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1Departamento de Matemática Universidade Federal de Viçosa, CCE,
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2Departamento de Matemática, Rua Sérgio Buarque de Holanda,

Universidade Estadual de Campinas, IMECC, 651 CEP 13083-859 Campinas, SP,
Brazil (msm@ime.unicamp.br)

(Received 20 May 2017; first published online 30 August 2018)

Abstract We study a class of parabolic equations which can be viewed as a generalized mean curvature
flow acting on cylindrically symmetric surfaces with a Dirichlet condition on the boundary. We prove
the existence of a unique solution by means of an approximation scheme. We also develop the theory of
asymptotic stability for solutions of general parabolic problems.
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1. Introduction

The motion of surfaces by their mean curvature flow can be described as follows. Let S(0)
be a compact, convex and n-dimensional surface without boundary, which is smoothly
embedded in R

n+1, n ≥ 1. Let S(0) be locally represented by a diffeomorphism u0 : Ω→
R

n+1, where Ω ⊂ R
n and u0(Ω) ⊂ S(0). For each t > 0 the problem of finding the maps

u(., t) : Ω→ R
n+1 satisfying the equation

{
ut(x, t) = −2H(x, t)ν(x, t), (x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
(1)

has solutions u(., t) which represent locally manifolds S(t). Here, H(., t) is the mean
curvature of S(t) and ν(., t) is the unit outward normal vector to S(t) at time t.
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136 A. L. A. de Araujo and M. Montenegro

If one assumes that the moving surface has axial symmetry with respect to one of the
coordinate axis, say x1, denoted hereafter by simply x, equation (1) transforms into

ut =
uxx

1 + (ux)2
− n− 1

u
. (2)

Local existence for (1) has been proved in [7,10,14]. In [15] it has been proved that
the equation (1) possesses a smooth solution on a finite time interval [0, T ) and that S(t)
converges to a single point as t→ T−, see also [13]. The equation of a graph parametrized
surface moving according to its mean curvature flow with a non-homogeneous Dirichlet
boundary condition has a classical solution that converges to a solution of the minimal
surface equation as t→∞, see [16]. The curve shortening in the plane has been addressed
in [10,12], as well as convexity properties of the evolving curve. The evolution of curves
on a surface has been dealt with in [2–4]. The mean curvature flow on axially symmet-
ric surfaces without boundary conditions has been studied in [1,24] and with Dirichlet
boundary condition in [5,8]. Periodic solutions have been found in [21]. Formation of
singularities of the mean curvature flow have been addressed in [6,17–19,24]. Equation
(1) is important in material sciences, image processing and differential geometry, see [11].

In the present paper, we are interested in studying a more general equation with non-
homogeneous Dirichlet boundary condition, namely⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut =
uxx

1 + u2
x

− N

uα
, (x, t) ∈ (−a, a)× (0, T ),

u(−a, t) = β1, u(a, t) = β2, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [−a, a],

(3)

where 0 < α ≤ 1 and N > 0. The constants

0 < β1 < β2 (4)

will be precisely determined in Lemma 1.1. The initial datum is non-decreasing and has
regularity as

u0 : [−a, a]→ (0,∞) belongs to H3+η0 for some 0 < η0 ≤ 1 and u′0 ≥ 0. (5)

The space H3+η0 is defined in (18). We also assume the compatibility condition

u′′0(−a)
1 + (u′0(−a))2

− N

uα
0 (−a) = 0 and

u′′0(a)
1 + (u′0(a))2

− N

uα
0 (a)

= 0. (6)

We prove the existence of a solution of (3) by perturbing the equation as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = (Φ(ux))x − N

uα
, (x, t) ∈ (−a, a)× (0, T ),

u(−a, t) = β1, u(a, t) = β2, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [−a, a].
(7)
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Parabolic equations and mean curvature flow 137

We proceed to describe in detail what kind of function Φ we need in (7). Let � > 0 be a
positive constant such that

max
x∈[−a,a]

u′0(x) ≤ �

and let Φ� be the function,

Φ�(s) =
∫ s

0

φ�(x) dx, (8)

where

φ�(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1 + s2
, |s| ≤ �,

p(|s|), � < |s| ≤ 2�,

p(2�), |s| > 2�,

(9)

and p : R→ R is the polynomial defined by

p(s) =
1
2

−3 + �2

�2(3�4 + �6 + 1 + 3�2)
s4 − 4

3
3�2 − 7

(1 + 2�2 + �4)�(1 + �2)
s3

+
12�2 − 20

(1 + 2�2 + �4)(1 + �2)
s2 − (16�2 − 16)�

(1 + 2�2 + �4)(1 + �2)
s+

1
6

51�4 − 11�2 + 6
(1 + �2)3

.

Let g(s) = (1/(1 + s2)). The polynomial p satisfies

p(�) = g(�), p′(�) = g′(�), p′′(�) = g′′(�), p′(2�) = 0 and p′′(2�) = 0.

Since maxx∈[−a,a] u
′
0(x) ≤ �, it follows from the definition of the function Φ� that the

compatibility condition (6) can be rewritten in the form

Φ′
�(u

′
0(−a))u′′0(−a)− N

uα
0 (−a) = 0 and Φ′

�(u
′
0(a))u

′′
0(a)− N

uα
0 (a)

= 0. (10)

Henceforth, Φ and Φ� denote the same function. If necessary, we write Φ� to make
explicit the dependence on �. We list a few properties of the function Φ. Note that

Φ : R→ R belongs to C3. (11)

There exists a constant γ > 0 such that γ ≤ Φ′(s) ≤ 1 for every s ∈ R. (12)

The best constant in (12) is γ = p(2�) = (1/6)(3�4 + 5�2 + 6/(1 + �2)3) > 0. Moreover,

Φ is an odd function; (13)

Φ′ ≤ 0 in (0,∞); (14)

Φ′ ≥ 0 in (−∞, 0); (15)

and there is a constant B > 0 such that −B ≤ Φ′′(s) ≤ B for every s ∈ R. (16)

The best constant in (16) is B = |Φ′′(0)| = | − 2| = 2.
We remark that equations (2) and (3) are not exactly particular cases of (7), since one

has arctan′(s) = 1/(1 + s2)→ 0 as |s| → ∞, and Φ′(s) does not tend to 0 as |s| → ∞.
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138 A. L. A. de Araujo and M. Montenegro

We obtain a solution of problem (3) by, roughly speaking, cutting off Φ. In this way we
first show the general Theorem 1.2, which ensures existence of solution for (7). We show
that the solution u of (7) has bounded derivative |ux| < � and, since Φ(s) = arctan(s) for
|s| < �, then u is also a solution of (3), and Theorem 1.7 is proved.

By a solution of (3) and (7) we mean a function u : [−a, a]× [0, T )→ R belonging to

C2,1((−a, a)× (0, T )) ∩ C0([−a, a]× [0, T ))

for some 0 < T <∞ which satisfies the problem for every (x, t) ∈ (−a, a)× (0, T ).
We denote by Γ the parabolic boundary

Γ = ((−a, a)× {0}) ∪ ({−a, a} × [0, T )). (17)

The norm of a point in (−a, a)× (0, T ) is denoted by |(x, t)| = max{|x|, |t|1/2}. It is worth
defining the following spaces when 0 < η ≤ 1 and k ≥ 1:

Ck,[k/2]((−a, a)× (0, T ))

={u : (−a, a)× (0, T )→ R : ∃Di
xD

j
tu ∈ C0((−a, a)× (0, T )) for i+ 2j ≤ k}

and

Hk+η((−a, a)× (0, T )) = {u ∈ Ck,[k/2]((−a, a)× (0, T )) : |u|k+η <∞}, (18)

where [k/2] is the integer part of k/2,

|u|k+η =
∑

i+2j≤k

sup
(−a,a)×(0,T )

|Di
xD

j
tu|+ [u]k+η + 〈u〉k+η

with

[u]k+η =
∑

i+2j=k

sup
(x,t) �=(y,s)

|Di
xD

j
tu(x, t)−Di

xD
j
tu(y, s)|

|(x, t)− (y, s)|η

and

〈u〉k+η =
∑

i+2j=k−1

sup
(x,t) �=(y,s)

Di
xD

j
tu(x, t)−Di

xD
j
tu(y, s)

|t− s|(1+η)/2
.

