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In this issue of the British Journal of Nutrition, Dr Jean-

Philippe Bonjour presents a very well-organised and com-

prehensive review of the literature on how acids and bases are

produced in the body(1). The review explains how the body buf-

fers and titrates acids and bases, and discusses whether dietary

factors can affect systemic acid–base status and balance and

whether dietary acid factors can affect the bone sufficiently to

cause bone breakdown leading to osteoporosis. Osteoporosis

is considered to be a state where bone breakdown exceeds

bone production, leading to both the progressive loss of bone

mass and the destruction of bone architecture. As noted by

Dr Bonjour, the idea that acidosis-induced bone mass reduction

can occur and that alkali administration might slow or prevent

this cause of bone loss was first proposed more than 40 years

ago. Over the past two decades, opposition to the idea that

alkali therapy may help prevent dietary acid-induced osteo-

porosis has been growing, as studies that failed to show support

for this theory were published. Presently, data that support both

the proponents and the opponents of this hypothesis exist.

Proponents of the theory argue that in vitro studies clearly

show that pronounced increases in systemic acid levels

activate osteoclasts and cause increased flux of Ca from

bone and increased bone dissolution(2–6). Therefore, smaller

changes towards a higher blood and tissue acid steady-state

level associated with typical net acid-producing diets, exacer-

bated by age-related decline in renal acid–base regulatory

ability, may cause smaller changes that over decades

become clinically significant. This effect would exacerbate

the bone mass-reducing effect of known aetiological factors

contributing to osteoporosis. They then cite studies that

support this hypothesis(7–11).

Opponents of this theory argue from quantitative consider-

ations that if bone were the main site of deposition of the

base used to titrate dietary acids, then all the bone in the

body would be dissolved in just a few years. They point out

that because that does not occur, bone cannot provide

the major quantity of base (alkali) titrating towards the neutra-

lisation of dietary net acid(12–14). They then cite supporting

studies(15–19). Dr Bonjour(1) also argues that homeostatic

mechanisms, including renal net acid excretion (NAE),

would not permit a steady-state low-grade metabolic acidosis

caused by the ingestion of typical Western net acid-producing

diets.

Is it possible to reconcile these two disparate points of view?

We suggest that both points of view are partially correct and

offer further suggestions to integrate these hypotheses.

Do higher dietary acid loads, in fact, lead to higher steady-

state blood acid levels? Kurtz et al.(20) and Frassetto et al.(21)

showed that in healthy humans, consuming ordinary diets,

the steady-state blood hydrogen ion concentration is detecta-

bly higher, and the plasma bicarbonate concentration detecta-

bly lower when dietary net acid loads are higher, within the

range typically observed in American and European diets.

Homeostatic mechanisms did not maintain hydrogen ion or

bicarbonate levels when the diets yielded acid loads greater

than approximately 1 mmol/kg per d and net acid balance

became positive (see Fig. 1). However, the typical American

or Western diet averages approximately 50 mmol/d(22), within

the range where endogenous acid production (including diet-

ary acid intake) is matched by renal NAE in subjects with

normal renal function. In these people, the kidneys are able

to excrete the entire acid load, as suggested by Dr Bonjour(1).

Do other osteoporosis risk factors have a larger impact

on bone? If many factors of differing magnitude of effect by

themselves and/or in synergistic interactions among them con-

tribute to the development of osteoporotic low bone mass,

and if many different partially counteracting homeostatic

mechanisms come into play, then it might be difficult to

detect and quantify a negative effect of habitual consumption

of typical net acid-producing diets, in particular if such a nega-

tive effect is quantitatively relatively small. For example, age,

sex, weight and immobility are thought to have more relative

impact on fracture risk than coffee drinking, smoking or trace

mineral levels(7,23); diet acid load may be another quantitat-

ively small factor.

Finally, assuming that bone is not the predominate system

for neutralising acid loads, what other systems could contrib-

ute to maintaining net acid balance? Other potential systems

for buffering or titrating acids have been demonstrated.

Titration is used in this sense as a system that does not regen-

erate itself, when compared with buffering, which does.
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Hood & Tannen(24) suggested in 1998 that systemic pH was

protected by increasing or decreasing organic acid production

in the direction that attenuates the change in systemic pH.

In overweight humans fasting or placed on ketogenic diets,

addition of ammonium chloride, an acid, caused decreases

in urinary ketoacid excretion compared with the controls

on NaCl, while those given sodium bicarbonate exhibited

increased urinary ketoacid excretion. These studies suggest

that alteration in organic acid production is one of the

main methods that the body uses to maintain systemic blood

acid levels.

Wesson et al.(25) suggested that tissue buffering by

the kidney was important, and showed that chronic alkali

loading in subjects with chronic kidney disease stage 1

(glomerular filtration rate (GFR) .90 ml/min per 1·73 m2 and

with proteinuria) and stage 2 (GFR 60–90 ml/min per

1·73 m2) caused no change in blood pH or bicarbonate, but

in the stage 2 chronic kidney disease (CKD) subjects allowed

the kidneys to lower NAE by 30 %(26). This level of renal insuf-

ficiency is that seen in older subjects with age-related decline

in kidney function. In this study, alkali therapy slowed the

progression of GFR decline in subjects with CKD stage 2,

but not in subjects with CKD stage 2 on NaCl or placebo.

Muscle is another tissue that responds to high acid

loads, buffering hydrogen ions intracellularly by exchanging

them for K and by titration through proteolysis. High acid

environments up-regulate the ubiquitin–proteasome pathway,

leading to increased glutamine available for the kidney(27).

The kidney uses glutamine to increase urinary ammonium

excretion, which mitigates the increased acid load. Alkali

therapy may alleviate some of that muscle breakdown and

possibly improve muscle function (reviewed in Mithal et al.(28)).

Thus, given all the other factors that could also have an

impact on the development of osteoporosis and the body’s

systems for buffering and titrating systemic acid levels,

people with relatively normal kidneys, eating typical Western

diets with acid loads up to 1 mmol/kg, will not show net reten-

tion of a portion of their net endogenous acid production and

therefore would not be candidates for a bone-ameliorative

effect of neutralising their dietary net endogenous acid load.

This suggests that subjects who are elderly with lower renal

function and low muscle and bone mass are most at risk if

they eat diets with high acid loads and would be the group

whose bones (and muscles and kidneys!) would most demon-

strably benefit from alkali therapies.
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Fig. 1. Relationship between steady-state renal net acid excretion (RNAE)

and net endogenous acid production (NEAP) in normal subjects ingesting

one of three different diets(29). Each data point represents the mean steady-

state value observed in one individual (r 0·94, P,0·01). Note that as NEAP

increases, RNAE falls below the ‘identity’ line, where NEAP ¼ RNAE,

suggesting that at higher acid loads, the kidneys are not able to excrete all of

the increased acids. This then produces a positive net acid balance, reflected

by the lower blood pH and serum bicarbonate values demonstrated by

Kurtz et al.(20) and Frassetto et al.(21) in subjects with high dietary acid loads.

Also note that in subjects on low endogenous acid diets, RNAE exceeds

the identity line, as predicted by Hood & Tannen(24). Data are plotted from

tabular data published in Lennon et al.(30).
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