in the wake of turbulent thermals
or vortex rings (e.g. figure 11) are automatically excluded from binary images; a few
remain and cause local, spurious variations in the number of objects, as seen close
to z/R≈ 3 in figure 13(a,c). These are not taken into account in the determination of
LB. The sporadic presence of air bubbles in Surface experiments retards the released
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FIGURE 13. (Colour online) Number of objects N in binary images as a function of
the dimensionless distance from the tube in four single experiments. Symbol shapes
refer to the fragmentation regime (as in figure 7). The breakup length LB is the
dimensionless distance from the tube at which N starts to increase. Error bars indicate
typical measurement uncertainties on LB and z/R. Error bars on LB are large enough such
that they incorporate spurious variations in N due to hidden droplets or air bubbles. The
inserts show backlighting images of the released fluid before and after LB, at distances
located by the arrows. (a) Jellyfish regime, We ≈ 29, P ≈ 0.22. Immersed configuration.
(b) RT piercing regime, We ≈ 170, P ≈ 0.43. Immersed configuration. (c) Vortex ring
destabilization regime, We ≈ 45, P ≈ 0.22. Surface configuration. (d) Turbulent regime,
We≈ 280, P≈ 0.96. Surface configuration.

fluid at early times, and may thus decrease the breakup length, while increasing its
standard deviation.

In Immersed experiments, the jellyfish, RT piercing and turbulent regimes
correspond to specific regions in figure 14(a). For a given P value in the jellyfish
and RT piercing regimes, the overall trend of the dimensionless breakup length is a
decrease with increasing We. In the turbulent regime, the variation of LB with We is
within the experimental error and in the range 4.5–7.5.

In Surface experiments (figure 14b), the different regimes overlap, with no
distinctive behaviour from one regime to another, suggesting common destabilizing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.202


500 M. Landeau, R. Deguen and P. Olson

We

LB

We

0

4

8

12

20

16

0

4

8

12

20

16

102101 103 102101 103

(a) (b)

FIGURE 14. (Colour online) Dimensionless breakup length as a function of Weber number
in (a) Immersed and (b) Surface experiments. Symbol shapes: as in figure 7. Black: P≈
0.03; blue: P≈ 0.22; grey: 0.436P6 0.54; red: 0.836P6 0.96 (coloured symbols appear
lighter in black and white).

mechanisms. Given experimental errors, no significant variation of LB is seen for
We& 25: the different fragmentation regimes collapse between LB ≈ 4.5 and LB ≈ 7.

6. Integral model for the turbulent regime
It has been shown in § 4 that the flow takes the form of turbulent vortex rings

(Surface experiments) and turbulent thermals (Immersed experiments) for We & 200.
Following Deguen et al. (2011), we assume that immiscibility does not affect the
macroscopic behaviour of such structures, so that we can apply models that have
been developed in the context of miscible fluids (Morton et al. 1956; Escudier &
Maxworthy 1973; Maxworthy 1974; Thompson et al. 2000) and particle clouds
(Bush et al. 2003) at high Reynolds numbers. In the present section we consider the
general case of buoyant vortex rings, allowing for initial momentum and large density
differences between the ring and the ambient fluid. Re is in the range 3000–11 000
in the experiments considered in this section.

6.1. Theoretical considerations
Following the turbulent entrainment hypothesis (Taylor 1945; Morton et al. 1956), we
assume that the rate of growth of the vortex ring mass is proportional to its velocity
and its surface area:

d
dt

[
4
3
πρr3c1

]
= 4πr2c2αρau, (6.1)

where ρ is the mean density of the ring, u is the ring velocity, c1 and c2 are shape
factors which relate the actual volume V and surface area of the ring to those of an
equivalent sphere of radius r, r being a measure of the size of the moving fluid mass,
and α the entrainment coefficient as introduced in Taylor (1945) and Morton et al.
(1956).

Making use of the relations ρr3 = 1ρR3/c1 + ρar3 and u = dz/dt, the mass
conservation equation (6.1), in the absence of density stratification, becomes

dr
dz
= α′, (6.2)
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where α′ = αc2/c1. Equation (6.2) implies that r ∝ z at all times whenever the
entrainment coefficient α′ is constant. This linear relationship between r and z can
be derived from dimensional analysis in the special case of a Boussinesq thermal
(Batchelor 1954) or a non-buoyant vortex ring (Maxworthy 1974).

In the absence of density stratification the total buoyancy b= (ρ − ρa)/ρagV of the
moving fluid mass is conserved and equal to its initial value B. Then, the impulse
conservation equation takes the form

d
dt

[
4
3
π(ρ + kρa)r3c1u

]
= ρaB− 1

2
C′Dρau2πr2, (6.3)

where C′D=CDc3, c3 is another shape factor, CD is the drag coefficient and the added
mass coefficient k accounts for the change in kinetic energy of the surrounding fluid
(Escudier & Maxworthy 1973; Saffman 1992).