The corresponding spaces of functions u(x) defined on an interval D = [−a, a] are the
following

H2+η = {u : |u|D2+η <∞}, (19)

where

|u|D2+η = |u|D1+η + |uxx|Dη
with

|u|D1+η = |u|Dη + |ux|Dη
and

|u|Dη = sup
D
|u(x)|+ sup

x�=y

|u(x)− u(y)|
|x− y|η .
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Analogously, we define

H3+η(D) = {u : |u|D3+η <∞}

where

|u|D3+η = |u|D3+η + |uxxx|Dη .

We state next that (7) has a stationary solution V satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Φ(Vx))x − N

V α
= 0, x ∈ (−a, a),

V (x) > 0, x ∈ [−a, a],
Vx(−a) = 0,

V (−a) = β1, V (a) = β2.

(20)

Lemma 1.1. Let β2 > 0 be a positive constant and Φ satisfying (8), (9) and (12).

(a) If α = 1, there exists a1 > 0 such that for 0 < a < a1, there are exactly two con-
stants β1 and β′

1 with β1 < β2, β
′
1 < β2 and β′

1 < β1 such that (20) has exactly
one solution W with boundary values W (−a) = β′

1 (instead of β1) and W (a) = β2,
and exactly one solution V corresponding to β1 and β2, that is, V (−a) = β1 and
V (a) = β2. Moreover, W < V in (−a, a), W (−a) = β′

1 < β1 = V (a) and W (a) =
β2 = V (a). In addition, 0← β′

1(a) < β1(a)→ β2 as a→ 0+.
If a = a1, there is exactly one β1 < β2 such that the problem (20) has exactly one
solution V .
If a > a1 there is no solution of (20).

(b) If 0 < α < 1, there exists a2 > 0 such that for 0 < a < a2, there is exactly one β1

such that the problem (20) has exactly one solution V .
In all items, β1 and β′

1 depend on a, β2 and α. The functions V and W belong to
C2[−a, a].

Throughout the paper we will work with the stationary solution V .
We suppose a condition relating u0 and V ,

u0(x) ≥ V (x) for every x ∈ [−a, a]. (21)

Theorem 1.2 deals with the existence of a solution for the general problem (7), which
is obtained by proving the existence of a solution for an auxiliary problem, see Lemma
1.3 below. The regularity of the solution follows from Lemma 1.4.

Theorem 1.2. Let T > 0, β2 > 0. Assume (5), (6) and (21). Suppose that Φ satisfies
(8)–(16) and that a, β1 and V are as in Lemma 1.1. Then problem (7) has a unique
positive solution.
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To prove Theorem 1.2, we first obtain a solution of the following auxiliary problem
with the nonlinearity f(u) instead of −N/uα which is singular at u = 0. Let⎧⎪⎨⎪⎩

ut = Φ′(ux)uxx + f(u), (x, t) ∈ (−a, a)× (0,∞),

u(−a, t) = β1, u(a, t) = β2, t > 0,

u(x, 0) = u0(x), x ∈ [−a, a].
(22)

We define θ = minx∈[−a,a] V (x), m = (θ/4) and

f(z) =

⎧⎪⎨⎪⎩
−N
zα
, z ≥ m,
N

(2m− z)α
− 2N
mα

, z < m.
(23)

Note that the function f : R→ R is C1, f(z) < 0 and f ′(z) ≥ 0, for every z ∈ R.

Lemma 1.3. Let T > 0 and β2 > 0 be positive constants. Suppose that Φ satisfies
(8)–(16) and that a, β1 and V are as in Lemma 1.1. Assume that the initial datum
u0 satisfies (5), (6) and (21). Then the problem (22) possesses a solution belonging to
C2,1((−a, a)× (0, T )) ∩ C0([−a, a]× [0, T )) ∩H3+η for some 0 < η ≤ 1.

To prove Lemma 1.3 we take advantage of the general theory of the parabolic equations
and use a combination of the existence and the regularity (Theorem 14.24 and Lemma
14.11, respectively, both from the book [20, pp. 371, 382]). For the sake of completeness
we state it below for future reference.

Lemma 1.4. Let F : (−a, a)× (0, T )× R
3 → R be a C1 function such that:

(i) there are constants k and c such that;

zF (x, t, z, 0, 0) ≤ k|z|2 + c for every (x, t) ∈ (−a, a)× (0, T ), z ∈ R;

(ii) there are constants a0 > 0 and a1 > 0 such that;

a0 ≤ Fr(x, t, z, p, r) ≤ a1 for every (x, t) ∈ (−a, a)× (0, T ), (z, p, r) ∈ R
3;

(iii) for every K ≥ 0, there are constants b1 = b1(K), b2 = b2(K) and 0 < Θ ≤ 1 such
that;

|F (x, t, z, p, r)− F (y, s, w, q, r)| ≤ [|(x, t)− (y, s)|+ |z − w|+ |p− q|]Θ[
b1 + b2|r|

]
holds for every (x, t), (y, s) in (−a, a)× (0, T ) and |z|+ |w|+ |p|+ |q| ≤ K.

Then, for every φ ∈ H3+η, there is a solution u ∈ C2,1((−a, a)× (0, T )) ∩ C0([−a, a]×
[0, T )) of { − ut + F (x, t, u, ux, uxx) = 0 in (−a, a)× (0, T ),

u = φ in Γ.
(24)

Moreover, recall (6): if −φt + F (X,φ, φx, φxx) = 0 on {−a, a} × {0}, then u ∈ H3+σ for
some 0 < σ ≤ 1 determined only by b0 and b1.
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The following two lemmas help us to estimate ux from above and from below, where u
is a solution of (3).

Lemma 1.5. Suppose that Φ satisfies (8), (9), (11) and (12) and that a, β1, β2 and
V are as in Lemma 1.1, u0 is continuous and satisfies (21). If u(x, t) is a solution of (7),
then u(x, t) ≥ V (x) for every (x, t) ∈ [−a, a]× [0, T ).

Lemma 1.6. Suppose that Φ satisfies (8)–(16) and that a, β1, β2 and V are as in
Lemma 1.1, and u0 satisfies (5) and (21). Let u(x, t) be a solution of (7), then u(x, t)x ≥ 0
for every (x, t) ∈ [−a, a]× [0, T ).

We state the existence of a solution for problem (3).

Theorem 1.7. Let T > 0 and β2 > 0. Suppose that Φ satisfies (8)–(16) and that a, β1

and V are as in Lemma 1.1. If u0 satisfies (5), (6) and (21), then the problem (3) possesses
a unique positive solution.

In the sequel we state the stability of the stationary solutions of (7), in reality they are
solutions of (20). Recall the values of γ and B from (12) and (16). Suppose that

there exists M > 0 and λ > 0 such that BMλ− γλ2 ≤ −4 (25)

and for these fixed M and λ we assume that

0 < a ≤ 1
3λ

ln
(
β1(a)α+1

4α+1αN
+ 1

)
. (26)

Note that such a choice of a is possible, since β2 > 0 and by Lemma 1.1 there is β1(a) < β2

such that lima→0+ β1(a) = β2.
The stationary solution V is a stable equilibrium, that is, u is asymptoticaly stable.

The conclusion follows from the theory developed in § 4 for a general equation of the
form ut = h(x, t, u, (∂u/∂xi), (∂2u/∂xi∂xj)). The results are of independent interest and
useful to deal with other parabolic problems beyond the scope of the present paper.

Theorem 1.8. Let Φ satisfying (8)–(16) and a, β1 and V as in Lemma 1.1, λ as in (25).
Suppose (26) and additionally by (21) that u0(−a) = V (−a) = β1 and u0(a) = V (a) = β2.
If u is the solution of (7), recall Theorem 1.2, then

lim
t→∞u(x, t) = V (x) uniformly for x ∈ [−a, a],

that is, V is a stable equilibrium of (7).

