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Abstract
The triangle packing number ν(G) of a graph G is the maximum size of a set of edge-disjoint triangles in
G. Tuza conjectured that in any graphG there exists a set of at most 2ν(G) edges intersecting every triangle
in G. We show that Tuza’s conjecture holds in the random graph G=G(n,m), when m� 0.2403n3/2 or
m� 2.1243n3/2. This is done by analysing a greedy algorithm for finding large triangle packings in random
graphs.

2020 MSC Codes: Primary 05B40; Secondary 05C80, 05D40

1. Introduction
Let G be a graph. The triangle packing number of G, denoted by ν(G), is the maximal size of a set
of edge-disjoint triangles (i.e. copies of K3). Let G(n,m) be the Erdős–Rényi random graph that
assigns equal probability to all graphs on a fixed set V of n vertices with exactly m=m(n) edges.
When we refer to an event occurring with high probability (w.h.p. for short), we mean that the
probability of that event goes to 1 as n goes to infinity.

In this paper we consider a random greedy process that produces a triangle packing in the
random graph G(n,m). Our motivation is to investigate the likely value of ν(G(n,m)). We will
call our process the online triangle packing process since it reveals one edge of G(n,m) at a time,
and builds a triangle packing as the edges are revealed. In online triangle packing we start with
an empty packing M(0) in G(n, 0). We reveal one edge at a time; if that edge forms a copy of the
tripartite graph K1,1,s for some s� 1 that is edge-disjoint with M(i), then we choose the maximal
such s and add that copy of K1,1,s to the packing to formM(i+ 1). Note that the unmatched graph
U(i)=G(n, i)−M(i) is triangle-free by induction on i (here and below we identify a graphH with
its edge set E(H)). Furthermore, observe that the triangle packing can be obtained from M(i) by
taking a triangle from each graph ofM(i).

The online triangle packing process is similar to three other, more well-studied processes that
produce triangle-free graphs. In the triangle-free process, first introduced by Bollobás and Erdős
(see [10]), one maintains a triangle-free subgraph GT(i)⊆G(n, i) by revealing one edge at a time,
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and adding that edge to GT(i) only if it does not create a triangle in GT(i). This process was orig-
inally motivated by the study of the Ramsey numbers R(3, t), and several progressively better
analyses of the process have repeatedly improved the best known lower bound on R(3, t), until
recently Bohman and Keevash [7] and independently Fiz Pontiveros, Griffiths and Morris [13]
analysed the process in incredible detail and proved that R(3, t)� (1/4− o(1))t2/ log t.

Bollobás and Erdős introduced another process, now known as random triangle removal, where
a triangle-free graph is created by ‘working backwards’ (see [8, 9]). In this process one starts with
GR(0)=Kn and at each step removes the edges of one triangle chosen uniformly at random from
all triangles in GR(i), stopping only when the graph becomes triangle-free. The triangles whose
edges were removed form a triangle packing in Kn. Random triangle removal was also origi-
nally motivated by the study of R(3, t), although it has not produced any good bounds on R(3, t).
Bollobás and Erdős also conjectured that the number of edges remaining at the end of this process
(i.e. edges not in the triangle packing) is w.h.p.�(n3/2). The best known estimate (both upper and
lower bound) on the number of edges remaining is n3/2+o(1) by Bohman, Frieze and Lubetzky [6].

Bollobás and Erdős introduced a third process they hoped could attack R(3, t), now called the
reverse triangle-free process, where we ‘work backwards’ in a different way. In this process we start
with GRT(0)=Kn and at each step remove one edge that is in a triangle in GRT(i), stopping only
when the graph becomes triangle-free. Erdős, Suen and Winkler [12] proved that the expected
number of edges in the final graph is (1+ o(1))

√
πn3/2/4. Makai [20] and independently Warnke

[22] then proved that the final number of edges is concentrated about its expectation.
We analyse the online triangle packing process using methods similar to those used to analyse

the triangle-free and random triangle removal processes. Specifically, we use the dynamic con-
centration method (also known as the differential equation method: see Wormald’s survey [23]) to
track a system of random variables using martingale concentration inequalities. Essentially, we
define a ‘good event’ stipulating that all our random variables are what we expect them to be, and
show that it is very unlikely to stray outside the good event.