Using the equivalent radius of the released fluid R as a length scale and
R2√(4π/3)/B as a time scale, the final set of non-dimensional equations takes
the form [

P+ (1+ k)c1r̃3
] dũ

dt̃
= 1− 3α′

[
c1(1+ k)+ C′D

8α′

]
r̃2ũ2, (6.4)

dr̃
dt̃
= α′ dz̃

dt̃
,

dz̃
dt̃
= ũ. (6.5)

Equations (6.4) and (6.5) can be integrated in time if α′, C′D, k, c1 and the initial
conditions on ũ, r̃ and z̃ are given.

Since dr̃/dt̃= α′ũ, equation (6.4) becomes

α′

2

[
P+ (1+ k)c1r̃3

] dũ2

dr̃
= 1− 3α′

[
c1(1+ k)+ C′D

8α′

]
r̃2ũ2. (6.6)

For constant values of C′D, k, c1 and α′, the general solution of the first-order linear
differential equation (6.6) is

ũ2 = 2
α′

∫ r̃

r̃0

(
P+ (1+ k)c1x3

)γ−1(
P+ (1+ k)c1r̃3

)γ dx+ ũ2
0

[
P+ (1+ k)c1r̃0

3

P+ (1+ k)c1r̃3

]γ
, (6.7)

where γ =2+C′D/ (4α
′(1+ k)c1) and the subscript 0 denotes initial conditions. Closed-

form solutions for ũ exist if C′D = 0 or, if the Boussinesq approximation is valid
(P� 1), for arbitrary values of C′D (given in appendix B).
In the following limit:

z̃− z̃0� r̃0

α′
and z̃− z̃0� r̃c

α′
where r̃c satisfies (1+ k)c1r̃3

c � P, (6.8)

the solution (6.7) has an asymptote given by

ũ2 ≈ 2
α′3(1+ k)c1(3γ − 2)

1

(z̃− z̃0)
2

[
1+

(
LM

z̃− z̃0

)3γ−2
]
, (6.9)
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where LM is given by

LM =
(

1
2
α′3(1+ k)c1(3γ − 2)ũ2

0

)1/(3γ−2)
(

P+ (1+ k)c1r̃0
3

(1+ k)c1α′3

)γ /(3γ−2)

. (6.10)

Since 3γ − 2 > 0, LM is the distance over which the initial momentum affects the
solution, often called the Morton length. If z̃− z̃0�LM the initial momentum becomes
inconsequential and the flow reaches the same asymptotic regime as in thermals, i.e. in
terms of dimensional variables

u(z)≈ f

√
B

z− z0
, (6.11)

d (z− z0)
2

dt
≈ 2f
√

B, (6.12)

where f =
{

8
3
πc1(1+ k)α′3 + C′D

2
πα2

}−1/2

. (6.13)

In miscible turbulent thermals (Scorer 1957; Richards 1961; Thompson et al. 2000)
or in non-buoyant vortex rings (Maxworthy 1974; Glezer & Coles 1990) the size of
the structure grows linearly with depth, as predicted by (6.2) for a constant α′ value.
In miscible thermals the entrainment coefficient is usually determined by measuring
the growth of the thermal half-width, and typically αT = 0.25 ± 0.1, where αT is
the entrainment coefficient for thermals. The entrainment coefficient of non-buoyant
vortex rings, αV , is commonly determined by measuring the growth of the radius of
the vortex ring core and it can be described as αV = 0.01 ± 0.005. The entrainment
coefficients of buoyant vortex rings were not directly reported by Turner (1957),
but values ranging from 0.02 to 0.18 can be extracted from his figure 3 and other
parameter estimations. These values lie between αV and αT , the lowest values being
reached when the ratio of initial impulse to buoyancy force is the highest, i.e. when
the initial momentum dominates the total momentum. Given these observations, the
entrainment coefficient must vary with time in a buoyant vortex ring since the flow
eventually behaves as a thermal as predicted by (6.11)–(6.13) and α′ is equal to αT
in this asymptotic regime. From a theoretical point of view, it is important to account
for these effects in a self-consistent model of buoyant vortex rings.

An important difference between non-buoyant vortex rings and thermals is the
presence of baroclinic vorticity generation in the latter case, which affects the
vorticity distribution and thus the entrainment coefficient (Lundgren et al. 1992;
Alahyari & Longmire 1995, 1997; Bond & Johari 2010). In positively buoyant vortex
rings, the amplitude of baroclinically generated vorticity is positively correlated
with the local Richardson number, representing the ratio of buoyancy to inertial
forces, and evolving from values much smaller than one near the source, where
the excess in initial momentum dominates the total momentum, to values on the
order of one in the asymptotic thermal-like regime, where the initial momentum has
become inconsequential with respect to the buoyancy-induced momentum. During this
transition the entrainment coefficient should vary from αV to αT . Using the following
definition of the Richardson number

Ri= 1ρgR3

ρu2r2
, (6.14)
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Ri varies from 0 in non-buoyant vortex rings to a constant value RiT = 2c1(1 +
k)αT + 3

