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Let W be a 2-dimensional Coxeter group, that is, one with
1/mst + 1/msr + 1/mtr � 1 for all triples of distinct s, t, r ∈ S. We prove that W is
biautomatic. We do it by showing that a natural geodesic language is regular (for
arbitrary W ), and satisfies the fellow traveller property. As a consequence, by the
work of Jacek Świątkowski, groups acting properly and cocompactly on buildings of
type W are also biautomatic. We also show that the fellow traveller property for the
natural language fails for W = Ã3.
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1. Introduction

Coxeter group W is a group generated by a finite set S subject only to relations
s2 = 1 for s ∈ S and (st)mst = 1 for s �= t ∈ S, where mst = mts ∈ {2, 3, . . . , ∞}.
Here the convention is that mst = ∞ means that we do not impose a relation
between s and t. We say that W is 2-dimensional if for any triple of distinct elements
s, t, r ∈ S, the group 〈s, t, r〉 is infinite. In other words, 1/mst + 1/msr + 1/mtr � 1.

Consider an arbitrary group G with a finite symmetric generating set S. For
g ∈ G, let �(g) denote the word length of g, that is, the minimal number n such
that g = s1 · · · sn with si ∈ S for i = 1, . . . , n. Let S∗ denote the set of all words
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over S. If v ∈ S∗ is a word of length n, then by v(i) we denote the prefix of v of
length i for i = 1, . . . , n − 1, and the word v itself for i � n. For 1 � i � j � n by
v(i, j) we denote the subword of v(j) obtained by removing v(i − 1). For a word
v ∈ S∗, by �(v) we denote the word length of the group element that v represents.

We say that G is biautomatic if there exists a regular language L ⊂ S∗ (see § 3 for
the definition of regularity) and a constant C > 0 satisfying the following conditions
(see [7, lemma 2.5.5]).

(i) For each g ∈ G, there is a word in L representing g.

(ii) For each s ∈ S and g, g′ ∈ G with g′ = gs, and each v, v′ ∈ L representing
g, g′, for all i � 1 we have �(v(i)−1v′(i)) � C.

(iii) For each s ∈ S and g, g′ ∈ G with g′ = sg, and each v, v′ ∈ L representing
g, g′, for all i � 1 we have �(v(i)−1s−1v′(i)) � C.

Our paper concerns the two following well-known open questions (see e.g.
[8, §6.6]).

Question 1. Are Coxeter groups biautomatic?

Question 2. Are groups acting properly and cocompactly on 2-dimensional CAT(0)
spaces biautomatic?

All Coxeter groups are known to be automatic (i.e. having a regular language
satisfying (i) and (ii)) by [3]. Biautomaticity has been established only in special
cases: [7] (Euclidean and hyperbolic), [15] (right-angled), [1] and [5] (no Euclidean
reflection triangles), [4] (relatively hyperbolic).

Question 2 is widely open. The assumption of 2-dimensionality is essential, since
recently Leary–Minasyan [11] constructed a group acting properly and cocompactly
on a 3-dimensional CAT(0) space that is not biautomatic. Even in the case of
2-dimensional buildings, except right-angled and hyperbolic cases, the answer was
known only in particular instances, e.g. for many (but not all) proper cocompact
actions on Euclidean buildings by [6, 9, 10, 16, 18].

To define a convenient language, we need the following. Let W be an arbitrary
Coxeter group. For g ∈ W , we denote by T (g) ⊆ S the set of s ∈ S satisfying �(gs) <
�(g). By [17, theorem 2.16], the group 〈T (g)〉 is finite. By w(g) we denote the longest
element in 〈T (g)〉 (which is unique by [17, theorem 2.15(iii)], and consequently it
is an involution). Let Π(g) = gw(g). By [17, theorem 2.16], we have �(Π(g)) +
�(w(g)) = �(g).

We define the standard language L ⊂ S∗ for W inductively in the following way.
Let v ∈ S∗ be a word of length n. If v represents the identity element of W , then
v ∈ L if and only if v is the empty word. Otherwise, let g ∈ W be the group element
represented by v and let k = �(w(g)). We declare v ∈ L if and only if v(n − k) ∈ L
and v(n − k + 1, n) represents w(g). In particular, v(n − k) represents Π(g). It
follows inductively that n = �(g). Such a language is called geodesic. Note that the
standard language satisfies part (i) of the definition of biautomaticity.

The paths in W formed by the words in the standard language generalize the
normal cube paths for CAT(0) cube complexes [14, §3] used to prove biautomaticity
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for right-angled (or, more generally, cocompactly cubulated) Coxeter groups [15].
Our main result is the following.

Theorem 1.1. If W is a 2-dimensional Coxeter group, then it is biautomatic with
L the standard language.

Since the standard language is geodesic and preserved by the automorphisms of
W stabilizing S, by [18, theorem 6.7] we have the following immediate consequence.

Corollary 1.2. Let G be a group acting properly and cocompactly on a building
of type W, where W is a 2-dimensional Coxeter group. Then G is biautomatic.

One element of our proof of theorem 1.1 is:

Theorem 1.3. Let W be a Coxeter group. Then its standard language is regular.

In other words, the regularity and part (i) of the definition of biautomaticity are
satisfied for any Coxeter group W . However, it is not so with part (ii). The Ã3

Euclidean group is the Coxeter group with S = {p, r, s, t}, mpr = mrs = mst =
mtp = 3, mps = mrt = 2.

Theorem 1.4. If W is the Ã3 Euclidean group, then its standard language does not
satisfy part (ii) in the definition of biautomaticity.

Note, however, that by [7, corollary 4.2.4], all Euclidean groups, in particular Ã3,
are biautomatic (with a different language).

Organization. In § 2 we review the basic properties of Coxeter groups. In § 3
we prove theorem 1.3. For 2-dimensional W , we verify parts (iii) and (ii) of the
definition of biautomaticity in § 4 and 5. This completes the proof of theorem 1.1.
We finish with the proof of theorem 1.4 in § 6.

