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We prove the existence of a non-trivial solution for the nonlinear elliptic problem
—Au+ V(z)u = a(z)g(u) in RV, where g is superlinear near zero and near infinity,
a(x) changes sign and V' € C(RY) is positive at infinity. For g odd, we prove the
existence of an infinite number of solutions.

1. Introduction
In this paper we consider a class of nonlinear Schrodinger equations of the form
—Au+ V(z)u = a(x)g(u), =RV, (P)

where V(z) € C(RN) N L>®(RY) and a(z) € C(RY) with N > 3. We are interested
in establishing existence and multiplicity results when the nonlinear term g(s) has a
superlinear behaviour at zero, a power-like growth at infinity and satisfies the sign
condition g(s)s = 0, for all s € R, while the weight function a(x) is a sign-changing
function in RY that is negative at infinity in the sense that limsupy,_,, a(z) < 0. In
fact, as noted in [2], when a(z) is positive at infinity, then PohoZaev-type identities
will yield non-existence results under rather mild assumptions.

In [8], the authors considered the case of a bounded domain 2 C RY and showed
an existence result for the equation

—Au — du = a(z)g(u)

in H} (£2), provided g(s) is a superlinear nonlinearity as described above, a(z) a sign-
changing function in {2 and Ax < A < Ag41, where the \; denote the eigenvalues of
—A on H}(£2). In this case, we note that the operator L = —A — X is indefinite,
with its spectrum o (L) consisting solely of isolated eigenvalues of finite multiplicity
and 0 ¢ o(L).

Our first theorem will extend the existence result of [8] to the case where £2 = RV,
Our second result will show existence of infinitely many solutions when g is odd. We
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observe that, in our present situation of 2 = R¥, the verification of compactness
conditions is a rather delicate problem since, in contrast with the bounded domain
case, the spectrum of the Schrodinger operator

L=-A+V(z): H*RY) — L?RY)

may now contain an essential part. In fact, when liminf ;o V(z) = v € R,
it is known (see [1]) that the essential spectrum o.(L) is contained in the half-
line [vs,+00) and the spectrum of L in (—00,vs) consists of isolated eigen-
values of finite multiplicity. Furthermore, 0.(L) = [0, +00) in case the limit
im0 V(7) = 900 € R exists.

Here we assume that the potential V' (z) is positive at infinity (i.e. voo > 0), that
the operator L is indefinite (i.e. o(L) N (—00,0) # 0 and o(L) N (0,+00) # 0)
and, similarly to [8], that 0 ¢ o(L). We should note that when L is non-negative
(i.e. when o(L) N (—00,0) = 0), there are a number of existence and multiplicity
results for (P) under various assumptions on the nonlinearity a(x)g(s) (see, for
example, [7] for related results for second- and fourth-order equations in the case
where V(z) = 1).

As far as we know, the only existence results for such problems in RY with
indefinite linear and nonlinear parts are those in [3,4]. Our present results greatly
generalize those of [3] by exploiting the full strength of the spectral method used
in [4]. The basic idea is to obtain solutions of (P) as limits of solutions (u,,) of the
equation in (P) considered in the spaces H} (B, (0)) with R,, — co. The essence of
the method consists in establishing compactness through information on the Morse
indices of the approximated solutions (u,). We point out that, in contrast to [4],
this limiting process must be handled with some care in order to avoid the essential
part of o(L) (see lemmas 2.2 and 3.3 below).

In § 2, after listing our precise hypotheses, we state and prove an existence result
for problem (P), namely theorem 2.1, dealing with our class of indefinite superlinear
nonlinearities. In § 3, we consider odd nonlinearities (i.e. g(—s) = —g(s) for every s)
and prove theorem 3.1 on existence of infinitely many solutions for (P).

2. Existence of one solution

We consider the Schrodinger equation
—Au+ V(z)u = a(x)g(u), =RV, (P)
under the following hypotheses on V (z).
(H1) V € L®RM) N CLYRY) (0 < a < 1) with
Voo 1= lllxr|nﬂuolofV(:U) >0 and 04 o(—A+V).
(H2) /]RN(|V<,0|2 + V(z)p?) < 0 for some ¢ € C°(RVN).

