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The dispersion of a passive scalar in a fluid through the combined action of
advection and molecular diffusion is often described as a diffusive process, with
an effective diffusivity that is enhanced compared with the molecular value. However,
this description fails to capture the tails of the scalar concentration distribution
in initial-value problems. To remedy this, we develop a large-deviation theory of
scalar dispersion that provides an approximation to the scalar concentration valid
at much larger distances away from the centre of mass, specifically distances that
are O(t) rather than O(t1/2), where t � 1 is the time from the scalar release. The
theory centres on the calculation of a rate function characterizing the large-time
form of the scalar concentration. This function is deduced from the solution of a
one-parameter family of eigenvalue problems which we derive using two alternative
approaches, one asymptotic, the other probabilistic. We emphasize the connection
between the large-deviation theory and the homogenization theory that is often used
to compute effective diffusivities: a perturbative solution of the eigenvalue problems in
the appropriate limit reduces at leading order to the cell problem of homogenization
theory. We consider two classes of flows in some detail: shear flows and periodic flows
with closed streamlines (cellular flows). In both cases, large deviation generalizes
classical results on effective diffusivity and captures new phenomena relevant to the
tails of the scalar distribution. These include approximately finite dispersion speeds
arising at large Péclet number Pe (corresponding to small molecular diffusivity) and,
for two-dimensional cellular flows, anisotropic dispersion. Explicit asymptotic results
are obtained for shear flows in the limit of large Pe. (A companion paper, Part 2,
is devoted to the large-Pe asymptotic treatment of cellular flows.) The predictions of
large-deviation theory are compared with Monte Carlo simulations that estimate the
tails of concentration accurately using importance sampling.

Key words: chaotic advection, laminar reacting flows, mixing and dispersion

1. Introduction
Taylor (1953) identified the phenomenon of shear dispersion in which a passive

scalar, e.g. a chemical pollutant, released in a pipe Poiseuille flow spreads along the
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pipe according to a diffusion law. The corresponding diffusivity, often termed effective
diffusivity to distinguish it from molecular diffusivity, is inversely proportional to
molecular diffusivity when the latter is small (see also Aris 1956; Young & Jones
1991). This effective diffusivity is associated with a random walk along the pipe
that results from the random sampling of the Poiseuille flow by molecular Brownian
motion across the pipe. The diffusive description of this random walk, and the
corresponding Gaussian profile of the scalar concentration, of course only apply on
time scales that are much longer than the Lagrangian correlation time scale.

Shear dispersion is a striking example of a broad class of phenomena in which the
interaction between fluid motion and Brownian motion leads to a strong enhancement
of dispersion and to effective diffusivities that are orders of magnitude larger than
molecular diffusivity. The importance of these phenomena in applications, in particular
industrial, biological and environmental applications, is obvious. This has motivated
studies of effective diffusivity in many different flows (see Majda & Kramer 1999
for a review). These include spatially periodic flows which can be analysed using
the method of homogenization. This method, which exploits the separation between
the (small) scale of the flow and the (large) scale of the scalar field that emerges
in the long-time limit, has proved highly valuable: it applies to more complicated
flows, including time-dependent and random flows, and provides a unifying framework
for methods used earlier. Shear dispersion, in particular, can be regarded as a special
case of homogenization applied to periodic flows, where cells repeat in the along pipe
direction and the flow in each cell is simple Poiseuille flow.

In the large literature on shear dispersion, efforts have been made to overcome
the restriction to large times that underlies the diffusive approximation, and improved
asymptotic estimates that capture some of the early-time behaviour have been obtained
(see Young & Jones (1991) for a review and Camassa, Lin & McLaughlin (2010)
for more recent results). For periodic flows, because the effective diffusivity is more
difficult to compute, the focus has mainly remained on the derivation of asymptotic
estimates and bounds, in particular in the limit of small molecular diffusivity (e.g.
Majda & Kramer 1999; Novikov, Papanicolaou & Ryzhik 2005).

Here we consider a different aspect. The characterization of dispersion in the
long-time limit t � 1 by an effective diffusivity and hence by a Gaussian scalar
distribution holds only close to the centre of mass of the distribution: the results
of homogenization are in essence a manifestation of the central-limit theorem and
apply only to particles displaced from the mean by O(t1/2) distances. Our aim is to
go beyond this and describe the concentration far from the mean. To achieve this,
we derive large-deviation estimates for the concentration, that is, we derive the rate
function g in an approximation of the form exp(−tg(x/t)) for the scalar concentration
at position x and time t.

Large-deviation theory extends the central-limit theorem and applies to numerous
probabilistic problems (e.g. Dembo & Zeitouni 1998; den Hollander 2000). When
applied to the SDEs governing the motion of fluid particles advected and diffused in
a fluid flow, it naturally yields an improved approximation to the scalar concentration
(interpreted as a particle-position probability function; cf. Jansons & Rogers 1995).
This approximation is valid for distances from the mean that are O(t) rather than
O(t1/2) and therefore captures the tails of the distribution. These are typically
non-Gaussian and not adequately represented by the diffusive approximation. This is
illustrated in figure 1 by the example of dispersion in a plane Couette flow, one of the
shear flows considered in detail in this paper. Figure 1(a) shows the profile along the
flow of the cross-stream averaged concentration C(x, t) at four successive times in the
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FIGURE 1. Cross-section averaged concentration C(x, t) (a) and its logarithm log10 C(x, t)
(b) in a Couette flow as a function of x for t= 2, 4, 6 and 8 (from left to right, curves
have been offset for clarity). Monte Carlo results (symbols) are compared with the large-
deviation and diffusive predictions (solid and dashed lines).

case of small molecular diffusivity. The figure compares the averaged concentration
obtained numerically using a Monte Carlo simulation (symbols) with the Gaussian,
diffusive approximation (dashed lines) and the large-deviation approximation derived
in §§ 2–3 (solid lines). The units of x and t have been chosen so that the maximum
flow velocity and (Taylor) effective diffusivity are both 1. The inadequacy of the
diffusive approximation in describing the tails of the concentration and the superiority
of the large-deviation approximation are apparent in figure 1(a) for the earliest profile
C(x, t = 2). They are obvious for all of the profiles in figure 1(b) which displays
the results using logarithmic scale for C(x, t). This emphasizes the tails of C(x, t) to
reveal how the diffusive prediction overestimates dispersion and to demonstrate the
effectiveness of the large-deviation approximation. We note that while large deviation
formally applies for t� 1, it appears here remarkably accurate for moderate t. (The
discrepancies between large-deviation and Monte Carlo results for t > 4 are mainly
attributable to the limitations of the straightforward Monte Carlo method used here
and are much reduced with the more sophisticated methods discussed in § 3.)

As the Couette-flow example illustrates, large-deviation theory provides estimates
of the low scalar concentrations in the tails, where the diffusive approximation
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fails. This makes it relevant to a range of applications in which low concentrations
matter. Examples include the prediction of the first time at which the concentration
of a pollutant released in the environment exceeds a low safety threshold, and the
quantification of the impact of stirring on chemical reactions in a fluid. In such
examples, there is a strong sensitivity of the response (physiological or chemical) to
low scalar concentrations that makes the logarithm of the concentration, and hence the
rate function g, highly relevant quantities. This broad observation can be made precise
for the certain classes of chemical reactions. For FKPP reactions (e.g. Xin 2009),
the combination of diffusion and reaction leads to the formation of concentration
fronts that propagate at a speed that turns out to be controlled by the large-deviation
statistics of the dispersion and given explicitly in terms of the rate function g (Gärtner
& Freidlin 1979; see also Freidlin 1985, Ch. 7; Xin 2009, Ch. 2; Tzella & Vanneste
2014a).

The present paper starts in § 2 with a relatively general treatment of the large-
deviation theory of dispersion which applies to time-independent periodic flows and
to shear flows. The key result is a family of eigenvalue problems parameterized by
a variable q. The principal eigenvalue, f (q), is the Legendre transform of the rate
function g. These eigenvalue problems can be thought of as generalized cell problems
in that they resemble and extend the cell problem that appears when homogenization
is used to compute effective diffusivities. In §§ 2.1–2.2 we present two alternative
derivations of the eigenvalue problems: the first is a direct asymptotic method that
treats the large-deviation form of the concentration as an ansatz (see Kuske &
Keller 1997); the second follows the standard probabilistic approach based on the
Ellis–Gärtner theorem and considers the cumulant generating function of the particle
position (e.g. Ellis 1995; Dembo & Zeitouni 1998; den Hollander 2000; Touchette
2009). We then discuss the relation between large deviation and homogenization
(§ 2.3). Homogenization, and the corresponding diffusive approximation, are shown
to be recovered when the eigenvalue problems yielding f (q) are solved perturbatively
for small |q| up to O(|q|3) errors. Carrying out the perturbation expansion to higher
orders provides a systematic way of improving on the diffusive approximation; in the
case of shear dispersion, this recovers earlier results (Mercer & Roberts 1990; Young
& Jones 1991).

