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Most aquatic vertebrates swim by passing a bending wave down their bodies,
a swimming mode known as undulatory propulsion. Except for very elongated
swimmers like eels and lampreys, these animals have generally evolved to a similar
shape: an anterior streamlined region of large volume separated from a caudal fin
by a caudal peduncle of reduced cross-section. However, the link between this
particular shape and the hydrodynamical constraints remains to be explored. Here, this
question is addressed by seeking the optimal design for undulatory swimmers with an
evolutionary algorithm. Animals of varying elliptic cross-section are considered whose
motions are prescribed by arbitrary periodic curvature laws. In the elongated-body
limit, reactive and resistive forces can be formulated at any cross-section, allowing the
recoil motion and the mean swimming speed of a given animal to be calculated. A bi-
objective optimization problem then consists of finding body shapes and corresponding
motions associated with the lowest energetic costs, the highest stride lengths (which
is a dimensionless measure of swimming speed) or any trade-offs between the two.
For biologically relevant parameters, this optimization calculation yields two distinct
‘species’: one specialized in economical swimming and the other in large stride lengths.
By comparing the attributes and performance of these numerically obtained swimmers
with data on undulatory-swimming animals, it is argued that evolution is consistent
with the selection of species with low energetic costs.

Key words: biological fluid dynamics, swimming/flying

1. Introduction
There are presumed to be more than 30 000 different species of fish, the majority

of them using ‘undulatory swimming’ as their main mode of locomotion. This mode
is sometimes also called ‘body and caudal fin’ propulsion, and is different from
‘median and paired fin’ propulsion in that animals use the bending of their backbones
to achieve locomotion (Blake 2004). The kinematics and performance of undulatory
swimmers have been widely studied in the literature, starting with the pioneering
works of Gray (1933) and Bainbridge (1958, 1963), and have been reviewed numerous
times (e.g. Gray 1968; Lighthill 1969; Alexander 1977; Blake 1983; Fish & Hui 1991;
Videler 1993; Triantafyllou, Triantafyllou & Yue 2000; Lauder & Tytell 2005; Wu
2011).
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Observing their designs, one can distinguish two groups of undulatory swimmers:
elongated eel-like swimmers, and salmon-like or tuna-like ones. The elongated
swimmers have aspect ratios of the order of 10 or more and their cross-section
generally varies only moderately along their length. Their swimming gaits involve the
bending of their whole body with an envelope that grows almost linearly from head to
tail. Salmon-like or tuna-like swimmers have been divided into three subclasses (sub-
carangiform, carangiform and thunniform swimmers) by Lindsey (1978) according
to the localization of their bending along the backbone, but these subdivisions are
not related to any phylogenetic considerations, and describe a continuum of shapes
and motions that share common characteristics (Blake 2004; Lauder & Tytell 2005).
These salmon-like swimmers have usually an aspect ratio of the order of five, with a
large and streamlined anterior region that accounts for most of the animal mass. This
anterior region is separated from a caudal fin of similar height by the caudal peduncle,
which is generally of markedly reduced cross-section. Like eel-like swimmers, the
salmon-like swimmers generate thrust by propagating a bending wave down to their
caudal fin, but large curvatures are now localized in the posterior region (again, the
extent of this localization leads to the subclasses defined by Lindsey 1978).

To use a vocabulary common in evolutionary biology, these two classes of
undulatory swimmers (the eel-like group and the salmon-like group) probably
correspond to local peaks of the fitness landscape. Examples of convergent evolution
give other evidence of the attractive nature of these two groups, canonical examples
being the convergent evolution of sharks, dolphins and reptilian ichthyosaurs (species
now extinct 90 My ago), which belong to the salmon-like group (Lighthill 1969), or
the convergent evolution of eels and lampreys that are different from a phylogenetic
viewpoint but belong to the eel-like group. It seems reasonable to assume that
evolution selected these two groups of undulatory swimmers because of their
superior swimming performance over all possible shapes and motions. However, it
is still unclear which of the performances have served as selective pressures. Or,
put differently, the design principles behind undulatory swimming are still largely
unknown. Addressing this open question with biological and paleontological tools is
difficult because of the gaps in the fossil record, and because of the lack of any
quantitative relation between the morphology and physiology of animals and their
fitness or performance.

In this paper, to address the question of optimality and attractiveness of designs
in the fitness landscape, a different approach is proposed. The optimal shapes and
motions of undulatory swimmers are computed with an evolutionary algorithm. The
premises of this computation are that fluid mechanics is the main selective pressure on
undulatory swimmers, and that their fitness can be assessed through two measurable
performance variables: their swimming velocity and their efficiency. The goal here is
to describe the optimality of undulatory swimming beyond the naive arguments of
maximization of thrust and minimization of drag (Blake 2004).

The first to address physically the optimization of shape in undulatory swimming
is probably Lighthill (1969, 1970), using a linear elongated-body theory proposed in
Lighthill (1960). From mainly inviscid considerations, Lighthill (1970) showed with
a simple model that the morphology of carangiform (or salmon-like) swimmers is
adapted to their motion. He argued that the localization of the large amplitudes of
motion near the tail is aimed at reducing the wasted energy due to what he called the
‘vortex-force effect’, which is simply the drag force due to transverse motions. Then
he showed that the amplitude of the motion should be almost constant near the tail, or
equivalently that the transverse velocity and the incident angle of the tail should be in
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50 C. Eloy

phase. This means that there should be a narrow region just ahead of the tail where
there is a rapid increase of the motion amplitude. To further minimize the wasted
energy, he argued that the cross-section of this narrow region, which corresponds to
the caudal peduncle, should be as small as possible. Finally, he showed that, since
the thrust force is generated at the tail and accompanied by a lateral force, a periodic
torque is produced that leads to a recoil pitching motion. To limit this inefficient
recoil motion, the anterior and rigid region of the body should have a large mass or
a large added mass. In brief, using mainly linear and inviscid arguments, Lighthill
(1970) showed convincingly that tuna and related fish have a shape adapted to their
swimming motion. However, these explanations lacked quantitative elements and did
not take into account nonlinearities and internal mechanics.

Focusing on large thunniform swimmers belonging to the salmon-like group,
Lighthill (1970) and Wu (1971a) calculated the optimal flapping motion of a two-
dimensional rigid foil with the aim of modelling the lunate tail of these animals.
They showed that, similarly to the elongated-body approximation results (Lighthill
1960, 1970; Eloy 2012), one expect the transverse velocity and the incident angle
of the tail to be in phase. These optimization calculations were later confirmed by
the experiments of Triantafyllou, Triantafyllou & Grosenbaugh (1993), and, more
recently, Eloy & Schouveiler (2011) extended this approach to a flexible flapping foil,
calculating its optimal motion in two dimensions. Also addressing the optimal motion
of an undulatory swimmer, Kern & Koumoutsakos (2006) used three-dimensional
numerical simulations on an eel-shaped swimmer to find, with an evolutionary
algorithm, the swimming gaits that maximize either the efficiency or the burst
swimming speed. These different optimization calculations are related to the problem
at stake here, although all assumed explicitly or not that the swimmer shape is known.

Very recently, a study by Tokić & Yue (2012) has been published that addresses
the optimal shape and motion of undulatory swimmers using an evolutionary algorithm.
That study is very similar to the present one, although Tokić & Yue (2012) have
given more emphasis to the modelling of muscles and less to the modelling of
hydrodynamics. The similarities and differences between this work and the present
study will be discussed in more detail in § 6.

This paper is organized as follows. First, in § 2, the physical model is presented.
In particular, the geometries and motions considered are discussed, and the different
forces exerted on the swimmers are detailed. Then, in § 3, the evolutionary algorithm
used to solve the constrained bi-objective optimization is described briefly, and in § 4
the results of optimization calculations are reported. Finally, these results are compared
to experimental data on aquatic animals in § 5 and discussed in the light of previous
works in § 6.

2. Model
2.1. Geometry

Consider an animal of length L swimming at constant mean velocity U in water at rest
(see figure 1). The curvilinear coordinate s is defined as the distance from the head
along the backbone such that s varies between 0 and L, assuming that the animal’s
backbone is inextensible. Each cross-section of the animal is taken as elliptic, with
semi-major axis a(s) along the vertical and semi-minor axis b(s) along the horizontal
(these two directions can be inverted for comparisons with aquatic mammals, as
gravity plays no role here). For convenience, the axis a(s) will interchangeably be
referred to as the height, depth, or span of the swimmer, the axis b(s) will be
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FIGURE 1. Geometry of the ‘animals’ considered: side view (a), top view (b), and close-up
(c) to show how the velocity, v, of each cross-section is decomposed into tangential (u) and
normal (w) components.

called width or thickness, and the computational undulatory swimmers will also be
designated as fish or animals.

The limit of small aspect ratio is considered such that the continuous functions a(s)
and b(s) satisfy

0 6 b(s)6 a(s)6 εL, (2.1)

with ε� 1. In the following, it will be more suitable to define the aspect ratio as the
ratio of the length to the maximal major axis

AR= L

2 max(a(s))
, (2.2)

which is equal to AR= 1/2ε in general. To avoid blunt leading and trailing edges, it is
also required that

a(0)= b(0)= b(L)= 0. (2.3)

The volume of the animal is not constrained, but a dimensionless volume, V0, is
defined as

Vol = V0ε
2L3, (2.4)

where Vol is the animal volume.
The mass per unit length is then

M(s)= ρπab, (2.5)

where ρ is the density of both water and the animal, while the added mass per unit
length is

m(s)= ρπa2. (2.6)

This added mass corresponds to the equivalent mass of water displaced when a given
cross-section is moved in a direction normal to the backbone (it will be used below to
calculate the reactive forces). Finally, the moment of inertia associated with a rotation
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in the Oxy plane is

I(s)= ρπ
4

ab2. (2.7)

2.2. Kinematics
The motion of the animal is prescribed through its curvature, assumed to be harmonic
of angular frequency ω,

θ ′(s, t)= K(s)eiφ(s)eiωt, (2.8)

where θ is the local incident angle as defined in figure 1(b), K and φ are the amplitude
and phase of the curvature, and the prime denotes derivative with respect to s. Note
that, here, the complex notation is used, but when nonlinear terms are involved, the
real notation will be assumed. To obtain motions that are compatible with an actuated
elastic body, the bending moments and tensile forces should be zero at the head and at
the tail, which translates into boundary conditions for K:

K(0)= K ′(0)= K(L)= K ′(L)= 0. (2.9)

Integrating the prescribed curvature (2.8) yields the local incident angle θ of zero
mean

θ(s, t)=
(
Θ1 +

∫ s

0
K(ξ)eiφ(ξ) dξ

)
eiωt ≡ θ1(s)eiψ(s)eiωt, (2.10)

where Θ1 is a constant of integration physically related to the amplitude of the
pitching recoil motion. Taking the cosine and sine of the incident angle, and using
formulas (9.1.44–45) in Abramowitz & Stegun (1965) gives

x′(s, t)= cos θ = J0(θ1)− 2J2(θ1)e2iψe2iωt + · · · , (2.11a)

y′(s, t)= sin θ = 2J1(θ1)eiψeiωt − · · · , (2.11b)

where Jn(x) is the Bessel function of the first kind. Integrating again gives the position
of any point of the backbone in the Oxy plane

x(s, t)=−Ut + X2e2iωt +
∫ s

0
x′(ξ) dξ ≡ x0(s)+ x2(s)e2iωt + · · · , (2.12a)

y(s, t)= Y1eiωt +
∫ s

0
y′(ξ) dξ ≡ y1(s)eiωt + · · · , (2.12b)

where Y1 and X2 are two constants of integration associated with the amplitudes of
heaving and surging recoil motions respectively. From the position (x, y) of a point
on the backbone, its velocity can be determined as v = (ẋ, ẏ), where the dots denote
differentiation with respect to t. Projecting this velocity onto its tangential and normal
components (figure 1c) gives

u= ẋx′ + ẏy′ ≡ u0(s)+ u2(s)e2iωt + · · · , (2.13a)

w= ẏx′ − ẋy′ ≡ w1(s)eiωt + · · · , (2.13b)

where care has to be taken with the complex notation because these expressions are
nonlinear.