Corollary 1.9. Let Φ satisfy (8)–(16), with a, β1 and V as in Lemma 1.1, and λ as
in (25). Suppose (26) and additionally by (21) that u0(−a) = V (−a) = β1 and u0(a) =
V (a) = β2. If u is the solution of (3), recall Theorem 1.7, then

lim
t→∞u(x, t) = V (x) uniformly for x ∈ [−a, a],

that is, V is an stable equilibrium of (3).
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Remark 1.10. Theorems 1.2 and 1.8, and Lemmas 1.3, 1.5 and 1.6 are true in a more
general setting. For instance, assume Φ is a general function, not necessarily the one given
by (8)–(9), and satisfies (11)–(16) with given γ and B. Compare with (6) and (10) – the
hypotheses (5) and (21) are also needed, as well as the new compatibility conditions

Φ′(u′0(−a))u′′0(−a)− N

uα
0 (−a) = 0 and Φ′(u′0(a))u

′′
0(a)− N

uα
0 (a)

= 0.

Note the following remarks and open problems.

If 0 < β′
1 < β2 instead of (4) and if u0 ≥W in (21), recall Lemma 1.1, then both

Theorems 1.2 and 1.7 are true, and the proofs remain the same. Theorem 1.8 is
an open question in this situation. The stability assumption (26) is false with β1

replaced by β′
1, since β′

1 tends to zero as a→ 0.

Assume that 0 < β′
1 < β2 in place of (4) and that W ≤ u0 ≤ V in (21). Then W is

a subsolution and V is a supersolution of (7), so Lemmas 3.1–3.3 apply, and thus
there is a solution u of (7) with W < u < V for x ∈ (−a, a) and t > 0. The proofs
of Lemmas 1.5 and 1.6 can be performed in the same way; thus there will be a
solution of (3). In conclusion Theorems 1.2 and 1.7 hold. The stability stated in
Theorem 1.8 is an open question.

Suppose that (4) and W ≤ u0 ≤ V in (21). Notice that W is a subsolution and
V is a supersolution of (7). Lemmas 3.1–3.3 apply. Hence there is a solution u of
(7) with W < u < V for x ∈ (−a, a) and t > 0. The asymptotic stability of u is
an open problem. It is not clear now whether Lemmas 1.5 and 1.6 remain true,
thus the existence of a solution of (3) as well as its stability are open questions. In
synthesis, Theorem 1.2 holds, but Theorems 1.7 and 1.8 are open problems.

There is also the open question of the existence of solution u of problems (3) and (7)
whenever u0 is greater or equal to neither V nor W ; for instance, without (21) we
may have W ≤ u0, V ≤ u0 or no order relation between u0, W and V . There also
remains the open question of the stability of a possible solution u in such situations.

The outline of the paper is as follows.
In § 2 we prove Lemma 1.1 about the existence of stationary solution V .
Section 3 is devoted to the existence of solutions of the parabolic problems. We establish

the existence of ordered sub and supersolutions (Lemmas 3.1–3.3). We prove Lemma 1.3
and in the sequel we prove Theorem 1.2, the existence of a solution to (7). To recover the
solution of problem (3) we prove Lemmas 1.5 and 1.6, and we accomplish our aim with
the proof of Theorem 1.7.

In § 4 we prove general results on stability of stationary solutions of nonlinear parabolic
problems (Lemma 4.1, Theorem 4.2 and Corollary 4.3).

We apply the results of § 4 in § 5; there, we address the stability of the stationary
solution of the problems (3) and (7), then prove Theorem 1.8 and Corollary 1.9. We
conclude § 5 with a remark on an estimate from below for a solution of (3) or (7), see
Proposition 5.1.
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2. Existence of the stationary solution

In this section we only need the C2 regularity of the function Φ defined by (8) and (9).

Proof of Lemma 1.1.
(a) In this case α = 1. First we show that⎧⎪⎪⎪⎨⎪⎪⎪⎩

(Φ(Vx))x − N

V
= 0, x ∈ (−a, a),

Vx(−a) = 0,

V (a) = β2,

(27)

has a solution V > 0 in [−a, a]. Note that a solution of (27) is convex and Vx(x) > 0 for
every x ∈ (−a, a), then V (−a) < V (a).

Define

Ψ(r) =
∫ r

0

ηΦ′(η) dη. (28)

Observe that the condition (12) implies that

lim
r→∞Ψ(r) =∞ (29)

and by (9) we conclude that ∫ β2

0

1
Ψ−1(η)

dη <∞. (30)

Let β1 = V (−a). Then V is a solution of (27) if, and only if,

Ψ(Vx(x)) = N ln
(
V (x)
β1

)
. (31)

Equivalently, ∫ V (x)

β1

1
Ψ−1(N ln(η/β1))

dη = x+ a.

Then, the number of solutions of (27) is equal to the number of solutions β1 of∫ β2

β1

1
Ψ−1(N ln(η/β1))

dη = 2a. (32)

Owing to the change of variable y = N ln(η/β1) and (30), equation (32) becomes

β1

N

∫ N ln(β2/β1)

0

ey/N

Ψ−1(y)
dy = 2a. (33)

Setting z = (β2/β1), define H(z) =
∫ N ln(z)

0
(ey/N/Ψ−1(y)) dy. Finding a solution β1 ∈

(0, β2) of (33) is equivalent to find z ∈ (1,∞) satisfying

H(z) =
2aN
β2

z. (34)
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144 A. L. A. de Araujo and M. Montenegro

The function H(z) is strictly increasing and strictly concave in z, since

H ′(z) =
N

Ψ−1(N ln(z))
> 0, (35)

and, by the fact that Ψ′ > 0 implies (Ψ−1)′ > 0, one obtains

H ′′(z) =
−N [Ψ−1(N ln(z))]′

[Ψ−1(N ln(z))]2
=
−N2

z

(Ψ−1)′(N ln(z))
[Ψ−1(N ln(z))]2

< 0.

It follows from (28) that limz→∞ Ψ−1(N ln(z)) =∞, consequently limz→∞H ′(z) = 0 and
there exists a unique a1 such that the line y = (2a1N/β2)z is a tangent to the graph of
H, since H ′′ < 0 < H ′.

• For a < a1, the equation H(z) = (2aN/β2)z has exactly two solutions, z1(a) and
z2(a), with z1(a) < z2(a). Therefore, β1 = (β2/z1(a)) and β′

1 = (β2/z2(a)), with
β′

1 < β1, are the unique two solutions of (32). It is simple to verify that z1(a) is increas-
ing for a > 0 while z2(a) is decreasing for a > 0. Moreover, lima→0+ z1(a) = 1 and
lima→0+ z2(a) =∞, in particular, 1 < z1(a) < z2(a). Since (31) and (34) are equiva-
lent, there are two stationary solutions V (x) andW (x) such that V (−a) = (β2/z1(a)),
W (−a) = (β2/z2(a)) and β1 = V (−a) > W (−a) = β′

1.
We claim that V (−a) > W (−a) implies V (x) > W (x) for every x ∈ (−a, a).

Assume by contradiction that V (x)−W (x) has at least two zeros in (−a, a], and note
that V (a) = W (a) = β2. Let b ∈ (−a, a] be the second zero, that is, V (b) = W (b).
Then Vx(b) ≥Wx(b). Therefore, by (28), ψ is monotone increasing and

Ψ(Vx(b)) ≥ Ψ(Wx(b)),

hence

Ψ(Vx(b))−N ln(V (b)) ≥ Ψ(Wx(b))−N ln(W (b)).

Since the left- and right-hand sides of the last inequality are constant functions as b
varies in [−a, a], again by (28), we obtain

−N ln(V (−a)) ≥ −N ln(W (−a)),

since N > 0 we get

V (−a) ≤W (−a)
in contrast to V (−a) > W (−a), a contradiction.

• For a = a1, the equation H(z) = (2a1N/β2)z has exactly one solution z0(a1), and
β1 = (β2/z0(a1)) is the unique solution of (32).