The rest of the paper is devoted to dispersion in specific shear and periodic flows.
We compute the functions f and g for the classical Couette and Poiseuille flows
in § 3 by solving the relevant one-dimensional eigenvalue problem numerically. We
also obtain asymptotic results for the concentration at small and large distances from
the centre of mass. While the first limit recovers the well-known expression for the
effective diffusivity of shear flows, the second captures the finite propagation speed
that exists when diffusion along the pipe is neglected. This provides a transparent
example of the limitations of the diffusive approximation. Section 4 is devoted
to a standard example of periodic flow, the two-dimensional cellular flow with
streamfunction ψ = − sin x sin y. The numerical solution of the corresponding
eigenvalue problems for specific values of the Péclet number Pe (measuring the
relative strength of advection and diffusion) reveals interesting features of the
dispersion, such as anisotropy, that are not captured in the diffusive approximation.
Using a regular perturbation expansion, we derive explicit results in the limit of
small Pe. We examine the opposite, large-Péclet-number limit in a companion paper
(Haynes & Vanneste 2014, hereafter Part 2). We conclude the paper with a discussion
in § 5.

Throughout the present paper and Part 2, we verify the predictions of large-deviation
theory against direct Monte Carlo simulations of particle dispersion. This is not
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without challenges since this requires estimating the tails of distributions which
are associated with rare events and are, by definition, difficult to sample. We have
therefore used importance sampling and implemented two methods that are applicable
broadly. These are described in appendix B. Appendices A and C are devoted to
technical details of certain asymptotic limits.

2. Formulation
We start with the advection–diffusion equation for the concentration C(x, t) of a

passive scalar. Using a characteristic spatial scale a as a reference length and the
corresponding diffusive time scale a2/κ , where κ is the molecular diffusivity, as a
reference time, this equation can be written in the non-dimensional form

∂tC+ Pe u · ∇C=∇2C, (2.1)

where Pe = Ua/κ is the Péclet number. Here U is the typical magnitude of the
velocity field, which is assumed to be time independent, u=u(x), and divergence free,
∇ · u= 0.

Equation (2.1) can be considered as the Fokker–Planck equation associated with the
stochastic differential equation (SDE) which governs the position of fluid particles,

dX= Pe u(X)dt+√2 dW, (2.2)

where W denotes a Brownian motion. In this interpretation and with X(0) = x0, the
initial condition for the concentration is C(x, 0)= δ(x− x0) and the concentration at
later times can then be thought of as the transition probability for a particle to move
from x0 at t = 0 to x at t. We focus on this initial condition and use the notation
C(x, t|x0) when the dependence on x0 needs to be made explicit.

In this paper we consider two somewhat different flow configurations. The
first, relevant to Taylor dispersion, corresponds to parallel shear flows, with u(x)
unidirectional and varying in the cross-flow direction only, and a domain that
is bounded in this direction. The concentration C(x, t|x0) then satisfies a no-flux
condition at the boundary. The second configuration corresponds to a periodic u(x)
in an unbounded domain. In both cases, our interest is in the dispersion in the
unbounded directions of the domain. The shear-flow configuration can essentially
be regarded as a particular case of the more general periodic-flow configuration,
with the domain extending over only one period in the streamwise direction and
no-flux boundary conditions replacing periodicity conditions. Owing to this, we
consider the two configurations together when developing the general large-deviation
approach in the rest of this section. Any ambiguity that may arise as a result will be
clarified in §§ 3 and 4 when we apply the approach separately to shear flows and to
two-dimensional periodic flows and obtain explicit results. Mixed configurations, in
which the flow is periodic in certain directions and bounded in others, could also be
treated with no essential changes.

2.1. Large-deviation approximation
We are interested in the form of C(x, t|x0) for t� 1. Under the assumption that |x−
x0|/t=O(1), the solution to (2.1) can be sought as the expansion

C(x, t|x0)= t−d/2e−tg(ξ)
(
φ0(x, ξ)+ t−1φ1(x, ξ)+ · · ·

)
, (2.3)
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where ξ = (x − x0)/t and d is the number of spatial dimensions. This can be
considered to be a WKB expansion with t as large parameter. The leading-order
approximation

C(x, t|x0)∼ t−d/2φ(x, ξ)e−tg(ξ), (2.4)

has the characteristic large-deviation form in which g(ξ) is the Cramér or rate
function (e.g. Dembo & Zeitouni 1998; Touchette 2009, and references therein). The
conservation of total mass, the spatial integral of C(x, t|x0), imposes that

min
ξ

g(ξ)= 0 (2.5)

and explains the presence of the prefactor t−d/2 in (2.4), as an application of
Laplace’s method shows. Note that we concentrate on this leading-order approximation
throughout and hence omit the subscript 0 from φ.

Introducing the expansion (2.3) into (2.1) and retaining only the leading-order terms
gives

(ξ · ∇ξ g− g)φ =∇2φ − (Pe u+ 2∇ξ g
)
· ∇φ + (Pe u · ∇ξ g+ |∇ξ g|2) φ. (2.6)

Letting

q=∇ξ g and f (q)= q · ξ − g, (2.7)

this equation reduces to

∇2φ − (Pe u+ 2q) · ∇φ + (Pe u · q+ |q|2) φ = f (q)φ, (2.8)

where q can be regarded as a parameter. This can be rewritten compactly as

eq·x (∇2 − Pe u · ∇
) (

e−q·xφ
)= f (q)φ, (2.9)

in which the form of the operator on the left-hand side makes transparent the
connection to the advection–diffusion operator ∇2− Pe u · ∇. The function φ satisfies
no-flux boundary conditions when impermeable boundaries are present or periodic
boundary conditions in the case of unbounded domains with periodic u(x).

Equation (2.8) is central to this paper. Together with its associated boundary
conditions, it gives a family of eigenvalue problems for φ parameterized by q, with
f (q) as the eigenvalue. Solving these eigenvalue problems (numerically in general)
provides f (q) as the principal eigenvalue, that is, the eigenvalue with largest real part.
The rate function g(ξ) is then recovered by noting from (2.7) that g(ξ) and f (q) are
related by a Legendre transform

f (q)= sup
ξ

(q · ξ − g(ξ)) and g(ξ)= sup
q
(ξ · q− f (q)) . (2.10)

The fact that the critical points of f are suprema and the convexity of f can be
deduced from the probabilistic interpretation of f (q) discussed below. (Note that the
second equality assumes that f is differentiable; see, e.g., Touchette 2009.) It follows
that

ξ =∇q f , (2.11)
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which gives a one-to-one map between the parameter q and the physical variable
ξ = x/t. The eigenfunction φ of (2.8) associated with f (q) can therefore be
equivalently thought of as a function of ξ , as in (2.4), or of q, as in (2.8). Note
that the maximum principle can be used to show that f (q) is real and that φ is sign
definite (e.g. Berestycki, Nirenberg & Varadhan 1994). This is consistent with the
asymptotics (2.4) and the observation that the concentration C(x, t|x0) is positive for
all time if it is initially positive.

To summarize, solving the eigenvalue problem (2.8) for arbitrary q and performing
a Legendre transform of the principal eigenvalue yields the large-t approximation (2.4)
of the concentration. This approximation is valid for |x| =O(t) and thus, as discussed
below, extends the standard diffusive approximation which requires |x| =O(t1/2). The
eigenvalue problem (2.8) can be thought of as a generalized cell problem since, as
shown in § 2.3, it generalizes the cell problem of homogenization theory. Bensoussan,
Lions & Papanicolaou (1989, § 4.3.1) derive this eigenvalue problem as part of
a Floquet–Bloch theory for linear equations with periodic coefficients and term it
‘shifted cell problem’ (see also § 4 below and Papanicolaou 1995, § 3.6).

2.2. Probabilistic derivation
An alternative view of the problem considers the moment generating function

w(q, x, t)=E eq·X, (2.12)

with X(0)= x, for the position of the fluid particles satisfying (2.2). Here E denotes
the expectation over the Brownian process in (2.2). The generating function obeys the
backward Kolmogorov equation

∂tw= Pe u · ∇w+∇2w, (2.13)

with w(q, x, 0)= eq·x (e.g. Øksendal 1998; Gardiner 2004). A solution can be sought
in the form

w(q, x, t)= eq·x+f (q)tφ†(q, x), (2.14)

where the function f (q) remains to be determined but will shortly be identified with
that in (2.7).