8 C′D in Boussinesq thermals when r � R (the asymptotic regime given by
(6.11)–(6.13)).

Turner (1957) showed that the entrainment coefficient of a buoyant vortex ring
in which the circulation K remains constant is proportional to B/K2, the ratio of
buoyancy to inertial forces, i.e. a Richardson number. The circulation of a buoyant
vortex ring is probably not constant; observations in non-buoyant vortex rings indicate
it is lost to the wake by shedding of vortical structures (Maxworthy 1972, 1974;
Glezer & Coles 1990; Weigand & Gharib 1994; Dazin, Dupont & Stanislas 2006b;
Archer, Thomas & Coleman 2008). A significant wake is observed in immiscible
buoyant vortex rings at low Richardson numbers (figure 11q–w, Ri down to 0.1–0.2)
whereas almost no wake is present at Richardson numbers on the order of one in
immiscible thermals (figure 11a–h), in agreement with previous studies on miscible
non-buoyant vortex rings and thermals (Scorer 1957; Maxworthy 1972, 1974; Bond
& Johari 2010). The assumption of constant circulation also rests on vorticity being
confined to a region that does not extend to the centre of the ring, such that the
contribution of baroclinic vorticity generation to the total ring circulation is equal
to zero. This contribution is in general different from zero in the case of thick-core
buoyant vortex rings. Despite the above limitations, Turner’s result gives a physical
argument in favour of a linear relationship between α′ and Ri.

Such a linear relationship is also expected from the analogy with turbulent buoyant
jets. In turbulent buoyant jets the entrainment coefficient varies during the transition
from a jet-like to a plume-like behaviour (Fischer et al. 1979; Wang & Law 2002).
Theoretical parameterizations, one inspired by the work of Priestley & Ball (1955) and
the other developed by Kaminski, Tait & Carazzo (2005), predict that the entrainment
coefficient is a linear function of a local Richardson number. Accordingly, a natural
parameterization to account for variations of α′ in buoyant vortex rings is

α′ = αV + (αT − αV)
Ri
RiT

. (6.15)

Equations (6.4) and (6.5) remain unchanged if α′ varies with time. Thus, (6.4)–(6.5)
and (6.15) can be coupled and integrated forward in time, giving a self-consistent
model for the evolution of a buoyant vortex ring. It is important to emphasize that,
once the parameterization between α′ and Ri is specified, the above model has one
free parameter less than in the case of a constant entrainment coefficient. For instance,
in the case of parameterization (6.15), local values of Ri and α′ can be experimentally
determined, which leads to an estimation of RiT . From the estimation of RiT we obtain
a linear relationship between C′D and k, whereas these parameters are independent in
the case of a constant entrainment coefficient.

6.2. Experimental results – comparison with theory
In this section, the analogy with miscible turbulent thermals and vortex rings is
tested by comparing results from immiscible fluid experiments with both theoretical
predictions and experimental results obtained with miscible fluids.

6.2.1. Entrainment coefficient
The vortex ring equivalent radius and centroid are estimated from video images,

as described in § 2, considering the largest object in the image for the equivalent
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FIGURE 15. (Colour online) Dimensionless equivalent radius as a function of the
dimensionless distance between the centroid and the tube in Immersed experiments; O,
P ≈ 0.92; �, P ≈ 0.22; red downward triangle: miscible fluids, P ≈ 0.19. Characteristic
error bars associated with measurement uncertainties are shown.

P α′

Immiscible 0.220± 0.001 0.20± 0.03
0.536± 0.002 0.25± 0.03
0.954± 0.002 0.24± 0.05

Miscible 0.192± 0.001 0.24± 0.05

TABLE 2. Values of the entrainment coefficient α′ in Immersed experiments at different
normalized density difference P, with miscible and immiscible fluids. Errors represent
standard deviations in the series of experiments.

radius. In our immiscible thermals (Immersed experiments), the equivalent radius
evolves linearly with the distance travelled, in agreement with (6.2) and with
the turbulent entrainment hypothesis, as illustrated in figure 15. As shown in this
figure, experiments with miscible and immiscible fluids have very similar behaviours,
supporting the analogy with miscible thermals.

For each experiment an entrainment coefficient α′ is estimated. As pointed out in
previous studies (Scorer 1957; Richards 1961; Thompson et al. 2000; Bush et al.
2003) a large variability in α′ between successive realizations is unavoidable and
inherent to this turbulent flow, which is not quasi-stationary in the reference frame of
the laboratory. The mean values of α′ in Immersed experiments are reported in table 2.
Uncertainties take into account both the uncertainty on α′ in each experiment and
the variability between experiments. Note that the measured entrainment coefficient is
α′=αc2/c1, which depends in principle on the method used to measure the radius and
the position of the thermal through the coefficients c1 and c2. In our miscible fluid
experiments we find α′= 0.24± 0.05 (table 2), in agreement with previously published
studies in which the maximal half-width of the thermal (rather than the equivalent
radius) is used to estimate r. The use of the equivalent radius is favoured in this
study because the resulting signal is much smoother than when using the maximal
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FIGURE 16. (Colour online) Measured turbulent entrainment coefficient as a function of
the local Richardson number in Surface experiments. �, P≈ 0.82; H, P≈ 0.22; •, P≈
0.03; red downward triangles: miscible fluids, P ≈ 0.19; red upward triangles: miscible
fluids, P= 0. Error bars indicate typical measurement uncertainties.

width, which is very sensitive to local deviations from the self-similar behaviour. In
our immiscible thermals α′ is slightly lower at P≈ 0.22 but, given the uncertainties,
no significant variations of the entrainment coefficients with the normalized density
difference P are observed (table 2). We conclude that the entrainment coefficient in
our immiscible thermals, α′ = αT , is such that αT = 0.23 ± 0.06, with no significant
deviation from miscible thermals.