• For a > a1, the equation H(z) = (2aN/β2)z has no solution.
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(b) In this situation, 0 < α < 1. We are going to show that⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Φ(Vx))x − N

V α
= 0, x ∈ (−a, a),

Vx(−a) = 0,

V (a) = β2,

(36)

has a solution V > 0 in [−a, a]. Recall the situation (28) and properties (29) and (30).
As in the case α = 1, a solution of (36) is convex and Vx(x) > 0 in (−a, a), then

V (−a) < V (a). Let β1 = V (−a). Then V is a solution of (36) if, and only if,

Ψ(Vx(x)) =
N

1− α (V 1−α(x)− β1−α
1 ),

which is equivalent to∫ V (x)

β1

1
Ψ−1[(N/1− α)(η1−α − β1−α

1 )]
dη = x+ a.

Then, the number of solutions of (36) is equal to the number of solutions β1 of∫ β2

β1

1
Ψ−1[(N/1− α)(η1−α − β1−α

1 )]
dη = 2a. (37)

Owing to the change of variable y = (N/1− α)(η1−α − β1−α
1 ), (29) and (30), (37)

becomes

1
N

∫ (N/(1−α))(β1−α
2 −β1−α

1 )

0

(((1− α)y/N) + β1−α
1 )α/(1−α)

Ψ−1(y)
dy = 2a.

Setting z = (N/(1− α))(β1−α
2 − β1−α

1 ), we count the number of solutions z ∈ (0,∞) of

H(z) = 2a, (38)

where we define H(z) =
∫ z

0
((((1− α)y/N) + β1−α

1 )α/(1−α)/NΨ−1(y)) dy. Note that H(z)
is strictly increasing in z, since

H ′(z) =
(((1− α)z/N) + β1−α

1 )α/(1−α)

NΨ−1(z)
> 0. (39)

It follows from (28) and (12) that (γz2/2) ≤ Ψ(z) ≤ (z2/2), hence
√

2z ≤ Ψ−1(z) ≤√
2/γz and limz→∞ Ψ−1(z) =∞, consequently, by (39), we have the following situa-

tions.

• If (α/1− α) > (1/2), that is, (1/3) < α < 1, we have

H ′(z) ≥ (((1− α)z/N) + β1−α
1 )α/(1−α)

N
√

2/γz

and
lim

z→+∞H ′(z) = +∞.
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• If (α/1− α) < (1/2), that is, 0 < α < (1/3), we have

H ′(z) ≤ (((1− α)z/N) + β1−α
1 )α/(1−α)

N
√

2z

and
lim

z→+∞H ′(z) = 0.

• If (α/1− α) = (1/2), that is, α = (1/3), we have

((2z/3N) + β
2/3
1 )1/2

N
√

2/γz
≤ H ′(z) ≤ ((2z/3N) + β

2/3
1 )1/2

N
√

2z
,

in particular

H(z) ≥ γ1/2

31/2N3/2
z, ∀z > 0.

Hence there exists a2 such that for a ≤ a2, the equation H(z) = 2a has a unique solution
z(a). Therefore, β1 = (β1−α

2 − ((1− α)/N)z(a))1/(1−α) is the unique solution of (37). �

3. Solution of the parabolic problems

We obtain the existence of ordered sub and supersolutions.

Lemma 3.1. Let T > 0 and β2 > 0. Suppose that Φ, a, β1 and V are as in Lemma 1.1
and u0 satisfies (21). Then u(x, t) = M = maxx∈[−a,a] u0(x) is a supersolution of (7) and
u(x, t) = V (x) is a subsolution of (7) for every (x, t) ∈ [−a, a]× [0, T ].

Proof. We have

ut = 0 = Φ′(ux)uxx ≥ Φ′(ux)uxx − N

uα ,

u(−a, t) = M ≥ u0(−a),
u(a, t) = M ≥ u0(a)

and
u(x, 0) = M ≥ u0(x).

Therefore u is a supersolution.
By Lemma 1.1 we obtain

ut = 0 = Φ′(ux)uxx −
N

uα
,

u(−a, t) = V (−a) = β1 = u0(−a),
u(a, t) = V (a) = β2 = u0(a)

and by (21)
u(x, 0) = V (x) ≤ u0(x). �

Therefore u is a subsolution.
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The comparison between a subsolution and supersolution of (22) is stated next.

Lemma 3.2. Let T > 0 and Φ satisfying (8), (9), (11) and (12). If u, u ∈ C2,1((−a, a)×
(0, T )) ∩ C0([−a, a]× [0, T )) ∩H2+η, where 0 < η ≤ 1, are a subsolution and a superso-
lution of (22) with u0 continuous, respectively, then u ≤ u for every (x, t) ∈ [−a, a]×
[0, T ].

Proof. It follows from the hypotheses that⎧⎪⎨⎪⎩
ut ≤ Φ′(ux)uxx + f(u), (x, t) ∈ (−a, a)× (0,∞),

u(−a, t) ≤ u0(−a), u(a, t) ≤ u0(a), t > 0,

u(x, 0) ≤ u0(x), x ∈ [−a, a],
(40)

and ⎧⎪⎨⎪⎩
ut ≥ Φ′(ux)uxx + f(u), (x, t) ∈ (−a, a)× (0,∞),

u(−a, t) ≥ u0(−a), u(a, t) ≥ u0(a), t > 0,

u(x, 0) ≥ u0(x), x ∈ [−a, a].
(41)

Defining w = u− u we obtain⎧⎪⎨⎪⎩
wt ≥ Φ′(ux)uxx − Φ′(ux)uxx + f(u)− f(u), (x, t) ∈ (−a, a)× (0,∞),

w(−a, t) ≥ 0, w(a, t) ≥ 0, t > 0,

w(x, 0) ≥ 0, x ∈ [−a, a].
By the first equation and the mean value theorem, one has

wt ≥ Φ′(ux)uxx − Φ′(ux)uxx + f(u)− f(u)

= Φ′(ux)wxx + uxx(Φ′(ux)− Φ′(ux)) + f(u)− f(u)

= Φ′(ux)wxx + uxxΦ′′(ξ)wx + f ′(ũ)w,

where ξ is between ux and ux, and ũ is between u and u. Therefore,

wt − Φ′(ux)wxx − uxxΦ′′(ξ)wx − f ′(ũ)w ≥ 0. (42)

The maximum principle from the book [22, Lemma 2.1, p. 54] implies w ≥ 0 and

u ≤ u for every (x, t) ∈ [−a, a]× [0, T ]. �

Lemma 3.3. Let T > 0, β2 > 0 and Φ satisfy (8), (9), (11) and (12). Suppose that a, β1

and V are as in Lemma 1.1 and u0(x) is continuous and satisfies (21), with u and u as in
Lemma 3.1. Let u ∈ C2,1((−a, a)× (0, T )) ∩ C0([−a, a]× [0, T )) ∩H2+η, where 0 < η ≤ 1,
be a solution of (22). Then

M = u(x, t) ≥ u(x, t) ≥ u(x, t) = V (x) for every (x, t) ∈ [−a, a]× [0, T ).
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Proof. By Lemma 3.1, u(x, t) = M = maxx∈[−a,a] u0(x) is a supersolution of (22) and
u(x, t) = V (x) is a subsolution of (22).

It follows from Lemma 3.2 that

u(x, t) ≤u(x, t) (43)

≤u(x, t) for every (x, t) ∈ [−a, a]× [0, T ). �

Proof of Lemma 1.3. We rewrite below the problem (22) in an adequate form⎧⎪⎨⎪⎩
vt = F (x, t, v, vx, vxx), (x, t) ∈ (−a, a)× (0, T ),

v(−a, t) = β1, v(a, t) = β2, t ∈ (0, T ),

v(x, 0) = u0(x), x ∈ [−a, a],
(44)

where

F (x, t, z, p, r) = Φ′(p)r + f(z), (45)

with Φ and f given by (8) and (23), respectively. We prove the existence of a solution for
problem (44) by means of Lemma 1.4.

In fact, condition (i) of Lemma 1.4 is fulfilled by taking k = 1/2 and c = sup
R
|f |2/2,

hence

zF (x, t, z, 0, 0) = zf(z) ≤ k|z|2 + b1, ∀k > 0.