Introducing (2.14) into (2.13) leads to

∇2φ† + (Pe u+ 2q) · ∇φ† + (Pe u · q+ |q|2) φ† = f (q)φ†, (2.15)

with no-flux or periodic boundary conditions. This corresponds to a family of
eigenvalue problems, again parameterized by q, which are the adjoints of those
in (2.8), and hence have the same eigenvalues and in particular the same principal
eigenvalue f (q), justifying the notation in (2.14). This eigenvalue controls w(x, t) for
t� 1. As a result, it can alternatively be defined by

f (q)= lim
t→∞

1
t

log E eq·X(t) (2.16)

and interpreted as the limit as t→∞ of the cumulant generating function scaled by
t−1. This function is convex by definition.
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The relationship between the large-t asymptotics of C(x, t|x0) encoded in g(ξ) and
that of w(x, t) can be made obvious. Noting from the definition (2.12) that w(x, t) is
the Legendre transform with respect to x′ of C(x′, t|x) with −q the variable dual to
x′, we apply Laplace’s method to obtain

w(q, x, t)=
∫

eq·x′C(x′, t|x) dx′ �
∫

et(q·(ξ+x/t)−g(ξ)) dξ � eq·x+t supξ (q·ξ−g(ξ)), (2.17)

where � denotes the asymptotic equivalence of the logarithms as t→∞ and we use
(2.4) to write C(x′, t|x)� exp(−tg((x′ − x)/t)).

From (2.14) we obtain the first part of (2.10). Under the assumption of differenti-
ability of f (q), which ensures that g(ξ) is convex, the second part follows, allowing
the computation of the rate function. The argument used in this subsection, which
relies on Laplace’s method to establish a connection between rate function g(ξ) and
scaled cumulant generating function f (q), is an instance of the Gärtner–Ellis theorem,
a fundamental result of large-deviation theory which extends Cramér’s treatment of the
sum of independent random numbers (see, e.g. Ellis 1995; Dembo & Zeitouni 1998;
Touchette 2009). Rigorous results for a problem very similar to that defined above
can be found in Freidlin (1985, Ch. 7). It may be worth contrasting the large-time
(t� 1) large deviations discussed in this paper, with the small-noise (Pe� 1) large
deviations developed by Freidlin & Wentzell (2012): while for small noise a single
(maximum-likelihood or instanton) trajectory controls the rate function g, this is not
generally the case for large time. As we discuss in the case of shear flows in § 3, it
is only for Pe� 1 and |q| sufficiently large that g can be expressed in terms of single
trajectory and that the two forms of large deviations intersect.

Some properties of f (q) and g(ξ) are useful to infer properties of the dispersion
directly from f (q) without the need to carry out the Legendre transform explicitly. As
noted, f (q) and g(ξ) are convex. Therefore, from (2.11), increasing q correspond to
increasing ξ , and q can be thought of as a proxy for the more physical variable ξ . It
is clear from (2.16) that f (0)= 0; correspondingly,

∇q f (0)= ξ∗, (2.18)

defines ξ∗ which, by (2.10), minimizes g. Equation (2.4) then indicates that the
maximum of C(x, t) and its centre of mass are located at x ∼ ξ∗t. Qualitatively the
Legendre transform implies that a slow growth of f (q) away from its minimum
corresponds to a rapid growth of g(ξ) and vice versa. In particular, linear asymptotes
for f (q), say f (q)∼ λq as q→∞ in the one-dimensional case, correspond to vertical
asymptotes for g(ξ), g(ξ)→∞ as ξ → λ−. This implies that C(x, t) vanishes for
x > λt, reflecting a finite maximum transport speed for the scalar. Exactly linear
asymptotes do not arise for f (q) because the eigenvalue problem (2.8) for |q| � 1
has the simple solution f (q)∼ |q|2 which corresponds to a purely diffusive behaviour.
However, for large Pe, there can be a range of values of q for which f (q) is
approximately linear and a finite transport speed controls scalar dispersion.

2.3. Relation with homogenization and its extensions
Much of the literature on scalar dispersion focuses on the computation of an
effective diffusivity governing the dispersion for t � 1 and |x − x0| = O(t1/2). In
this approximation, (2.1) reduces to the diffusion equation

∂tC+ Pe〈u〉 · ∇C=∇ · (k · ∇C) , (2.19)
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where 〈u〉 is the spatial average of u(x), and k is an effective diffusivity tensor.
Alternatively, 〈u〉 and k can be obtained from the particle statistics using

lim
t→∞

1
t
EX= Pe〈u〉 and lim

t→∞
1
2t
E (X− Pe〈u〉t)⊗ (X− Pe〈u〉t)= k . (2.20)

The form of k has been derived for a variety of flows using several essentially
equivalent methods, starting with Taylor’s (1953) work on shear flows. In the last
20 years, homogenization, as reviewed in Majda & Kramer (1999) and Pavliotis &
Stuart (2007), has become the systematic method of choice.

The diffusive approximation (2.19) can be recovered from the more general large
deviation results: since the assumption |x − x0 − Pe〈u〉t| = O(t1/2) implies that |ξ −
ξ∗| � 1 and hence that |q| � 1, we can expand f (q) according to

f (q)= ξ∗ · q+ 1
2 q · Hf · q+O(|q|3), (2.21)

where Hf is the Hessian of f evaluated at q= 0. Taking the Legendre transform gives

g(ξ)∼ 1
2(ξ − ξ∗) · H−1

f · (ξ − ξ∗). (2.22)

In this approximation the concentration is

C(x, t|x0)� exp
(−(x− ξ∗t) · H−1

f · (x− ξ∗t)/(2t)
)

(2.23)

corresponding to the solution of (2.19) with

Pe〈u〉 = ξ∗ and k = Hf /2. (2.24)

This result also follows from (2.20) noting that the mean and covariances that appear
on the left-hand sides are given by the first and second derivatives with respect to q
of the cumulant generating function log E eq·X ∼ f (q)t evaluated q= 0.

Since the diffusive approximation is recovered from the large-deviation results by
an expansion for small q, it can be expected that the method of homogenization is
equivalent to the perturbative solution of the eigenvalue problem (2.8) or (2.15). This
is plainly the case. Consider the periodic-flow configuration and assume that 〈u〉 = 0
for simplicity. Expanding

φ = 1+ |q|φ1 + |q|2φ2 + · · · and f = |q|α1 + |q|2α2 + · · · , (2.25)

and introducing this into (2.8) yields at O(q),

∇2φ1 − Pe u · ∇φ1 + Pe u · q̂= α1, (2.26)

where q̂= q/|q| is a unit vector. Averaging this equation gives that α1= Pe〈u · q̂〉 = 0.
The solution φ1 is then written as

φ1 =−q̂ · χ (2.27)

in terms of the periodic, zero-average solution χ of the so-called cell problem

∇2χ − Pe u · ∇χ = Pe u. (2.28)
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(see Majda & Kramer 1999, § 2.1). At order O(|q|2), the eigenvalue problem reduces
to

∇2φ2 − Pe u · ∇φ2 − 2q̂ · ∇φ1 + Pe (u · q̂)φ1 = α2. (2.29)

Averaging gives

α2 = 1+ Pe〈(u · q̂)φ1〉 = 1+ q̂i〈∇χi · ∇χj〉q̂j, (2.30)

where the second equalities follows after some manipulations using (2.28) (see Majda
& Kramer 1999, p. 251, for details). This corresponds to an effective diffusivity with
components

kij = 1
2

(
Hf
)

ij = δij + 〈∇χi · ∇χj〉, (2.31)

which is the standard homogenization result. An analogous computation detailed in
appendix A shows how the homogenization results for shear flows are recovered from
the large-deviation calculation.

The perturbative solution of the eigenvalue problem (2.8) offers a route for the
systematic improvement of the diffusive approximation. Such improvements, which
have been derived for shear flows by Chatwin (1970, 1972), Mercer & Roberts (1990)
and others (see Young & Jones 1991, for a review), extend the diffusion equation
(2.19) to include higher-order spatial derivatives and increase the accuracy of the
approximation for t� 1. They lead to effective equations of the form

∂tC+ Pe〈u〉 · ∇C= kij∂ijC+ k (3)ijk ∂ijkC+ k (4)ijkl∂ijlkC+ · · · , (2.32)

where summation over repeated indices is understood and we have introduced higher-
order effective tensors k (3)ijk , etc. The behaviour of the large-deviation function f (q) as
q→ 0 encodes all of these tensors. This can be deduced from the large-deviation form
(2.4) of the concentration which implies that ∂tC∼ f (q)C and ∇C∼−qC. Combining
these formally leads to the effective equation

∂tC= f (−∇)C. (2.33)

Comparison with (2.32) shows that the various effective tensors that appear are given
as derivatives of f (q) at q = 0. Hence, they can be computed by continuing the
perturbative solution of the eigenvalue problem (2.8) to higher orders in q. This is
demonstrated to O(q3) for shear flows in appendix A.

Another kind of improvement captures finite-time effects, specifically the fact that
the mean and variance of the particle position have O(1) corrections to their linear
growth which depend on initial conditions. These corrections have been computed
for some shear flows (Aris 1956; Mercer & Roberts 1990; Young & Jones 1991)
and termed ‘initial displacement’ and ‘variance deficit’. Although we do not consider
them further in what follows, it can noted that (2.13) for the moment generating
function is exact. Its solution for finite time can be expressed as a series of the
form

∑
n An(q) exp(fn(q)t)φ†

n(x), where fn(q) and φ†
n(x) denote the complete set of

eigenvalues and eigenfunctions of (2.15). The constants An(q) can be determined
from the initial condition of the concentration. It is clear, then, that the first two
terms in the Taylor expansion of A0(q), where the n = 0 mode corresponds to the
eigenvalue f0(q) = f (q), determine the initial displacement and variance deficit; the
other eigenvalues fn(q), n > 1 contribute to exponentially small corrections.