As for the function a(z), similarly to [4], we assume the following.

https://doi.org/10.1017/50308210500003206 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500003206

Non-zero solutions for a Schrodinger equation 251

(H3) a € C*(RY) is sign changing, has only non-degenerate zeros (i.e. Va(x) # 0
for every x such that a(z) = 0) and

limsup a(z) < 0.

|| —o00

Finally, regarding the nonlinearity g(s), we make the following assumptions.
(H4) g € CY(R), g(0) = 0 = ¢’(0), g(s)s = 0 for every s € R and there exist
positive constants C, J, s and p € (2,2N/(N — 2)) such that

!
Gs) < Cg(s)s Wls| <6 and  lim ZEL _y

|s|]—oo |s[P=2

As usual, we denote G(s) := fosg(g) d¢ and recall from the introduction that L is
the linear operator L = —A + V(z) : H2(RY) — L2(RY). We now state the main
result of this section.

THEOREM 2.1. Assume (H1)-(H}). Then the nonlinear Schrédinger equation (P)
has a non-zero solution uw € H*(RY) N C2(RN) N L= (RY).

We point out that we neither assume a L°(R”Y) bound on a(z) nor a global
superlinear behaviour on g(s), such as g(s)s = (2 + §)G(s) for every s € R and
some 6 > 0. On the other hand, it follows from our assumptions that there exist
Ry, 6o > 0 such that

a (z) 20y and V(z) =8y V|z|>= Ry, (2.1)
and there exists C' > 0 such that
0<G(s) < Cy(s)s VseR. (2.2)

Here we use the notation a™(z) := max{a(z),0} and a~ (z) := a™(z) — a(z). More-
over, it follows from (H1), (H2) that there exists k& > 1 such that

o(L) N (—o0, 0] consists of k& non-zero eigenvalues of finite multiplicity.  (2.3)

The rest of the section is devoted to the proof of theorem 2.1. We first state some
auxiliary results. For that, we let

ul|? = /RN(|Vu|2—|—u2) Vu € HU(RY),

and we denote by I the energy functional

1

I =3 [ (9P + V) - [ a@é

whenever it is defined for functions in H!(R¥). In particular, if the space H (Br(0))
is viewed as a subspace of H'(R"™) by extending the functions by zero outside
Br(0), then the functional I will be defined on HJ(Bg(0)) for all R > 0 (in fact,
I € C?*(H}(Br(0)),R)) and H (Bg(0)) can be viewed as a subspace of H} (Br/(0))
if R" > R.
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LEMMA 2.2. There exist n > 0 and Ry > 0 such that, for every R > Ry, we can
write H}(Br(0)) = Xg ® Yr, where Xg has dimension k and

| (9P + V@) < —allul? vue X,

RN

/ (|Vul? + V(z)u?) = nllull*  Yu € Yg.
RN

Proof.

STEP 1. For each ¢ € N, denote by \;(R) the ith eigenvalue of the linear operator
—A + V(x) in H}(Bgr(0)). To prove the lemma it is sufficient to show that there
exist € > 0 and R; > 0 such that

Ak(R)<—€<O<E<)\k+1(R) VR > R;.

STEP 2. The proof that Ap(R) < —e < 0 for large R is similar to that in [4,
lemma 2.1], and therefore we omit it.

STEP 3. Let V be spanned by the eigenfunctions associated to the negative eigen-
values of the linear operator L = —A + V(z) in H%(RY). Since 0 ¢ o(L), there
exists p > 0 such that

/ (|Vul|? + V(z)u?) > 2p/ u? Yu eVt
RN RN

Suppose that, for some fixed R, we have A\;11(R) < p. Then there exists a subspace
X C H(Bg(0)) with dimension & + 1 such that

/ (|Vul|? + V(z)u?) < p/ u? Vu e X.
RN RN

Using a density argument, we may assume that X C D(RY). In particular, we have
X C H%*(RY). Since V has dimension k and X has dimension k + 1, there exists
u € X N (V4Y), u # 0. This is impossible by the definition of p. We conclude that
Apt1(R) > p for every R, and this completes the proof of the lemma. O

It is well known that the solutions u of
—Au+ V(z)u=a(x)g(u), ue Hé(BR(O)), (Pr)

are precisely the critical points of the energy functional I over the Hilbert space
H}(Br(0)). For every such critical point u, we denote by m(u) its Morse index,
that is, the supremum of the dimensions of the linear subspaces of H}(Bg(0)) on
which the quadratic form D?I(u) is negative definite.