For condition (ii) we take a0 = γ and a1 = 1.
The condition (iii) is satisfied if one takes Θ = 1, b1 = supz∈R

|f ′(z)| and b2 =
sups∈R

|Φ′′(s)|. Indeed,

|F (x, t, z, p, r)− F (y, s, w, q, r)| ≤ |(Φ′(p)− Φ′(q))r|+ |f(z)− f(w)|.

By the mean value theorem applied to Φ′ and f we obtain

|F (x, t, z, p, r)− F (y, s, w, q, r)| ≤ sup
ζ∈R

|Φ′′(ζ)||p− q||r|+ sup
z∈R

|f ′(z)||z − w|,

that is,

|F (x, t, z, p, r)− F (y, s, w, , q, r)| ≤ b2|p− q||r|+ b1|z − w|
and then

|F (x, t, z, p, r)− F (y, s, w, q, r)| ≤ (|(x, t)− (y, s)|+ |z − w|+ |p− q|)(b1 + b2|r|).

Thus there is a solution of (44), which is equivalent to (22). The regularity follows from
Lemma 1.4 and (6). The theorem is proved. �

Proof of Theorem 1.2. By Lemma 1.3, the problem (22) has a solution u ∈
C2,1((−a, a)× (0, T )) ∩ C0([−a, a]× [0, T )) ∩H3+η, for some 0 < η ≤ 1.
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By Lemma 3.3, the solution obtained in Lemma 1.3 satisfies m = (θ/4) ≤ V ≤ u ≤M .
Therefore, the solution of (22) satisfies

m =
θ

4
≤ u ≤ u ≤M. (46)

It follows from the definition of f in (23) that f(u) = −(N/uα). Therefore, u is a solution
of problem (7). Uniqueness follows from Lemma 3.2. �

Proof of Lemma 1.5. Let w(x, t) = u(x, t)− V (x). Since V (x) is a stationary solu-
tion of (7), by the mean value theorem for ξ1 between ux and Vx, and ξ2 between u and
V (both ξ1 and ξ2 depend on x), we obtain

wt = Φ′(ux)wxx + (Φ′(ux)− Φ′(Vx))Vxx −N
(

1
uα
− 1
V α

)
= Φ′(ux)wxx + Φ′′(ξ1)Vxxwx +

Nα

ξα+1
2

w.

Hence

Φ′(ux)− Φ′(Vx) = Φ′′(ξ1)(ux − Vx)

and
1
uα
− 1
V α

=
α

ξα+1
2

(u− V ),

since w(−a, t) = w(a, t) = 0 and w(0, x) = u0(x)− V (x) ≥ 0. By the maximum principle
from [22, Lemma 2.1, p. 54], we obtain w ≥ 0 and

u(x, t) ≥ V (x) for every (x, t) ∈ (−a, a)× [0, T ). �

Proof of Lemma 1.6. We distinguish two steps. We first prove a boundary estimate
and second an interior estimate.

Step 1. ux on x = −a and x = a.
We define Ls = (u0(a)− u0(−a))/2a. Note that Ls is the smallest slope among all

straight lines L passing through (−a, u0(−a)) which have the property that u0(x) ≤ L(x)
for every x ∈ [−a, a]. This follows from the convexity of u0(x) assured by (5). Note that
these lines L are not vertical because u0 is C3 in the interval [−a, a], see (5), thus the
lateral derivatives of u0 at −a and a exist. Moreover, Ls > 0.

Define the operator

P (z) = −zt + (Φ(zx))x + f(z).

If u is a solution of (7), then P (u) = 0 ≥ P (L), because f(L) ≤ 0 and u ≤ L on the
parabolic boundary Γ, see (17). By the comparison principle of [20, Theorem 9.7, p. 222],
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u ≤ L in [−a, a]× [0, T ). Then

ux(−a, t) ≤ Ls for every t ∈ [0, T ). (47)

Since u(x, t) ≥ V (x) for every (x, t) ∈ [−a, a]× [0, T ), by Lemma 1.5, and u(−a, t) =
β1 = V (−a) we have

u(x, t)− u(−a, t)
x+ a

≥ V (x)− V (−a)
x+ a

.

Letting x→ −a+, we obtain

0 = Vx(−a) ≤ ux(−a, t) uniformly in t. (48)

By (47) and (48), we have

0 ≤ ux(−a, t) ≤ Ls in [0, T ). (49)

Let v(x, t) = u(x, t)− u(a, t). Since v satisfies

vt = (Φ(vx))x + f(u),

with f as in (23), then

−vt + (Φ(vx))x = −f(u) ≥ 0 for every (x, t) ∈ [−a, a]× [0, T ).

Since

v(−a, t) = u(−a, t)− u(a, t) = β1 − β2 < 0,

then v(a, t) = 0 and v(x, 0) = u0(x)− u0(a) ≤ 0. Thus, v ≤ 0 by the comparison principle
[20, Theorem 9.7, p. 222]. Therefore

0 ≤ u(x, t)− u(a, t)
x− a for every (x, t) ∈ [−a, a]× [0, T ).

Letting x→ a−, we get

0 ≤ ux(a, t) uniformly in t. (50)

Since u(x, t) ≥ V (x) and u(a, t) = β2 = V (a), we obtain

u(x, t)− u(a, t)
x− a ≤ V (x)− V (a)

x− a .

Letting x→ a−, we get

ux(a, t) ≤ Vx(a) uniformly in t. (51)

By (51) and (52) we conclude that

0 ≤ ux(a, t) ≤ Vx(a) for every t ∈ [0, T ). (52)

Step 2. ux in the interval (−a, a).
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Let h = ux. By the regularity of u provided by Lemma 1.3, we obtain

ht − Φ′(ux)hxx − Φ′′(ux)uxxhx − αu−(α+1)h = 0 for every (x, t) ∈ (−a, a)× [0, T ).

Since h(−a, t) ≥ 0 and h(a, t) ≥ 0 for every t ∈ [0, T ) by Step 1, the fact that h(x, 0) =
u′0(x) ≥ 0, and using the maximum principle from [22, Lemma 2.1, p. 54], we obtain

ux(x, t) ≥ 0 for every (x, t) ∈ (−a, a)× [0, T ). �

Proof of Theorem 1.7. We first approximate problem (3) by a family of problems
like (7) using Φ� defined by (8).

The hypotheses of Theorem 1.2 are satisfied here, hence there exists a solution u� of
the problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

zt = (Φ�(zx))x − N

zα
, (x, t) ∈ (−a, a)× (0, T ),

z(−a, t) = β1, z(a, t) = β2, t ∈ (0, T ),

z(x, 0) = u0(x), x ∈ [−a, a].
(53)

Our aim is to show that there is �0 > 0 such that the corresponding solution u�0 of (53)
(and of (7)) satisfies

|(u�0)x(x, t)| < �0 for every (x, t) ∈ [−a, a]× [0, T ). (54)

The function Φ�0 defined by (8) is such that

Φ′
�0((u�0)x) =

1
1 + ((u�0)x)2

.

Therefore, we conclude that u�0 > 0 is the solution of problem (3) and it belongs to
C2,1((−a, a)× (0, T )) ∩ C0([−a, a]× [0, T )) ∩H3+η for some 0 < η ≤ 1.

In this proof we denote Φ = Φ� and u = u�. We estimate ux on the interval [−a, a].
Step 1. ux on −a and a.
By Lemma 1.6,

0 ≤ ux(−a, t) ≤ Ls and 0 ≤ ux(a, t) ≤ Vx(a). (55)

We proceed to estimate ux from below and from above for x ∈ (−a, a).
Step 2. Estimate of ux on (−a, a) from below.
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The constant U = min(y,s)∈Γ ux(y, s) satisfies

U = min
(y,s)∈Γ

ux(y, s) ≥ min
x∈[−a,a]

u′0(x)

by (55). Since u satisfies

ut = Φ′(ux)uxx + f(u) for every (x, t) ∈ (−a, a)× [0, T ),

deriving with respect to x we obtain

uxt = (Φ′(ux)uxx)x + f ′(u)ux.

Defining w = ux we get

wt = (Φ′(w)wx)x + f ′(u)w. (56)

Define the operator

Qz = −zt + (Φ′(z)zx)x + f ′(u)z.