2. Preliminaries

By X1 we denote the Cayley graph of W , that is, the graph with vertex set X0 = W
and with edges joining each g ∈ W with gs, for s ∈ S. We call such an edge an
s-edge. We call gs the s-neighbour of g.

For r ∈ W a conjugate of an element of S, the wall Wr of r is the fixed point
set of r in X1. We call r the reflection in Wr (for fixed Wr such r is unique). If a
midpoint of an edge e belongs to a wall W, then we say that W is dual to e (for
fixed e such a wall is unique). We say that g ∈ W is adjacent to a wall W, if W is
dual to an edge incident to g. Each wall W separates X1 into two components, and
a geodesic edge-path in X1 intersects W at most once [17, lemma 2.5].

For T ⊆ S, each coset g〈T 〉 ⊆ X0 for g ∈ W is a T -residue. A geodesic edge-path
in X1 with endpoints in a residue R has all its vertices in R [17, lemma 2.10].
We say that a wall W intersects a residue R if W separates some elements of R.
Equivalently, W is dual to an edge with both endpoints in R.
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Figure 1. T (g) = {s, t} and w(g) = st = ts.

Theorem 2.1 [17, theorem 2.9]. Let W be a Coxeter group. Any residue R of X0

contains a unique element h with minimal �(h). Moreover, for any g ∈ R we have
�(h) + �(h−1g) = �(g).

As introduced in § 1, for g ∈ W we denote by T (g) ⊆ S the set of s ∈ S satisfying
�(gs) < �(g). Let R be the T (g)-residue containing g. By [17, theorem 2.16], the
group 〈T (g)〉 is finite and, for w(g) the longest element in 〈T (g)〉, the unique element
h ∈ R from theorem 2.1 is Π(g) = gw(g). In particular, we have �(Π(g)) + �(w(g)) =
�(g). Note that if W is 2-dimensional, then for each g ∈ W we have |T (g)| = 1 or 2.
See figure 1 for an example where S = {s, t, r} with mst = 2, msr = mtr = 4 and
g = strst.

For g ∈ W , let W(g) be the set of walls W in X1 that separate g from the identity
element id ∈ W and such that there is no wall W ′ separating g from W.

Remark 2.2. Let g ∈ W and let R be the T (g)-residue containing g. Since R is
finite, all the walls intersecting R belong to W(g). However, there might be walls
in W(g) that do not intersect R. See figure 1 for an example, where we indicated
all three walls of W(g) for g = strst.

By the following Parallel Wall Theorem, there exists a bound on the distance in
X1 between g and each of the walls of W(g).

Theorem 2.3 [3, theorem 2.8]. Let W be a Coxeter group. There is a constant
Q = Q(W ) such that for any g ∈ W and a wall W at distance > Q from g in X1,
there is a wall W ′ separating g from W.

By X we denote the Cayley complex of W . It is the piecewise Euclidean 2-
complex with 1-skeleton X1, all edges of length 1, and a regular 2mst-gon spanned
on each {s, t}-residue with mst < ∞. If W is 2-dimensional, then X is CAT(0), see
[2, §II.5.4] and the link condition in [2, §II.5.6]. (X coincides then with the ‘Davis
complex’ of W .) Walls in X1 extend to (convex) walls in X, which still separate X.

We will consider the action of G on X0 = G by left multiplication. This induces
obvious actions of G on X1, X and the set of walls.
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3. Regularity

A finite state automaton over S (FSA) is a finite directed graph Γ with vertex
set V , edge set E ⊆ V × V , an edge labeling φ : E → P(S∗) (the power set of S∗),
a distinguished set of start states S0 ⊆ V , and a distinguished set of accept states
F ⊆ V . A word v ∈ S∗ is accepted by Γ if there exists a decomposition v = v0 · · · vm

of v into subwords and an edge-path e0 · · · em in Γ such that e0 has initial vertex
in S0, em has terminal vertex in F , and vi ∈ φ(ei) for each i = 0, . . . , m. A subset
of S∗ is a regular language if it is the set of accepted words for some FSA over S.

The proof of the regularity of the standard language relies on theorem 2.3 and
the following lemma.

Lemma 3.1. Let W be a Coxeter group. Let g ∈ W , let T ⊆ S be such that 〈T 〉 is
finite, and let w be the longest element in 〈T 〉. Then T (gw) = T if and only if

(i) T is disjoint from T (g), and

(ii) for each t ∈ S \ T , the wall dual to (gw, gwt) does not lie in W(g).

Note that for g ∈ W and s ∈ S, the wall dual to (g, gs) lies in W(g) if and only
if it separates g from id. Consequently, condition (i) could be written equivalently
as: for each t ∈ T , the wall dual to (g, gt) does not lie in W(g).

Proof of lemma 3.1. Suppose first T (gw) = T . Then, for R the T -residue containing
gw, by the discussion after theorem 2.1, the unique element h ∈ R with minimal
�(h) is g. Thus for each t ∈ T we have �(gt) > �(g) and so condition (i) holds.
Furthermore, for t ∈ S \ T , the wall W dual to the edge (gw, gwt) does not separate
gw from id. Additionally, the wall W cannot separate gw from g: If it did, then
after conjugating by (gw)−1, the reflection in W could become simultaneously the
generator t and a word in the elements of T , contradicting t ∈ S \ T by [17, lemma
2.1(ii)]. Thus W does not separate g from id, and so condition (ii) holds.