In Surface experiments, the equivalent radius varies linearly with depth, at least
locally, and local values of α′ can be estimated. Figure 16 shows that a wide range of
α′ values are found (from ∼0.05 to ∼0.25). It also illustrates that the local Richardson
number is a control parameter of the entrainment coefficient. By definition, α′ = αV
in miscible fluid experiments with no initial buoyancy (Ri= 0, bottom-left corner in
figure 16) and we obtain αV = 0.012 ± 0.003, in agreement with previous results
for non-buoyant vortex rings (Maxworthy 1974; Glezer & Coles 1990). The largest
α′ values are reached for the largest Ri values and correspond to experiments that
have reached a turbulent thermal regime, with α′ close to αT and Ri close to RiT
(RiT =0.7±0.2 in our Immersed experiments). At intermediate Ri values (∼0.4±0.2),
α′ is in the range 0.05–0.17. A best fit of the form α′ = αV + (αT − αV)(Ri/RiT)

β for
immiscible experiments yields β = 1.2± 0.2, which is compatible with β = 1 and in
agreement with (6.15).

6.2.2. Descent trajectory
Measured distance z̃ − z̃0 between the vortex ring centroid and the initial depth

for the turbulent thermals (Immersed configuration) is compared with theoretical
predictions obtained by numerical integration of (6.4) and (6.5) for a constant α′
value, as measured in our experiments. In each experiment, we choose t̃0 such that
z̃0 ≈ 1 in order to ensure that the released fluid is entirely out of the tube at t̃0. The
corresponding initial conditions r̃0 and ũ0 are then extracted from each experiment.
Squares in figure 17(a) illustrate the descent trajectory for a given turbulent thermal
in the Immersed configuration. During the last phase, (z̃ − z̃0)

2 grows linearly with
time, in agreement with the expected asymptotic behaviour given by (6.12). The
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FIGURE 17. (Colour online) Square of the dimensionless distance of the vortex ring’s
centroid from the initial depth as a function of dimensionless time for turbulent
thermals in the Immersed configuration. �, P ≈ 0.92; �, P ≈ 0.54; O, P ≈ 0.22; red
downward triangles: miscible fluids with P ≈ 0.19. Characteristic error bars associated
with measurement uncertainties are shown. Curves are theoretical solutions obtained by
numerical integration of (6.4) and (6.5) for constant α′ values. (a) Solid curves: two
theoretical solutions (indistinguishable from each other) with (c1 = 1, C′D = 0, k = 0.18)
and (c1= 1, C′D= 0.3, k= 0), the mean deviation relative to the experimental curve is less
than 0.06 %. Dotted curve: c1= 1, C′D= 1, k= 0. Dot–dashed curve: c1= 1, C′D= 0, k= 1.
Dashed curve: C′D = 0, k= 0.18, c1 = 0.7. Theoretical curves are computed for α′ = 0.25,
which is the value measured in the experiment shown in (a). (b) Immersed experiments
in which α′ takes similar values in the range 0.23–0.25. Theoretical solutions with (c1= 1,
C′D = 0, k= 0, α′ = 0.24) and (c1 = 1, C′D = 0.35, k= 0.35, α′ = 0.24) are shown by solid
and dashed curves respectively.

theoretical evolution fits the data shown in figure 17(a) for C′D = 0.3 ± 0.1 if k = 0,
and k = 0.18 ± 0.1 if C′D = 0 (solid curves). The large uncertainties on C′D and k
for a single experiment come from the uncertainty on α′. The drag and added mass
coefficients, C′D and k, play symmetric roles in the theoretical solution: an increase
in C′D or k causes a decrease in the slope of (z̃ − z̃0)

2 in the asymptotic regime
(figure 17a), as expected from (6.12) and (6.13). The theoretical solution is also
sensitive to c1, as shown in figure 17(a).

The values of C′D, k and c1 required to fit the descent trajectory vary between
experiments. In 20 % of the 20 Immersed experiments, the measured curve is located
above the theoretical curve computed with c1 = 1, k = 0 and C′D = 0. As negative
values for k or C′D are not physical, these results require c1 < 1. In those experiments,
c1 ranging from 0.8 to 0.9 fits the data, corresponding to an overestimation of the
volume up to 25 % and an overestimation of the equivalent radius up to 8 %. In
the other Immersed experiments the values of C′D and k required to fit the observed
descent trajectory vary from 0 to approximately 0.5. Figure 17(b) illustrates the
large variability in C′D and k: since the experiments shown have similar α′ values,
the differences in terminal slope come from differences in C′D and k. The latter
coefficients are similar in our miscible fluid experiments and the descent trajectory is
qualitatively very similar for miscible and immiscible fluids (figure 17b).