Therefore,

Qw = 0 ≤ Qv for every (x, t) ∈ (−a, a)× [0, T ),

by virtue of

w(x, t) = ux(x, t) ≥ U for every (x, t) ∈ Γ.

It follows from the comparison principle [20, Theorem 9.7, p. 222] that w ≥ v in (−a, a)×
[0, T ), that is,

ux(x, t) ≥ min
x∈[−a,a]

u′0(x) ≥ 0 for every (x, t) ∈ (−a, a)× [0, T ). (57)

Step 3. Estimate of ux on (−a, a) from above.
Define the constant R = max(y,s)∈Γ{ux(y, s)}. The boundary and initial conditions

imply

R ≤ max{Ls, Vx(a), max
x∈[−a,a]

u′0(x)}.

Since u satisfies

ut = Φ′(ux)uxx + f(u),

deriving with respect to x gives

uxt = (Φ′(ux)uxx)x + f ′(u)ux.

Therefore, by (56) we obtain,

Qw = −wt + (Φ′(w)wx)x + f ′(u)w = 0 for every (x, t) ∈ (−a, a)× [0, T ),

and

w(x, t) = ux(x, t) ≤ R ≤ max{Ls, Vx(a), max
x∈[−a,a]

u′0(x)} for every (x, t) ∈ Γ.
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We can rewrite Qw in the form

Qw = −wt + Φ′(w)wxx + Φ′′(w)w2
x + f ′(u)w = 0.

Using the comparison principle [20, Theorem 9.5, p. 220] we obtain

sup
[−a,a]×[0,T )

w(x, t) ≤ e(k+1)T sup
(x,t)∈Γ

w+(x, t)

where k = sup{|f ′(s)| : m ≤ s ≤M}, see (46). Therefore

ux(x, t) ≤ e(k+1)T max{Ls, Vx(a), max
x∈[−a,a]

u′0(x)} for every (x, t) ∈ [−a, a]× [0, T ).

(58)
Step 4. Conclusion of the proof.
By (57) and (58) we get

0 ≤ ux(x, t) ≤ e(k+1)T max{Ls, Vx(a), max
x∈[−a,a]

u′0(x)} for every (x, t) ∈ [−a, a]× [0, T ).

(59)
Therefore

(ux(x, t))2

≤ e2(k+1)T max{L2
s, (Vx(a))2, max

x∈[−a,a]
(u′0(x))

2} for every (x, t)∈ [−a, a]× [0, T ).

(60)

Since the right-hand side of (60) is finite constant and independent of � > 0, there exists
�0 > 0 large enough that

e2(k+1)T max{L2
s, (Vx(a))2, max

x∈[−a,a]
(u′0(x))

2} < �20.

By (59) and (60) we conclude (54). The uniqueness of the solution follows from Lemma
3.2. �

4. An abstract result on asymptotic stability

This section is of independent interest. We generalize the results due to Reynolds [23,
Theorem 1.9 and Corollary 1.10]. We prove the asymptotic stability for stationary solu-
tions of a general parabolic problem. The improved results are Theorem 4.2 and Corollary
4.3; essentially, the conditions (66) and (67) with C > 0 allow us to deal with singular
equations like (3) and (7) (in [23] the requirement amounts to C < 0).

We define the operator L by

Lu = h

(
x, t, u,

∂u

∂xi
,
∂2u

∂xi∂xj

)
− ut,

where

h

(
x, t, u,

∂u

∂xi
,
∂2u

∂xi∂xj

)
= h

(
x, t, u,

∂u

∂x1
, . . . ,

∂u

∂xn
,
∂2u

∂x2
1

,
∂2u

∂x1∂x2
, . . . ,

∂2u

∂x2
n

)
.

We also use the notation h(x, t, z, p1, . . . , pn, r11, r1,2, . . . , rnn) or simply h(x, t, z, pi, ri,j),
which is also equivalent to h(x, t, z, p, r). The repeated indices i and j vary from 1 to n.
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First of all we show asymptotic stability for a stationary solution of the problem{Lu = 0, (x, t) ∈ Ω× (0,∞),

u = ϕ(x, t), (x, t) ∈ (Ω× {0}) ∪ (∂Ω× [0,∞)),
(61)

where Ω is a bounded domain in R
n with smooth boundary and ϕ ∈ C(Ω× {0}) ∪ (∂Ω×

[0,∞)). More precisely, if v is a stationary solution, then one shows that the solution
u(x, t) of (61) tends to v as t→∞ uniformly for x ∈ Ω.

We assume that the function h : Ω× (0,∞)× R× R
n × R

n2
is continuous. We also

assume that the derivatives hz, hpi
and hrij

are continuous in Ω× (0,∞)× R× R
n × R

n2
.

Another assumption is the existence of a constant K > 0 such that∑
i,j

hri,j
(x, t, z, pi, ri,j)ξiξj ≥ K|ξ|2 (62)

for every (x, t, z, pi, ri,j) ∈ Ω× (0,∞)× R× R
n × R

n2
and every ξ ∈ R

n, where |ξ|
denotes the Euclidean norm of ξ.

The following technical lemma is fundamental in the proof of the general stability
Theorem 4.2.

Lemma 4.1. Let λ, σ, χ,A be positive constants. Define φ(x) = eλR − eλx1 , where R
is a constant such that

R > 3x1 for every x = (x1, x2, . . . , xn) ∈ Ω.

Define

ψ(x, t) = ε(λ)
φ(x)
δ

+ ε(λ)
φ(x)
δ0

+
[
A
φ(x)
δ0

]
e−χ(t−σ),

where

δ = inf
(x,t)∈Ω×(0,∞)

eλx1 , δ0 = inf
(x,t)∈Ω×(0,∞)

φ(x), δ1 = sup
(x,t)∈Ω×(0,∞)

φ(x)

and

ε(λ) =
ε

δ1
with 0 < ε < 1.

Then, for every A > 0 and σ > 0 there exists a positive constant M > 0, independent of
λ > 0 and χ > 0, such that

|ψx1x1(x, t)| < M for every (x, t) ∈ Ω× [σ,∞).

Proof. By definition of ψ(x, t),

ψx1x1(x, t) = −λ2ε(λ)
eλx1

δ
− λ2ε(λ)

eλx1

δ0
−

[
λ2A

eλx1

δ0

]
e−χ(t−σ).
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A simple computation gives∣∣∣∣λ2ε(λ)
eλx1

δ

∣∣∣∣ ≤M1ε,

∣∣∣∣λ2ε(λ)
eλx1

δ0

∣∣∣∣ ≤M2ε,

∣∣∣∣λ2A
eλx1

δ0

∣∣∣∣e−χ(t−σ) ≤M3 for every t ≥ σ,

where Mi, i = 1, 2, 3 are positive constants independent of λ. In this way, if t ≥ σ, there
exists a positive constant M > 0 independent of λ, such that

|ψx1x1(x, t)| < M for every (x, t) ∈ Ω× [σ,∞). �

The following assumptions are related to the general stability theorem that we state
next.

Let G = B(0,M) be a subset of R
n2

, where M is the same as in Lemma 4.1. Suppose
that there exists a constant BG such that

|hpi
| ≤ BG for every (x, t, z, pi, ri,j) ∈ Ω× (0,∞)× R× R

n ×G. (63)

Recall (62), assume that there exists λ > 0 such that

BGλ−Kλ2 ≤ −4. (64)

For that fixed λ > 0 and R as in Lemma 4.1, let C > 0 be a small enough constant
that

eλ(R−x1) ≤ 1
C

+ 1 for every x1 such that x = (x1, x2, . . . , xn) ∈ Ω. (65)

Let C : Ω× (0,∞)→ R be a measurable function essentially bounded from above. We
assume that

lim sup
t→∞

C(x, t) ≤ C uniformly for x ∈ Ω (66)

and
hz(x, t, z, pi, ri,j) ≤ C(x, t) for every (x, t) ∈ Ω× (0,∞). (67)

We also assume that

lim
t→∞h(x, t, 0, . . . , 0) = 0 uniformly for x ∈ Ω (68)

and
lim

t→∞ϕ(x, t) = 0 uniformly for x ∈ ∂Ω. (69)

Let σ̄ be a sufficiently large constant that

C(x, t)(eλR − eλx1) < 2eλx1 for every (x, t) ∈ Ω× [σ̄,∞), (70)

|h(x, t, 0, . . . , 0)| < ε(λ) for every (x, t) ∈ Ω× [σ̄,∞) (71)

and
|ϕ(x, t)| < ε(λ) for every (x, t) ∈ ∂Ω× [σ̄,∞). (72)
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Theorem 4.2. Assume that (62)–(72) hold. If u ∈ C2,1(Ω× (0,∞)) ∩ C(Ω× (0,∞))
is a solution of (61), then

lim
t→∞u(x, t) = 0 uniformly for x ∈ Ω.