Conversely, suppose that we have T ⊆ S satisfying conditions (i) and (ii). Then,
by condition (i), for R the T -residue containing g, we have that the minimal word
length element h ∈ R from theorem 2.1 coincides with g, and so the element of
R of maximal word length is gw. Consequently, we have T (gw) ⊇ T . Suppose, for
a contradiction, that there is t ∈ T (gw) \ T . Then the wall W dual to the edge
(gw, gwt) separates gw from id. The same argument as in the previous paragraph
implies that W does not separate gw from g, so it separates g from id. Furthermore,
if a wall W ′ separated W from g, then W ′ would also have to separate gw from
g, contradicting �(g) + �(w) = �(gw). Consequently, W ∈ W(g), which contradicts
condition (ii). �

We now define an FSA Γ over S that will accept exactly the standard language.

Definition 3.2. Let Q be the constant from theorem 2.3. For g ∈ W , let UQ(g) be
the set of walls in X1 intersecting the closed ball in X1 of radius Q centred at g.
By theorem 2.3, we have W(g) ⊆ UQ(g).

Consider the set V̂ of pairs of the form (g, U), where g ∈ W , and U is a subset of
UQ(g). We define an equivalence relation ∼ on V̂ by (g, U) ∼ (h, U ′) if U ′ = hg−1U .
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We take the vertices of our FSA Γ to be V = V̂ / ∼. To lighten the notation, we
denote the equivalence class of (g, U) by [g, U ].

In any equivalence class of ∼, there is exactly one representative of the form
(id, U). Suppose that we have T ⊆ S such that 〈T 〉 is finite. Let w be the longest
element of 〈T 〉. If

(i) for each t ∈ T, the wall dual to (id, t) lies outside U , and

(ii) for each t ∈ S \ T, the wall dual to (w, wt) lies outside U ,

then we put an edge e in Γ from [id, U ] to [w, U ′], where U ′ is defined as the set
of walls in UQ(w) that

(a) lie in U or intersect the residue 〈T 〉, and

(b) are not separated from w by a wall satisfying (a).

We let the label φ(e) to be the set of all minimal length words representing w.
We let all states be accept states of Γ and let the set of start states S0 contain only
[id, ∅].
Proof of theorem 1.3. Let Γ be the FSA from definition 3.2, and let L be the stan-
dard language. We argue inductively on j � 0 that, among the words v ∈ S∗ of
length � j,

• Γ accepts exactly the words in L, and

• the accept state of each such word v is [g, W(g)], where v represents g.

This is true for j = 0 by our choice of S0. Now let n > 0 and suppose that we have
verified the inductive hypothesis for all j < n. Let v be a word in S∗ of length n.

Suppose first that v is a word in L representing g ∈ W . By the definition of
L, for k = �(w(g)), we have v(n − k) ∈ L. Moreover, v(n − k + 1, n) represents
w(g). By the inductive hypothesis, Γ accepts v(n − k). Furthermore, v(n − k) labels
some edge-path in Γ from S0 to [Π(g), W(Π(g))]. Let T = T (g) and w = w(g). By
lemma 3.1, applied replacing g with Π(g), we have that

(i) for each t ∈ T , the wall dual to (Π(g), Π(g)t) does not lie in W(Π(g)), and

(ii) for each t ∈ S \ T, the wall dual to (g, gt) does not lie in W(Π(g)).

Thus, translating by Π(g)−1, we see that Γ has an edge from [id, Π(g)−1W(Π(g))] =
[Π(g), W(Π(g))] to [w, U ′] = [g, Π(g)U ′], labelled by v(n − k + 1, n), and so Γ
accepts v. Furthermore, by conditions (a) and (b) in definition 3.2, we have that
Π(g)U ′ consists of walls of UQ(g) that lie in W(Π(g)) or intersect the residue g〈T 〉
and are not separated from g by any other such wall. Since W(g) ⊆ UQ(g), this
implies Π(g)U ′ = W(g).

Conversely, let v be accepted by Γ and suppose that v = v0 · · · vm as in
the definition of an accepted word. By the inductive hypothesis, the word
v0 · · · vm−1 belongs to L and represents g ∈ W such that em starts at [g, W(g)] =
[id, g−1W(g)]. By the definition of the edges, vm represents the longest element w in
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some finite 〈T 〉, and U = g−1W(g) satisfies conditions (i) and (ii) in definition 3.2.
Translating by g, we obtain that g and T satisfy conditions (i) and (ii) of lemma 3.1.
Consequently, we have T = T (gw), and so v belongs to L. �

4. g and sg

Lemma 4.1. Let W be a 2-dimensional Coxeter group. Then its standard language
satisfies part (iii) of the definition of biautomaticity.

We will need the following.

Sublemma 4.2. Let W be a 2-dimensional Coxeter group. There is a constant D =
D(W ) such that for any wall W adjacent to id, any f ∈ W adjacent to W, and any
vertices h, h′ ∈ W on geodesic edge-paths from id to f satisfying �(h) = �(h′), we
have �(h−1h′) < D.

Proof. Let Q = Q(W ) be the constant from theorem 2.3. Suppose that h, h′ ∈ W
lie on geodesic edge-paths γ, γ′ from id to f and satisfy �(h) = �(h′). Note that
each vertex g ∈ W of γ lies at distance � Q from W in X1, since otherwise there
would be a wall W ′ separating g from W, and so W ′ would intersect γ at least
twice.

Since W is 2-dimensional, we have that X is a CAT(0) space, with path-metric
that we denote |·, ·|, and the extension of W to X (for which we keep the same
notation) is a convex tree. Let x, y ∈ W be the midpoints of the edges dual to W
incident to id, f , respectively. Let N(W) be the closed Q-neighbourhood of W in X,
w.r.t. the CAT(0) metric. Note that N(W) is quasi-isometric to W, so in particular
N(W) is Gromov-hyperbolic (for definition, see e.g. [2, III.H.1.1]). Moreover, since
X and X1 are quasi-isometric, we have that γ ⊂ N(W) is a (λ, ε)-quasigeodesic (for
definition, see [2, I.8.22]), where the constants λ, ε depend only on W . Consequently,
by the stability of quasi-geodesics [2, III.H.1.7], for a constant C = C(W ), there is
a point z on the geodesic from x to y with |h, z| � C. Analogously, there is a vertex
h′′ on γ′ with |z, h′′| � C, and so |h, h′′| � 2C.