In Surface experiments (buoyant vortex rings), our results on the entrainment
coefficient (figure 16), combined with theoretical predictions, require α′ to vary with
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FIGURE 18. (a) Square of the dimensionless distance of the vortex ring’s centroid from
the initial depth as a function of dimensionless time. •, buoyant vortex ring in the
Surface configuration with P≈ 0.03. Characteristic error bars associated with measurement
uncertainties are shown. Black curves are theoretical solutions obtained by numerical
integration of (6.4) and (6.5) with either a constant α′ value (dashed curve) or an α′ that
varies with time according to (6.15) (solid curve). The value of t̃0 is chosen such that
z̃0≈ 2. Dashed curve: α′= 0.1, C′D= k= 0.34, c1= 1, with a mean deviation relative to the
experimental curve equal to 0.06 %. Solid curve: k= 0.45, CD= 0.68, c1= 1, with a mean
deviation relative to the experimental curve equal to 0.02 %. (b) Entrainment coefficient
as a function of dimensionless time in the two theoretical solutions shown in (a).

time, as already argued in § 6.1. Thus, a parameterization such as (6.15) is required
for a self-consistent model that predicts the descent trajectory. Theoretical solutions
obtained by numerical integration of (6.4) and (6.5), coupled with parameterization
(6.15), fit the 16 Surface experiments used in this section with C′D = 0.6 ± 0.3 and
k= 0.4± 0.4, indicating that this model of buoyant vortex ring is consistent with our
measurements. The value of RiT , required in parameterization (6.15), is estimated in
each experiment from local measurements of α′ and Ri. We use the values of αT and
αV that have been obtained in § 6.2.1, and we choose the initial time t̃0 such that no
air bubbles remain inside the vortex ring. Figure 18 illustrates the agreement between
theoretical and experimental results for a single Surface experiment. When using
parameterization (6.15), the best-fit theoretical curve is obtained for C′D = 0.7 ± 0.1
and k= 0.4± 0.2 (with c1= 1, αV = 0.012± 0.003 and αT = 0.23± 0.06). The value of
α′ varies from 0.04 to 0.14 in this theoretical solution (figure 18b). The uncertainties
in C′D and k in a single experiment are mainly due to uncertainties in αT , α′ and Ri.
Note that the fit between the data and the theoretical solution is also good, with a
constant α′ value (figure 18a).

The values we have found for (C′D, k, c1), as well as their large variability, are also
consistent with results from previous studies. Ruggaber (2000) reports negative values
for C′D and k in turbulent particle clouds, which would be explained by c1 < 1 in our
formalism. The results by Bush et al. (2003) from particle cloud experiments and by
Maxworthy (1974) from non-buoyant vortex rings suggest values of C′D and k small
compared to 0.5. Translated into our formalism, the results of Gan, Dawson & Nickels
(2012) for non-buoyant vortex rings yield k≈1 and C′D on the order of 0.05. Although
Thompson et al. (2000) do not include the drag coefficient in their model, they report
a mean k value of 0.25 and their data suggest that k ranges from negative values to
values close to 0.8.
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7. Discussion
7.1. Discussion of experimental results

We find that, in agreement with the literature on fluid fragmentation, and especially
on drop breakup at low Oh (Hinze 1955; Pilch & Erdman 1987; Gelfand 1996;
Guildenbecher et al. 2009), the Weber number is the control parameter governing
regime transitions in our experiments, whereas P has an influence mostly within the
fragmentation regime (figure 7).

The vortex ring destabilization regime found in this study is morphologically
different from the regime observed by Baumann et al. (1992). In their study,
immiscible vortex rings are rather viscous (Re 6 61) whereas, in the present
study, Re > 103 in most immiscible vortex rings, closer to inviscid dynamics.
The destabilization of vortex rings in Baumann et al. (1992) is interpreted as a
manifestation of RTI and is morphologically similar to the instability observed in
miscible fluids when a drop of a heavier liquid falls inside a lighter liquid (Kojima,
Hinch & Acrivos 1984; Arecchi et al. 1989; Arecchi, Buah-Bassuah & Perez-Garcia
1991; Buah-Bassuah et al. 2005). The centrifugal to gravitational acceleration ratio
is much smaller than unity in the vortex rings of Baumann et al. (1992), indicating
that RTI are mainly driven by gravity. The same ratio (roughly estimated from video
images) reaches values of approximately 0.5 in some of our immiscible vortex rings,
demonstrating that the destabilizing mechanisms cannot be identical to those in
Baumann et al. (1992).