LEMMA 2.3. There exist Ry > 0 and r > 0 such that every solution u of (Pg) with
R > Ry and Morse index m(u) < k — 1 satisfies ||ul| > r.

Proof. Assume by contradiction that, for some sequence R,, — oo, problem (Pg, )
admits solutions u,, such that m(u,) < k—1 and |lu,|| — 0. According to lemma 2.2,
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there exists a subspace X C H}(Bg, (0)) with dimension k and some constant n > 0
such that

/ (Vo2 + V(@)e?) < —nllel? Ve € X.
BRl(O)

Since ||u,|| — 0and ¢’'(0) = 0, it follows from the compact imbedding of Hg (Bg, (0))
into LP(Bpg, (0)) that there exists ng € N such that

D 1)) = [

(VP + V(2)) - / a(@)g (un)¢® < —Lnlleoll?,
Br, (0)

BRl (0)

for every ¢ € X and every n > ng. This contradicts the assumption that m(u,) <
kE—1. O

LEMMA 2.4. For every large R > 0, problem (Pr) has a non-zero solution ug €
H}(Bg(0)). The family of solutions (ug) is bounded in L>°(RYN) and there evist
¢, Rs > 0 such that

0 < ¢ < max{||ugl|, I(ug)} VR > Rs. (2.4)

Proof. In view of lemma 2.2, for each large R, problem (Pg) admits a non-zero
solution upr obtained through a minimax argument, with m(ug) < k + 1 (see [5,
proposition 2]). Moreover, by using arguments similar to those of [4, proposition 3.1],
we claim that (ug) is bounded in L>(R™M).

Indeed, since our regularity assumptions imply that ur € C(Bgr) N C?(Bg), let
us assume by contradiction that

M, = ||unlloo = max uy = Up(Ty) — +00
N

for some z,, € 2, = Bg, (0) and some sequence R,, — oo (the case where ||up||o0 =
maxp, (—u,) is handled similarly). Since Au,(z,) < 0 and V € L®(RY), the
equation in (Pg,) shows that

a” (xn)g(M,) < CM,, + a™ (z,)g(M,,).

From assumption (H3), we see that (x,,) is bounded. Therefore, up to a subsequence,
we can assume that z, — 29 € RY and a(zo) > 0. At this point, the blow-up
argument in [8, sect3] can be applied, leading to a contradiction. In fact, since
m(u,) < k+1 and |Jup||co — 00, it is shown in [8] that the sequence

() = un(Anz + x,) /M,

(where either \,, = MZ™P/2 or £, = M{Z™P/3 depending on whether a(zg) >0
or a(zg) = 0, respectively) converges uniformly to 0 on compact sets. This is impos-
sible, as v, (0) = 1 by definition. Therefore, the family of solutions (ug) is bounded
in L= (RY).

Now, when m(ug) > k along a sequence R = R,, — 00, then, by construction
(cf. [4, eqn (3.4)]), we have

I(ug) > inf{I(u) : w € Yg, ||ul| =r} (2.5)
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for some small r > 0, where Yy is given by lemma 2.2. Since a™ has compact
support and also g(0) = 0 = ¢’(0) and limys_,oc G(s)/|s|P < oo, it follows that, for
every u € Yg,

10 allal? = [ a*GG) = mlul? — ol
R

for some 71, 72 independent of R, so that the right-hand side of (2.5) is bounded
away from zero, if r is sufficiently small. This proves (2.4) for the case m(ug) = k.
The case where m(ug) < k—1 along a sequence R — oo is ruled out by lemma 2.3.

O

Our next lemma will also be used in § 3.