At this point, the full swimming kinematics is characterized by two prescribed
functions, the amplitude K(s) and phase φ(s) of the curvature, and seven unknown
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scalars: the real and imaginary parts of the recoil amplitudes Θ1, Y1 and X2, and the
mean swimming speed U.

The present model is based on the slender-body approximation. It is therefore valid
when the aspect ratio AR is asymptotically large, or equivalently when ε is small.
If one assumes that the first harmonic of the deflection y1(s) is also O(ε), then the
second harmonic of the x-deflection, x2(s), will be O(ε2), and the third harmonic y3(s)
will be O(ε3). Keeping all harmonics up to the third thus gives a model correct up
to the first O(ε2) nonlinear corrections. However, preliminary calculations have shown
that the third harmonic could be neglected to substantially decrease the computation
time, without affecting the results. All the calculations were therefore performed by
keeping the mean values and the first two harmonics of all functions.

Now, three forces will be assumed to act on the swimming fish. First, a drag force
will be considered, and it will be decomposed into pressure and skin-friction drags.
Then, since the body is elongated, it will be assumed that reactive and resistive forces
apply independently and locally on every cross-section of the animal. These forces are
identical to the ones that would apply on an infinite cylinder of the same cross-section
moving with the same velocity in water.

2.3. Pressure drag
The pressure drag, or form drag, Fp, is generally due to the shedding of vorticity that
can occur when the shape is not perfectly streamlined. For simplicity, it is assumed
here that this form drag is not modified by the motion of the animal. A realistic
estimation of Fp would require relatively long numerical calculations not compatible
with the present approach. An empirical description is chosen instead, based on the
formulae given by Hoerner (1965) for axisymmetric and two-dimensional streamlined
rigid bodies. The empirical formula used for the pressure drag is

Fp = 1
2
ρU2

0 × 0.33
B

L
Sf ex, (2.14)

where ex is the unit vector in the x-direction, U0 is the mean tangential velocity at the
head satisfying

U2
0 = u2

0(0)+ 1
2 |u2(0)|2, (2.15)

with u0 and u2 defined by (2.13), Sf has the dimension of a surface and is given by

Sf = π4 ABS∗, (2.16)

with A and B the maximal height and width of the fish such that

A= 2 max(a), B= 2 max(b), (2.17)

and S∗ is an empirical dimensionless number that describes the streamlining of the
function b(s), and which is given by

S∗ =
∫ L

0

|b′|2 bL

B3

(
5.2− 4.4 sgn(b′)

)
ds. (2.18)

The surface Sf is thus equal to the maximal cross-section, πAB/4, multiplied by
this dimensionless factor S∗. It should be noted that the above formula for S∗ is
a somewhat crude attempt to model the effect of streamlining on the form drag
that would need to be fine-tuned by specific numerical or experimental studies. As
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(a) (b)

(c) (d)

FIGURE 2. Illustration of the values taken by S∗, as given by (2.18), for different profiles
b(s). These profiles are obtained by a cubic spline interpolation around 5 degrees of freedom
regularly spaced between the leading and the trailing edge (the black dots). The first case
(a) corresponds to the minimal value of S∗, and the other three (b–d) are random cases
illustrating the link between streamlining and low values of S∗: (a) S∗ = 1.0; (b) S∗ = 2.1; (c)
S∗ = 3.0; (d) S∗ = 4.8.

illustrated in figure 2, S∗ is minimal and equal to 1.0 when the profile is streamlined
and increases as streamlining worsens. By setting S∗ = 1 and A= B, the formula (2.14)
becomes identical to the empirical approximation of Hoerner (1965) for axisymmetric
streamlined bodies. When S∗ = 1 and A� B, one recovers the empirical formula
of Hoerner (1965) for two-dimensional aerofoils. The formula (2.18) for S∗ aims at
extending these empirical formulas to non-streamlined bodies. Although this approach
to model pressure drag may not be rigorous, one can also consider it as a penalization
method. When the profile b(s) is not exactly as pictured in figure 2(a), the drag
increases and the shape is penalized. As will be seen below, optimal solution rarely
corresponds to the minimum S∗ = 1, expressing that the optimal shape is a balance
between streamlining and other important features related to the form such as inertia
and viscoelastic dissipation.

2.4. Skin-friction drag
The skin-friction drag is different when the animal is in motion or not. When there is
no motion, it can be estimated using Mangler’s transformation (see Schlichting 1979,
pp. 245–247), which gives the laminar skin friction on an axisymmetric body

dFµ = 0.332ρU2
0

(
Re

U0

U

)−1/2
`(∫ s

0
`2 ds

)1/2 2π` ds t, (2.19)

where t is the tangential unit vector oriented as in figure 1(c),

Re= UL/ν, (2.20)

is the Reynolds number, and `(s) is the radius of an equivalent body of revolution,
taken to be

`(s)= 2
π

aE

(
1− b2

a2

)
, (2.21)

with E the complete elliptic integral of the second kind. This choice of ` gives a
perimeter, 2π`, equal to the perimeter of the elliptic cross-section of the fish. To
calculate the skin friction dFµ, it has also been assumed that the outer velocity is
everywhere U0, which is of course not exactly true, but is a convenient approximation.
The total skin friction calculated by integrating (2.19), when added to the pressure
drag given by (2.14), gives the total drag when the animal is motionless. This total
drag compares very well with the empirical formulae given by Hoerner (1965) in the
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case of axisymmetric streamlined bodies. The present approach is however preferable
because it allows one to calculate not only the total drag, but also the distribution of
the skin friction along the length of the animal.

When the fish is moving, the boundary layers are modified and the skin-friction
drag can be enhanced (e.g. Ehrenstein & Eloy 2012). This enhancement is intimately
related to the compression of the boundary layer in the presence of cross-flow, a
phenomenon sometimes referred to as the ‘Bone–Lighthill boundary-layer thinning’
mechanism in reference to a remark made by Lighthill (1971) citing a conversation
with Bone. The precise modelling of this effect is still an open problem today, but it
can be approximated by the formula of Taylor (1952) for a smooth circular cylinder in
steady flow, which yields, after time-averaging, the force per unit length

dFν =−2.9ρ |νaw1|1/2 u0 ds t, (2.22)

where the second harmonic (i.e. the term proportional to e2iωt) has been neglected, and
it has been assumed that b(s) has no influence. This latter assumption is consistent
with the experimental observations of Ota & Nishiyama (1984) on the heat transfer
around an elliptic cylinder in cross-flow (as already pointed out by Taylor 1952, there
is an analogy between the two problems), but not exactly with the boundary layer
calculations of Ehrenstein & Eloy (2012). Because of the square root dependence on
lateral velocity w1, dFν accounts for the increase of skin friction due to the motion of
the animal as observed experimentally by Anderson, McGillis & Grosenbaugh (2001)
and numerically by Borazjani & Sotiropoulos (2008).

To take into account the situations where the skin-friction drag for a motionless
animal, dFµ, and the skin-friction drag due to motion, dFν , are of same order, the total
skin-friction drag is taken to be

dF‖ = dFµe−4|w1/U| + dFν, (2.23)

which ensures that dF‖ = dFµ when there is no lateral motion, i.e. w1 = 0 and
dF‖ ≈ dFν when w1 is large. This ad hoc formulation captures the essential features
of the skin-friction drag, in particular the effect of skin-friction enhancement due
to transverse motion. Preliminary studies have shown that, as long as this specific
effect is conserved, the results remain essentially the same when a different model for
skin-friction drag is used.

This model of the skin-friction drag corresponds to laminar boundary layers and is
thus applicable up to Reynolds numbers Re ≈ 106. Beyond this limit, the boundary
layers are likely to be turbulent even though most swimming animals use ingenious
mechanisms to delay this transition such as the release of secretions through their
skins (Rosen & Cornford 1971; Hoyt 1975). In the case of turbulent boundary layers,
one could devise a specific skin-friction model using an approach similar to the
one used here for laminar ones. However, this would involve additional modelling
assumptions, and, for the sake of simplicity, the study has been restricted to the case
of laminar skin friction, which already allows one to address swimming optimization
up to fish lengths of the order of L= 30 cm.

2.5. Dynamics
In addition to the drag, reactive and resistive forces also act on the swimming fish.
The reactive force was first formulated by Lighthill (1971) in the case of large-
amplitude swimming. From a physical point of view, it results from the acceleration
of an added mass of fluid when the animal is moving. To accelerate this mass of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

56
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.561


56 C. Eloy

water, a force has to be applied to it, and reactively the opposite force is exerted
on the swimming animal. Recently, Candelier, Boyer & Leroyer (2011) have given a
more rigorous proof of Lighthill’s result, and complemented it with comparisons with
numerical results. On every cross-section of thickness ds (see figure 1c), this reactive
force can be written as

dFm = ∂s(mwun− 1
2 mw2t) ds− ∂t (mwn) ds, (2.24)

where t and n are the tangential and normal unit vectors (figure 1c). The expression
(2.24) derives from the conservation of momentum applied to a slice of fluid attached
to the cross-section [s s + ds]. The first term of (2.24) corresponds to the flux of
momentum through the fluid slice, the second to the pressure forces and the last to
the rate of change of momentum. It can be seen that the total reactive force, obtained
by integrating (2.24) between s = 0 and L, is a sum of a term that depends only on
the motion of the tail (as m = 0 at s = 0) and a term of zero time average. This
remarkable feature, already pointed out by Lighthill (1971), has recently been used to
calculate the optimal motion of the tail in the inviscid limit (Eloy 2012).

The large-amplitude elongated-body theory of Lighthill (1971) takes advantage of
the large aspect ratio of the swimming animal to assume that the flow (and the reactive
force) at a given section does not depend on the animal’s motion at other sections. In
particular the vorticity shed in the wake has no influence on the reactive force in this
large-aspect-ratio limit. If one wanted to model manoeuvres such as turns and starting,
or the hydrodynamical interactions within a fish school, Lighthill’s theory would have
to be refined to take into account these effects.

The above discussion on the kinematics suggests that the present model is correct up
to the first nonlinear corrections, of order ε2 smaller than the leading order. However,
the nonlinear corrections on the reactive force due to a moderate aspect ratio have
been neglected in the analysis. This effect would give an additional nonlinear term of
order ε2 ln(ε) as has been shown in Eloy et al. (2010). It is beyond the reach of the
present paper to include this term and it has thus been assumed to be negligible, but it
would certainly be interesting to assess the validity of this assumption in the future.

The resistive force, which is the component of the drag normal to the backbone
when the lateral velocity is non-zero can be expressed as

dF⊥ =− 8
3π

CD aρw1|w1|eiωt ds n, (2.25)

where only the first harmonic has been kept (the 8/3π factor comes from projecting
w|w| onto the harmonic eiωt), and where CD = 2− b/a is a linear approximation of the
drag coefficient of the elliptic cross-section when moving parallel to its minor axis.

Now that the different forces acting on the fish have been expressed (pressure drag
Fp, skin-friction drag dF‖, reactive force dFm, and resistive force dF⊥), Newton’s
second law can be used. Conservation of momentum and angular momentum can be
expressed as

Fp +
∫ L

0
dFm + dF⊥ + dF‖ −Mr̈ ds= 0, (2.26a)∫ L

0
Iθ̈ez ds+ (dFm + dF⊥ + dF‖ −Mr̈ ds)× r= 0, (2.26b)

where r = (x, y) is the position vector. The projection of (2.26a) onto the x-direction
only involves even harmonics. Keeping terms up to second harmonic yields three
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equations (one for the time average and two for the real and imaginary parts of
the second harmonic). On the other hand, the projection of (2.26a) onto the y-
direction involves odd harmonics, and keeping only the first harmonic yields two
other equations. Finally, the first harmonic of (2.26b) gives the two last equations.
Therefore, (2.26a) and (2.26b), when projected adequately, give the seven equations
needed to calculate unambiguously the seven unknowns of the kinematics listed above.