In the rest of the paper, we apply the results of this section to several specific shear
and periodic flows. We start with the case of shear flows for which the eigenvalue
problems (2.8) and (2.15) simplify considerably.
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3. Shear flows
Consider the advection by a parallel shear flow u= (u(y), 0) in two dimensions, in

a channel of width 2a corresponding to −16 y6 1 for the dimensionless coordinate y.
Without loss of generality (exploiting a suitable Galilean transformation as necessary)
the velocity can be assumed to satisfy

〈u〉 = 1
2

∫ 1

−1
u(y) dy= 0. (3.1)

Because it is the longitudinal dispersion that is of interest, we modify (2.4) and take
the large-deviation form of the concentration to be

C(x, t)∼ t−1/2φ(y, ξ)e−tg(ξ), (3.2)

where ξ = Pe−1x/t, assuming x0 = 0. Similarly, we write the moment generating
function as

w(q, x, t)=E ePe−1qX � ePe−1qx+f (q)tφ†(y). (3.3)

Note that g and f depend only on the longitudinal variables ξ and q and that φ can
be taken as x-independent because of the x-independence of the flow. The factors Pe−1

are introduced in (3.2)–(3.3) for convenience: they lead to a Legendre pair of functions
f (q) and g(ξ) that are independent of Pe in the limit Pe→∞, at least for ξ, q=O(1).
The eigenvalue problem (2.8) then reduces to the Schrödinger form

d2φ

dy2
+ (qu(y)+ Pe−2q2

)
φ = f (q)φ. (3.4)

This one-dimensional eigenvalue problem is completed by the no-flux boundary
conditions

dφ
dy
(−1)= dφ

dy
(1)= 0. (3.5)

Note that the operator in (3.4) is self-adjoint and, hence, the same equation arises for
the eigenvalue problem (2.15) for φ† associated with the moment generating function.
Note also that (3.4) can be derived more directly using the Feynman–Kac formula. To
see this, write (2.2) explicitly as

dX = Pe u(Y) dt+√2 dW1, dY =√2 dW2, (3.6)

and note that Y(t)= y+√2W2. The generating function (3.3) then becomes

w(q, x, t) = E exp
(

q
(

Pe−1(x+√2W1)+
∫ t

0
u(y+√2W2) dt′

))
= exp

(
Pe−1qx+ Pe−2q2t

)
E exp

(
q
∫ t

0
u(y+√2W2) dt′

)
. (3.7)

Using the Feynman–Kac formula (e.g. Øksendal 1998), w is seen to satisfy

∂tw= ∂yyw+ (qu(y)+ Pe−2q2)w (3.8)
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and hence, for t � 1, to depend on t as w � exp(f (q)t) with f (q) the principal
eigenvalue in (3.4).

Alternatively, (3.4) is obtained when seeking normal-mode solutions of the form
C(x, t) = φ(k, y) exp(i(kx − ωt)) to the advection–diffusion equation (2.1) provided
that the identification q = ik and f (q) = −iω(k) is made. The large-deviation form
of C is then recovered by applying the steepest-descent method to the normal-mode
expansion of C(x, t). The large-deviation approach makes it clear that the saddle point
in the k plane is on the imaginary axis with a purely imaginary associated frequency
ω= if (ik).

Below we solve (3.3)–(3.5) numerically for some classical shear flows. Several
general remarks can already be made. First, the term proportional to Pe−2 in (3.4) is
associated with longitudinal (molecular) diffusion. For q= O(1), it can be neglected
for Pe� 1, leading to the simpler eigenvalue problem

d2φ

dy2
+ qu(y)φ = f (q)φ (3.9)

which makes clear that f (q) and hence g(ξ) are independent of Pe in the limit Pe→
∞ with q, ξ =O(1). The large-deviation form of C(x, t) can be written in terms of
dimensional variables x∗ and t∗ as

C(x∗, t∗)� exp
(
−a−2κt∗g

(
x∗

Ut∗

))
, (3.10)

and its range of validity as κt∗/a2� 1 and x∗ =O(Ut∗). In what follows, we mostly
concentrate on the limit Pe → ∞ and solve (3.9) rather than (3.4): the effect of
the neglected longitudinal diffusion on f (q) is straightforward, since it simply adds
Pe−2q2, but the corresponding change in g(ξ) is somewhat more complicated. It
is nonetheless a simple matter to estimate the size of q for which the neglect of
longitudinal diffusivity ceases to be a good approximation.

Second, the perturbative solution of the eigenvalue problem (3.4) for |q| � 1,
provides an effective diffusivity as sketched in § 2.3. In terms of f (q), the dimensional
effective diffusivity is expressed from (3.10) as

k∗ = a2U2

2κ
f ′′(0), (3.11)

and is inversely proportional to the molecular diffusivity in the limit Pe→∞. The
perturbative calculation carried out in appendix A gives

1
2 f ′′(0)=

〈(∫ y

−1
u(y′) dy′

)2
〉

(3.12)

and recovers the explicit form of k∗ as obtained using homogenization (e.g. Majda
& Kramer 1999; Camassa et al. 2010). The first of the corrections to the diffusive
approximation of Mercer & Roberts (1990) and Young & Jones (1991) is also
computed in appendix A.

Third, the asymptotics of (3.9) indicates that f (q) tends to u±q as q→±∞, where
u± denote the maximum and minimum velocities in the channel. This can be seen
by noting that f (q) is the lowest eigenvalue of a Schrödinger operator which, in the
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semiclassical limit |q| → ∞, is given by the minimum of the potential qu(y) (e.g.
Simon 1983). The implication, as discussed in § 2.2, is that g(ξ)→∞ as ξ → u±.
Physically, this corresponds to the fact that fluid particles have longitudinal velocities
in the range [u−, u+]; changes in the concentration therefore propagate at finite
speeds and the concentration C is compactly supported for x∗ ∈ [u−t∗, u+t∗]. This
is only an approximation of course: when longitudinal molecular diffusion is taken
into account, there is no limit on the propagation speed. It is readily seen that the
term Pe−2q2 becomes comparable to u±q in f (q) for q = O(Pe2) and that the rate
function is approximately the diffusive g(ξ)∼ Pe2(ξ − u±)2/4 for ξ near u+ (u−) or
larger (smaller). This form of g can also be shown to arise from an application of
the Freidlin & Wentzell (2012) small-noise large-deviation theory and is controlled
by a single maximum-likelihood trajectory. (This applies only when q is sufficiently
large: the dimensional expression (3.10) makes this clear, with an argument of the
exponential that scales like κ whereas the small-noise large deviation necessarily leads
to a κ−1 scaling, corresponding to a Pe2 factor with our non-dimensionalization.)

Finally, we note that the eigenfunctions φ(y, ξ), where the ξ dependence is inferred
from the q-dependence using ξ = f ′(q), have a simple interpretation. For ξ > 0 the
amount of scalar at y for x> ξ t can be approximated as∫ ∞

ξ t
C(x, y, t) dx� φ(ξ, y)e−tg(ξ), (3.13)

since, by the convexity of g, the integral is dominated by the contribution of the
endpoint x= ξ t. Therefore, φ(y, ξ) gives the scalar distribution across the shear flow
of particles with average speed greater than ξ > 0. Similarly, for ξ < 0, φ(y, ξ) gives
the distribution of particles with speed less than ξ .

3.1. Couette flow
We now examine classical shear flows, starting with the plane Couette flow

u(y)= y. (3.14)

The dispersion in this flow is illustrated in figure 1. The figure shows how the
diffusive and large-deviation approximations provide a good approximation in the core
of the scalar distribution and how only large deviation captures the tails. Figure 1
does not resolve the tails of C(x, t) with sufficient detail to assess the validity of the
large-deviation approximation fully, however. In what follows, we test systematically
the large-deviation prediction for f (q), defined as

f (q)= lim
t→∞

1
t

log E ePe−1qX(t) (3.15)

with our shear-flow scaling, by comparing the value obtained by solving the
eigenvalue problem (3.4) for a range of q with careful Monte Carlo estimates.
The eigenvalue problem is solved using a finite-difference scheme. (An exact solution
can be written in terms of Airy functions, but it is not particularly illuminating.)
The Monte Carlo estimates approximate the right-hand side of (3.15) as an average
over a large number of solutions of (3.6). However, a straightforward implementation
does not provide a reliable estimate for f (q) except for small values of q. This is
because f (q) for moderate to large q is controlled by rare realizations which are not
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sampled satisfactorily. To remedy this, it is essential to use an importance-sampling
technique which concentrates the computational effort on these realizations. For the
results reported in this paper, we have implemented a version of Grassberger’s (1997)
pruning-and-cloning technique which we describe in appendix B.1.