A progressive transition leads to a turbulent regime that is observed for We &
100–200 in both Immersed and Surface experiments. We emphasize that in (Bo, P)
space the transition to turbulence would occur at different parameter values in
Immersed and Surface experiments (Surface experiments at P ≈ 0.03 and We > 100
have a rather low Bo value compared with other turbulent experiments).

In our turbulent experiments, the turbulent entrainment concept describes the large-
scale evolution of the released fluid even before breakup occurs, for distances smaller
than 4.5–7.5 initial radii. At this stage, both the ambient and released fluids form
continuous, non-dispersed phases.

It is not clear whether our turbulent regime corresponds to the regime described
by Yang & Yang (1990). In our experiments, the entrainment coefficient decreases
when reducing the local Richardson number Ri. Yang & Yang (1990) report that the
entrainment coefficient grows as the square root of the Weber number, at similar Bo
values. Noting that Ri=O(Bo/We), their results seem to be at variance with ours, and
may indicate that the fully turbulent regime has not been reached in their experiments.

In our positively buoyant vortex rings, the amplitude of baroclinically generated
vorticity, correlated with Ri, affects the value of the entrainment coefficient and
the amplitude of the detrainment process by which vortical structures are shed into
the wake. These results are in agreement with previous studies that show that the
amplitude and sign of baroclinically generated vorticity generally control the dynamics
in buoyant shear flows. Marugan-Cruz, Rodriguez-Rodriguez & Martinez-Bazan (2009,
2013) have shown that the dimensionless pinch-off time of the leading vortex ring
varies with the Richardson number in a starting negatively buoyant jet. Comparing
the scaling law for pinch-off time in non-buoyant starting jets (Gharib et al. 1998)
and in positively buoyant starting plumes (Shusser & Gharib 2000; Pottebaum &
Gharib 2004), it is found that the pinch-off time should vary with the Richardson
number in positively buoyant starting jets. The penetration depth or the entrainment
rate in negatively (e.g. Turner 1966; Carazzo, Kaminski & Tait 2010) and positively
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(Fischer et al. 1979; Kaminski et al. 2005) buoyant jets, and at a stratified interface
(Linden 1973; Baines 1975; Cotel & Breidenthal 1997; Cotel et al. 1997; Friedman
& Katz 1999, 2000; Zhang & Cotel 2000) also depends on a Richardson number.

For sufficiently large We, the dimensionless breakup length remains in the range 4.5–
7.5, with no significant variations when increasing We further. These results suggest
either that LB tends towards a constant in the limit of large We, or that it exhibits a
weak dependence on We. Further investigations of the turbulent regime at We > 103

are required to test these hypotheses. However, a result shared by all these studies
is that, for large enough We and Oh� 1, the dimensionless breakup time shows no
significant dependence on We, which is in agreement with our data.

7.2. Geophysical implications
7.2.1. Earth’s core formation

The migration and fragmentation of liquid metal in fully liquid silicate magma
oceans is likely to have played an important role in determining the final composition
of Earth’s core and mantle, since the small-scale intermingling between metal and
silicates allowed for chemical equilibration (Dahl & Stevenson 2010). After an
impact between differentiated (i.e. formed of a silicate mantle and metallic core)
planetary embryos, the initial radius and post-impact velocity of released metal
blobs are expected to be in the range 50–500 km and 0.1–10 km s−1, respectively
(Rubie et al. 2003; Canup 2004; Deguen et al. 2011). The depth of the magma
ocean was, at most, of the same order of magnitude as the depth of the present
Earth’s mantle, i.e. approximately 3000 km. Thus, the characteristic time scale for
the first stages of metal migration in a magma ocean did not exceed a few hours,
suggesting that the effects of rotation can be neglected at first order. The density of
liquid metal and liquid silicates at magma ocean depths are typically in the range
7000–9000 kg m−3 (Morard et al. 2013) and 3000–4000 kg m−3 (Miller, Stolper &
Ahrens 1991), respectively. The interfacial tension between liquid metal and liquid
silicates is expected to be on the order of 1 J m−2 (Chung & Cramb 2000), although
it varies significantly with temperature, light-element content and pressure (Terasaki
et al. 2012). The viscosity of a fully liquid magma ocean is at most on the order
of 0.1 Pa s (Liebske et al. 2005; Karki & Stixrude 2010) while it is likely to be in
the range 10−3–5× 10−2 Pa s for liquid metal (de Wijs et al. 1998; Funakoshi 2010).
With the above estimates, we expect We& 1012, Oh. 10−5, Bo& 1013 and Re& 1011

following an impact (using the equivalent radius of the metal blob as a length scale),
with a normalized density difference P on the order of one for the metal–silicate
system.

Although our laboratory experiments assume uniform background conditions and are
far from reproducing post-impact conditions that prevailed during planetary formation,
they give insights into the flow regime associated with the fragmentation of metal
blobs in a fully liquid magma ocean. If we locate proto-planets, including proto-Earth,
in the regime diagram of figure 7, they would be close to the line P= 1 at We> 1012,
indicating that the geophysical flows of interest are located well above the onset of
the turbulent regime at We∼ 200. Thus, even if the largest We values reached in our
experiments are more than nine orders of magnitude smaller than in the geophysical
system, we have explored the regime that is relevant for core formation, and in which
the large-scale flow can be described by considering the limit of zero surface tension.