Note that this system of equations is fully coupled and nonlinear, and, as a
consequence, there is no simple analytical way of inverting it. In the present work, the
function fsolve of MATLAB is used to solve this system numerically by discretizing
the integrals in (2.26a,b) on 100 collocation points. This computation generally takes
∼0.1 s on a laptop computer.

For a shape set by the functions a(s) and b(s), and a motion given by K(s) and φ(s),
the recoil motion and the mean swimming speed can be calculated. To fully address
the swimming performance, the energetic costs have now to be computed as well.

2.6. Energetics

The average power needed to perform the prescribed motion (labelled with subscript
‘e’ as external) is given by

Pe = Fp · Uex +
〈∫ L

0

(
dFm + dF⊥ + dF‖

)
·v
〉
, (2.27)

where the brackets denotes time averaging. As shown by Lighthill (1971), the reactive
part of this power simplifies to

Pm =
〈∫ L

0
dFm ·v

〉
=
[

1
2

m〈w2u〉
]

s=L

, (2.28)

which corresponds physically to the kinetic energy given to the wake per unit time.
In addition to this energetic cost of hydrodynamical origin, an internal dissipation

has been considered by assuming that the fish soft tissues are viscoelastic such that the
power dissipated internally (subscript i) is

Pi =
〈∫ L

0

1
2
µiI |θ̇ ′|2 ds

〉
, (2.29)

where µi is the dynamic viscosity of the material, several orders of magnitude larger
than the viscosity of water. The precise value taken by µi for different species of
aquatic animals is largely an open question and is discussed in appendix C. From this
internal viscosity, an internal Reynolds number can be defined,

Rei = ρUL

µi
, (2.30)

which measures the relative importance of hydrodynamical energy losses and internal
dissipation. The total average power needed to swim is the sum of the external and
internal powers

Ptot = Pe + Pi. (2.31)
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2.7. Dimensionless numbers
To analyse the results in a proper manner, dimensionless quantities are now introduced.
The energetic costs are measured through a dimensionless efficiency

E∗ = ρVol
2/3U3

Ptot
. (2.32)

It measures the distance that can be travelled by a unit mass fish with unit energy
(ρUVol/Ptot in m kg J−1) made dimensionless by the characteristic acceleration
U2/Vol1/3. Note that the acceleration due to gravity is not used here, since it plays
no role in the problem. The efficiency E∗ can also be seen as a dimensionless ‘gas
mileage’ and is similar to the inverse of a ‘cost of transport’ (Tucker 1970; Videler
1993), with the difference that the power spent by muscles is considered instead of the
total metabolic rate as will be discussed below.

If one assumes that the available muscle power of a given animal is proportional to
its volume to the power 2/3, the efficiency E∗, given by (2.32), is also a measure of
the ratio of the available power to the actual power spent. In fact, Kleiber’s law states
that the metabolic rate of animals is proportional to Vol3/4, and not Vol2/3, but the
question of the validity of this scaling law is still controversial (e.g. Dodds, Rothman
& Weitz 2001; White & Seymour 2005), and, in any case, this slightly different
exponent would not qualitatively change the results of the present analysis.

The dimensionless number that characterize the mean swimming speed is the stride
length, which is the number of fish lengths travelled during one tailbeat period

U∗ = U

f L
= 2πU

ωL
, (2.33)

where f is the tailbeat frequency.
A commonly used dimensionless number to characterize the amplitude and

frequency of the tail motion is the Strouhal number

St = f A

U
= ω y1(L)

πU
, (2.34)

where A is the peak-to-peak amplitude at the tail.
One can also define the total drag D as the sum of the pressure drag Fp defined

above and the average contribution of the tangential component of the viscous stresses
dF‖ such that

D=
(
Fp +

〈∫ L

0
dF‖

〉)
· ex ≡ Dp + D‖, (2.35)

where Dp is the form drag and D‖ is the skin-friction drag. Three indexes are then
defined: Ip = Dp/(Dp + D‖) is the ratio of form drag to total drag; ID is the ratio of
the total drag to the drag of a flat plate of the same surface assuming Blasius boundary
layers (Schlichting 1979); and Iw is the ratio of the total drag to the drag of the same
body without motion.

Similarly the total contribution to the energetic costs can be divided into several
components:

Ptot =
(
Fp · Uex +

〈∫ L

0
dF‖ ·v

〉)
+
〈∫ L

0
(dFm + dF⊥) ·v

〉
+ Pi (2.36a)

≡ PD + Pm + P⊥ + Pi, (2.36b)
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Symbol Formula Equation Name

Shape AR L/max(a) (2.2) Aspect ratio
V0 Vol/(ε2L3) (2.4) Volume

Motion θmax |θ1(L)| (2.10) Tail maximum incident angle
U/V U/V (2.39) Slip ratio
St fA/U (2.34) Strouhal number

Physical Re UL/ν (2.20) Reynolds number
Rei ρUL/µi (2.30) Internal Reynolds number
Ip Dp/(Dp + D‖) (2.35) Fraction of form drag
ID D/Dplate (2.35) First drag indexa

Iw D/Drigid (2.35) Second drag indexb

Performance E∗ ρVol2/3U3/Ptot. (2.32) Efficiency
U∗ U/fL (2.33) Stride length
Li D/(2ρa2(L)U2) (2.38) Lighthill number
Im Treac./(Treac. + Tresis.) (2.37) Thrust index

TABLE 1. Dimensionless parameters. aWith Dplate the drag of a flat plate of the same
surface S. bWith Drigid the drag of the motionless animal.

with PD the contribution of the total drag, Pm the inviscid or reactive energetic
cost, P⊥ the resistive cost of perpendicular motion, and Pi the internal viscoelastic
dissipation given by (2.29).

To quantify the relative importance of reactive and resistive forces in generating
thrust, the index Im is defined as

Im =
ex ·

∫ L

0
dFm

ex ·

∫ L

0
dFm + dF⊥

, (2.37)

such that it measures the relative importance of reactive and resistive forces in the
generation of thrust.

An important dimensionless quantity can also be constructed that measures the ratio
of the drag D to the typical available reactive thrust. Following a previous article (Eloy
2012), this quantity is called the Lighthill number and is equal to

Li= πD

2m(L)U2
= 1

2
D

ρa2(L)U2
. (2.38)

To characterize the motion, the wave speed V of the deformation at the tail is also
defined, and it is measured on the posterior 10 %. The slip ratio U/V is then given by

U

V
= 10 U

ωL
arg
(

y1(0.9L)

y1(L)

)
. (2.39)

For convenience, the dimensionless parameters that characterize the problem are
collected in table 1.
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3. Evolutionary algorithm
For a given shape, described by the functions a(s) and b(s), and a given motion

described by K(s) and φ(s), the model detailed above allows one to calculate the
full dynamics, in particular the recoil motion and the mean swimming speed. The
performance of the animal is then deduced from this dynamics. In particular two
dimensionless functions, the efficiency or distance E∗ and the stride length U∗, can be
calculated.

The main goal of the present paper is to find the shapes and the associated motions
that maximize E∗, or U∗, or any trade-off between the two. Mathematically, a bi-
objective constrained optimization has to be solved. The complexity of this problem
and the relatively large number of degrees of freedom involved call for the use of an
evolutionary algorithm. In the following, the principle of this algorithm will be briefly
explained.

3.1. Discretization
In order to characterize the functions a, b, K and φ with a limited number of
degrees of freedom, the values of these functions are prescribed on node points spaced
regularly along the curvilinear coordinate s. In other words, the segment [0 L] is
divided into N equal segments such that the degrees of freedom are the values taken
by a, b, K and φ at si = iL/N (with i= 0 . . .N). These values will be denoted ai, bi, Ki

and φi in the following.
Some geometrical and dynamical restrictions apply to these degrees of freedom.

More specifically, to avoid blunt leading and trailing edges, and to ensure that the
motion is compatible with an activated elastic body, the following constraints apply:

a0 = b0 = K0 = φ0 = 0, bN = KN = 0. (3.1)

Given the N + 1 nodes for each of the four functions and the six additional constraints,
the number of degrees of freedom is 4N − 2. In order to avoid infinitely thin cross-
sections, a minimal value for the semi-axes of the ellipses is also assumed

0.15εL 6 bi 6 ai 6 εL for i= 1 . . .N − 1, (3.2a)
0 6 aN 6 εL. (3.2b)

The amplitude and phase of the curvature are also constrained

0< Ki < 10/L for i= 1 . . .N − 1, (3.3a)
−π< φi+1 − φi < π for i= 1 . . .N − 1. (3.3b)

These constraints are generally not reached during the optimization and only serve to
give the order of magnitude of Ki and φi. Between the node points, si, the functions a,
b, K and φ are interpolated with a cubic spline function. For the curvature K(s), the
first derivative should be zero at s = 0 and L as stated by (2.9). This is ensured by
adding two node points at 0.01L and 0.99L where K is zero.

The shape and swimming gait are now described by 4N − 2 real numbers. Each of
them is called a gene and is constrained by the inequalities (3.2a,b) and (3.3a,b). The
vector containing all the genes is called the genome of a given individual and denoted
by

G= (a1 . . . aN, b1 . . . bN−1,K1 . . .KN−1, φ1 . . . φN). (3.4)

Through the model described in § 2, the performance associated with a given genome
can be calculated. In particular the functions E∗(G) and U∗(G), which correspond to
the dimensionless efficiency and velocity of swimming respectively, can be computed.
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Pareto front
(a) (b) (c)

1

3

0

E

FIGURE 3. (Colour online) Illustration of the principles of the evolutionary algorithm: (a)
the Pareto front is the set of non-dominated points in the plane U∗–E∗. (b) A rank can be
assigned to each individual by counting the number of other individuals dominating them
(the labels indicate examples of ranks on three individuals). The individuals of rank zero
form the archive (solid line), which is the best approximation of the Pareto front, i.e. the set
of non-dominated individuals. (c) To constitute the mating pool, the archive of dimension
δU∗ × δE∗ is divided into boxes of dimensions (3δU∗/P)× (3δE∗/P) from which individuals
are taken at random.

3.2. Principle
The evolutionary algorithm used in the present study is adapted from the PESA-II
method of Corne et al. (2001). Its principle will be briefly explained now (Branke
et al. 2008 provide a general review on this subject).

First, two important concepts pertaining to multi-objective optimization are
introduced: the dominance and the Pareto front. In the U∗–E∗ plane, called the
objective space, the domain accessible by all individual will be denoted D as
illustrated in figure 3(a). To compare two individuals, the concept of dominance in
D is used. An individual of genome G1 is said to dominate an individual of genome
G2 if one of the two following conditions is true:

U∗(G1) > U∗(G2), E∗(G1)> E∗(G2) or (3.5a)
U∗(G1)> U∗(G2), E∗(G1) > E∗(G2). (3.5b)

The set of all non-dominated points of D is called the Pareto front and appears
in bold in figure 3(a). The goal of the evolutionary algorithm is to best approach
this Pareto front, and its main principle is to keep, at all times, both an active
population, which is evolved at each time step, and an archive, which contains the
best approximation of the Pareto front at each generation. More precisely, the different
steps consist of the following.

(a) Creation of the population. P genomes Gi that satisfy the constraints (3.2)–(3.4)
are first selected at random. These P genomes constitute the initial active
population, denoted P .