In this paper we focus on the triangle packing process for sparse random graphs only. For dense
graphs Frankl and Rödl proved the following.

Theorem 1.1. (Frankl and Rödl [14]). Suppose ε > 0. Let G=G(n,m) be a random graph of order
n and size m= cn3/2, where c� ( log n)2. Then w.h.p.

ν(G)� 1
3
(1− ε)cn3/2.

Clearly this theorem is optimal in order, since it shows that almost all edges can be decomposed
into edge-disjoint triangles. An unpublished result for Pippenger strengthened Theorem 1.1 by
slightly decreasing the lower bound on c (see e.g. [2]).

In this paper we are interested in the case when c< ( log n)2. Let z = z(t), where t� 0, be a func-
tion satisfying the differential equation z′ = 2e−z2 − 4z2 (this differential equation is discussed in
detail in Section 2.2). Let ζ ≈ 0.5930714217 be the positive root of the equation e−ζ 2 − 2ζ 2 = 0.
Define

Lν(c) := 1
3

[
c− z(c)

2
− 2

∫ c

0
[z(t)2 − 1+ e−z(t)2 ] dt

]
. (1.1)

Our main result is the following.

Theorem 1.2. Let G=G(n,m) be a random graph of order n and size m= cn3/2.
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(i) For an arbitrary small ε > 0, let

n−(1/20)+ε < c� 1
1000

log log n.

Then w.h.p.

ν(G)� (1+ o(1))Lν(c)n3/2.

Furthermore, if
ζ

6(1− ζ 2)
≈ 0.1525< c� 1

1000
log log n,

then w.h.p.

ν(G)� (1+ o(1))n3/2
[
c(1− 2ζ 2)− ζ

6

]
.

(ii) Let 1� c� ( log n)2. Then w.h.p.

ν(G)� (1+ o(1))n3/2c(1− 2ζ 2)� (1+ o(1))0.2965cn3/2.

Observe that the bound in part (ii) is only slightly worse than the best possible, as in
Theorem 1.1. The proof of Theorem 1.2, presented in Section 2, employs the dynamic concen-
tration method and is algorithmic.

We complement Theorem 1.2 with a straightforward result.

Theorem 1.3. Let G=G(n,m) be a random graph of order n and size m= cn3/2. Let t� = t�(G)
denote the number of copies of K3 in G.

(i) If n−3/10/log n� c� 1, then w.h.p.

ν(G)� (1+ o(1))
4c3

3
n3/2e−12c2 = (1+ o(1))t�e−12c2 .

(ii) If c= o(n−3/10), then w.h.p.

ν(G)= t�(G).

Since limc→0 e−12c2 = 1, this theorem implies that when c is small enough, almost all triangles
are edge-disjoint. Therefore the bound in Theorem 1.3 is very good for small c (even when c is a
small constant). The proof is given in Section 3. It will also follow from the proof that the bound in
Theorem 1.2 is always better than the one in Theorem 1.3 for n−(1/20)+ε < c� (1/1000) log log n,
given in Section 2.

As an application of our theoremswe consider a well-known conjecture of Tuza [21] on triangle
packings in graphs, in the special case of random graphs. For a given graph G, let τ (G) be the
triangle covering number of G, that is, the minimal size of a set of edges intersecting all triangles.
Trivially, ν(G)� τ (G)� 3ν(G) for any graph G. Tuza’s conjecture asserts that the upper bound
can be improved.

Conjecture 1. (Tuza [21]). For every graph G, τ (G)� 2ν(G).