Results for the plane Couette flow are displayed in the figure 2(a,d,g,j). Figure 2(a)
shows the eigenvalue and Monte Carlo approximations of f (q) along with asymptotic
approximations valid for small and large q. The small-q approximation for f (q) is
found from (3.12) as

f (q)∼ 2
15 q2 as q→ 0. (3.16)

The large-|q| approximation is obtained by noting that for q → ±∞, the solution
to (3.9) is localized in boundary layers near y = ±1. Concentrating on q→∞, we
introduce y= 1− q−1/3Y and f (q)= q+ q2/3µ into (3.9). To leading order, this gives

d2φ

dY2
− Yφ =µφ, (3.17)

with solution φ = Ai(Y + µ) decaying as Y→∞. Imposing the boundary condition
at Y = 0 gives the equation Ai′(µ)= 0 for µ. Hence, we have

f (q)∼ |q| − 1.019|q|2/3 as |q|→∞, (3.18)

using symmetry to deal with q→−∞.
Figure 2(a) confirms the validity of the eigenvalue calculation and of the asymptotic

estimates. In the case of the |q|� 1 estimates, a constant is added to (3.18) to ensure
a good match; with this o(1) correction, the asymptotic formula appears to be accurate
for |q| as small as 3, say. The dispersive approximation corresponding to the parabola
(3.16) overestimates f (q) for all q, indicating that this approximation overestimates the
speed of dispersion or equivalently the magnitude of the tails of the distribution.

The rate function g(ξ) is shown in figure 2(d). The solid curve is obtained by
Legendre transforming the function f (q) computed by numerical solution of the
eigenvalue problem. This is compared with direct Monte Carlo estimates. Again, it
is crucial to use importance sampling to obtain a reliable estimate of g(ξ) for ξ not
small. We have chosen to integrate a modified dynamics in which particles, instead
of simply diffusing in the y direction, also experience of drift towards the wall at
y = 1 (or y = −1). A better sampling is obtained because the wall regions control
g(ξ) for large |q|; the method is described in appendix B.2. The figure also shows
the asymptotic approximations for g(ξ) deduced from (3.16) and (3.18) by Legendre
transform and given by

g(ξ)∼ 15
8
ξ 2 as ξ→ 0 and g(ξ)∼ 4 · 1.0193

27(1∓ ξ)2 as ξ→±1. (3.19)

The match between the values of g(ξ) derived from the eigenvalue problem and
those obtained by Monte Carlo sampling provides a direct check on the validity of
the large-deviation theory. The discrepancy between the exact g(ξ) and its diffusive
approximation confirms that diffusion overestimates the dispersion speed, as inferred
already from the plot of f (q). The finite support of the concentration distribution
for ξ ∈ [−1, 1], arising from the neglect of longitudinal molecular diffusion, is also
hinted at by the large slopes of g for ξ ≈ ±0.8. The large-|ξ | approximation to
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FIGURE 2. Large-deviation results for Couette, plane Poiseuille and pipe Poiseuille flows
(left, centre and right, respectively). (a–c) The eigenvalue f (q) obtained by numerical
solution of the eigenvalue problem (solid line) is compared with Monte Carlo estimates
(symbols). The small-q (diffusive) and large-q asymptotic approximations are also shown
(dashed and dotted lines). (d–f ) The rate function g(ξ) obtained by Legendre transform
of the eigenvalue problem solution f (q) (solid line) is compared with direct Monte Carlo
estimates (symbols). The asymptotic approximations for small ξ and for ξ → u±, the
maximum and minimum flow speeds, are also shown (dashed and dotted lines). (For the
two Poiseuille flows, the approximations for ξ→ u− are not shown because the range of
ξ does not extend to their regions of validity.) (g–i) Map between q and ξ = x/t derived
from the numerical estimate of f (q). (j–l) Eigenfunctions φ for q = 5, 10 (dashed and
solid black lines) and for q=−5,−10 (dashed and solid grey lines).
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g(ξ) (with o(1) term fixed by inspection) is seen to be accurate for |ξ | > 0.5 and
could be combined with the small ξ approximation to provide a satisfactory uniform
approximation.

Figure 2(g) shows the map between ξ = f ′(q) that arises as part of the Legendre
transform. This identifies the location x = ξ t which controls the corresponding
exponential moment E exp(qX) for large t. Finally, figure 2(j) shows profiles of the
eigenfunctions φ(ξ, y) of (3.4) for several values of q. According to (3.13), these
give the structure of the concentration profile for x/t larger than ξ = f ′(q). Thus,
for instance, the eigenfunction for q = 5 approximately corresponds to x/t > 0.5
(see figure 2g). As q and hence ξ increase (or decrease) the profile becomes more
and more localized in the region of maximum (or minimum) velocity, that is, near
y= 1 (y=−1). The eigenfunctions for finite q are to be contrasted with the standard
(homogenization) results on Taylor dispersion which correspond to eigenfunctions that
are small, O(q) perturbations to the uniform eigenfunction φ = 1.

3.2. Plane Poiseuille flow
We next examine the plane Poiseuille flow

u(y)= 1/3− y2. (3.20)

The small-q approximation in this case is readily found from (3.12) to be

f (q)∼ 8
945 q2 as q→ 0. (3.21)

For q� 1, the solution is localized around the maximum of the velocity at y= 0. For
the required boundary-layer analysis, we let y = q−1/4Y and f (q) = q/3 + µq1/2 and
obtain

d2φ

dY2
− Y2φ =µφ. (3.22)

The solution corresponding to the largest eigenvalue µ is the Gaussian φ =
exp(−Y2/2), leading to µ=−1 and

f (q)∼ q/3− q1/2 as q→∞. (3.23)

For q�−1, the asymptotic treatment is similar to that of the Couette flow: we let
y = 1 − |q|1/3Y and f (q) = 2|q|/3 + µ|q|2/3 and find that φ ∼ Ai(21/3(Y + µ/2)) and
hence Ai′(2−2/3µ)= 0. This gives the approximation

f (q)∼−2q/3− 1.617q2/3 as q→−∞. (3.24)

The corresponding rate function g(ξ) is derived by Legendre transform, yielding the
asymptotic behaviours

g(ξ)∼ 945
32 ξ

2 as ξ→ 0, (3.25)

g(ξ)∼ 1
4(1/3− ξ) as ξ→ 1/3, and g(ξ)∼ 4 · 1.6173

27(2/3+ ξ)2 as ξ→−2/3.

(3.26)
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The numerical and asymptotic results obtained for the plane Poiseuille flow are
displayed in figure 2(b,e,h,k). As for the Couette flow, the diffusive approximation
(3.21) and (3.25) is seen to overestimate the speed of dispersion, leading to an
overestimate of f (q) and an underestimate of g(ξ). The concentration distribution
for the Poiseuille flow is skewed, with g(ξ) increasing faster for ξ > 0 than ξ < 0
corresponding to smaller concentrations for ξ > 0 than for ξ < 0. The eigenfunctions
shown in figure 2(k) illustrate how f (q) for large q (small q) and hence g(ξ) for
large ξ (small ξ ) are controlled by motion near the centre (periphery) of the flow.
This culminates in the limits q, ξ →∞ (−∞) as the boundary-layer form of the
eigenfunctions derived above indicates.

3.3. Pipe Poiseuille flow
We conclude this section by considering the Poiseuille flow in a pipe, with velocity

u(r)= 1/2− r2, (3.27)

where r = √y2 + z2. This flow is three-dimensional, with particles diffusing across
the flow in both the y and z directions. While the eigenfunctions for axisymmetric
flows φ can in principle depend on y and z independently, the principal eigenvalue
determining f (q) is obtained for axisymmetric φ: φ = φ(r). Correspondingly, the
eigenvalue problem (3.9) of plane shear flows is replaced by

1
r

d
dr

(
r

dφ
dr

)
+ qu(r)φ = f (q)φ (3.28)

with boundary conditions dφ/dr= 0 at r= 0, 1.
The small-q, diffusive approximation f (q) ∼ α2q2 for general axisymmetric shear

flows is quoted in appendix A as (A 9). For the Poiseuille flow, this gives

f (q)∼ 1
192 q2 as q→ 0. (3.29)

For q� 1, an approximation to f (q) is derived from (3.28) using a boundary-layer
approach: we let r= q−1/4R and f (q)= q/2+µq1/2 to find the leading-order equation

1
R

d
dR

(
R

dφ
dR

)
− R2φ =µφ, (3.30)

with solution φ = exp(−R2/2), corresponding to µ=−2. Therefore,

f (q)∼ q/2− 2q1/2 as q→∞. (3.31)

The analysis for q�−1 is almost identical to that carried out for the plane Poiseuille
flow and leads to

f (q)∼−q/2− 1.617q2/3 as q→−∞. (3.32)

Computing the Legendre transform of (3.29), (3.31) and (3.32) yields the correspond-
ing asymptotics results for the rate function, namely

g(ξ)∼ 48ξ 2 (3.33)
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as ξ→ 0,

g(ξ)∼ 1
(1/2− ξ) as ξ→ 1/2, and g(ξ)∼ 4 · 1.6173

27(1/2+ ξ)2 as ξ→−1/2. (3.34)

Note that (3.33) recover’s Taylor’s original result (Taylor 1953).
The numerical and asymptotic results for the pipe Poiseuille flow are shown

in figure 2(c,f,i,l). The diffusive approximation is seen to mostly overestimate the
dispersion speed, although it turns out to be remarkably accurate for q, ξ > 0. Close
inspection shows in fact that there is a range of values of q, ξ > 0 for which diffusion
underestimates somewhat the concentration, in contrast to the other cases considered.
Note that the skewness for the pipe Poiseuille flow is opposite to that of the plane
Poiseuille flow, with larger concentrations predicted for ξ > 0 than ξ < 0.