(b) Evaluation of the population. Each individual of P is evaluated, i.e. U∗(Gi) and
E∗(Gi) are calculated for i= 1 · · ·P.

(c) Ranking of the population. Once the active population is evaluated, a rank can be
associated with each individual of genome Gi. As illustrated in figure 3(b), the rank
r(i) is simply the number of individuals dominating the ith individual.

(d) Creation of the archive. For the first generation, the archive is simply the set of
individuals of rank zero. At this step, the number of individuals in the archive is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

56
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.561


62 C. Eloy

between 1 and P, because there is always at least one non-dominated individual.
The archive corresponds to the current approximation of the Pareto front.

(e) Creation of the mating pool. A ‘mating pool’ of size P is created from the current
archive and population. First, the archive set is divided into equal-size boxes as
illustrated in figure 3(c). In each of these non-empty boxes a random individual is
taken and added to the mating pool and given a rank of zero. The mating pool is
completed by individuals of the active population, starting with individuals of rank
zero, and proceeding with increasing rank number. The goal of this procedure is to
avoid cluster of points on the archive. When the archive is sufficiently populated,
approximately one half of the mating pool is composed of individuals originating
from the archive, and the other half of individuals originating from the active
population.

(f ) Update of the population. From the mating pool, a new active population is created
as follows. With a probability pmutate, two individuals are taken at random from the
mating pool, and a competition is run between them, i.e. the individual with the
lowest rank is selected or the choice is made at random if they are of equal rank.
The chosen individual is then mutated, which means that, with a probability pm,
every gene of its genome is modified by an amount given by a normal distribution
of standard deviation δm1g, where pm and δm are adjustable parameters, and 1g
is the typical order of magnitude of the gene, given by the bounds in (3.2a,b) and
(3.3a,b). With a probability pmate = 1 − pmutate, two individuals are selected from
two pairs taken from the mating pool after a competition round. From these two
individuals, the parents, a new individual, a child, is created. The genes of the
child are taken at random between the parent values, with a probability pc, or equal
to the mother’s gene with a probability 1 − pc (the mother is simply one of the
parents chosen arbitrarily). Then, the genes of this child are mutated by an amount
given by a standard deviation δm1g with a probability pm. After all the individuals
of the population are created either through mutation alone or mating and mutation,
the constrains (3.2a,b) are enforced.

(g) Evaluation of the population. As in step (b), the active population is evaluated.

(h) Update of the archive. The population and the archive are added up and ranked.
From this super-set, the individuals of rank zero define the new archive. If the
population of the archive exceeds a certain value NA , individuals of the archive are
deleted in regions of largest density.

Steps (a–d) constitute the initialization of the algorithm while steps (e–h) taken
together form the main loop, which is repeated typically several thousands of times.

The parameters used for the evolutionary algorithm are summarized in table 2. In
general, the algorithm starts with a small population, P = 15, and a large value of
the standard deviation for mutations, δm = 0.1. As time increases the population is
slowly increased up to P = 500, and the standard deviation decreased to δm = 0.02
after ∼10 000 generations. To avoid missing an optimum, the first 100 generations are
run 10 times with different random initial population, and then gathered in a single
archive. Good convergence is usually reached after ∼10 000 generations, which takes
approximately one day on a basic laptop computer. After that, performance cannot be
improved by more than 1 %.

The relative rapidity of this algorithm comes from the rapid evaluation of a single
individual. This allows one to run different optimization calculations with different
physical parameters as will be shown below.
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Initial

Final

100 generations

20 generations

a

b

cd
e

f

10

5

0.5 1.0 1.5 2.0 2.5

15

0 3.0

FIGURE 4. (Colour online) Result of the optimization in the U∗–E∗ plane. The crosses show
the initial population (selected at random with the constraint U∗ > 0.1) and the circles mark
the approximation of the Pareto front after 20 and 100 generations, as labelled. The thick
black line shows the final Pareto front after ∼50 000 generations and the circles (red online)
on this line correspond to particular swimmers pictured in figure 5 and whose performance is
reported in table 3 (the labels are the same as the ones used in figure 5a–f ).

Parameter Symbol Value

Size of the population P 15–500
Maximum size of the archive NA 10 000
Probability of non-mating pmutate 0.5
Probability of mutation of a gene pm 0.5
Dimensionless std for mutations δm 0.02–0.1
Probability of cross-over during
mating

pc 0.5

TABLE 2. Parameters of the evolutionary algorithm.

4. Results
In this section, the results of the shape and motion optimization will be discussed.

First, a set of physical parameters will be chosen to define a ‘reference case’, and then,
these physical parameters will be varied one by one in a series of parametric studies to
study their influence on the optimal swimmer characteristics and on their performance.

4.1. Reference case

For the reference case, the Reynolds number is Re = 105, the aspect ratio is AR = 6,
the number of collocation points for each function is N = 6 (which gives a number of
degrees of freedom equal to 4N − 2 = 22), and the internal viscosity is µi = 104 Pa s,
such that the internal Reynolds number is Rei = 10−2.

With these parameters fixed, the evolutionary algorithm described in the previous
section can be used to find the Pareto front, i.e. the set of non-dominated individuals
in the U∗–E∗ plane. This numerical optimization is illustrated in figure 4. The initial
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Side view Top view Swimming motion(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 5. (Colour online) Geometry and kinematics of the optimal swimmers in the
reference case. Each line (a–f ) corresponds to a different optimum on the Pareto front of
figure 4 as labelled (the same examples have been taken in table 3). The first column depicts
the shape with a lateral view and thus corresponds to a(s), while the second column is a
dorsal or top view and corresponds to b(s). The black dots on these shapes are the imposed
values from the genome, the rest of the shape being interpolated with cubic splines between
these points. The last column depicts the deformation of the backbone during one period in
the framework moving at velocity U, the black line being the backbone at different instants
and the grey line (red online) at each end being the path followed by the leading and trailing
edges.

population of 15 individuals is represented as crosses. These individuals have been
selected at random with the only constraint of having a stride length U∗ > 0.1. After
20 generations (which takes about one minute), one can see that the Pareto front has
already greatly improved. And after 100 generations, the approximation of the Pareto
front is already within 20 % of its final value. Finally, after ∼50 000 generations,
one obtains an approximation of the Pareto front represented as a thick solid line
in figure 4. This Pareto front exhibits two lobes, one for velocities in the range
0.70< U∗ < 1.23 and the other for the range 1.23< U∗ < 2.5.

Now, the characteristics and performance of the optimal swimmers found on this
Pareto front are examined. As illustrated in figure 4, six different individuals (a–f )
have been extracted from the Pareto front, and their shapes and swimming motions are
reproduced in figures 5 and 6, while their characteristics are summarized in table 3.
The first striking feature is that the shapes of these optimal swimmers do not vary
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(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 6. (Colour online) Swimming kinematics of the optimal swimmers as seen from
above in the laboratory frame. Two periods are represented on each line (a–f ) and the labels
are the same as in figures 4 and 5.

Figure 5(a) 5(b) 5(c) 5(d) 5(e) 5(f )

Results E∗ 12.150 11.007 8.754 8.667 7.849 4.975
U∗ 0.702 1.011 1.222 1.232 1.484 2.215
St 0.229 0.271 0.303 0.225 0.254 0.420
Li 0.117 0.114 0.113 0.085 0.081 0.084
θmax 0.462 0.614 0.721 0.542 0.617 0.987
U/V 0.632 0.700 0.729 0.757 0.751 0.666
V0 0.852 0.795 0.758 0.310 0.269 0.242
Ip 0.220 0.195 0.181 0.088 0.072 0.070
ID 2.751 2.705 2.715 2.642 2.600 2.590
Iw 1.623 1.677 1.732 2.053 2.096 2.180

L/B 9.443 10.114 10.412 19.967 25.403 40.000
S∗ 1.363 1.333 1.282 1.621 1.952 4.018
Im 0.928 0.993 1.122 0.832 0.865 0.941

TABLE 3. Results for the reference case. Parameters are: Re= 105, AR= 6, N = 6,
µi = 104 Pa s.

continuously along the Pareto front. There is a abrupt change in shape between the
fish labelled c and d in figure 4. As will be seen below, these different shapes are also
associated with qualitatively different swimming mechanisms.

The most efficient swimmers (i.e. the ones with the largest efficiencies E∗)
corresponding to the first lobe of the Pareto front in figure 4, have shapes and motions
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0.5
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0.5 1.0 1.5 2.0 2.5 3.0

0.6

0

FIGURE 7. Strouhal number of the optimal swimmers as a function of U∗. The swimmers are
the same as in figure 4.

that bear similarity with salmon-like fish such as tuna, cod, bass, etc. Their anterior
section contains most of the fish mass, but is rigid during the swimming motion.
This large anterior region is separated from a thin caudal fin by a region of reduced
cross-section that concentrates all the curvature during the swimming motion. Between
the most efficient fish (labelled a in figures 4 and 5) and the last fish of this first lobe
of the Pareto front (labelled c in figures 4 and 5), the changes in shape are only minor.
However, these swimmers differ in that their amplitude of motion increases with stride
length. It thus means that, with the same shape, a given fish can almost double its
stride length by tuning the amplitude of its motion. This increase is accompanied by a
40 % increase of energetic costs however. Together with the beat frequency, this gives
a mechanism to adapt the swimming gait to the needs.

The fastest swimmers, i.e. the ones with the largest stride length U∗, which
correspond to the second lobe of the Pareto front in figure 4, are qualitatively different
from the efficient swimmers described above. Their shape is more elongated (as seen
from the dorsal view) and their swimming gaits exhibit large curvatures all along
the backbone. Among these elongated swimmers, one can distinguish two different
shapes: one corresponding to moderately large stride lengths (figure 5d,e); the other
corresponding to very large stride lengths (figure 5f ). As illustrated in figure 6, these
swimmers with large stride lengths use a gait different from the most efficient ones.
Their slender body follows an undulating path that resembles a sinusoid, each cross-
section following the preceding one along that path, as seen in the laboratory frame.

The sharp transition between the swimmers favouring a large efficiency and the
others favouring a large stride length is also exhibited in figure 7 where the Strouhal
number of the optimal swimmers of the Pareto front is plotted as a function of U∗.
For U∗ = 1.23, one can see an abrupt transition from St = 0.30 to 0.22. These values
of the Strouhal number are typical of fish swimming at large Reynolds number with
aspect ratios around AR = 6 (e.g. Eloy 2012). In the next section, the variation of the
Strouhal number of the most efficient swimmers with the Reynolds number will be
considered, and compared to the values measured on real animals.
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FIGURE 8. (Colour online) (a) Repartition of the lost power for the optimal swimmers as
a function of U∗. The different powers are defined in (2.36): Pm is the reactive term and
correspond to the energy lost in the wake, P⊥ corresponds to the energy of the lateral drag
forces, PD is the power spent to balance the drag forces, both the form and the skin-friction
drags, and Pi is the internal power loss due to the viscosity of the swimmer material. (b)
Relative contribution of the reactive forces to the thrust. When Im > 1, the resistive force
actually produce a drag, i.e. a force in the +x direction.

The abrupt transition at U∗ = 1.23 is also present when one examines how the
different components of the energetic cost are distributed for each optimal swimmer,
and how the reactive and resistive forces contribute to the total thrust (figure 8).
Examining the repartition of energy losses in figure 8(a), it can be noted that most
of the energy is spent through the work of the drag forces. This amounts to more
than 50 % of the energetic costs for all optimal swimmers. The components Pm and
P⊥, corresponding respectively to the energy lost in the wake (the ‘reactive’ energy)
and to the work of the lateral drag forces, each amounts to approximately 10 % of the
energetic costs. Finally, the internal dissipation due to the viscoelastic nature of the
fish material is of the order of 20 % of the total energetic cost, but varies substantially
along the Pareto front. For the efficient swimmers in the first lobe of the Pareto
front (for 0.7 < U∗ < 1.23), the contribution of the internal dissipation increases with
the stride length, as the amplitude of motion also increases. On the contrary, for the
elongated swimmers of the second lobe of the Pareto front (for 1.23 < U∗ < 2.5), the
contribution of the internal dissipation decreases with the stride length. This is due
to the fact that, as the amplitude of the motion increases (which would contribute to
an increase of internal dissipation alone), the shape become more and more slender,
reducing the second moment of inertia I, as given by (2.7), and thus the energy
dissipated internally, as given by (2.29).