The conjecture is tight for the complete graphs of orders 4 and 5. Recently, Baron and Khan
[3] showed (disproving a conjecture of Yuster [24]) that for any α > 0 there are arbitrarily large
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graphs G of positive density satisfying τ (G)> (1− o(1))|G|/2 and ν(G)< (1+ α)|G|/4. Hence,
in general, the multiplicative constant 2 in the Tuza’s conjecture cannot be improved. The best
known upper bound is due to Haxell [16], who proved that τ (G)� (66/23)ν(G). For more related
results, see e.g. [1, 17, 19]. Here we show that for random graphs the following holds.

Theorem 1.4. There exist absolute constants 0< c1 < c2 such that if m� c1n3/2 or m� c2n3/2, then
w.h.p. Tuza’s conjecture holds for G=G(n,m).

The existence of one of these constants, c1, was very recently also proved by Basit and Galvin
[4]. The proof of Theorem 1.4 is given in Section 4, from which it will follow that one can take
c1 := 0.2403 and c2 := 2.1243. So the gap is not too big but unfortunately we could not close it.
(See Section 5 for some additional discussion.)

2. Finding a triangle packing through the random process
2.1 Outline of the algorithm
In the online triangle packing process we in fact find an edge-disjoint set of subgraphs of the form
K1,1,s, for s� 1 (i.e. a complete tripartite graph with two partition classes of size 1 and one partition
class of size s).

Formally, we reveal one edge of G(n,m) at each step, so at step i we have G(n, i). We will
partition the edges of G(n, i) into a matched graph M(i) and an unmatched graph U(i). At step i
we reveal a random edge ei. If ei creates a copy K of K1,1,s, for some s� 1, with some other edges
in U(i), then we choose the maximal such s and formM(i+ 1) by inserting all the edges of K into
M(i), and we formU(i+ 1) by removing fromU(i) the edges of K. Note that ei creates a new copy
of K1,1,s with other edges in U(i) precisely when the vertices in ei have codegree s in U, where the
codegree of vertices u, v in a graph H, denoted by codegH(u, v), is the number of vertices w such
that both uw and vw are edges of H.

For a vertex v let dU(v, i)= degU(i) (v) and dM(v, i)= degM(i) (v) be the unmatched and
matched degree at step i, respectively. Let dG(v, i)= degG(n,i) (v)= dU(v, i)+ dM(v, i). We will
usually suppress the ‘i’. Define the scaled time parameter

t = t(i) := i
n3/2

,

where 0� i� (1/1000)n3/2 log log n. At each step we choose a random edge without replacement.
Hence, at every step the probability of choosing any particular edge that has not been chosen yet
is at least 1/

(n
2
)
� 2/n2 and at most

1(n
2
) − (1/1000)n3/2 log log n

= 2
n2

(1+ Õ(n−1/2)),

where a(n) ∈ Õ(b(n)) if there exists k� 0 such that a(n) ∈O(b(n) logk b(n)).
Our process is ‘wasteful’ because it might remove from U(i) some K1,1,s with s� 2 instead of

only removing a triangle, in which case 2(s− 1) edges are ‘wasted’. We will show that actually the
process does not waste too many edges. Therefore taking triangles only instead of K1,1,s would not
significantly improve the size of the triangle packing but the analysis of the process would be more
involved (see Section 5 for additional discussion).

Wemake the following heuristic predictions that we will prove later. First, due to concentration
of vertex degrees in G(n,m) for large enough m, at any step i (ignoring steps near the beginning)
we have for every vertex v that

dU(v)+ dM(v)= degG(n,i)(v)= 2i
n
(1+ o(1))= 2tn1/2(1+ o(1)).
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Now let us heuristically assume that dU(v)≈ z(t)n1/2 (and therefore dM(v)≈ (2t − z(t))n1/2) and
the codegrees in U(i) are distributed Poisson with expectation n(zn−1/2)2 = z2. Then the number
of unmatched edges is approximately 1