4. Periodic flows
We now turn to two-dimensional periodic flows. The formalism of § 2 applies

directly: f (q) is obtained by solving the eigenvalue problem (2.8) with periodic
boundary conditions for φ. Equation (2.8) can also be obtained in an alternative
manner: because the advection–diffusion equation (2.1) has periodic coefficients, its
solutions can be sought in the Floquet–Bloch form C(x, t)=φ(k, x) exp (i(k · x−ωt)),
which leads to (2.8) with ik = q and ω(k) = if (q) (Bensoussan et al. 1989;
Papanicolaou 1995). This approach gives a representation of the concentration as
an integral over k whose large-t asymptotics, derived using the steepest-descent
method, reduces to the large-deviation form (2.4).

We focus our attention on the cellular flow

u(x, y)= (−∂yψ, ∂xψ) with ψ =− sin x sin y. (4.1)

This flow, with period 2π in both the x and y direction, consists of a regular array
of cells in which the fluid is rotating alternatively clockwise and counterclockwise
along closed streamlines; see figure 3. It has received a great deal of attention, most
of it devoted to the properties of the effective diffusivity that can be computed by
homogenization, especially in the limit of large Péclet number; see Majda & Kramer
(1999, § 2) for a review and Novikov et al. (2005) and Gorb, Nam & Novikov (2011)
for more recent references.

To illustrate the dispersion of a passive scalar in this flow, we show in figures 4
and 5 the concentration field obtained by solving numerically the advection–diffusion
equation (2.1) for Pe= 1 and Pe= 250. Only the first quadrant is shown since the field
has a fourfold symmetry. For Pe = 1, molecular diffusion plays a major part across
the domain, leading to a smooth evolution, with only some modulations in the form
of diagonal bands in the central sector of the quadrant and of cells located near the
coordinate axes. For Pe = 250, advection dominates, resulting in an apparent finite
propagation speed and the obvious mark of the flow structure on the scalar field. The
importance of the separatrices, around which boundary layers of high concentrations
are established, is clear. As the distance from the origin increases, there is gradual
change in the scalar distribution within the cells, from almost uniform near the origin
to essentially zero at large distance. This feature is discussed briefly below and fully
elucidated in Part 2.

Let us now turn to the predictions of large-deviation theory. We have developed a
code for the numerical solution of the eigenvalue problem (2.8) for (4.1). This relies
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0

FIGURE 3. Streamlines of the cellular flow (4.1). Four of the periodic cells are shown.
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FIGURE 4. (Colour online) Concentration (in logarithmic scale) at times t= 250 (a) and
t= 500 (b) of a scalar initially released in the central cell of a cellular flow with Pe= 1.

on a straightforward finite-difference discretization and on the Matlab routine ‘eigs’
for the solution of the resulting matrix eigenvalue problem. The convergence of the
algorithm requires a good first guess for the eigenvalue; since we are interested in
obtaining f (q) for a range of q= (q1, q2), the code performs an iteration over q1 and
q2, using at each step the previous value of f (q) as its first guess. Since f satisfies
the obvious symmetries f (±q1,±q2)= f (q1, q2), we concentrate on the first quadrant
of the q-plane. The symmetry f (q1, q2)= f (q2, q1) can also be exploited.

Figure 6(a) shows the numerical approximation to f obtained using this code
for Pe = 1. It is compared with the result of a Monte Carlo estimate which relies
on the importance-sampling algorithm described in appendix B.1. In addition to
confirming the validity of the large-deviation approximation and of the numerical
implementation, the figure illustrates general qualitative features of f . For small |q|,
f is approximately isotropic, consistent with the result of homogenization theory
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FIGURE 5. (Colour online) Concentration (in logarithmic scale) at times t = 2 (a) and
t= 4 (b) of a scalar released in the central cell of a cellular flow with Pe= 250.
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FIGURE 6. (a) Numerical approximation to f as a function of q for the cellular
flow with Pe = 1. The solid contours and shading have been obtained by solving the
eigenvalue problem (2.8) numerically, the dotted contours by Monte Carlo simulations with
importance sampling (105 realizations for each value of q). (b) Corresponding rate function
g as a function of q obtained by Legendre transforming the results on the left. Note that
the noise in the Monte Carlo results lead to an estimate of g that is reliable in a restricted
range of ξ .

which predicts a diagonal effective diffusivity tensor. For |q| of order-one or larger,
however, f is anisotropic, taking smaller values along the axes q = |q|(1, 0) and
q = |q|(0, 1) than along the diagonal q = |q|(1, 1)/

√
2. Physically, this implies that

dispersion is slower along the axis than along the diagonal. This can be understood
by considering the streamline geometry: continued advection along one of the axes
requires particles to also meander in the perpendicular direction, resulting in a
decrease in average speed by a factor 1/2; by contrast, advection along the diagonal
happens in staircase-like fashion which decreases the speed by a factor 1/

√
2. That

motion along the diagonal is faster is also apparent in the rate function g(ξ) obtained
by Legendre transform and shown in figure 6(b): when |ξ | is not small, the contours
of g, which directly correspond to concentration contours, are anisotropic with the
larger scalar concentrations along the diagonal.
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g

FIGURE 7. Rate function g as a function of |ξ | for the cellular flow with Pe = 1.
The curves have been obtained by Legendre transforms of f computed by solving the
eigenvalue problem (solid curves) and Monte Carlo simulation (104 realizations for each
q, dotted curves); the symbols have been obtained from a direct Monte Carlo estimation
of the particle position pdf (4× 107 realisations). The two pairs of curves and two types
of symbols correspond to ξ = |ξ |(1, 0) (steeper curves and circles) and ξ = |ξ |(1, 1)/

√
2

(shallower curves and squares).

A direct Monte Carlo estimate of g, as opposed to the indirect estimate deduced
from Legendre transforming the Monte Carlo approximation to f , proves difficult to
compute reliably. Figure 7 illustrates this: even for a large number of realisations
of 4× 107, the direct Monte Carlo approach only provides a valid approximation
for |ξ |. 2.5, in range where g remains roughly isotropic. Attempts at implementing
importance sampling in a manner analogous to that used for shear flows and described
in appendix B.2 did not lead to significant improvements in the estimation of g in
this direct manner. A conclusion, therefore, is that a more efficient Monte Carlo
approximation to g is achieved by sampling f and taking a Legendre transform. Of
course, for this problem the most efficient method for obtaining f and g remains the
numerical solution of the eigenvalue problem (2.8).

It is interesting to examine the eigenfunctions φ associated with the eigenvalue
f (q) for given q since these provide the structure of the scalar field at position
ξ t=∇q f (q)t (with f convex so that q can be interpreted as a proxy for ξ ). Figure 8
shows the eigenfunctions obtained by numerical solution of the eigenvalue problem
for three values of q1=q2=|q|/

√
2. For small |q| and hence small |ξ |, φ is essentially

constant over the whole cell, with only small modulations. This is consistent with the
perturbative treatment of the eigenvalue problems for |q|� 1 and |ξ |� 1, amounting
to homogenization, which indicates that φ = 1+ O(|q|). As |q| and |ξ | increase, the
modulations, in the form of diagonal stripes, increase in amplitude so that, for large
|ξ |, φ is close to zero in wide stripes. The form of the eigenfunctions depends on
the angle of q, of course, and for q1 = 0 or q2 = 0 for instance, corresponding to
dispersion along the x and y axes, they have a have a cellular rather than banded
structure (not shown). The structure of the eigenfunctions is consistent with the
concentration field shown in figure 4. To see this, recall that the concentration depends
on both φ and on the rate function g; across a single cell, the latter varies slowly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

64
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.64


342 P. H. Haynes and J. Vanneste

x

y

0

1.0

0.8

0.6

0.4

0.2

(a) (b) (c)

x
0

x
0

FIGURE 8. (Colour online) Eigenfunctions for Pe= 1 and q1 = q2 = 0.5 (a), 1 (b) and 5
(c). The eigenfunctions have been normalized to have maximum value 1 and plotted using
the same colour scale shown on the right.

and can be approximated by a Taylor expansion, leading to the spatial dependence
φ(x, q) exp(q · x), since ∇g= q. For large |q|, the dominant effect is the exponential
decay of the concentration in the direction of q, with the form of φ introducing the
banded modulations observed in figure 4.