LEMMA 2.5. For any sequence R,, — 00, let (uy,) be a sequence of solutions of (Pg,,)
that is bounded in L>=(R™). Then there exists a solution u of equation (P) such that
u € HYRN)NC2RN) N L®(RY), u has finite energy and

Uup —u in HY(RY) and 1(un) — I(u). (2.6)

Proof. Using (uy) as a test function in (Pg,, ) yields
[ 0%l +Ven + agwun) = [ atguun. @D
RN RN

Since at has compact support by (H3), g(s)s = 0 by (H4) and (u,,) is bounded
in L>=(RY) by lemma 2.4, the above equation shows that (u,) is also bounded in
H(RY). Therefore, up to a subsequence and for some u € H'(R"Y), we have that
up — u weakly in HY(RY) and u,(z) — u(x) a.e. in RY. Clearly, u is a solution
of (P) and u € HY(RYN)N C%RYN) N L (RY). Moreover, it follows from (2.2), (2.7)
and Fatou’s lemma (recall that g(s)s > 0) that I(u) € R.

In order to prove (2.6), denote

= [ 19 [ v,
x|= Ro

where Ry was defined in (2.1), and let £ := liminf [lunlll*. By convexity, |[lull]* < i
and, by passing to a subsequence, we may assume that ¢ = lim |[|u,|||?. From the
equation in (P) and the fact that u,, — u in L2 (RY), we have

B
lall®+ [ i+ [ 0o,

:/aJrg(un)un

:/a+g(u)u+o(1)

- |||u|||2+/|I|<RU V(:U)u2—|—/tfg(u)u—|—o(1)

as n — 00, and it follows that

é+/ V(:U)u2—|—liminf/afg(un)un < |||u|||2—|—/ V(:U)u2—|-/tfg(u)u.
|z|< Ro |

z|< Ro
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In other words,

lf—|—liminf/(fg(un)un < ulf? —|—/tfg(u)u.

Therefore, in view of Fatou’s lemma, we obtain

S

i+ [ gt < Il + [ agw
and, since [[|ul||? < ¢, we conclude that

llll? =2 and [ agum)un — [a gt (2.8)

In particular, it follows that u, — u in H'(R"). Finally, since
a” ()G (up(x)) — a™ (z)G(u(z)) ae.
and (cf. (2.2))
/th(un) < C/(fg(un)un,

we conclude from (2.8) and the Lebesgue—Vitali convergence theorem that

/a*G(un) — /a*G(u).

The proof of lemma 2.5 is complete. O

End of proof of theorem 2.1. Fix any sequence R,, — oo and let (u,) be given by
lemma 2.4. According to lemma 2.5, we can pass to a subsequence so that u, — u
in H1(RY), where u is a solution of (P). It follows from (2.4) and (2.6) that u # 0,
which completes the proof of theorem 2.1. O

3. The symmetric case
In this section we will consider again the Schrodinger equation
—Au+ V(z)u = a(x)g(u), =RV, (P)

in the case where g(s) is an odd nonlinearity, under the assumptions (H1)—-(H4)
stated in §2.

THEOREM 3.1. Assume that assumptions (H1)-(H/) hold and, in addition, that g
is odd. Then the nonlinear Schrédinger equation (P) has infinitely many solutions
u € HY(RN)NC2RN) N L®RY).

We now prove theorem 3.1. Let I denote the energy functional associated with (P)
acting on Hj(Bg(0)) (R > 0) and fix any d € R. Thanks to lemma 2.5, theo-
rem 3.1 follows once we show that I has a critical point ur € Hj(Bg(0)) such that
I(ug) = d and (ug) is bounded in L°(R¥), uniformly in R. As mentioned in the
proof of lemma 2.4, the latter property will be a consequence of an estimate from
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above on the Morse indices m(ug). Summarizing, we must prove that for every
d € R there exist £ € N and ur € H}(Br(0)), for every large R, such that

I(ug) 2d and m(ur) <. (3.1)

This kind of argument was also used in [4]. The proof is based in the following
well-known existence result for even functionals.