Thus, since X and X1 are quasi-isometric, there is a constant D = D(W ) with
�(h−1h′′) < (D/2). By the triangle inequality in X1, we have |�(h) − �(h′′)| <
(D/2). Thus, by �(h) = �(h′), the distances on γ′ from h′′ and h′ to id differ by
less than (D/2). Consequently, we have �(h′′−1h′) < (D/2), and so �(h−1h′) < D,
as desired. �

Proof of lemma 4.1. Let L be the standard language. Let D be the constant from
sublemma 4.2. Let K be the maximal word length of the longest element of a finite
〈T 〉 over all T ⊆ S, and let C = max{K, D}.

We prove part (iii) of the definition of biautomaticity inductively on �(g), where
we assume without loss of generality �(sg) > �(g). If g = id, then there is nothing to
prove. Suppose now g �= id, and let W be the wall in X1 dual to the s-edge incident
to id. Let v, v′ ∈ L represent g, sg, respectively.

Assume first that g is not adjacent to W. Let W ′ be a wall adjacent to g separating
g from id. Then W ′ also separates g from s. Consequently, sW ′ separates sg from
id. Conversely, if a wall W ′ is adjacent to sg and separates sg from id, then it also
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separates sg from s, and so sW ′ separates g from id. Consequently, T (sg) = T (g)
and so w(g) = w(sg), hence Π(sg) = sΠ(g). In other words, for k = �(w(g)), the
words v′(�(sg) − k) and sv(�(g) − k) represent the same element sΠ(g) of W . Then
part (iii) of the definition of biautomaticity for g follows inductively from part (iii)
for Π(g), for i < �(sg) − k, or from the definition of K, for i � �(sg) − k.

Secondly, assume that g is adjacent to W. Then (g, sg) is an edge of X1. Let
f = sg and for 0 � i � �(g) let h, h′ be the elements of W represented by sv(i)
and v′(i + 1). Then, by the definition of D, we have �(v(i)−1sv′(i + 1)) < D, as
desired. �

5. g and gs

For g ∈ W and k � 0, we set Πk(g) =

k︷ ︸︸ ︷
Π ◦ · · · ◦ Π(g). The main result of this section

is the following.

Proposition 5.1. Let W be a 2-dimensional Coxeter group. Let g, g′ ∈ W be such
that g′ ∈ g〈s, t〉 for some s, t ∈ S with mst < ∞ (possibly s = t). Then there are
0 � k, k′ � 3 with k + k′ > 0, such that Πk′

(g′) ∈ Πk(g)〈p, r〉 for some p, r ∈ S
with mpr < ∞ (possibly p = r).

We obtain the following consequence, which together with theorem 1.3 and
lemma 4.1 completes the proof of theorem 1.1.

Corollary 5.2. Let W be a 2-dimensional Coxeter group. Then its standard
language satisfies part (ii) of the definition of biautomaticity.

Proof. As before, let K be the maximal word length of the longest element of a
finite 〈T 〉 over all T ⊆ S. Assume without loss of generality �(gs) > �(g).

Let 0 � i � �(g). By proposition 5.1, there is 0 � j � �(g) with |j − i| � (3K/2)
and 0 � i′ � �(g) + 1 such that v(j) and v′(i′) represent elements of W in a common
finite residue. Consequently, we have �(v(j)−1v′(i′)) � K, and so in particular |j −
i′| � K. Therefore �(v(i)−1v′(i)) � |i − j| + �(v(j)−1v′(i′)) + |i′ − i| � 5K. �

In the proof of proposition 5.1 we will use the following truncated piecewise
Euclidean structure on the barycentric subdivision X ′ of the Cayley complex X
of W . Consider the function q : N�2 → N�2, defined as

q(m) =

⎧⎪⎨
⎪⎩

m, for m = 2, 3,

4, for m = 4, 5,

6, for m � 6.

Note that each triangle σ of X ′ is a triangle in the barycentric subdivision of a reg-
ular 2m-gon of X spanned on an {s, t}-residue with mst = m < ∞. Consequently,
in the usual piecewise Euclidean structure, σ has angles (π/2m), (π/2), (1 −
(1/m))(π/2). Moreover, the edge opposite to (π/2m) is half of the edge of X1,
so it has length (1/2). In the truncated piecewise Euclidean structure, we choose
a different metric on σ, namely that of a triangle in the barycentric subdivision
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of a regular 2q(m)-gon. More precisely, the angles of σ are (π/2q(m)), (π/2), (1 −
(1/q(m)))(π/2), while the length of the edge opposite to (π/2q(m)) is still 1/2.

In the following, let v be a vertex of X ′. The link of v in X ′ is the metric graph
whose vertices correspond to the edges of X ′ incident to v. Vertices of the link
corresponding to edges e1, e2 of X ′ are connected by an edge of length θ, if e1 and
e2 lie in a common triangle σ of X ′ and form angle θ in σ. A loop in the link is a
locally embedded closed edge-path.

Lemma 5.3. The truncated piecewise Euclidean structure satisfies the link condi-
tion, i.e. each loop in the link of a vertex v of X ′ has length � 2π.

Proof of lemma 5.3. If v is the barycentre on an edge of X, then its link is a simple
bipartite graph all of whose edges have length π/2. Hence its loops have length
� 4(π/2) = 2π. If v is the barycentre of a polygon of X, then its link is a circle
that had length 2π in the usual piecewise Euclidean structure. The angles at the
barycentre of a polygon in the truncated Euclidean structure are at least as large
as the angles in the usual piecewise Euclidean structure, and consequently in the
truncated Euclidean structure the link has length � 2π.