Some insight into the large-deviation behaviour of cellular flows can be gained by
considering the regime Pe � 1 corresponding to weak advection. The effective
diffusivity in this limit was computed by Moffatt (1983, § 7) and Sagues &
Horsthemke (1986) who obtained (in our notation) the approximation k = 1 +
Pe2/8 + O(Pe4). The generalization to the large-deviation regime is straightforward
and described in appendix C. It leads to the asymptotic approximation

f (q)= q2
1 + q2

2 +
Pe2

8
q2

1 + q2
2 + q4

1 + 6q2
1q2

2 + q4
2

1+ 2(q2
1 + q2

2)+ (q2
1 − q2

2)
2
+O(Pe3) (4.2)

whose small-q limit is consistent with the effective diffusivity just quoted. This
approximation is tested against numerical results in figure 9 which shows the
correction f (q)− |q|2 to purely diffusive behaviour for Pe= 1/4. The figure confirms
the validity of (4.2); it also shows that dispersion is fastest along the diagonal, as
noted for Pe = 1. The O(Pe2) correction to f behaves in fact very differently for
q1 = q2 than it does for q1 6= q2: whereas it is bounded as q→∞ for q1 6= q2, it
grows quadratically for q1 = q2 in a manner that suggests that (4.2) is not uniformly
valid. Equation (4.2) shows immediately that the difference in behaviour stems from
the fact that the denominator of the O(Pe2) term is quadratic for q1 = q2 but quartic,
like the numerator, otherwise. This is the manifestation of a phenomenon that can
be captured by a large-|q| asymptotic analysis which we do not present here. Briefly,
this analysis reveals the direction q1 = q2 to be singular for the flow (4.1) in that the
correction to the diffusive behaviour f (q) ∼ |q|2 is O(|q|) in this direction while it
is O(1) in all other directions. Flows with more complicated spatial structures than
(4.1) have other singular directions so that we expect the dependence of f (q) on the
direction of q to be very complicated.

We conclude our discussion of cellular flows by briefly considering the large-Pe
regime. This is the regime that has received most attention in the now extensive
literature on effective diffusivity for cellular flows. Starting with Childress (1979),
several authors have applied a boundary-layer analysis to the cell problem of
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FIGURE 9. Correction f − |q|2 as a function of |q| for the cellular flow with Pe = 1/4
and for q= |q|(1, 1)/

√
2 (rapidly growing curves) and q= |q|(1, 0) (other curves, values

multiplied by 10). The exact result (solid) is compared with the small-Pe approximation
(dashed).

homogenization to conclude that k ∝Pe1/2 in this case (see Shraiman 1987; Rosenbluth
et al. 1987), with Soward (1987) deriving an explicit expression for the proportionality
constant. Part 2 is devoted to a detailed asymptotic treatment of the large-deviation
eigenvalue problem for Pe� 1 which recovers and extends this result. Here we only
discuss some qualitative properties of the solution derived numerically.

Figure 10 shows f and g obtained by numerical solution of the eigenvalue problem
and Legendre transform for Pe= 250. The anisotropy for |q|& 1 observed for Pe= 1
is stronger for this large-Pe case: there is a clear suggestion that the contours of f (q)
tend to straight lines (corresponding to f being a function of |q1| + |q2|) for |q| � 1;
correspondingly, g(ξ) depends on max(|ξ1|, |ξ2|) for |ξ | � 1.

The eigenfunctions of (2.8) shown in figure 11 for three different values of q1= q2
illustrate different regimes of dispersion that arise at increasingly larger distances
from the scalar-release point. For small |q| and hence for small |ξ |, φ is almost
uniform: a gentle O(|q|) gradient in the cell interiors is compensated by a rapid
change in boundary layers that appear around the separatrices in agreement with the
homogenization treatment. For larger q and |ξ |, φ inside the cell is no longer close
to uniform; instead, it is approximately constant along streamlines but varies across
streamlines, from small values at the centre to large values near the separatrices.
Again, boundary layers around the separatrices ensure periodicity. Finally, for large
|q| and |ξ |, φ is close to zero in the cell interiors and the scalar is confined within
boundary layers. This qualitative description of the eigenfunctions is consistent with
the evolution of the scalar field shown in figure 5; it is supported by the asymptotics
results reported in Part 2.

5. Discussion
This paper discusses the statistics of passive scalars or particles dispersing in fluids

under the combined action of advection and molecular diffusion. It shows how large-
deviation theory provides an approximation to the scalar concentration or particle-
position pdf in the large-time limit. This approximation, expressed in terms of the
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FIGURE 10. (a) Numerical approximation to f as a function of q obtained by solving the
eigenvalue problem (2.8) for the cellular flow with Pe= 250. (b) Rate function g deduced
by Legendre transform.
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FIGURE 11. (Colour online) Eigenfunctions for Pe= 250 and q1 = q2 = 0.1 (a), 0.25 (b)
and 1 (c), corresponding to ξ1 = ξ2 = 4.2, 20.5 and 88.1. The eigenfunctions have been
normalized to have maximum value 1 and plotted using the same colour scale shown on
the right.

rate function g(ξ), is valid in the tail of the distribution as well as in the core; it
considerably generalizes the more usual diffusive approximation which characterizes
the dispersion by a single effective-diffusivity tensor. The rate function is deduced
from the solution of the generalized cell problem (2.8), a one- or two-parameter family
of eigenvalue problems that generalize the cell problem solved when computing the
effective diffusivity using the method of homogenization.

The application to shear flows reveals features of the dispersion that are not
captured by the standard theory of shear dispersion initiated by Taylor (1953). In
particular, it shows that the diffusive approximation dramatically overestimates scalar
concentrations far away from the centre of mass. The reason for this is that the
mechanism underlying shear dispersion, the interaction between shear and cross-stream
molecular diffusion, leads to along-flow dispersion with a finite speed, namely the
maximum flow speed. The non-zero concentrations beyond the limits imposed by
this finite speed are entirely attributable to molecular diffusion and thus controlled
by molecular rather than effective diffusivity. At intermediate distances from the
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centre of mass, however, the non-diffusive effects can in some cases increase and
in some cases decrease dispersion. This can be detected in some of the results for
standard shear flows displayed in figure 2 or be deduced from the order-by-order
corrections to the diffusive approximation discussed in § 2.3. (It may be remarked
that molecular diffusion itself, with its infinite propagation speed, is only a model for
Brownian motion; more sophisticated models with finite propagation speeds such as
the telegraph equation can be developed, see, e.g. Zauderer (2009), and Keller (2004)
for connections with large deviations.)

Our analysis of spatially periodic flows and, in particular, of the classical cellular
flow further demonstrates the benefits of large-deviation theory over homogenization
and the resulting diffusive approximation. The anisotropy of the dispersion in this
flow, for instance, although a clear consequence of the streamline arrangement, is
overlooked by the diffusive approximation but quantified by large deviation. As for
shear flows, there is also a finite speed effect for the dispersion in cellular flow; this
is more subtle and is elucidated in Part 2 which is devoted to a detailed analysis to
the large-Pe limit.

The differences between the diffusive and large-deviation approximations for the
scalar concentration are significant at large enough distances away from the centre of
mass of the scalar. Since the concentration at such distances is small, large deviation
applied to problems involving purely passive scalars is of practical importance in
situations where low concentrations matter, as would be the case, for instance, for
very toxic chemicals. In such applications the logarithm of the concentration is often
a relevant measure of the chemical’s impact; it is read off from the rate function
since log C∼−tg(ξ). As mentioned in § 1, for scalars that are reacting, the properties
of dispersion at large distances embodied in g can be critical in determining the main
features of the scalar distribution. This was made explicit in the work of Gärtner &
Freidlin (1979) and Freidlin (1985) which relates the speed of propagation of fronts
for scalars experiencing FKPP-type reactions to the rate function g(ξ) characterizing
passive dispersion. Following from this relationship, the results of the present paper
and of Part 2 can be used to predict front speeds in a range of shear and periodic
flows. We will report elsewhere the novel predictions that can be obtained in this
manner (Tzella & Vanneste 2014a,b).