2n
3/2z. When the vertices of the new edge have code-

gree 0 (this happens with probability e−z2 ), no triangle is formed, so we gain one unmatched
edge. Otherwise these vertices have codegree r� 1 (this happens with probability (z2r/r!)e−z2 )
and we put a K1,1,r into the packing, so 2r previously unmatched edges become matched. Thus
the expected one-step change in the number of unmatched edges, which we approximate using a
derivative, should be about

	

(
1
2
z(t)n3/2

)
≈

(
1
2
z′(t)n3/2

)
	t = 1

2
z′ ≈ 1 · e−z2 −

∑
r�1

2r
z2r

r! e
−z2 = e−z2 − 2z2

since the change in t in one step is	t = n−3/2. Thus we assume z satisfies the differential equation
z′ = 2e−z2 − 4z2. Although this equation has no explicit solution, we can still derive several prop-
erties of z. Summarizing, at the end of the process (after cn3/2 edges have been revealed) about
cn3/2 − (z/2)n3/2 edges are matched, and the unmatched edges create a triangle-free graph. In the
most optimistic scenario this would imply that we have a triangle packing of size

1
3

(
cn3/2 − z

2
n3/2

)
.

We will show that this is not far from being true.

2.2 Preliminaries
Let z = z(t) for t� 0 be such that the following autonomous differential equation holds:

z′ = 2e−z2 − 4z2.

Assume that z(0)= 0. Then z is an increasing function of t, and z approaches the smallest positive
root of the equation 2e−x2 − 4x2 = 0 (as t goes to infinity), which is about ζ ≈ 0.5931. Hence
0� z� ζ . This also implies that z′(t)� 0.

Furthermore, note that

z′′ = (2e−z2 − 4z2)′ = (− 4ze−z2 − 8z)z′ = −4(e−z2 + 2)zz′ � 0, (2.1)

and consequently 0� z′ � z′(0)= 2.
It is also not difficult to see that there exists an absolute constant t0 > 0 such that

2t − 4t3 � z(t) for t ∈ [0, t0]. (2.2)

Indeed, consider the function g(t)= 2t − 4t3 − z(t). One can verify that

g′(t)= 2− 12t2 − z′(t), g′′(t)= −24t + 4(e−z(t)2 + 2)z(t)z′(t) and

g′′′(t)= −24+ 4[− 2e−z(t)2z(t)2z′(t)2 + (e−z(t)2 + 2)z′(t)2 + (ez(t)
2 + 2)z(t)z′′(t)].

Thus, since z(0)= z′′(0)= 0 and z′(0)= 2, we obtain g(0)= g′(0)= g′′(0)= 0 and g′′′(0)= 24.
Since g′′′(t) is continuous (indeed it is differentiable, and we could calculate its derivative using
the formulas above), the latter implies that there exists some absolute constant t0 > 0 such that
g′′′(t)� 0 for every t ∈ [0, t0]. Hence g′′(t) is increasing and so g′′(t)� g′′(0)= 0 for t ∈ [0, t0].
Similarly, this implies that g′(t)� 0 and finally g(t)� 0.

For integers r, s� 0, let us define the following random variables for every step i� 0.

• Cr(v)= Cr(v, i) is the set of vertices u such that codegU(u, v)= r.
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• Pr(u, v)= Pr(u, v, i) is the set of vertices w such that w is a neighbour of exactly one of {u, v},
say w∗, and w has codegree r (in U) with the vertex in {u, v} \ {w∗} which we call w∗∗.

• Qr,s(u, v)=Qr,s(u, v, i) is the set of vertices w such that codegU(w, u)= r and
codegU(w, v)= s.

When it is convenient we will abuse notation by writing the name of a set when we mean the
cardinality of that set.