PROPOSITION 3.2. Let I be a real even C? functional over an Hilbert space H sat-
isfying the Palais—Smale condition. Suppose that H = X @Y, with dim X = ¢ € N,
and that

inf{I(u):||u]|=r, ueY}>d (3.2)

for some d € R and r > 0. Denote Z = X @ span(e), for somee € Y, e £ 0, and
suppose that
sup{I(u): |lu]| > M, ue Z} < d, (3.3)

for some M > 0. Then I has a critical point u at level I(u) > d and having Morse
index m(u) < £+ 1.

A proof of this result can be found, for example, in [9, theorem 5.2] and [10,
theorem 3.6]; the Morse index estimate is essentially proved, for example, in [6]. In
order to apply proposition 3.2, a crucial fact is provided by our next lemma. We
recall that the constant Ry was introduced in (2.1).

LEMMA 3.3. Given ¢ > 0, there exist { € N and a subspace X C HY(RY) of
dimension ¢ such that

/ u? <ellul? := s/ (|Vul? +u?) Yue X+, (3.4)
Bry (0) RN

Moreover, X C Hg(B(0)) for some R > 0.

Proof. Fix any sequence R,, — 0. For each n, denote by V,, the finite-dimensional
space spanned by the eigenfunctions

1 1 2 2 n n
PlsePnsPrresPnsr-- P15+ Pno

where % denotes the jth eigenfunction of (~A, Hj(Bg,(0))). Assume, by contra-
diction, that, for every n, there exists u,, € V,;* such that

luy| =1 and / w2 e
Br, (0)

Up to a subsequence, (u,,) converges weakly to some u € H'(R™) such that

/ u? > e.
Br, (0)
In particular, u # 0.

Fix any R;, ¢ € N, and any eigenfunction <p; By assumption,

0:/ <Vun,V<p§->—|—un<p§- Vn = j.
RN
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Taking limits as n — o0,

Oz/ <Vu,V<p§->—|—ug0§-.
RN

Since j is arbitrary,

0= / (Vu, Vo) +up Ve € HY(Bp,(0)).
RN

Since i is arbitrary,
0= / (Vu, Vo) +up Yo € D(RY).
RN

Since D(RY) is dense in H'(R"), we conclude that u = 0, a contradiction. O

End of proof of theorem 3.1. Given d > 0, let € = £(d) be a small positive number
to be specified below (cf. (3.5)). Let £ and X be given by lemma 3.3 and consider
the energy functional I acting on H}(Bgr(0)), R > R. It follows easily from (2.1),
(3.4) and (H4) that, for small € > 0, there exist A = A(e) and B = B(e) > 0 in
such a way that

I(u) > Allul|® — Bljul|P Vu € XN H(Br(0)). (3.5)
In fact, since 2 < p < 2N/(N —2) and H'(RY) c L2N/(N=2)(RN), we have that

1/p
</ |u|p> <o(1)|ul| for every u € X+,
BR[)(O)

where o(1) — 0 as € — 0, as follows from lemma 3.3, and so (3.5) shows that we
can choose ¢ = £(d) and r = r(d) such that the inequality in (3.2) holds.

In our context, condition (3.3) is not expected to be satisfied. However, as done
in [4, p. 11], one can consider the following truncations introduced in [8],

Ajls|Pi=2s + B; for s > aj,
45(5) = { 9(s) for 0 <
—g;(—s) for s <

s < ay,

0,

where a; — +00, p; € (2,p), p; — p, and the coefficients are chosen in such a way
that g; is C'. Then the corresponding energy functional

1 _
B =3 (19 + v - [at@6w + [a @6,
where G,(s) := fos g;(§) d¢, satisfies (3.2), (3.3) and the Palais—Smale condition.
According to proposition 3.2, this yields a critical point u; g of I; such that
Ij(ujr) >2d and m(ujr) <{+1, (3.6)

where m(u; r) denotes the Morse index of u; g as a critical point of I;. Since
m(u;,r) is bounded independently of j and R, it turns out that u; r is actually a
critical point of I for j sufficiently large. This establishes (3.1) (with £+ 1 in place
of £). As mentioned earlier, this also completes the proof of theorem 3.1. O
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