Morphologically, the turbulent fragmentation regime is very different from the
classic picture found in the literature on planet formation, where a cascade of
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fragmentation events progressively leads to smaller and smaller fragments (Rubie et al.
2003; Samuel 2012), eventually resulting in an iron-rain falling in a magma ocean
(Ichikawa et al. 2010). It is also different from erosion models (Dahl & Stevenson
2010) where metal–silicate intermingling occurs only at the metal blob boundary. Our
experiments rather suggest that metal fragmentation occurs in a turbulent immiscible
vortex ring, which grows by entrainment of silicates and where metal and silicates are
intimately intermingled in the whole ring volume. Quantitative implications of those
findings for mantle and core geochemistry are further discussed in a companion paper
(Deguen et al. 2014) where a model of chemical equilibration between metal and
silicates in a magma ocean is developed. In particular, it is shown that surface tension
controls the small-scale flow and is the essential limiting factor for chemical transfers.

The integral model proposed in § 6 is expected to apply for the migration of a
metal blob in a fully liquid magma ocean. It provides the descent trajectory of the
metal–silicate mixture and the amount of silicates that are mixed with metal. The latter
can be deduced from (6.2) and depends on the value of the entrainment coefficient
α′. For distances much larger than the Morton length LM, the entrainment coefficient
is equal to its value in turbulent thermals, i.e. αT = 0.23 ± 0.06. For distances of
the same order of magnitude as LM or smaller, the value of α′ depends on the local
Richardson number and takes values between αV =O(0.01) and αT . With g= 5 m s−2,
the initial Richardson number for a 100 km-sized metal blob can reach values in
the range 10−3–10 and in the range 10−2–100 for a 1000 km-sized blob. For initial
Richardson numbers equal to one or larger, no significant departure from α′= αT can
be caused by Ri variations. For cases where the initial Richardson number is on the
order of 10−3–10−2, α′ is expected to be initially close to its value in non-buoyant
vortex rings, αV = O(0.01). In such cases, LM is of approximately 100 initial radii,
which is always larger than the magma ocean depth, suggesting that the entrainment
coefficient is influenced by Ri during the entire fall. Thus, a large post-impact velocity
can decrease the rate of entrainment by a factor 10, reducing the total volume of
silicates mixed with metal during its fall by a factor of 103. This effect should be
taken into account in models of metal–silicate equilibration.

Another consequence of low Ri values is the detrainment of vortical fluid ejected
into a wake, as qualitatively supported by our experiments. This process should be
taken into account in models of metal–silicate equilibration following impacts where
the mass of metal ejected into the wake of the sinking core was significant. However,
measurements of detrainment in buoyant vortex rings at lower Ri are required to draw
any firm conclusions.

As discussed in the previous section, it is possible that the dimensionless breakup
length remains constant when We increases, taking values in the range 4.5–7.5 initial
radii. Then, breakup would occur during the fall for blobs with an equivalent radius at
least 10 times smaller than the magma ocean depth. In the case of giant impacts, the
size of the impactor core is of the same order of magnitude as the depth of the magma
ocean (O(1000) km) and it is possible that breakup does not begin before the liquid
metal reaches the bottom of the magma ocean. A secondary impact at the bottom of
the magma ocean, with either liquid metal (if the magma ocean depth is equal to the
mantle depth) or solid silicates, would then play a major role in the fragmentation
process.

7.2.2. Deepwater Horizon disaster
The blowout at the Macondo well on the floor of the Gulf of Mexico that followed

the April 20, 2010 sinking of the Deepwater Horizon (DH) platform resulted in
the largest offshore oil spill in history (McNutt et al. 2012). Observations of the
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fragmentation of petroleum during the DH oil spill and the subsequent migration
of the oil drop clouds so produced offer a basis for predicting the fate of future
hydrocarbon spills in the deep marine environment.

Initially, the DH oil emission came from two main leaks on the ocean floor
separated horizontally by approximately 250 m at a depth of approximately 1.5 km,
and forming two multiphase plumes (Socolofsky, Adams & Sherwood 2011; Camilli
et al. 2012). By virtue of the stratification of the water column above the spill, some
of the hydrocarbons were trapped between 1000 and 1300 m depth (Camilli et al.
2010; Joye et al. 2011; Reddy et al. 2012). In general, in a stratified environment, the
density of a rising plume increases due to entrainment of ambient fluid, and because
the density of the ambient fluid decreases with height, the plume eventually stops at its
level of neutral buoyancy, as defined by Morton et al. (1956). In the case of the DH
plumes, the dynamics were further complicated by nonlinear stratification in the water
column and by the presence of multiple phases, including oil and various aqueous and
gas phases (Camilli et al. 2010; Adalsteinsson et al. 2011; Socolofsky et al. 2011).