It remains to consider a vertex v ∈ X0, and its link L′ in X ′. For each triangle
σ of X ′ incident to v there is exactly one other triangle τ of X ′ incident to v with
common hypothenuse, and they lie in the same polygon of X. Let L be the graph
obtained from L′ by merging into one edge each pair of edges corresponding to such
σ and τ . Note that L is isometric to L′. The graph L has a vertex corresponding to
each s ∈ S and an edge of length (1 − (1)/(q(mst)))π � (π/2) joining the vertices
corresponding to s, t, for each s, t ∈ S with mst < ∞. In particular, all the loops
in L of combinatorial length � 4 have metric length � 2π. To obtain the same for
loops in L of combinatorial length 3, we need to verify that for each triple of distinct
s, t, r ∈ S, we have

1
q(mst)

+
1

q(mtr)
+

1
q(msr)

� 1. (*)

If q(mst), q(mtr), q(msr) �= 2, then (∗) holds. If q(mst), q(mtr) �= 2 and q(msr) =
2, then mst, mtr �= 2 and msr = 2. Since W is 2-dimensional, we have mst, mtr � 4
or mst � 6 or mtr � 6. We then have, respectively, q(mst), q(mtr) � 4 or q(mst) � 6
or q(mtr) � 6, and so (∗) holds in this case as well. Finally, if q(mst) = q(msr) = 2,
then mst = msr = 2, contradicting the 2-dimensionality of W . �

Below, for two edges e1, e2 incident to a vertex v of X ′, by their angle at v we
mean the distance in the link of v between the vertices that e1, e2 correspond to.
Since X ′ satisfies the link condition, this is the same as the Alexandrov angle if the
latter is < π.

Lemma 5.4. Let W be a 2-dimensional Coxeter group. Let γ, γ′ be geodesic edge-
paths in X1 with common endpoints. Suppose that there are walls Wi in X with
i = 1, 2, 3, such that γ intersects them in the opposite order to γ′, and that W2

is the middle one in both of these orders. For i = 1, 3, let θi be the angle in the
truncated structure at xi = W2 ∩Wi formed by the segments in W2, Wi from xi to
γ ∩W2 and γ ∩Wi. Then θ1 + θ3 < π.
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Figure 2. Lemma 5.4.

See figure 2 for an illustration. Note that in the definition of either θi we could
replace γ by γ′.

In the proof we will need the following terminology. A combinatorial 2-complex is
a 2-dimensional CW complex in which the attaching maps of 2-cells are closed edge-
paths. For example, the Cayley complex X of a Coxeter group is a combinatorial
2-complex. A disc diagram D is a compact contractible combinatorial 2-complex
with a fixed embedding in R2. Its boundary path is the attaching map of the cell at
∞. If X is a combinatorial 2-complex, a disc diagram in X is a cellular map ϕ : D →
X that is combinatorial, i.e. its restriction to each cell of D is a homeomorphism
onto a cell of X. The boundary path of a disc diagram ϕ : D → X is the composition
of the boundary path of D and ϕ. We say that ϕ is reduced, if it is locally injective
on D − D0.

Proof of lemma 5.4. Let ϕ : D → X be a reduced disc diagram in X with boundary
γ−1γ′ (for the existence of ϕ, see for example [12, §V.1–2]). Consider the piecewise
Euclidean structure on the barycentric subdivision D′ of D that is the pullback
under ϕ of the truncated Euclidean structure on X ′. By lemma 5.3 and [3, II.5.4],
the induced path-metric on D is CAT(0). Furthermore, for each wall W in X, the
preimage ϕ−1(W) is a geodesic in D. Thus D contains a geodesic triangle formed by
the segments of ϕ−1(Wi) joining their three intersection points. Its angles indicated
in figure 2 equal θ1, θ3. Since the Alexandrov angles of that triangle do not exceed
the angles of the comparison triangle in the Euclidean plane [2, II.1.7(4)], we have
θ1 + θ3 < π. �

Corollary 5.5. Let W be a 2-dimensional Coxeter group. Let f ∈ W with T (f) =
{s, t}, with s �= t. Let h = Π(f) and let R be the {s, t}-residue containing f and h.
Let g ∈ R and let m be the distance in X1 between g and h. Suppose T (g) = {s, r}
with r �= s, t. Then:
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Figure 3. Corollary 5.5.

(i) m � 3.

(ii) If m = 3, then msr = 2.

(iii) If mst = 3 and m = 2, then msr = 2.

(iv) If mst = 4, then m � 2.

(v) If m = mst − 1, then mst � 3, and for mst = 3 we have msr = 2.

Proof. Note that T (g) = {s, r} implies in particular g �= f, h. Let γ0 be the geodesic
edge-path in X1 from f to h not containing g. Let γ1 be the geodesic edge-path of
length msr with vertices in the {s, r}-residue containing g, starting at g with the
r-edge. Let γ be any geodesic edge-path from f to id containing γ0. Let γ′ be any
geodesic edge-path from f to id containing γ1. Let W1 be the first wall intersecting
γ. Let W2 be the wall dual to the s-edge incident to g. Let W3 be the wall dual to
the r-edge incident to g. See figure 3. Note that W3 does not intersect R (since then
W2 and W3 would intersect twice in X) and, analogously, W1 does not intersect
the {s, r}-residue of g. Consequently, we are in the setup of lemma 5.4 and we let
θ1, θ3 be as in that lemma, so that θ1 + θ3 < π.

Observe that we have θ1 = (m − 1) π
q(mst)

and θ3 = (msr − 1) π
q(msr) .

To prove part (i), assume m � 4. We then have θ1 � π
2 . However, θ3 � π

2 , which
contradicts lemma 5.4.

For part (ii), if m = 3 then we only have θ1 � π
3 . However, assuming msr � 3,

we would have θ3 � 2π
3 , which also contradicts lemma 5.4.