We define now deterministic counterparts to the above random variables. If we assume that the
unmatched graph is almost regular and the codegrees are almost independent Poisson variables,
then we expect the above random variables to be close (after scaling by an appropriate power of
n) to the following functions:

cr = cr(t) := e−z2z2r

r! , pr = pr(t) := 2e−z2z2r+1

r! , qr,s = qr,s(t) := e−2z2z2r+2s

r!s! .

Observe that when r = s= 0 we have c0 = e−z2 , p0 = 2e−z2z and q0,0 = e−2z2 . Moreover, since for
any k� 0 and 0� x� 1, we get e−x2xk � 1, we obtain

cr �
1
r! , pr �

1
r! , qr,s �

1
r!s! .

Simple but tedious calculations (see Appendix A) show that the above functions satisfy the fol-
lowing differential equations, where c′r , p′

r and q′
r,s denote derivatives of cr , pr and qr,s as functions

of t:
c′r = 2cr−1p0 + 8(r + 1)cr+1z − 2cr(p0 + 4rz), (2.3)
p′
r = 4qr,0 + 2pr−1p0 + 8(r + 1)pr+1z − 2pr[p0 + (4r + 2)z], (2.4)

q′
r,s = 2(qr−1,s + qr,s−1)p0 + 8

[
(r + 1)qr+1,s + (s+ 1)qr,s+1

]
z − 4qr,s

[
p0 + 2(r + s)z

]
. (2.5)

These differential equations can be viewed as idealized one-step changes in the random variables
Cr(v), Pr(u, v) and Qr,s(u, v). Each of these variables counts copies of some type of substruc-
ture, and these copies can be created or destroyed by the process when we add or remove edges.
Equations (2.3)–(2.5) can be understood as expressing the one-step changes in the random vari-
ables in terms of these creations and deletions, on average.We will ultimately use these differential
equations to argue that the random variables stay close to their deterministic counterparts.

Define an ‘error function’

f (t) := exp
{
100 log n
log log n

· t
}
n−1/5

and observe that for 0� t� (1/1000) log log n we have n−1/5 � f (t)� n−1/10.
For a given step i, let Ei be the event such that in G=G(n, i) we have the following.

(i) No huge codegree. For all u, v ∈V , we have

codegG(u, v)�
3 log n
log log n

.

(ii) No dense set. For every subset S⊆V such that |S|� 10n1/2 log log n, we have

|G[S]|� n1/2 log2 n.
(iii) No K3,7 and not too many K3,2. For any u, v ∈V , the number of vertices w such that there

are two vertices x, y that are both connected to all of u, v,w (i.e. such that the induced
graph of G(n, i) on the set {x, y, u, v,w} contains a copy of K3,2 with partition classes {x, y}
and {u, v,w}) is at most O( log3 n). Furthermore, G(n, i) contains no K3,7 subgraph.
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(iv) Dynamic concentration. For every j� i,
– dG(v, j) ∈ (2t ± n−1/4 log2 n)n1/2,
– dU(v, j) ∈ (z ± f )n1/2,
– |Cr(v, j)| ∈ (cr ± (r + 1)−3f )n,
– |Pr(u, v, j)| ∈ (pr ± f )n1/2,
– |Qr,s(u, v, j)| ∈ (qr,s ± f )n,
where a± b denotes the interval [a− b, a+ b], and the functions z, f , cr , pr and qr,s are
evaluated at the point t(j).

It is easy to see that the first three conditions of the event Ei hold w.h.p. for every i under consid-
eration. We use the asymptotic equivalence of the models G(n,m) and G(n, p) (where p=m/

(n
2
)
)

and the fact that the conditions (i)–(iii) are monotone graph properties (see [18]). Now, to see that
(i) holds w.h.p., we calculate the expected number of pairs u, v with at least

rmax := 3 log n
log log n

common neighbours. At step i the number of edges we have added is at most n3/2( log log n)/1000.
Thus it is enough to show that (i) holds w.h.p. inG(n, p) where p� n−1/2( log log n)/500. Now the
expected number of pairs of vertices in G(n, p) with codegree at least rmax is at most

n2
(

n
rmax

)
p2rmax � n2

(
enp2

rmax

)rmax

� n2
(
( log log n)3

log n

)rmax

� e2 log n
(
( log log n)3

log n

)rmax

� e2 log n
(

1
( log n)5/6

)rmax

= e−( log n)/2

= o(1).