We conclude by remarking that the large-deviation treatment of scalar dispersion
can be extended to a class of flows much broader than that considered in the present
paper. Dispersion in time-periodic flows, random flows and turbulent flows can also
be characterized by a rate function to improve on the approximation provided by
effective diffusivity. In the time-periodic case an extension of the theory discussed
in § 2 is straightforward: the eigenfunction φ in (2.4) should depend on t as well
as on x and ξ , leading to an additional term ∂tφ in the eigenvalue problem (2.8)
and to the requirement that φ be time periodic which determines the eigenvalue f .
In the random case, under the assumption of homogeneous and stationary statistics
for u(x, t), f is determined by the analogous requirement that φ, a random function,
be homogeneous and stationary. Implementing this requirement is not straightforward,
however, and Monte Carlo methods with importance sampling of the types described
in appendix B may be best suited for the computation of the rate function.
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Appendix A. Small-|q| expansion for shear flows
It follows from the scaled large-deviation form of C for shear flows (3.2) that

∂tC∼ (g′ξ − g)C= f (q)C and ∂n
x C∼ (−Pe−1g′)nC= (−Pe−1q)nC. (A 1)

In these expressions, q is related to ξ = Pe−1x/t by ξ = f ′(q) and factors 1+ O(t−1)
describing the error in the WKB-like expansion (3.2) are omitted. Thus, if we write

f (q)∼
N∑

n=1

αnqn, (A 2)

an equation for C follows in the form

∂tC∼
N∑

n=1

(−Pe)nαn∂
n
x C. (A 3)

The solution to this equation gives for C a form similar to (3.2) with g approximated
by the Legendre transform of the N-term Taylor expansion of f (q) at q = 0. In
particular, truncating at N = 2 gives the dispersive approximation with effective
diffusivity (2.19).

The perturbative solution of (3.4) is straightforward: introducing (A 2) and

φ(y)= 1+
N∑

n=1

qnφn(y) (A 4)

into (3.4) and omitting the term in Pe−2 gives at the first three orders,

d2φ1

dy2
= α1 − u,

d2φ2

dy2
= α2 + α1φ1 − uφ1 and

d2φ3

dy2
= α3 + α2φ1 + α1φ2 − uφ2.

(A 5)

Integrating the first equation and using (3.1) gives α1 = 0 and

dφ1

dy
=−

∫ y

−1
u(y′) dy′. (A 6)

An explicit expression for φ1 follows, which can be chosen such that 〈φ1〉 = 0.
Integrating the second equation in (A 5) and using the above gives

α2 = 〈uφ1〉 =
〈(∫ y

−1
u(y′) dy′

)2
〉
. (A 7)

Up to the factor Pe2, this is the effective diffusivity of Taylor and homogenization
theory. The function φ2(y) can then computed explicitly and the condition 〈φ2〉 = 0
imposed. Finally, integrating the third equation in (A 5) gives

α3 = 〈uφ2〉 = 〈uφ2
1〉, (A 8)

in agreement with Young & Jones (1991). Note that the analogue of (A 7) for pipe
flows is

α2 = 2
∫ 1

0

(∫ r

0
r′u(r′) dr′

)2 dr
r
. (A 9)
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Appendix B. Monte Carlo computations
B.1. Resampled Monte Carlo

We test the theoretical results by estimating the cumulant generating function from
Monte Carlo simulations. This relies on solving (2.2) for an ensemble of trajectories
X(k), k= 1, . . . ,K, then computing

WK(t)= 1
K

K∑
k=1

w(k)(t), where w(k)(t)= eq·X(k)(t), (B 1)

for fixed q. Since WK(t)→E exp(q ·X) as K→∞, f (q)≈ t−1 log WK(t) for t and K
large.

When q is small, this method provides a good estimate of f (q) with t moderately
large, say t = 5 or 10. For q of order one or large, obtaining even a crude estimate
of f (q) requires an exceedingly large number of realizations K. This is because the
cumulant generating function is determined by exponentially rare, hence difficult
to sample, realizations whose weights w(k)(t) are exponentially larger than those
of typical realizations. To estimate f (q) accurately with a reasonable number of
realisations, it is necessary to use an importance-sampling method which concentrates
the computational efforts on realisations that dominate (B 1). We have adopted a
simple method based on Grassberger’s (1997) pruning-and-cloning technique (see
also Grassberger 2002; Tailleur & Kurchan 2007; Vanneste 2010) which we now
describe.

Every few time steps in the numerical integration of (2.2), the current weight
w(k)(t) of each realization is compared with the average WK(t). If w(k)(t) > PWK(t),
where P > 1 is a parameter of the method (typically chosen as P = 2 or 3), the
realization is cloned: an additional realization X(l) is created and integrated forward
from the initial condition X(l)(t) = X(k)(t). The two clones subsequently follow
different trajectories, X(l)(t′) 6= X(k)(t′) for t′ > t because they experience different
Brownian motions. The statistics of WK(t) are left unchanged provided that the
weight of the cloned realisations is divided by 2, that is, the weights w(k)(t) in (B 1)
are multiplied by additional factors of 1/2 for each cloning experienced by realization
k. If w(k)(t) <WK(t)/P, on the other hand, the realization is pruned: it is killed with
probability 1/2 and, if surviving, its weight w(k)(t) is multiplied by 2. To keep the
number of realizations K constant, random realizations are either cloned or killed. We
have implemented a slight extension of the method described in which the number
of clones for realizations with w(k)(t) > PWK(t), is bw(k)(t)/WK(t)c + 1.

The resampling steps make the method very efficient, and the results reported
in the paper typically required a few minutes of computation on a modest desktop
computer. Crucial to this efficiency is the fact that the cloning-pruning process tailors
the ensemble of realizations to a particular value of q by selecting those which
dominate E exp(q ·X).

B.2. Modified dynamics
The rate function g can be estimated directly by Monte Carlo simulations, using
a binning procedure to approximate C. This is of course highly inefficient for the
parts of g away from its minimum ξ∗ since these are controlled by exponentially rare
realisations which are poorly sampled. One way of remedying this is to integrate a
modified dynamics following the importance-sampling technique discussed in Milstein

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

64
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.64


348 P. H. Haynes and J. Vanneste

(1995). For shear flows, we have adopted the following approach. The modified
dynamics, denoted by tilde, is given by

dX̃ = Pe u(Ỹ) dt+√2 dW1, dỸ = r(Ỹ) dt+√2 dW2, (B 2)

instead of (3.6). Here r(y) is a function chosen so that the distribution of Ỹ better
samples the regions where u(y) is large (or small) which control g(ξ) for ξ away from
ξ∗. Girsanov’s formula relates averages under the original dynamics (2.2) to averages
under this modified dynamics according to

E · = Ẽ · exp
(
− 1√

2

∫ t

0
r(Ỹ(t′)) dW2 − 1

4

∫ t

0
r2(Ỹ(t′)) dt′

)
(B 3)

(Milstein 1995; Øksendal 1998). Thus, C(x, t) can be approximated by integrating
numerically (B 2) for an ensemble of trajectories and using a discretized version of
the relation

C(x, t)= Ẽ δ(x− X̃(t)) exp
(
− 1√

2

∫ t

0
r(Ỹ(t′)) dW2 − 1

4

∫ t

0
r2(Ỹ(t′)) dt′

)
. (B 4)

This result is used for to estimate the tails of C and hence the form of g for large
|ξ | with a much better sampling than achieved with the original dynamics. For the
numerical results reported in §§ 3.1–3.2, we have used r(y) = γ (1 − y) to efficiently
sample the portion of C(x, t) controlled by trajectories that remain localized near
the wall at y= 1 (leading to anomalously large x for Couette flow and anomalously
small x for Poiseuille flow), and r(y)=−γ y to sample trajectories localized near the
maximum of the plane Poiseuille flow. The value of the parameter γ was chosen
by trial-and-error to obtain the best representation of a portion of the curve g(ξ). A
similar modified dynamics for both Y(t) and Z(t) was used in the case of the pipe
Poiseuille flow in § 3.3.

Appendix C. Small-Pe form of f (q) for cellular flow
In the limit Pe→ 0, the eigenvalue problem (2.8) can be solved perturbatively by

introducing the expansions

φ = φ0 + Peφ1 + Pe2φ1 + · · · and f = f0 + Pef1 + Pe2f2 + · · · (C 1)

of the eigenfunctions and eigenvalue into (2.8). The leading-order, O(1), equation is
solved for φ0 = 1 and f0 = |q|2 which reduces the O(Pe) equation to

∇2φ1 − 2q · ∇φ1 + u · q= f1. (C 2)

On integrating over a period, the left-hand side vanishes, leading to f1 = 0. The
solution is then found in the form

φ1 = a sin x sin y+ b sin x cos y+ c cos x sin y+ d cos x cos y, (C 3)

where the constants a, b, c and d are readily computed. Integrating the O(Pe2)
equation

∇2φ2 − 2q · ∇φ2 − u · ∇φ1 + u · qφ1 = f2 (C 4)
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over a period leads to the eigenvalue correction

f2 = 1
(2π)2

∫ 2π

0

∫ 2π

0
(−u · ∇φ1 + u · qφ1) dxdy. (C 5)

Substituting (C 3) and taking the explicit form of the constants into account yields

f2 = 1
8

q2
1 + q2

2 + q4
1 + 6q2

1q2
2 + q4

2

1+ 2(q2
1 + q2

2)+ (q2
1 − q2

2)
2
. (C 6)
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