For part (iii), if m = 2 and mst = 3, then we have θ1 = π
3 . Assuming msr � 3,

we would have θ3 � 2π
3 as before, which contradicts lemma 5.4.

To prove part (iv), if we had mst = 4 and m � 3, then θ1 � π
2 and θ3 � π

2 would
also contradict lemma 5.4.
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For part (v), assume m = mst − 1. The case mst � 5 is excluded by part (i),
and the case mst = 4 is excluded by part (iv). For mst = 3 we have msr = 2 by
part (iii). �

Proof of proposition 5.1. If s = t, then without loss of generality s ∈ T (g), and we
can take k = 1, k′ = 0.

Assume now s �= t. Let R = g〈s, t〉, and let f, h ∈ R be the elements with max-
imal and minimal word length, respectively. Let m, m′ be the distances in X1

between h and g, g′, respectively. We can assume Π(g), Π(g′) /∈ R. Then in partic-
ular m, m′ �= mst and if m �= 0 we have |T (g)| = 2 and T (g) contains exactly one
of s, t. Without loss of generality we suppose then T (g) = {s, r} for some r �= s, t.

Note that from corollary 5.5(i) it follows that m � 3. Furthermore, by
corollary 5.5(ii) if m = 3, then msr = 2. An analogous statement holds for m′.

Case 1: m = 3, or m = 2 and msr � 3.
If m = 3, then denoting by ĝ the s-neighbour of g, we have T (ĝ) = {t, r}. Since

msr = 2, we have mtr � 3.
Applying corollary 5.5(v), with f replaced by ĝ and g replaced by the t-neighbour

of ĝ, gives mtr = 3, and so mst � 6. Consequently, in X1 we have the configuration
described in figure 4(a), where for each edge (q, q̂) of X1 the vertex q is drawn higher
than q̂ if �(q) > �(q̂). For each edge-path in X1 labelled sr, rs or trt, with endpoints
q, q̂ satisfying �(q) − �(q̂) = 2 or 3, respectively, there is another edge-path from q
to q̂ labelled rs, sr or rtr, respectively. The word lengths of the consecutive vertices
of such a path are �(q), �(q) − 1, �(q) − 2 = �(q̂), or �(q), �(q) − 1, �(q) − 2, �(q) −
3 = �(q̂), respectively. Thus the configuration described in figure 4(a) extends to
the configuration in figure 4(b). In particular, we have m′ �= 3, since otherwise,
for r′ ∈ S satisfying T (g′) = {t, r′}, denoting by ĝ′ the t-neighbour of g′, we have
T (ĝ′) = {s, r′} and so r′ = r. Since mtr′ = 2, we have 3 � msr′ = msr, which is a
contradiction. Consequently, m′ � 2.

Consider any of the two vertices labelled by u in figure 4(b). Note that T (u) = {t},
since having |T (u)| = 2 would force the t-neighbour û of u to have |T (û)| � 3. This
implies that Π3(g) lies on the lower {s, t}-residue R′ in figure 4(b). Furthermore,
note that T (h) = {r}, since having T (h) = {r, p} for some p ∈ S would force the
r-neighbour ĥ of h to have T (ĥ) = {t, p}, contradicting corollary 5.5(v) with g

replaced by ĥ, and f replaced by the s-neighbour of ĥ, since it would imply mst � 3.
Consequently, in any of the cases m′ = 0, 1, 2, there is k′ � 3 with Πk′

(g′) ∈ R′, as
desired.

If m = 2 and msr � 3, then the same proof goes through with the following minor
changes. Namely, msr = 3 and mtr = 2 follow from corollary 5.5(v) applied with
f replaced by g and g replaced by the s-neighbour of g. The remaining part of
the proof is the same, with s and t interchanged, except that it is Π(g) instead of
Π3(g) that lies in R′. Namely, in X1 we have the configuration described in figure
4(a), with the top square removed, s and t interchanged, and ĝ replaced with g.
Consequently, we have the configuration described in figure 4(b), with the same
modifications. We obtain k′ � 3 with Πk′

(g′) ∈ R′ as before.
Case 2: m = 2 and msr = 2.
We have mtr � 3 and the configuration from figure 5 inside X1. Note that if

m′ = 2, then we can assume T (g′) = {t}. Indeed, if T (g′) = {t, p}, then we can
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Figure 4. Proof of proposition 5.1, case 1.

Figure 5. Proof of proposition 5.1, case 2.

assume mtp = 2 since otherwise interchanging g, g′ we can appeal to case 1. Thus
p �= r, and so the t-neighbor ĝ′ of g′ has |T (ĝ′)| � 3, which is a contradiction.

Consequently both Π(g) and Πk′
(g′) for some k′ � 2 lie in the {t, r}-residue R′

from figure 5. This completes case 2.
Note that if, say, m = 1, m′ = 0, then we can take k = 1, k′ = 0. Thus it remains

to consider the case where m′ = m = 1.
Case 3: m′ = m = 1, and T (g′) = {t, r}. In other words, the second element of

T (g′) coincides with that of T (g).
If one of msr, mtr, say msr, equals 2, then we can take k = 1, k′ = 0, and we

are done. If msr = mtr = 3, then we can take k = k′ = 1. It remains to consider
the case, where, say, msr � 4, mtr � 3. Let γ0, γ′

0 be the geodesic edge-paths from
f to g, g′, respectively. If mtr � 4, then we apply lemma 5.4 with any γ starting
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Figure 6. Proof of proposition 5.1, case 3.

with γ0

msr︷ ︸︸ ︷
rsr · · ·, and any γ′ starting with γ′

0

mtr︷ ︸︸ ︷
rtr · · ·. We take W1, W2, W3 to be

the walls dual to r-edges incident to g, h, g′, respectively. Then θ1, θ3 � (π/2),
which is a contradiction. Analogously, if msr � 6, then θ1 � (2π/3), θ3 � (π/3),
contradiction.