In figure 8(b), the contribution of the reactive force to the production of thrust is
plotted for the different optimal swimmers. It can be seen that this contribution is
always greater than 80 % showing that the thrust is mainly achieved by the reactive
forces, i.e. the added-mass effects. Surprisingly, this is also true for the second group
of swimmers on the Pareto front with the largest stride lengths (for 1.23 < U∗ < 2.5),
despite their slenderness.
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FIGURE 9. (Colour online) The Pareto front can be reproduced by using only three distinct
‘species’. Each black line has been obtained with the evolutionary algorithm by freezing the
shape functions, a(s) and b(s), such that they correspond to the optima of figures 5(b), 5(e)
and 5(f ). The thick grey line (blue online) corresponds to the result of the optimization when
the shape is varied, as in figure 4, and is displayed for reference.

To complete this study of the reference case, optimization calculations have been
performed where the shape of the swimmer was frozen and only the motion was
allowed to vary (figure 9). Three frozen shapes (pictured in figures 5b, 5e and 5f )
have been used, corresponding respectively to an efficient swimmer, a swimmer with
a moderate stride length, and a swimmer with a very large stride length on the
Pareto front. Each of these three frozen shapes leads to a different Pareto front,
which, when put together, give an excellent approximation of the actual Pareto front
(figure 9). This shows again that the Pareto front can be divided into two species: the
efficient swimmers, and the swimmers with large stride lengths (which can further be
subdivided into two different shapes).

The unusual shapes and swimming gaits of the swimmers with the largest stride
lengths raise the question of the model validity in this case. First, it is observed
that, as the stride length U∗ increases, so does the amplitude of the swimming path
(figure 6d–f ), reaching angles where the weakly nonlinear approximation adopted in
the present paper is not valid anymore (for say U∗ > 2). In addition, the contracting
region observed behind the ‘head’ of these swimmers (figure 5d–f ) may promote
vorticity shedding that is not taken into account in the present model (this point
will be discussed again in § 6). Finally, these surprising swimming gaits, with large
stride lengths U∗, may require unfeasibly large amounts of internal power, and this
could explain why they seem so ‘unnatural’. For these large-stride-length swimmers,
the validity of the present model is therefore questionable. Specific experiments or
numerical simulations would help to understand the particularity of the swimming
hydrodynamics in this limit, and to refine the present approach. However, these
limitations only concern the ‘species’ with large stride length and not the efficient
one that will be examined in more detail in the following.
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FIGURE 10. (Colour online) Results of the optimization for different Re varying from 104

to 106. The circles and the attached labels correspond to the most efficient swimmers in each
case. These particular swimmers are pictured in figure 11 and their characteristics are reported
in table 4.

4.2. Variation of the Reynolds number

Different parametric studies have been carried out in which all the physical parameters
of the reference case were kept constant except one that was varied. Discussions about
the effect of a variation of the number of degrees of freedom, of the aspect ratio, and
of the internal viscosity are deferred to appendices A, B and C. In the present section,
the variation of the characteristics of the most efficient swimmer when the Reynolds
number is varied from 104 to 106 is reported. As shown in figure 10, the swimmers
with larger Re outperform the swimmers with smaller Re, but the Pareto front always
exhibits the same property of having two lobes corresponding to efficient swimmers
for the smaller U∗ and elongated swimmers for larger U∗.

The focus has been placed on the most efficient swimmer of the Pareto front for two
reasons. First, this swimmer is representative of the whole first lobe of the Pareto front
since the rest of this lobe roughly corresponds to the same swimmer with increased
swimming amplitude, as has been discussed above for the reference case. Second,
it can be argued that, since the swimmer is free to change its beating frequency, a
large swimming speed U can be achieved by keeping the stride length U∗ constant
and the energetic efficiency E∗ maximum while increasing the frequency. Strictly
speaking, for an animal of given length, the swimming speed cannot be increased
without also increasing the Reynolds number and thus changing the constraints on
the optimization. But, since the characteristics of the most efficient swimmers do not
qualitatively change with the Reynolds number as will shown below, it is true to
say that, for a given efficient swimmer, increasing its undulatory frequency without
changing the swimming amplitude will lead to larger swimming speed with still near-
optimal efficiency. Thus achieving a large efficiency E∗ seems more important than
achieving a large stride length U∗. In reality, the efficiency of fish muscles depends
on frequency and amplitude such that decreasing the tailbeat frequency, and thus
increasing U∗, can be beneficial, but it is beyond the scope of the present paper to take
this effect into account.
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Top view Swimming motionSide view

(b)
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FIGURE 11. (Colour online) Geometry and kinematics of the most efficient swimmers when
the Reynolds number is varied: (a) Re = 104; (b) 2 × 104; (c) 5 × 104; (d) 105; (e) 2 × 105;
(f ) 5 × 105; (g) 106. The characteristics and performance of these swimmers are reported in
table 4.

The variation of the performance of the most efficient swimmer as Re is varied will
be discussed in more detail below when comparing with biological data on aquatic
animals. In particular, the variation of U∗, E∗, St and θmax with the size of the
swimmer will be examined. The striking feature of the different shapes reported in
figure 11 is that the width and the volume of the most efficient swimmer strongly
depend on the Reynolds number. For Re 6 2 × 104, the maximum width B reaches
the upper bound imposed by the constraints such that the thickness aspect ratio is
L/B ≈ AR = 6, but as Re increases, this value increases too to reach L/B ≈ 18 for
Re= 106. This is accompanied by a decrease of the volume as reported in table 4.

This qualitative change in the swimmer shape can be explained by comparing two
swimmers with different Reynolds numbers. For the smallest Reynolds numbers, the
reactive thrust force has to be comparatively larger to compensate for a larger skin-
friction drag (in dimensionless units). But this larger thrust force goes with a larger
periodic torque exerted on the body as the thrust is mainly produced by the posterior
section and has a non-zero normal component at each instant. To avoid a large recoil
pitching motion in this case, the inertia of the anterior region thus needs to be larger,
explaining why the volume and the width are larger for the smallest Reynolds number.

It is interesting to note that this increase in thickness for the smallest Reynolds
number is accompanied by larger drag coefficients. Indeed, the coefficients ID, Iw and
S∗ are decreasing functions of Re (table 4), except when Re = 104 for which the
swimming amplitude is much smaller. In other words, the optimal shape is achieved
by balancing drag reduction and inertia, and this balance is strongly dependent on the
Reynolds number.
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Reynolds
number

Re 104 2× 104 5× 104 105 2× 105 5× 105 106

Figure 11(a) 11(b) 11(c) 11(d) 11(e) 11(f ) 11(g)

Results E∗ 2.763 4.425 7.854 12.150 18.465 31.930 45.999
U∗ 0.248 0.417 0.623 0.702 0.774 0.790 0.864
St 0.332 0.304 0.263 0.229 0.194 0.157 0.145
Li 0.414 0.309 0.175 0.117 0.073 0.045 0.029
θmax 0.305 0.424 0.490 0.462 0.421 0.353 0.354
U/V 0.309 0.467 0.591 0.632 0.676 0.707 0.750
V0 1.337 1.316 0.990 0.852 0.669 0.635 0.516
Ip 0.179 0.230 0.212 0.220 0.163 0.187 0.186
ID 2.667 2.832 2.787 2.751 2.511 2.422 2.355
Iw 1.679 1.609 1.651 1.623 1.689 1.594 1.563

L/B 6.003 6.004 7.900 9.443 12.777 14.293 18.053
S∗ 1.584 1.517 1.374 1.363 1.145 1.008 1.057
Im 0.949 0.915 0.915 0.928 0.940 0.951 0.968

TABLE 4. Results of the parametric study when Re is varied from 104 to 106. The other
parameters are the same as in the reference case: AR= 6, N = 6, µi = 104 Pa s.

In appendices A, B and C, additional parametric studies are reported where the
number of degrees of freedom, the aspect ratio, and the internal viscosity have
been varied. These different parametric studies show that the main characteristics
of the optimization results are robust to any change of the physical parameters. In
particular, the existence of two ‘species’ on the Pareto front, one specialized in
efficient swimming, the other favouring large stride lengths, is always recovered in
the optimization calculations. In the next section, a comparison with experimental
observations on aquatic animals will be drawn.

5. Comparison with aquatic animals
To begin the comparison with aquatic animals, the morphologies and the

performance of different species of fish are compared with one result of the present
optimization calculations in figure 12 and table 5. Three species of fish have been
chosen, a bass (Jayne & Lauder 1995), a tuna (Donley & Dickson 2000), and a saithe
(Hess & Videler 1984), swimming at a Reynolds number Re≈ 105 and with an aspect
ratio AR ≈ 4. They are compared to the most efficient swimmer found in the case of
an aspect ratio AR= 4, with Re= 105 (appendix B).

The morphologies of the model and of the real fish are very similar. Although the
thickness ratio L/B is slightly higher in the model, the top views in figure 12 reveal
almost identical streamlined shapes. The side views all exhibit a large anterior region,
a caudal peduncle of reduced cross-section, and a tail of similar depth to the maximum
depth of the anterior region. The swimming characteristics of the different species of
fish are also very similar to the characteristics of the most efficient swimmer (table 5).
In particular, their stride length U∗ and slip ratio U/V are almost the same, while the
Strouhal number is ∼30 % larger for real fish. This difference is probably due to the
non-actuated nature of the caudal fin for most animals as is explained below.

It should be noted that, in the case of the tuna (figure 12c), the lunate shape
of the tail can significantly improve the production of thrust (Chopra & Kambe
1977). Although this effect cannot be captured within the present elongated-body
approximation, the results for the tuna reproduced in table 5 agree reasonably well
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(b)

(c)

(d)

(a) Top view Swimming motionSide view

FIGURE 12. (Colour online) Geometry and kinematics of the most efficient swimmer when
AR= 4 (a) compared to different species of fish: (b) largemouth bass (Micropterus salmoides)
(Jayne & Lauder 1995); (c) kawakawa tuna (Euthynnus affinis) (Donley & Dickson 2000); (d)
saithe (Pollachius virens) (Hess & Videler 1984). The most efficient swimmer in (a) is the
same as in figure 22(a). The grey shaded region (blue online) in the last column corresponds
to the envelope of the deformation. The characteristics and performance of these swimmers
are reported in table 5.

Species Model Bass Tuna Saithe

Aspect ratio AR 4 3.8 3.5 4.1
Reynolds number Re 105 1.4× 105 1.8× 105 3.9×105

Figure 12(a) 12(b) 12(c) 12(d)
Results U∗ 0.751 0.591 0.595 0.794

St 0.171 0.223 0.212 0.230
U/V 0.670 0.739 0.613 0.757
L/B 10.051 8 6.5 7.9

TABLE 5. Comparison of the characteristics and performance of the most efficient
swimmer when AR= 4 and different species of fish.

with the characteristics of the most efficient swimmer predicted by the optimization
calculation.