The DH disaster has fundamental differences from our experiments, including
the configuration (maintained source rather than instantaneous release), the presence
of stratification (absent in our experiments), the presence of gases, and the partial
aqueous solubility of the released fluids (Reddy et al. 2012). Thus, any quantitative
comparison would require additional experiments with an imposed input flow rate,
while including the above additional ingredients. Despite these differences, however,
our results give insights into the relevant regime for the fragmentation and early
evolution of the spilt oil. Given the physical properties of the oil at its release point
(Lehr, Nristol & Possolo 2010; Socolofsky et al. 2011; Camilli et al. 2012), a mean
section area for each plume in the range 0.99–1.10 m2 and a characteristic velocity
at the source on the order of 0.1 m s−1 (Camilli et al. 2012), we estimate that We
and Oh are on the order of 400 and 10−3, respectively, for the oil–water system. Our
results imply that the oil fragmentation regime is therefore fully turbulent (figure 7),
suggesting that entrainment at the oil–water interface can be described according to
the same turbulent entrainment hypothesis used in our study.

8. Conclusion
We have described a series of experiments on liquid–liquid fragmentation at low Oh,

varying the normalized density difference (0.03 6 P 6 0.95) and the Weber number
(1 . We . 103). We have shown that the typical stages of any fluid fragmentation
process are found in our experiments: from the deformation and destabilization of the
released fluid to the formation of liquid filamentary structures that break by capillary
instabilities and form fragments. We have studied the destabilization and macroscopic
evolution of the released fluid, from which fragmentation regimes were characterized.

We have found that, at low and intermediate Weber numbers, the fragmentation
regime is very sensitive to the release conditions (Immersed versus Surface) and
a wide variety of regimes is identified. Most of those fragmentation regimes are
influenced by early deformations, which result from a competition between the
growth of RTI and roll-up of a vortex ring.

At high Weber numbers (We & 200) a turbulent flow regime is reached and the
large-scale flow shares common features in all the experiments: the released fluid is
contained inside a coherent structure whose shape is, at first order, self-similar during
the fall and which grows by turbulent entrainment of ambient fluid. To our knowledge,
we have reported the first visualizations of immiscible turbulent thermals and
immiscible turbulent vortex rings in a non-dispersed medium. Previously published
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models based on the turbulent entrainment concept have been extended to the general
case of buoyant vortex rings. Our results indicate a positive correlation between the
entrainment coefficient and the local Richardson number. The consistency between
experimental and theoretical results, and between results from miscible and immiscible
fluid experiments, supports that the turbulent entrainment concept can be applied in
the context of non-dispersed immiscible fluids at large Weber and Reynolds numbers.

Important information such as drop size distributions and small-scale mechanisms
leading to breakup in immiscible turbulent thermals and turbulent vortex rings require
further investigation, along with additional experimental studies to confirm the precise
relationship between the entrainment coefficient and the local Richardson number in
miscible and immiscible systems.
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Appendix A. Preliminary processing
Binary images are obtained by subtracting the backfield image, taken before the

release of dense fluid, to each video frame. Then we select an appropriate pixel
intensity threshold Ic, above which the pixel intensity is set to 1, and 0 otherwise.
The threshold is chosen as Ic = c × Inoise, where c is a constant specified by the
operator and Inoise the standard deviation to 0 of the backfield noise. If X is the set
of pixels with negative intensity values after subtraction of the back field, Inoise is
given by

Inoise =
√

1
NX

∑
(i,j)∈X

I2
i,j, (A 1)

where NX is the number of pixels in X. We use the colour channel in which the
absorption of light by the released fluid is the largest (i.e. the red colour channel
for blue-dyed fluid). The value of c is chosen such that the output variables that are
eventually obtained from binary images (z, u, r, LB, α′ defined in § 2, § 2, § 2, § 5, § 6,
respectively) do not vary significantly with c. Sensitivities of the output variables to
c are included in measurement uncertainties. c is held constant for a particular group
of experiments (same lighting conditions and same fluids).

Appendix B. Turbulent entrainment model: closed-form solutions
In the Boussinesq limit P→ 0, the solution (6.7) to (6.6) takes the following closed-

form expression:

ũ2 = r̃3γ
0

r̃3γ

{
ũ2

0 −
1

2α′

[
3C′D
16α′
+ (1+ k)c1

]−1 [ 1
r̃2

0
− r̃3γ−2

r̃3γ
0

]}
, (B 1)

where r̃= r̃0 + α′(z̃− z̃0).
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A closed-form solution also exists for C′D = 0 and is given by

ũ2 =
[

P+ (1+ k)c1r̃3
0

P+ (1+ k)c1r̃3

]2 [
ũ2

0 +
2P(r̃− r̃0)

α′(P+ (1+ k)c1r̃3
0)

2
+ c1(1+ k)(r̃4 − r̃4

0)

2α′(P+ (1+ k)c1r̃3
0)

2

]
, (B 2)

where r̃ = r̃0 + α′(z̃ − z̃0). The first term within the second brackets in (B 2) is due
to the initial momentum of the vortex ring, the second term to departures from the
Boussinesq approximation and the third term is related to buoyancy forces.
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