We can thus assume mtr = 3, and msr = 4 or 5. In particular, mst � 3. We now
apply corollary 5.5, with f replaced by the r-neighbour u of h and g replaced by the
s-neighbour û of u, see figure 6. Since T (u) = {s, t} with mst � 3 and T (û) = {t, r}
with mtr = 3, corollary 5.5(v) yields a contradiction.

Case 4: m′ = m = 1, and T (g′) = {t, p} for some p �= r.
First note that T (h) = {r, p} and so mpr < ∞. If msr = mtp = 2, then we can

take k′ = k = 1 and we are done. We now focus on the case msr � 3 and mtp � 3.
By corollary 5.5(v), applied with f replaced by g and g replaced by h, we obtain
msr = 3 and mrp = 2. In particular, since mtp < ∞, we have mtr � 3. Let ĥ be the
p-neighbour of h. We then apply lemma 5.4 to geodesic edge-paths γ, γ′ from g
to id, where γ starts with the edge-path of length msr in the {s, r}-residue of g
starting with the r-edge, and γ′ starts with the s-edge, the p-edge, followed by the
edge-path of length mtr in the {t, r} residue of ĥ starting with the t-edge. See figure
7. We consider the walls W1, W2 dual to the r-edges incident to g, h, respectively,
and W3 dual to the t-edge incident to ĥ. We have θ1 = (π/3), θ3 � (2π/3), which
is a contradiction.

It remains to consider the case where, say, msr � 3 and mtp = 2. Then again
by corollary 5.5(v), applied with f replaced by g and g replaced by h, we obtain
msr = 3 and mrp = 2. Let u be the r-neighbour of h. Then Π(g) lies in the {p, s}-
residue R′ of u. Let ĥ = Π(g′), and let û be the p-neighbour of u, see figure 8.
We have msp � 6 and so by corollary 5.5(v), applied with f replaced by u and g
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Figure 7. Proof of proposition 5.1, case 4, msr � 3 and mtp � 3.

replaced by û, we obtain T (û) = {s}. We claim that T (ĥ) = {r} and so Π(ĥ) also
lies in R′, finishing the proof. To justify the claim, suppose T (ĥ) = {r, q} with q �= r.
If mrq � 3, then we consider the walls W1, W2 dual to the r-edges incident to g, h,
respectively, and W3 dual to the q-edge incident to ĥ, which leads to a contradiction
as in the previous paragraph. If mrq = 2, then q �= s and so T (û) = {s, q}, which
is a contradiction. This justifies the claim and completes case 4.

�

6. Ã3 Euclidean group

In this section it will be convenient to view the Cayley graph X1 of the Ã3 Coxeter
group W as the dual graph to its Coxeter complex, which is the following subdivision
of R3. (The reader might find it convenient to relate this subdivision into tetrahe-
dra with the standard subdivision of R3 into unit cubes.) Its vertices are triples of
integers (x, y, z) that are all odd or all even. Edges connect each vertex (x, y, z) to
vertices of the form (x ± 2, y, z), (x, y ± 2, z), (x, y, z ± 2), (x ± 1, y ± 1, z ± 1),
where the three signs can be chosen independently. See for example [13, theorem
A], where this Coxeter complex is described as a subdivision of the hyperplane σ
in R4 defined by x1 + x2 + x3 + x4 = 0, and the linear isomorphism with our sub-
division of R3 is given by (x, y, z) �→ (x + y + z, x − y − z, y − z − x, z − x − y).
Furthermore, in step 1 of the proof of [13, theorem A], we show that the tetrahedra
of the Coxeter complex are obtained by subdividing σ along a family of hyperplanes
that, after identifying σ with R3, have equations x ± y = c, x ± z = c or y ± z = c,
for c even.
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Figure 8. Proof of proposition 5.1, case 4, msr � 3 and mtp = 2.

In particular, in the second paragraph of step 1 of the proof of [13, theorem A], we
describe explicitly one of the tetrahedra as, after identifying σ with R3, spanned
on the clique with vertices (−1, −1, −1), (−1, −1, 1), (−2, 0, 0), (0, 0, 0). Using
the action of W , this gives the following description of all the tetrahedra of our
subdivision. Namely, tetrahedra are spanned (up to permuting the coordinates) on
cliques with vertices (x, y, z − 1), (x, y, z + 1), (x + 1, y − 1, z), (x + 1, y + 1, z).
Each such tetrahedron has exactly two edges of length 2, and the segment e =
((x, y, z), (x + 1, y, z)) joining their centres has length 1. We can equivariantly
embed X1 into R3 by mapping each vertex into the centre of a tetrahedron,
and mapping each edge affinely. Consequently, we can identify elements g ∈ W
with segments of the form eg = ((x, y, z), (x + 1, y, z)), where y + z is odd, up to
permuting the coordinates. We identify id ∈ W with eid = ((0, 0, 1), (0, 1, 1)). In
particular, the point O = (0, 0, 0) belongs to the identity tetrahedron. Note that
for each g ∈ W, s ∈ S, the segments eg, egs are incident. Furthermore, walls in X1

extend to subcomplexes of R3 isometric to Euclidean planes, and such a wall is
adjacent to g ∈ W if and only if it contains a face of the tetrahedron containing eg.

Lemma 6.1. Let |x0| + 1 < y0 < z0. Let g ∈ W be such that

(i) eg = ((x0, y0, z0), (x0 + 1, y0, z0)), or

(ii) eg = ((x0, y0, z0), (x0, y0, z0 + 1)).

Then �(w(g)) equals, respectively,

(i) 3, or

(ii) 2.
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Figure 9. Proof of lemma 6.1, case (i), x0 + y0 even.

Furthermore, eΠ(g) is equal to the translate of eg by, respectively,

(i) (0, −1, −1), or

(ii) (0, 0, −1).