The comparison of the present results with aquatic animals is further explored by
examining the evolution of the swimming performance as the Reynolds number is
varied. In a previous paper, kinematic data on swimming animals have been compiled
and compared to an inviscid optimization calculation (Eloy 2012). These biological
data correspond to an almost exhaustive review of the literature on the subject and
comprise 66 independent measurements on 53 different species. They have been
divided into seven groups for convenience: eight different species of mammals, four
of sharks, eight of scombrids (a family including tunas, bonitos and mackerels), 11
of fish from the orders of Perciformes and Salmoniformes, 19 of fish from other
families (including the orders of Cypriniformes, Gadiformes and Mugiliformes), 10
of ‘elongated’ fish (including eels, needlefish of the family of Belonidae, and other
fish with large aspect ratios) and six species categorized as ‘others’ that includes one
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Mammals
Sharks
Scombirds
Perci/salmoni–formes
Other fishes
Elongated
Others
Inviscid model
Present results
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FIGURE 13. (Colour online) Strouhal number St as a function of the Lighthill number
Li. The different symbols represent different groups of animals compiled in Eloy (2012),
as reported in the legend. The line (red online) between the two triangles represents the
continuous data of Webb, Kostecki & Don Stevens (1984) on the rainbow trout. The thick
solid line is the prediction of an inviscid optimization based on the elongated-body theory
of Lighthill (1971). The open circles correspond to the data of the present paper, when Re
is varied between 104 and 106 (Li is roughly proportional to Re−1/2), reported in table 4 and
figure 11.

reptile (crocodile), two frog tadpoles, two amphibians (axolotl and siren) and one
annelid (leech).

The optimization carried out in Eloy (2012) was done using Lighthill’s large-
amplitude elongated-body theory (Lighthill 1971), for which the thrust and the kinetic
energy lost in the wake are functions of the tail kinematics only. This remarkable
property allowed the motion of the tail to be optimized for a given thrust, i.e. to
minimize the energy lost in the wake when the thrust balances a given drag on average.
In the present paper, resistive forces are taken into account in addition to reactive
forces, and the whole kinematics of the body is included in the analysis through the
recoil motions and the modification of the skin-friction drag by the motion.

5.1. Kinematics
In figure 13, the optimal Strouhal number predicted by the inviscid analysis is
compared to the present results and to measurements on the different swimming
animals. In the inviscid analysis of Eloy (2012), the optimal Strouhal number St
was only a function of the Lighthill number, Li, which is defined in (2.38). In the
present optimization calculation, St also depends on the different physical parameters
of the problem: the aspect ratio, the internal dissipation, and the number of degrees of
freedom, but it appeared that the variation of the Reynolds number is the major effect
in the parametric studies reported above and in the Appendices.

Figure 13 shows that the most efficient swimmers predicted in the analysis exhibit
Strouhal numbers that are increasing with the Lighthill number. The scaling of this
dependence is similar to the results of the inviscid optimization, roughly St ∼ Li1/3,
and a comparable trend also appears in the biological data, although the significant
scatter in that case does not allow one to estimate the precise scaling law. However the
optimal Strouhal number in the present case is always lower than the prediction of the
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FIGURE 14. (Colour online) Variation of the maximum incidence angle of the tail (a) and the
slip ratio (b) as a function of the Lighthill number. The legend is the same as in figure 13.

inviscid analysis and than the biological data. This can be explained by the following
arguments. When compared to the inviscid analysis, the present calculations include
two additional sources of energy loss: the internal dissipation, and the ‘resistive energy
loss’ due to transverse drag forces (figure 8a), both of which increase when the
amplitude of the swimming motion increases. This explains why the optimal amplitude
and the Strouhal number are lower when these effects are taken into account: in other
words, it is advantageous to decrease the swimming amplitude because the increased
reactive energy loss is compensated by smaller energy losses both internally and
resistively.

One question remains however: why are the Strouhal numbers observed for real
animals systematically larger than in the present optimization calculations? One reason
could be that the biological data are obtained by averaging over a large number of
observed kinematics, most of them being not optimal. This could induce a statistical
bias, which, added to a possible underestimate of the drag on swimming fish, would
tend to overestimate the Strouhal number for a given Lighthill number. Another
source of the discrepancy could be the model approximations. The underestimate
of the Strouhal number could be a sign of an overestimate of the thrust force or
an underestimate of the drag by the model. Finally, an additional reason for this
discrepancy could be that some swimming animals have a passive caudal fin, which
results in swimming gait envelopes that are qualitatively different from the present
calculations. As seen in figure 5(a) for instance, the present optimization analyses
always predict that the most efficient swimmers beat their tail such that the maximum
excursions correspond to a zero incidence angle. In other words, the width of the
swimming mode envelope is constant near the tail. The same prediction can be
reached with an inviscid analysis in the linear (Lighthill 1971) or the weakly nonlinear
limit (Eloy 2012). In contrast, fish usually exhibit a widening of the envelope near
the tail (e.g. Lauder & Tytell 2005) as shown in figure 12(c,d) for instance. This
widening is probably due to the non-actuated nature of the tail. This difference may
not drastically change the swimming performance but will affect the measure of the
tail beating amplitude and therefore the Strouhal number.
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FIGURE 15. (Colour online) Illustration of the amplitude (a) and phase (b) of the curvature
θ ′ (solid grey line, red online), the incident angle θ (dashed line), and the excursion y (solid
black line) as a function of the curvilinear coordinate s/L. The kinematics chosen in this
example corresponds to the most efficient swimmer in the reference case (figure 5a). These
three functions can be written as f (s, t) = A(s)eiφ(s)eiωt, where A is the amplitude and φ the
phase. In (a) the amplitudes are normalized by 1/L, 1/AR and L/AR2 respectively. The phase
of θ ′ is plotted only when the corresponding amplitude is non-zero and appears in a slightly
lighter shade when the amplitude is lower than 5 % of its maximum.

In figure 14, two other characteristics of the swimming kinematics, the maximal
incidence angle at the tail θmax and the slip ratio U/V , are plotted as a function of
the Lighthill number for the present optimization calculations, the inviscid analysis,
and the aquatic animals. In accordance with the results on the Strouhal number, the
incidence angle at the tail is lower in the present simulations than in the inviscid
analysis of Eloy (2012). The reason for this discrepancy is the same as the one
evoked above: the additional dissipative terms favour lower amplitude in the present
optimization. The maximum incident angle at the tail has been measured in only a few
experiments and therefore the comparison with biological data is delicate. However,
the typical angles observed for mammals, θmax ≈ 25◦, are similar to the ones of the
most efficient swimmers in the present analysis, and the values measured on fish
species θmax ≈ 45◦ are closer to the results of the inviscid analysis (figure 14a).

The slip ratio U/V has been more widely measured in the literature as seen in
figure 14(b). However, some care should be taken when analysing these data as the
method used to measure the wave speed V may have a strong influence on the results
as already noted by Webb et al. (1984). To illustrate this effect, the amplitude and
phase of the curvature, the incident angle, and the y-position are plotted in figure 15
as a function of the position on the backbone. In figure 15(b), it appears clearly
that the wave speed, which is inversely proportional to the slope of the phase angle
(more precisely a wave speed V can be defined for any phase φ(s) as V =−ω ds/dφ),
varies along s and is different for the three different functions. In the present paper,
the wave speed has been defined in (2.39) to be the average wave speed of y on
the last 10 % of the body. In the experimental data on swimming, the wave speed is
sometimes evaluated with a similar method (a longer part of the body is usually used
however), some other times the curvature is used, or an estimate of the wavelength of
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FIGURE 16. (Colour online) Stride length U∗ as a function of the Lighthill number Li for the
most efficient swimmers in our model (solid line and open circles) and for different aquatic
animals (filled symbols with the same legend as in figure 13).

the deformation is used together with the tailbeat frequency. It is thus not surprising
that the data on swimming animals appear quite scattered in figure 14(b). Nevertheless,
when one examines each animal group independently (except for sharks), a clear
tendency emerges: the slip ratio U/V is a decreasing function of Li, as was predicted
by the inviscid analysis, and as is observed in the present optimization calculations.
The order of magnitude of the slip ratio is also similar in the three cases: U/V ≈ 0.6.

In figure 16, the stride lengths of the different swimming animals reported in the
literature are compared to the stride lengths of the most efficient swimmers (the results
of the inviscid analysis do no appear on this figure because the optimization does not
depend on the stride length in this case). It should first be noted that the stride length
of the most efficient swimmer (i.e. the one maximizing E∗ in figure 4, for instance)
is not highly constrained since a slight change in E∗ on the Pareto front can lead to
a significant modification of U∗. Nevertheless, the agreement between the predicted
U∗ and the measured one is very good (figure 16). In particular, one can observe that
the stride length is a decreasing function of the Lighthill number, or equivalently an
increasing function of the Reynolds number. This result contrasts with the generally
accepted assumption that the stride length is fairly constant and equal to U∗ ≈ 0.65 for
all fish (Videler 1993).

5.2. Energetics
In figure 17, a comparison of the efficiency of the most efficient swimmers with
experimentally measured values is carried out. The experiments reported in this figure
are the same as the ones used by Videler (1993) when he discussed the ‘cost of
transport’ (COT) of different animals. The total efficiency, E′ = E∗/5, used in the
present study is similar to the inverse of the COT, except that the acceleration
U2/Vol1/3 has been used instead of gravity to make the efficiency dimensionless.
The other difference is that COT and E′ are based on the total metabolic rate of
the animals, which includes the heat produced in the muscles and the metabolic rate
used for other tasks than swimming (such as the functions of the heart, the brain,
the digestive organs, etc.). To estimate the ratio between the total efficiency E′ and
the ‘mechanical’ efficiency E∗, it has been assumed that muscles have an efficiency
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100

10–1

101

105 106104 107

FIGURE 17. (Colour online) The total efficiency E′ of different aquatic species compared to
the results of the present analysis when the Reynolds number is varied. The total efficiency
is defined in a similar manner as E∗, given by (2.32), except that the total metabolic rate is
used as the power cost, such that E′ = ρVol2/3U3/PMR, with PMR the total metabolic rate. The
relation PMR = 5Ptot has been assumed to plot the present results (see the main text for a
justification of this factor).

of 50 %, as reported in Curtin & Woledge (1993), which is probably an upper bound,
and that only 40 % of the metabolic rate is devoted to swimming as proposed by
Weihs (1973) based on a simple optimization calculation. When combined, these rough
estimates explain the tentative factor 5 between E∗ and E′.

Figure 17 shows that the total efficiencies of the present model are in good
quantitative agreement with the experimental data. It can further be noted that the
predictions represent an upper bound for the experimental data. This is consistent with
the possibility of an overestimate of the muscle efficiency and it is also consistent with
the fact that predictions correspond to the maximum possible E′. One can also observe
in figure 17 that E′ increases with a slope that is larger than the naive scaling law
E′ ∼ Re1/2 that would be obtained if the metabolic rate were proportional to a laminar
drag coefficient CD ∼ Re−1/2. The slope is actually close to E′ ∼ Re0.6. The reasons for
this larger slope probably originate from the following observation: as the Reynolds
number increases, both the recoil motions and the internal dissipation reduce, which
yields better streamlining, smaller drag coefficients and better conversion of energy
into thrust.

The comparison of the performance of the most efficient swimmers with aquatic
animals has shown remarkable similarities. Most of the characteristics of the salmon-
like fish, which include the sub-carangiform, carangiform and thunniform subclasses
(as explained in § 1) are recovered in the present analysis. The only difference is the
Strouhal number which is systematically larger for real animals than in the present
simulations. This difference could be due to either statistical biases in the experimental
measurements, or invalid approximations of the present model, or the inherent non-
actuated nature of caudal fins in most animals.
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Side view Top view Swimming motion(a)

(b)

(c)

(d)

FIGURE 18. (Colour online) Geometry and kinematics of very elongated swimmers. The
parameters of the optimization are the same as in the reference case except that the internal
viscosity is µi = 103 Pa s and the aspect ratio AR = 15. The first row (a) correspond to the
most efficient kinematics when the optimization is performed with a frozen eel-like shape as
pictured in the first two columns. The second row (b) is the most efficient swimmer obtained
by optimizing both the shape and the motion as in the rest of this paper. The two bottom
rows correspond to biological data: (c) American eel (Anguilla rostrata) (Gillis 1998) and (d)
hagfish (Myxine glutinosa) (Long et al. 2002). The characteristics and performance of these
swimmers are reported in table 6.