Proof. Suppose that φ(x) and ψ(x, t) are as in Lemma 4.1, with the constants

A = sup
Ω
|u(x, σ)|, χ =

2δ
δ1

and σ ≥ σ̄. (73)

Note that ψ(x, t) > 0, ψx1(x, t) < 0 and ψx1x1(x, t) < 0 for every (x, t) ∈ Ω× [σ̄,∞).
By the definition of L,

Lψ(x, t) = h(x, t, ψ, ψx1 , 0, . . . , 0, ψx1x1 , 0, . . . , 0) +
[
χA

δ0

]
φ(x) e−χ(t−σ).

Writing h as h(x, t, z, pi, ri,j) and using the mean value theorem, we conclude that

Lψ(x, t) = h(x, t, 0, . . . , 0) + ψ(x, t)hz(v̄) + ψx1(x, t)hp1(v̄)

+ ψx1x1(x, t)hr1,1(v̄) +
[
χA

δ0

]
φ(x)e−χ(t−σ),

where v̄ is between X = (x, t, 0, . . . , 0) and Y = (x, t, ψ, ψx1 , 0, . . . , 0, ψx1x1 , 0, . . . , 0).
By virtue of the assumptions (62), (63) and (67), for every (x, t) ∈ Ω× [σ̄,∞) we obtain

Lψ(x, t) ≤ h(x, t, 0, . . . , 0) + C(x, t)ψ(x, t) +BG|ψx1(x, t)|

+Kψx1x1(x, t) +
χA

δ0
φ(x)e−χ(t−σ) ≤ h(x, t, 0, . . . , 0)

+
ε(λ)
δ

(C(x, t)φ(x) +BG|φx1(x)|+Kφx1x1(x))

+
ε(λ)
δ0

(C(x, t)φ(x) +BG|φx1(x)|+Kφx1x1(x))

+
A

δ0
e−χ(t−σ)(C(x, t)φ(x) +BG|φx1(x)|+Kφx1x1(x))

+
χA

δ0
φ(x)e−χ(t−σ). (74)

By (64)–(66) we get

C(x, t)φ(x) +BG|φx1(x)|+Kφx1x1(x)

=C(x, t)(eλR − eλx1) +BGλeλx1 −Kλ2eλx1

≤− 4eλx1 + C(x, t)(eλR − eλx1)

≤− 4eλx1 + C(eλR − eλx1)

<− 2eλx1 ≤ −2δ.
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In synthesis,

C(x, t)φ(x) +BG|φx1(x)|+Kφx1x1(x) < −2δ for every (x, t) ∈ Ω× [σ̄,∞). (75)

Substituting (75) into (74) we have

Lψ(x, t) < ε(λ) +
ε(λ)
δ

(−2δ) +
ε(λ)
δ0

(−2δ)− 2δA
δ0

e−χ(t−σ) +
χAδ1
δ0

e−χ(t−σ)

< −ε(λ)− 2δA
δ0

e−χ(t−σ) +
χAδ1
δ0

e−χ(t−σ).

By (73),

Lψ(x, t) < −ε(λ) for every (x, t) ∈ Ω× [σ,∞). (76)

And, by the definition of ψ(x, t) (see Lemma 4.1),

ψ(x, σ) > A for every x ∈ Ω, (77)

ψ(x, t) > ε(λ) for every (x, t) ∈ ∂Ω× [σ,∞). (78)

By the estimates (72), (76)–(78) and (73) and by the comparison theorem [9, Theorem
16, p. 52] in the cylindrical domain Ω× (0,∞), we obtain

u(x, t) < ψ(x, t) for every (x, t) ∈ Ω× [σ,∞).

Repeating the same reasoning with −ψ in place of ψ, we obtain

−ψ(x, t) < u(x, t) for every (x, t) ∈ Ω× [σ,∞).

Therefore,

|u(x, t)| < ψ(x, t) ≤M4[ε+ e−χ(t−σ)] for every t ≥ σ,
where M4 is a positive constant independent of t. Letting t→∞ we conclude the proof
of the theorem. �

Let h0 and ω0 be continuous functions and suppose that

h0(x, u, uxi
, uxixj

) = 0 in Ω, (79)

with

u = ω0 on ∂Ω, (80)

has a unique solution v ∈ C2(Ω). We also suppose that u ∈ C2,1(Ω× (0,∞)) ∩
C(Ω× (0,∞)) is a solution of (61).

Assume that

h(x, t, v, vxi
, vxixj

) is continuous on Ω× (0,∞), (81)

and

ω0 ∈ C(Ω). (82)
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Corollary 4.3. Assume (62)–(67), (81) and (82). Let u be a solution of (61). Suppose
that h(x, t, z, p, r)→ h0(x, z, p, r) as t→∞ uniformly in x, z, p, r, where x ∈ Ω, z ∈ R,

p ∈ R
n, r ∈ R

n2
and ϕ(x, t)→ ω0(x) uniformly for x ∈ ∂Ω as t→∞. Then

lim
t→∞u(x, t) = v(x) uniformly for x ∈ Ω.

Proof. The proof is analogous to [23, Corollary 1.10]. �

5. Asymptotic stability of stationary solutions of (3) and (7)

Proof of Theorem 1.8. Let Ω = (−a, a) ⊂ R and let M > 0 as in Lemma 4.1. Recall
(63) and take the interval G = [−M,M ].

We are going to use Theorem 4.2 and Corollary 4.3 with the function

h(x, t, z, p, r) = Φ′(p)r + f(z), (83)

in the set (−a, a)× (0,∞)× R× R×G, where Φ and f are given by (8) and (23),
respectively. Note that hp(x, t, z, p, r) = Φ′′(p)r is continuous. Then

|hp(x, t, z, p, r)|
= |Φ′′(p)||r| ≤ BM for every (x, t, z, p, r) ∈ (−a, a)× (0,∞)× R× R×G. (84)

Recalling (12) and (16), take BG = MB > 0, K = γ and λ > 0 large enough in (64) such
that condition (25) holds. We conclude that

hr(x, t, z, p, r)ξξ = Φ′(p)ξ2 ≥ γξ2. (85)

Thus conditions (62)–(64) are satisfied.
The solution of (7) satisfies

θ

4
≤ u ≤ u ≤M,

see the proof of Theorem 1.2. It follows from the definition of f in (23) that f(u) =
−(N/uα) and f(V ) = −(N/V α). Therefore,

h(x, t, u, ux, uxx) = Φ′(ux)uxx − N

uα
= Φ′(ux)uxx + f(u),

h0(x, V, Vx, Vxx) = Φ′(Vx)Vxx − N

V α
= Φ′(Vx)Vxx + f(V ).

We can rewrite problem (7) as⎧⎪⎨⎪⎩
ut = h(x, t, u, ux, uxx), x ∈ (−a, a), t ∈ (0,∞),
u(−a, t) = β1, u(a, t) = β2, t ∈ (0,∞),
u(x, 0) = u0(x), x ∈ [−a, a],

(86)

where h is defined as in (83). From now on, we verify (62)–(67).
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We prove the stability condition for problem (7) by means of Corollary 4.3. Take

ϕ(x, t) =
t

1 + t
V (x) +

1
1 + t

u0(x)

in (61) and ω0(x) = V (x) in (82). Recall that u0(−a) = V (−a) = β1 and u0(a) = V (a) =
β2, then

ϕ(x, 0) = u0(x),

ϕ(−a, t) =
t

1 + t
V (−a) +

1
1 + t

u0(−a) = β1

and

ϕ(a, t) =
t

1 + t
V (a) +

1
1 + t

u0(a) = β2.