Proof. In case (i), suppose first that x0 + y0 is even. Then eg lies in the tetra-
hedron with vertices (x0, y0, z0 − 1), (x0, y0, z0 + 1), (x0 + 1, y0 − 1, z0), (x0 +
1, y0 + 1, z0). The walls adjacent to g are the hyperplanes containing the faces
of this tetrahedron, which are x + y = x0 + y0, x − y = x0 − y0, x + z = x0 + 1 +
z0, x − z = x0 + 1 − z0. Projecting eg, O, and these walls onto the xy plane
(Fig. 9(a)), or the xz plane (Fig. 9(b)), we obtain that eg is separated from O
exactly by the first and fourth among these walls.

Consequently, gT (g)g−1 consists of the reflections in the first and fourth of
these walls. These reflections preserve the cube spanned by eg and its translates
by (0, −1, 0), (0, 0, −1) and (0, −1, −1), see figure 10. The longest element (of
length 3) in the group that these reflections generate maps eg to its translate by
(0, −1, −1).

Secondly, suppose that x0 + y0 is odd. Then eg lies in the tetrahedron with
vertices (x0, y0 − 1, z0), (x0, y0 + 1, z0), (x0 + 1, y0, z0 − 1), (x0 + 1, y0, z0 + 1).
Thus the walls adjacent to g are x + y = x0 + 1 + y0, x − y = x0 + 1 − y0, x + z =
x0 + z0, x − z = x0 − z0. Hence, as illustrated in figure 11(a,b), eg is separated from
O exactly by the second and third among these walls. Consequently, gT (g)g−1 con-
sists of the reflections in the second and third of these walls. The longest element
(of length 3) in the group they generate maps eg to its translate by (0, −1, −1) as
before.

In case (ii), suppose first that y0 + z0 is odd. Then eg lies in the tetra-
hedron with vertices (x0, y0 − 1, z0), (x0, y0 + 1, z0), (x0 − 1, y0, z0 + 1), (x0 +
1, y0, z0 + 1). Thus the walls adjacent to g are x + z = x0 + z0, x − z = x0 −
z0, y + z = y0 + z0 + 1, y − z = y0 − z0 − 1. Hence, as illustrated in figure 12(a,b),
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Figure 10. Proof of lemma 6.1, case (i), x0 + y0 even: the two walls.

Figure 11. Proof of lemma 6.1, case (i), x0 + y0 odd.

eg is separated from O exactly by the first and second among these walls. Conse-
quently, gT (g)g−1 consists of the reflections in the first and second of these walls.
These reflections commute and preserve the square spanned by eg and its translate
by (0, 0, −1). The longest element in the group these reflections generate (i.e. their
composition) maps eg to its translate by (0, 0, −1).

Secondly, suppose that y0 + z0 is even. Then eg lies in the tetrahedron with
vertices (x0 − 1, y0, z0), (x0 + 1, y0, z0), (x0, y0 − 1, z0 + 1), (x0, y0 + 1, z0 + 1).
Thus the walls adjacent to g are x + z = x0 + z0 + 1, x − z = x0 − z0 − 1, y + z =
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Figure 12. Proof of lemma 6.1, case (ii), y0 + z0 odd.

Figure 13. Proof of lemma 6.1, case (ii), y0 + z0 even.

y0 + z0, y − z = y0 − z0. Hence, as illustrated in figure 13(a,b), eg is separated from
O exactly by the third and fourth among these walls. Consequently, gT (g)g−1 con-
sists of the (commuting) reflections in the third and fourth of these walls. The
longest element in the group they generate maps eg to its translate by (0, 0, −1)
as before. �

Proof of theorem 1.4. Let L be the standard language. For each C > 0 consider the
following g, g′ ∈ W with incident segments

eg = ((x0, y0, z0), (x0 + 1, y0, z0)), eg′ = ((x0, y0, z0), (x0, y0, z0 + 1))

with x0, z0 even and y0 odd, satisfying |x0| + C < y0 � z0 − C. Suppose that g, g′

are represented by v, v′ ∈ L of length N, N ′ (which differ by 1). By lemma 6.1, for
n, n′ � C we have that v(N − 3n) represents the element of W corresponding to the
segment eg − n(0, 1, 1) and v′(N ′ − 2n′) represents the element of W corresponding
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to the segment eg′ − n′(0, 0, 1). In particular, for i = 3n = 2n′, we see that the
segments corresponding to v(N − i) and v′(N ′ − i) are ((x0, y0 − n, z0 − n), (x0 +
1, y0 − n, z0 − n)) and ((x0, y0, z0 − 3

2n), (x0, y0, z0 + 1 − 3
2n)). Thus they are at

Euclidean distance � n, so in particular �(v(N − i)−1v′(N ′ − i)) � n. This shows
that part (ii) of the definition of biautomaticity does not hold for L. �
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13 Z. Munro. Weak modularity and Ãn buildings. submitted, (2019), arXiv:1906.10259.
14 G. A. Niblo and L. D. Reeves. The geometry of cube complexes and the complexity of their

fundamental groups. Topology 37 (1998), 621–633.
15 G. A. Niblo and L. D. Reeves. Coxeter groups act on CAT(0) cube complexes. J. Group

Theory 6 (2003), 399–413.
16 G. A. Noskov. Combing Euclidean buildings. Geom. Topol. 4 (2000), 85–116.
17 M. Ronan. Lectures on buildings, Perspectives in Mathematics, vol. 7, (Boston, MA:

Academic Press Inc., 1989), xiv+201.
18 J. Świątkowski. Regular path systems and (bi)automatic groups. Geom. Dedicata 118

(2006), 23–48.

https://doi.org/10.1017/prm.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.11

	1 Introduction
	2 Preliminaries
	3 Regularity
	4 g and sg
	5 g and gs
	6 A"0365A3 Euclidean group
	References

