
Molecular characterization of the Glu-Ay
gene from Triticum urartu for its potential
use in quality wheat breeding

M. V. Gutiérrez, C. Guzmán, L. M. Martı́n and J. B. Alvarez*
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ES-14071 Córdoba, Spain

Abstract
Triticum urartu Thum. ex Gandil. is a wild species identified as A-genome donor for polyploid

wheats, which could be used as gene source for wheat breeding. The high-molecular weight

glutenin subunits are endosperm storage proteins that are associated with bread-making qual-

ity. In T. urartu, these proteins are encoded by the Ax and Ay genes at the Glu-A u1 locus. The

Ay gene of 17 Glu-A u1 allelic variants previously detected in this species has been analysed

using PCR amplification and digestion of the PCR products with two endonucleases (Dde I

and Pst I). The combination of two restriction patterns has revealed variations between the

active and inactive alleles, and within each type. This variation, especially that detected

among the active alleles, could enlarge the high-quality genetic pool of modern wheat and

be used for bread-making quality improvement in durum and common wheat.

Keywords: electrophoresis; genetic resources; glutenin; quality breeding; wild wheat

Introduction

Nowadays, global climate change is one of the major

problems facing humanity. For crops, this will require

the release of new cultivars able to adapt to a changing

environment, without reducing quality standards or affect-

ing industrial food production according to the demands of

a population highly sensitized to food quality (Godfray

et al., 2010). Several different studies have suggested that

relatives and wild progenitors of wheat species could be

interesting candidates for enlarging the gene pool of culti-

vated wheats (Hajjar and Hodgkin, 2007). At the diploid

level, the main species of wild diploid wheat are Triticum

monococcum L. ssp. aegilopoides Link em. Thell. (syn.

T. boeoticum; 2n ¼ 2x ¼ 14; AmAm) and T. urartu Thum.

ex Gandil (2n ¼ 2x ¼ 14; AuAu), the latter species having

been identified as the A-genome donor of polyploid

wheat (Dvorak et al., 1993).

The presence and variability of the endosperm storage

proteins are associated with the bread-making quality of

wheat. These proteins are divided into two main groups

(gliadins and glutenins) according to their molecular

characteristics (Payne, 1987). Glutenins are also divided

into high molecular weight (HMWGs) and low mole-

cular weight (B-LMWGs and C-LMWGs) subunits. The

HMWGs, encoded by genes at the Glu-1 loci located on

the long arm of group-1 homoeologous chromosomes

being the best studied (Payne, 1987), have been associated

with bread-making quality in common wheat (Cornish

et al., 2006). Each Glu-1 locus contains two tightly linked

genes that encode for two types of HMWGs, called x- and

y-type (Harberd et al., 1986), although some of these

genes are not expressed in cultivated wheats. In particular,

the Ay subunit is absent in all durum and common wheats,

while it is expressed in wild diploid and tetraploid wheats

(Waines and Payne, 1987; Ciaffi et al., 1993), its presence* Corresponding author. E-mail: jb.alvarez@uco.es
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being associated with an increase in bread-making quality

in wheat (Ciaffi et al., 1995).

Alvarez et al. (2009) showed that the introgression of

T. urartu genome in durum wheat affects the gluten

strength. However, these materials were developed

from a single line, whereas Caballero et al. (2008)

found as many as 17 allelic variants for the Glu-A u1

locus in a large collection of T. urartu. The Ax gene

was found to be active in all these alleles, while the Ay

subunit was detected in nine of them.

The aim of the present study was the molecular charac-

terization of the allelic variants for the Ay gene detected

by Caballero et al. (2008) to obtain additional data prior

to their potential introgression in wheat.

Materials and methods

Seventeen accessions of T. urartu that have the allelic

variants found by Caballero et al. (2008) were analysed.
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Fig. 1. PAGE separation of PCR products from the Ay genes. (a) active Ay alleles; (b) inactive Ay alleles. M, X174 DNA-Hae
III digest; C, cv. Cheyenne; A, cv. Alaga.
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Fig. 2. PAGE separation of PCR products from the Ay genes digested with Dde I and PstI (up and down, respectively). (a and
c) digestion patterns of active Ay alleles; (b and d) digestion patterns of inactive Ay alleles. M, X174 DNA-Hae III digest;
C, cv. Cheyenne; A, cv. Alaga.
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DNA isolation was carried out from young leaf tissue

using the cetyl trimethyl ammonium bromide method

(Stacey and Isaac, 1994).