Therefore, the solution u of (86) is such that u = ϕ for each (x, t) ∈ ((−a, a)× {0}) ∪
({−a, a} × (0,+∞)); we also have ϕ(x, t)→ ω0(x) = V (x) as t→ +∞ uniformly for x ∈
{−a, a}.

It remains to check (65)–(67). Condition (67) is verified, since hz(x, t, z, p, r) = f ′(z)
satisfies

f ′(z) ≤ αN

mα+1
=

4α+1αN

θα+1
for every z ∈ [−a, a]

(recall (23)), in (66) we take C(x, t) = C = (4α+1αN/θα+1).
Let V be the solution of the stationary problem, see Lemma 1.1. Thus{

(Φ(Vx))x + f(V ) = 0, x ∈ (−a, a),
V (−a) = β1, V (a) = β2,

(87)

where f(V ) = −(N/V α) and V > 0 in [−a, a]. Since Vx ≥ 0 in [−a, a], we have that
θ = V (−a) = β1(a). Therefore

f ′(z) ≤ C =
4α+1αN

β1(a)α+1
.

We now verify (65). Since eλ(2a−x) ≤ eλ3a for each x ∈ [−a, a], (26) is equivalent to

eλ3a ≤ β1(a)α+1

4α+1αN
+ 1 =

1
C

+ 1.

Hence we conclude that

eλ(2a−x) ≤ 1
C

+ 1.

We have verified (65)–(67).
Since h(x, t, V, Vx, Vxx) is continuous in [−a, a]× [0,∞) and h(x, t, z, p, r) =

h0(x, z, p, r) = Φ′(p)r + f(z), by Theorem 4.2 and Corollary 4.3 we obtain

lim
t→∞u(x, t) = V (x) uniformly in x ∈ [−a, a]. �

Then V is a stable equilibrium of (7).
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Proof of Corollary 1.9. In the proof of Theorem 1.7 we can take �0 > 0 large enough
that

|ux(x, t)| < �0 for every (x, t) ∈ [−a, a]× [0, T )

and

|Vx(x)| < �0 for every x ∈ [−a, a].
Therefore, we can rewrite

h(x, t, u, ux, uxx) =
uxx

1 + u2
x

− N

uα
= Φ′

�0(ux)uxx + f(u)

and

h0(x, V, Vx, Vxx) =
Vxx

1 + V 2
x

− N

V α
= Φ′

�0(Vx)Vxx + f(V ).

The conclusion follows from Theorem 1.8. �

We complete the paper with an additional remark on an estimate for the solution of
(3) and of (7). Recall that

1
Φ′

�(s)
= s2 + 1 if |s| < �,

see (8) and (9). In the next proposition 0 < α ≤ 1 is as in (3) and (7).

Proposition 5.1. Suppose that Φ satisfies (8)–(16). Let u be the solution of (3)
according to Theorem 1.7 with 0 < u0 ≤ 1. For all constants σ and ξ such that σ > 0
and 0 < ξ < α, there exists γ0 > 0 such that if

0 < σ ≤ 1
γ0

min
{
α− ξ

2ξ
, 1

}
and

u′0 ≥ σ(x+ a)u−ξ
0 for every x ∈ [−a, a], (88)

then

u(x, t) ≥ C(x+ a)2/(1+ξ) for every x ∈ [−a, a], (89)

where C > 0 is a constant depending only on ξ, σ, and γ0.

Proof of Proposition 5.1. For � > 0, let Φ� be as in (8). We have Φ′
�(s) ≥ γ =

p(2�) > 0, see the proof of Theorem 1.7. Note that γ = γ� = p(2�) goes to 0 when �
goes to +∞. Hence, taking � = �0 large enough as in Theorem 1.7:

0 < σ ≤ 1
γ

min
{
α− ξ

2ξ
, 1

}
. (90)

We denote such γ by γ0.
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Integrating from 0 to s > 0 we get

Φ�(s) ≥ γs

and by (88) we obtain

Φ�(u′0(x)) ≥ γσ(x+ a)u−ξ
0 . (91)

Since u0 ≤ 1, it follows from Lemma 3.3 that

0 < u ≤M ≤ 1. (92)

Let

ε = γσ.

We set J�(x, t) = Φ�(ux)− ε(x+ a)u−ξ. By (91) we have J�(x, 0) ≥ 0 in [−a, a] and, owing
to the boundary conditions u(−a, t) = β1 and u(a, t) = β2, we have J�(−a, t) ≥ 0 and
J�x(a, t) ≥ 0. Indeed, by Lemma 1.6, ux(−a, t) ≥ 0 and ux(a, t) ≥ 0, hence

J�(−a, t) = Φ�(ux(−a, t))− ε(−a+ a)u(−a, t)−ξ ≥ γux(−a, t) ≥ 0.

Since by assumptions on ξ, α and ε = γσ ≤ 1, we obtain

J�x(x, t) = Φ′
�(ux)uxx − ε u−ξ + εγ(x+ a)u−ξ−1ux

≥ Φ′
�(ux)uxx − u−α + εγ(x+ a)u−ξ−1ux

= ut + εγ(x+ a)u−ξ−1ux.

Hence,

J�x(a, t) ≥ ut(a, t) + ε2aγu(a, t)−ξ−1ux(a, t) ≥ 0,

because ut(a, t) = 0.
To prove (89) it suffices to show that J�(x, t) ≥ 0 on [−a, a]× (0, T ). In fact, if J�(x, t) ≥

0 we have

Φ�(ux) ≥ ε(x+ a)u−ξ.

Using the fact that Φ�0(s) ≤ s for s > 0 and that ux ≥ 0 for every (x, t) ∈ [−a, a]× (0, T )
we conclude that

ux ≥ ε(x+ a)u−ξ.

Therefore,
1

1 + ξ
(u1+ξ(x, t))x ≥ ε(x+ a).

Integrating from −a to x ≤ a we obtain

u1+ξ(x, t) ≥ ε(1 + ξ)(x+ a)2 + β1+ξ
1 ≥ ε(1 + ξ)(x+ a)2

and (89) follows.
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We will prove that J�(x, t) ≥ 0. A straightforward calculation gives

1
Φ′

�(ux)
J�t − J�xx = (αu−α−1 − 2εξu−ξ−1)ux

− εξ(x+ a)
1

Φ′
�(ux)

u−ξ−α−1

+ εξ(ξ + 1)(x+ a)u−ξ−2u2
x.

The first term on the right-hand side can be estimated from below by ξu−α−1ux, see (90)
and (92).

To estimate the second term on the right-hand side, taking � = �0 as in Theorem 1.7
and (90), note that by (54) we have the estimate |ux(x, t)|2 < �20, and under assumption
on Φ� we have

1
Φ′

�0
(ux)

= u2
x + 1, (93)

see (8) and (9). Therefore,

1
Φ′

�0
(ux)

J�0t − J�0xx ≥ ξu−α−1ux − εξ(x+ a)u−ξ−α−1u2
x

− εξ(x+ a)u−ξ−α−1 + εξ(ξ + 1)(x+ a)u−ξ−2u2
x.

By virtue of the fact that

Φ�0(s) ≤ s for s > 0,

ux ≥ 0 for every (x, t) ∈ [−a, a]× (0, T )

and the definition of J�0 we obtain

1
Φ′

�0
(ux)

J�0t − J�0xx ≥ ξu−α−1ux − εξ(x+ a)u−ξ−α−1u2
x

− εξ(x+ a)u−ξ−α−1 + εξ(ξ + 1)(x+ a)u−ξ−2u2
x

≥ ξu−α−1ux + εξ2(x+ a)u−ξ−2u2
x + ξu−α−1J�0 − ξu−α−1Φ�0(ux)

≥ ξu−α−1(ux − Φ�0(ux)) + ξu−α−1J�0 ≥ ξu−α−1J�0 .

Using the maximum principle [22, Lemma 2.1, p. 54], we obtain from u < 1 and α < 1
that

J�0(x, t) ≥ 0 for every (x, t) ∈ [−a, a]× (0, T ). �
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