5.3. Large-aspect-ratio swimmers
Let us now examine the particular case of very elongated swimmers. To address
this point, additional calculations have been performed for swimmers of aspect ratios
AR = 15, and with a moderately low internal viscosity, µi = 103 Pa s, as illustrated
in figure 18 and table 6. Two optimizations have been carried out, one where the
shape of the swimmer was free to vary, and another one where an eel-like shape was
assumed and only the motion was optimized. The most efficient swimmers in both
cases are compared to two species of elongated fish, the American eel (Gillis 1998;
Tytell & Lauder 2004) and the hagfish (Long et al. 2002), which share similar aspect
ratios and Reynolds numbers.

First, it should be noted that the swimming kinematics of the American eel as
reported by Gillis (1998) does not exhibit large curvatures all along the backbone
(figure 18c) as would be expected from an anguilliform swimmer and is, in fact,
very similar to the kinematics of the salmon-like bass (Jayne & Lauder 1995) shown
in figure 12(b). According to the experimental results of D’Août & Aerts (1999)
and Ellerby, Spierts & Altringham (2001), the swimming mode envelope of eels
can change depending on the swimming velocity, which indicates that eels can
probably switch from a salmon-like kinematics with the large curvatures localized
in the posterior region for small swimming velocities to an anguilliform kinematics
without such a localization for large swimming velocities. An example of the latter
kinematics is shown in figure 18(d) for the hagfish (Long et al. 2002).

Examining the results of the optimization calculation, it can be seen that the most
efficient swimmers display two different kinematics depending on whether the shape
is constrained to be eel-like or not (figure 18a,b). These two swimming modes are
visually similar to the two different kinematics observed for real elongated swimmers
(figure 18c,d) and their characteristics compare reasonably well, at least qualitatively
(table 6). The difference in kinematics when the shape is eel-like or is not is probably
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Species Model (eel) Model (free) Eel Hagfish

Aspect ratio AR 15 15 11 17
Reynolds number Re 105 105 6× 104 6.4×104

Figure 18(a) 18(b) 18(c) 18(d)
Results E∗ 7.193 9.755 — —

U∗ 0.631 0.482 0.448 0.422
St 0.317 0.365 0.314 0.564
θmax 0.541 0.619 0.8 1.5
U/V 0.565 0.520 0.731 0.494
L/B 20.000 15.000 20 24
Im 0.645 0.709 — —

TABLE 6. Comparison between the characteristics of the most efficient swimmers of aspect
ratio AR = 15 and internal viscosity µi = 103 Pa s (one constrained to have an eel-like
shape, the other not), and two species of anguilliform fish, the American eel (Tytell &
Lauder 2004) and the hagfish (Long et al. 2002).

due to the presence of a caudal peduncle. When it is present, the extra cost of having
a steep increase of the envelope amplitude is decreased; without it, one expects a
smoother envelope. Note that, in both cases, the major part of the thrust still originates
from the reactive forces (Im in table 6), in agreement with the numerical simulations
of Tytell et al. (2010) on eel-like swimmers using a Navier–Stokes solver. Note
also that the efficiency in the ‘free-shape’ case is E∗ = 9.8, which is much smaller
than the result E∗ = 16.2 obtained for an aspect ratio AR = 6 and same internal
viscosity µi = 103 Pa s (appendix C). However, the volume of the elongated swimmer
is also much smaller, and if one were to compare optima of similar volumes, the
corresponding Reynolds number for AR = 6 would be Re ≈ 5 × 104 and the efficiency
would then drop to E∗ ≈ 10.7 if one followed the scaling law E∗ ∼ Re0.6 found
in § 5. Therefore, when this volume effect is taken into account, the efficiency of the
most efficient swimmers is almost constant as the aspect ratio is varied, and, as a
consequence, the penalty in terms of efficiency of having a very elongated body is not
large.

6. Discussion
In this paper, a hydrodynamical model of swimming animals has been proposed

based on the elongated-body theory of Lighthill (1971) and extended to take into
account some important viscous effects. This proposed model includes reactive forces,
resistive forces, and the modification of the drag by the swimming motion. It is
nonlinear and valid up to the first nonlinear corrections. It also takes into account the
dissipative viscoelastic nature of the soft tissues. With this model, it has been shown
that, when an animal is swimming steadily by bending its backbone periodically,
the different Fourier components of Newton’s second law can be used to calculate
efficiently and rapidly the full kinematics and energetics of swimming.

The model developed has then been used to perform a bi-objective optimization,
where swimmers with large efficiencies, large stride lengths, or any trade-offs between
the two were sought. This constrained bi-objective optimization has been performed
using an evolutionary algorithm tailored to this specific problem, where the shape
and the motion of the swimmers are varied simultaneously. Interestingly, it has been
found that the morphology of the optimal swimmers could be divided into two distinct
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species: the first species is reminiscent of tuna-like or salmon-like swimmers and is
specialized in efficient swimming, the second species is more elongated and favours
large stride lengths. It has further been shown that this division into two classes of
swimmers is robust to any change of the numerical parameters (aspect ratio, number of
degrees of freedom) or of the physical parameters (Reynolds number, internal viscosity
of the soft tissues). Then, focusing on the efficient tuna-like species, it has been shown
that its characteristics and performance compare remarkably well with most aquatic
species reported in the literature, except for the Strouhal number, which is generally
larger for real fish than it is in the simulations.

The species of efficient swimmers found in the present simulations share the
characteristics evoked by Lighthill (1970) and summarized in § 1. Their morphologies
show a large anterior region separated from the caudal fin by a caudal peduncle
of reduced cross-section. The envelope of the swimming motion exhibits a minimal
width over the anterior region, then displays a steep increase in the peduncle region,
and finally is almost constant at the tail such that the tail incident angle is zero
at the extrema of its motion. As already pointed out by Lighthill (1970), the recoil
motion produced by the periodic torque exerted at the tail by the reactive forces is of
major importance for this species. Because of the internal viscosity and the significant
thickness of the anterior region, the main body ahead of the peduncle remains almost
rigid to avoid prohibitive viscoelastic costs, such that the only way for this species
to prevent inefficient recoil motions is through inertia of the anterior region. This has
interesting consequences on the optimal morphologies. For instance, the ratio of the
animal length to its maximal thickness, L/B, is expected to be an increasing function
of the Reynolds number as long as the boundary layers remain laminar.

The second species discovered in the optimization calculations, the group of
swimmers with large stride lengths, is more elongated than the efficient swimmers
and makes use of a different mechanism to prevent unwanted recoil motions. These
swimmers use bending to counterbalance the torque applied at the tail such that, when
seen in the laboratory framework, they seem to swim with their whole body following
a sinusoidal path. To explore this point further, specific calculations have been carried
out with very elongated swimmers. These calculations have shown that animals found
in nature can be related to the most efficient swimmers calculated in the optimization
calculations, even when the aspect ratio is large. The second optimal species however,
which is associated with large stride lengths, does not seem to be related to any known
animal. This shows that evolution is consistent with the selection of high-efficiency
swimmers. This can be understood by realizing that, by keeping their stride length
constant but increasing their tailbeat frequency, animals can increase their swimming
velocity.

The presence of a caudal peduncle for all the optimal swimmers calculated here
raises an interesting question. When examining the exchange of reactive energy
between the swimmer and the fluid, one finds that the average power given to the
fluid at each cross-section is [m〈w2u〉/2]′, which, when integrated along the length of
the swimmer, gives the total reactive power given in (2.28). This expression can take
negative values when m′ is negative, or equivalently when the depth decreases with s
as is the case just ahead of the caudal peduncle. This means that these cross-sections
receive, on average, energy from the outer flow. The question here is can the fish
‘harvest’ this kinetic energy of the fluid? If they cannot, then the presence of the
peduncle may not be as beneficial and could explain why elongated fish such as eels
do not exhibit one. To answer this question, one would need to take into account
the detailed internal mechanics of the swimmers and, in particular, how the bending
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energy couples with the other sources of energy, which is beyond the scope of the
present study.

The presence or absence of a caudal peduncle is related to another important point
of elongated-body theory. When the fish depth decreases abruptly, as is the case just
ahead of the peduncle or when ventral or dorsal fins are present, vorticity can be shed.
As formulated by Lighthill (1971), the nonlinear elongated-body theory does not take
into account this vorticity shedding. Wu (1971b) developed an extension of Lighthill’s
theory to model this effect; however, his approach is only valid in the linear regime
and is difficult to extend to the present nonlinear framework. To understand better the
importance of these contracting regions, a fully viscous numerical simulation at high
Reynolds number would be necessary.

As was already noted in § 1, Tokić & Yue (2012) have recently published a
study similar to the present one, where they also performed bi-objective optimization
calculations by varying both the shape and the motion of elongated swimmers. They
chose similar performance variables: the swimming speed and the cost of transport
(which is inversely proportional to the efficiency used here). Compared to their study,
the present paper incorporates several important features such as resistive forces and
the enhancement of skin-friction drag due to the swimming motion. Another important
difference is that the present model is weakly nonlinear, which allows the amplitude
of the swimming motion to be predicted from hydrodynamic arguments only. The
number of degrees of freedom is also slightly larger here (22 instead of nine) and
permits more general swimming motion to be considered, whereas Tokić & Yue (2012)
have limited their study to bending waves of constant phase velocity with wavelengths
equal to one body length. In their paper, Tokić & Yue (2012) introduced a model of
muscle activity, which states that the available power at a given section is proportional
to the cross-section area. This limits the torque that can be produced at any given
location, and thus limits the amplitude of swimming motion. In the present study, this
amplitude is limited by a completely different mechanism, since it is due to nonlinear
geometrical effects only. It is noteworthy that, despite the numerous differences in
the modelling and in the hypotheses made, most of the conclusions are similar. In
particular, Tokić & Yue (2012) found that the morphology of salmon-like swimmers
is favoured when the cost of transport is optimized. They also found that the large
amplitudes of the swimming envelope are localized near the tail when efficiency is
optimized, but not when swimming velocity is maximized. However, they found that
the thickness ratio, L/B, decreases with the animal size, while the opposite conclusion
was reached here. In the future, it would be interesting to study optimal designs
of undulating swimmers with a model that combines a realistic internal mechanics
governed by the available muscle power, as Tokić & Yue (2012) did, and the full
nonlinear hydrodynamics, as has been proposed here.
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Appendix A. Variation of the number of degrees of freedom
The robustness of the numerical optimization can be tested by varying the number

of collocation points N between 5 and 9, the reference case corresponding to N = 6.
The results of these calculations lead to very similar Pareto fronts as illustrated in
figure 19. In particular, there are always two lobes corresponding to the efficient
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FIGURE 19. (Colour online) Results of the optimization for different N varying from 5 to 9.
The circles and the attached labels correspond to the most efficient swimmers in each case.
These particular swimmers are pictured in figure 20 and their characteristics are reported in
table 7.

Side view Top view Swimming motion(a)

(b)

(c)

(d)

(e)

FIGURE 20. (Colour online) Geometry and kinematics of the most efficient swimmers when
the number of degrees of freedom is varied. Each line (a–f ) corresponds to a different value
of N increasing from 5 to 9. The characteristics and performance of these swimmers are
reported in table 7. The different columns are the same as in figure 5.