The primers reported by D’Ovidio et al. (1995) were

used to amplify the complete coding sequence of the

Ay gene. PCR reactions mixtures were carried out in a

final volume of 20ml composed of 1 £ Taq PCR buffer

(Promega), 125 ng of template DNA, 0.6mM of each

forward and reverse primer, 1.5 mM MgCl2, 0.2 mM of

each deoxyribonucleotide and 1 U of Taq DNA poly-

merase (Promega). DNA was subjected to an initial

denaturation step at 958C for 5 min, and the amplification

conditions were 35 cycles at 958C for 1 min, 608C for

1 min and 728C for 2 min, followed by a final incubation

step at 728C for 8 min.

The amplicons (PCR products) were separated in

polyacrylamide gel electrophoresis (PAGE) gel with a

discontinuous Tris–HCl buffer system (pH: 6.8/8.8) at a

polyacrylamide concentration of 8% (w/v, crosslinker (C):

1.68%). These amplicons were digested using Dde I and

Pst I endonucleases and separated in PAGE gel with a

discontinuous Tris–HCl buffer system (pH: 6.8/8.8) at a

polyacrylamide concentration of 10% (w/v, C: 1.68%).

Results and discussion

The amplification of the complete coding sequence in the

accessions with and without active Ay subunits revealed a

single band of around 1500 bp, although with some small

differences in size among them, in the accessions with Ay

active subunits as well as in others with inactive ones

(Fig. 1). This is in agreement with the findings of Cabal-

lero et al. (2008), who detected four Ay active subunits

with differences in their mobility.

Some studies have suggested that digestion with endo-

nucleases could be a useful tool to evaluate the internal

differences between these alleles (Lafiandra et al., 1997;

Alvarez et al., 1998). The amplicon digestion with Dde I

(Fig. 2(a) and (b)) showed three restriction patterns

between the active Ay alleles, while in the inactive

ones, five restriction patterns were identified. In the

case of the digestion with Pst I (Fig. 2(c) and 2(d)) four

patterns were revealed for the active Ay alleles and six

for the inactive ones. Although, in general, the restriction

patterns of the active alleles were different from those of

the inactive alleles, one of the patterns of the active

alleles (lanes 2 and 5), together with the pattern of lane

10 (of an inactive allele), showed the same restriction pat-

tern with both digestions (Fig. 2, lanes 2, 5 and 10).

On the other hand, all the restriction patterns found in

these T. urartu lines differed from those of the inactive

Ay allele present in cv. Cheyenne, while some of them

showed similarities with the Ay alleles detected in cv.

Alaga (Fig. 2).

In some cases, only the combined use of the restriction

patterns from both endonucleases evidenced differences

between alleles. The actives alleles shown in lanes 1, 3, 4,

6, 7 and 9 were similar in total size (Fig. 1) and Dde I

digestion (Fig. 2); however, the Pst I digestion separated

these alleles into two groups. The first group (lanes 1,

3, 4 and 7) presented five bands or fragments, whereas

the second group (lanes 6 and 9) showed six. The differ-

ence was that fragment 2 of group 1 was digested into

two fragments for group 2: one fragment comigrated

with the band 3 and the other produced a new band of

approximately 120 bp that also appeared in the rest

of the restriction patterns. The same occurred for Dde I

digestion in the inactive alleles, where the alleles

showed in lanes 11 and 13 presented similar restriction

pattern, but the PstI digestion indicated that the two

alleles are different.

Although further research needs to be carried out in

the future, such as the sequencing of these Ay alleles,

the results of this study demonstrate that the Ay alleles

presented in T. urartu, both active and inactive ones,

are different from the alleles found in cultivated wheat.

For breeding purposes, the variation detected for the

active alleles would permit to expand the high-quality

gene pool of the cultivated wheats. Consequently, the

evaluation and characterization of the genetic resources

of this wild species are very important for its conservation

and potential use in wheat breeding programmes.
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