‘species’ and the ‘species’ with large stride length respectively. As expected, as N is
increased and thus as the number of degrees of freedom is increased, the Pareto fronts
obtained are generally better, i.e. the individuals on the Pareto front with the larger N
dominate the individuals of lower N. There are a few exceptions that may be due to
insufficient convergence of the optimization for the largest N or to the position of the
collocation points.

As figure 20 and table 7 show, the characteristics of the most efficient swimmer do
not strongly depend on the number of collocation points N. In particular, the shape
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Collocation points N 5 6 7 8 9
Figure 20(a) 20(b) 20(c) 20(d) 20(e)

Results E∗ 10.447 12.150 12.872 12.700 13.324
U∗ 0.652 0.702 0.726 0.829 0.803
St 0.220 0.229 0.221 0.221 0.243
Li 0.109 0.117 0.114 0.114 0.116
θmax 0.449 0.462 0.437 0.436 0.513
U/V 0.645 0.632 0.631 0.630 0.651
V0 0.734 0.852 0.873 0.829 0.829
Ip 0.172 0.220 0.183 0.152 0.195
ID 2.782 2.751 2.498 2.353 2.576
Iw 1.775 1.623 1.636 1.669 1.628

L/B 10.116 9.443 10.098 11.303 10.632
S∗ 1.155 1.363 1.246 1.241 1.461
Im 0.911 0.928 0.941 0.944 0.954

TABLE 7. Results of the parametric study when N is varied from 5 to 9. The other
parameters are the same as in the reference case: Re= 105, AR= 6, µi = 104 Pa s.

is always roughly the same: an anterior region of large depth with a maximum width
B approximately equal to 10 % of the length and a dimensionless volume V0 ≈ 0.8
(as defined by (2.4)), a thin cross-section spanning over 2 or 3 degrees of freedom
and a flat tail of maximum span. The swimming motions are also very similar with
the anterior region being rigid and the curvature being concentrated on the thinnest
cross-sections.

This parametric study therefore shows that the results are robust to changes in the
number of degrees of freedom. The value N = 6 chosen for the reference case gives
results that are representative of what can be obtained with a larger number of degrees
of freedom, with the advantageous property of converging faster.

Appendix B. Variation of the aspect ratio
This Appendix addressed the influence of the aspect ratio AR on the characteristics

and performance of the most efficient swimmers. As shown in figure 21, there is a
slight advantage in having a lower aspect ratio, as the span of the tail increases in
that case and the available thrust is larger too. But the most important conclusion of
this parametric study is that the main features of the Pareto front are conserved when
aspect ratio is varied. In particular, the two main ‘species’, the efficient swimmers and
the swimmers with large stride lengths, are recovered for all aspect ratios and their
swimming gaits share common characteristics whatever the aspect ratio.

Examining the performance of the most efficient swimmers, it appears that their
efficiencies E∗ are also very similar (table 8), suggesting that aspect ratio is not a
dominant effect here. There are two reasons for this: first, the reduction of the tail span
is accompanied by larger swimming amplitudes (the maximum incidence angle θmax
increases by more than 50 % when aspect ratio is doubled as shown in table 8); and
second, the minimum allowed thickness is inversely proportional to AR, such that the
swimmers with the largest aspect ratio are also the ones with the thinnest cross-section
at the caudal peduncle. The internal dissipation is thus reduced for these swimmers,
permitting larger curvature and hence larger amplitudes at a reduced cost.

The other observation that can be made by observing the dorsal views of the
swimmers in figure 22 is that their maximum width B varies only slightly as the aspect
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AR

FIGURE 21. (Colour online) Results of the optimization for different aspect ratios AR =
4, 5, 6, 7 and 8. The most efficient swimmers in each case are pictured in figure 22 and their
characteristics are reported in table 8.

Side view Top view Swimming motion(a)

(b)

(c)

(d)

(e)

FIGURE 22. (Colour online) Geometry and kinematics of the most efficient swimmers when
the aspect ratio is varied: (a) AR = 4; (b) 5; (c) 6; (d) 7; (e) 8. The characteristics and
performance of these swimmers are reported in table 8.

ratio is modified. To explain this observation, one has to remember the conclusion
reached above when the Reynolds number was varied: the volume of the anterior
region is needed as an inertial ‘flywheel’ to prevent excessive pitching motions. In the
present case, as the aspect ratio is reduced, so are the thrust and the torque produced
by the reactive forces at the tail, and therefore the volume of the inertial anterior
region does not have to be as large as in the case of small aspect ratios. For the
present Reynolds number, it appears that the ‘thickness aspect ratio’ is approximately
L/B≈ 9 for all aspect ratios.
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Aspect ratio AR 4 5 6 7 8
Figure 22(a) 22(b) 22(c) 22(d) 22(e)

Results E∗ 12.263 12.231 12.150 11.951 11.771
U∗ 0.751 0.716 0.702 0.705 0.646
St 0.171 0.201 0.229 0.263 0.290
Li 0.063 0.091 0.117 0.148 0.191
θmax 0.359 0.407 0.462 0.543 0.563
U/V 0.670 0.647 0.632 0.628 0.599
V0 0.560 0.749 0.852 0.994 1.233
Ip 0.208 0.228 0.220 0.215 0.240
ID 2.379 2.616 2.751 2.857 3.008
Iw 1.514 1.558 1.623 1.669 1.644

L/B 10.051 9.188 9.443 9.366 8.435
S∗ 1.166 1.242 1.363 1.422 1.454
Im 0.959 0.948 0.928 0.918 0.895

TABLE 8. Results of the parametric study when the aspect ratio AR is varied from 4 to 8.
The other parameters are the same as in the reference case: Re= 105, N = 6, µi = 104 Pa s.

Table 8 shows that E∗ is a decreasing function of the aspect ratio. Therefore, if
the optimization calculations were performed without constraining the aspect ratio, one
would expect small aspect ratio to be favoured, which is not compatible with the
elongated-body assumption of the model.

Appendix C. Variation of the internal dissipation
Here, the dependence of the internal viscosity on the optimization results is

examined. It should first be noted that the value used for the reference case, i.e. µi =
104 Pa s, has been chosen from the book of Schneck (1992) who reports measurements
on isolated human muscle in the range 103 < µi < 104 Pa s. Approximately the same
value, µi = 6×103 Pa s, has been used by Cheng, Pedley & Altringham (1998) in their
study of the internal mechanics of undulatory swimming, and more recently Tokić &
Yue (2012) used µi = 104 Pa s in their optimization model. To our knowledge, there
has not been any direct measurement of µi on swimming animals, the only data being
indirect, such as the study of Long et al. (2002), and thus hard to exploit in the
present context.

In figure 23 are shown the results of the different optimizations as the internal
viscosity is varied in the range 102 < µi < 105 Pa s. As expected, the swimmers with
the lowest internal viscosities outperform the ones with higher viscosities, but the
main features of the Pareto front are conserved. As µi is varied, the most efficient
swimmers pictured in figure 24 exhibit a similar shape, the only difference being that
the dorsal view is more streamlined as the viscosity is decreased, but maintaining an
almost constant thickness such that L/B ≈ 9.5. This is also demonstrated in table 9
by observing that S∗, which measures the streamlining, is an increasing function of µi,
whereas the volume V0 and L/B are almost constant.

The swimming gaits of the different swimmers of figure 24 are also very similar,
the only difference being that lower viscosities allow larger curvatures and thus larger
amplitudes of the tail motion. Interestingly, this larger amplitude goes with larger
stride length U∗ such that the Strouhal number of the most efficient swimmers remains
almost constant on the range 102 < µi < 104 Pa s (table 9). It should also be noted that
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FIGURE 23. (Colour online) Results of the optimization for different internal viscosities
varying from µi = 102 to 105 Pa s. The circles and the attached labels correspond to the most
efficient swimmers in each case. These particular swimmers are pictured in figure 24 and their
characteristics are reported in table 9.

(b)

(c)

(d)

(e)

(g)

( f )

(a) Top view Swimming motionSide view

FIGURE 24. (Colour online) Geometry and kinematics of the most efficient swimmers when
the internal viscosity is varied: (a) µi = 102 Pa s; (b) 3×102 Pa s; (c) 103 Pa s; (d) 3×103 Pa s;
(e) 104 Pa s; (f ) 3 × 104 Pa s; (g) 105 Pa s. The characteristics and performance of these
swimmers are reported in table 9.

for the smallest values of the internal viscosity, µi = 102 Pa s (figure 24a), the anterior
region of the swimmer is not perfectly rigid anymore but exhibits slight curvatures.

In the present study, it has been assumed that the internal viscosity, µi, remains
constant as the Reynolds number is varied. This hypothesis makes sense if one
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Viscosity µi (Pa s) 102 3× 102 103 3× 103 104 3× 104 105

Figure 24(a) 24(b) 24(c) 24(d) 24(e) 24(f ) 24(g)

Results E∗ 18.095 17.498 16.174 14.344 12.150 9.950 7.724
U∗ 0.827 0.752 0.727 0.739 0.702 0.540 0.321
St 0.235 0.244 0.230 0.237 0.229 0.204 0.185
Li 0.110 0.113 0.107 0.109 0.117 0.119 0.120
θmax 0.493 0.513 0.480 0.501 0.462 0.353 0.213
U/V 0.661 0.650 0.651 0.657 0.632 0.565 0.396
V0 0.987 0.979 0.872 0.808 0.852 0.861 0.879
Ip 0.179 0.189 0.162 0.176 0.220 0.218 0.230
ID 2.356 2.436 2.425 2.561 2.751 2.777 2.788
Iw 1.606 1.598 1.660 1.671 1.623 1.636 1.609

L/B 9.349 9.261 10.142 10.363 9.443 9.440 9.211
S∗ 1.016 1.077 1.055 1.221 1.363 1.373 1.393
Im 0.947 0.952 0.938 0.938 0.928 0.927 0.958

TABLE 9. Results of the parametric study when internal viscosity is varied from µi = 102

to 105 Pa s. The other parameters are the same as in the reference case: Re= 105, AR= 6,
N = 6.

thinks of this internal viscosity as an inherent property of the biological tissues. With
this hypothesis, the ‘internal Reynolds number’ Rei constructed on µi scales as the
Reynolds number Re, and consequently the relative importance of internal dissipation
grows as Re is reduced. In other words, one expects, in that case, that small animals
will be far more affected by internal dissipation and will corresponds to the largest
viscosities studied here. An alternative hypothesis would be that the internal viscosity
of the tissues varies with the animal size such that Rei remains roughly constant. This
would mean that viscosity has been selected as a necessary means for controlling the
motion. This hypothesis should be testable by measuring internal viscosity on animals
of different sizes. To date, however, whether the former of the latter hypothesis applies
remains a largely open question.
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D’AOÛT, K. & AERTS, P. 1999 A kinematic comparison of forward and backward swimming in the
eel Anguilla anguilla. J. Expl Biol. 202, 1511–1521.

DODDS, P. S., ROTHMAN, D. H. & WEITZ, J. S. 2001 Re-examination of the ‘3/4-law’ of
metabolism. J. Theor. Biol. 209, 9–27.

DONLEY, J. M. & DICKSON, K. A. 2000 Swimming kinematics of juvenile kawakawa tuna
(Euthynnus affinis) and chub mackerel (Scomber japonicus). J. Expl Biol. 203, 3103–3116.

EHRENSTEIN, U. & ELOY, C. 2012 Skin friction on a moving wall and its implications for
swimming animals. J. Fluid Mech. (in press).

ELLERBY, D. J., SPIERTS, I. L. Y. & ALTRINGHAM, J. D. 2001 Slow muscle power output of
yellow-and silver-phase european eels (Anguilla anguilla L.): changes in muscle performance
prior to migration. J. Expl Biol. 204, 1369–1379.

ELOY, C. 2012 Optimal Strouhal number for swimming animals. J. Fluids Struct. 30, 205–218.
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