To see that (ii) holds w.h.p., assume that s� 10n1/2 log log n and set L= n1/2 log2 n. The
expected number of subsets S⊆V with |S| = s that induce at least L edges is at most(

n
s

)((s
2
)
L

)
pL �

(
en
s

)s(es2p
2L

)L
. (2.6)

Now (
en
s

)s
�

(
en

10n1/2 log log n

)10n1/2 log log n
� (n1/2)10n

1/2 log log n = e5n
1/2 log n log log n

and (
es2p
2L

)L
�

(
( log log n)3

( log n)2

)L
�

(
1

log n

)L
= e−n1/2 log2 n log log n.

Thus, (2.6) is at most exp{−
(n1/2 log2 n log log n)}, which is small enough to beat a union bound
over all s� 10n1/2 log log n.

To see that (iii) holds w.h.p., first note that the expected number of copies of K3,7 in G(n, p)
for p� n−1/2( log log n)/500 is at most n10p21 = o(1), so by Markov’s inequality w.h.p. there are
no copies of K3,7. Now, to address the copies of K2,3, we fix u, v and bound the number of triples
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w, x, y such that all edges in {x, y} × {u, v,w} are present in G(n,m). Since we already know that
the ‘no huge codegree’ property (i) holds w.h.p., there are O( log2 n) choices for x, y. But for each
x, y we have again by (i) that there are O( log n) choices for w. Thus the number of triples x, y,w is
at most O( log3 n).

In Sections 2.3–2.6 we prove that (iv) also holds w.h.p.

2.3 Tracking dU(v, j)
First observe that Chernoff ’s bound implies that w.h.p.

dG(v, j) ∈ (2t ± n−1/4 log2 n)n1/2.
Moreover, in order to estimate dU(v, j) it suffices to track dM(v, j).

We define the natural filtration Fi to be the history of the process up to step i. In particular,
conditioning on Fi tells us the current state of the process. Assuming we are in the event Ei−1, we
calculate the expected one-step change of the matched degree, conditional on Fi−1, namely

E[	dM(v, i)|Fi−1]=E[dM(v, i)− dM(v, i− 1)|Fi−1].
We have already revealed i− 1 edges. Now we reveal a new edge ei. Note that dM(v) is non-
decreasing. If ei ⊆NU(v), where NU(v) is the set of vertices connected to v in the graph U, then
dM(v) increases by 2. If ei is the edge vu for some vertex u such that codegU(u, v)> 0, then dM(v)
increases by 1+ codegU(u, v). Since at most Õ(n1/2) edges within NU(v) have been chosen, we
have

E[	dM(v, i)|Fi−1]

=
[
2 ·

((
dU(v, i− 1)

2

)
− Õ(n1/2)

)
+

rmax∑
r=1

(1+ r)Cr(v, i− 1)
]

· 2
n2

(1+ Õ(n−1/2))

=
[
dU(v, i− 1)2 +

rmax∑
r=1

(1+ r)Cr(v, i− 1)
]

· 2
n2

+ Õ(n−3/2)

�
[
((z + f )n1/2)2 +

rmax∑
r=1

(1+ r)
(
e−z2z2r

r! + (r + 1)−3f
)
n
]

· 2
n2

+ Õ(n−3/2),

where the functions z and f are evaluated at point t(i− 1). Now
rmax∑
r=1

(1+ r)
(
e−z2z2r

r!
)

= e−z2
(rmax∑
r=1

z2r

r! + z2
rmax∑
r=1

z2(r−1)

(r − 1)!
)

= e−z2
( ∞∑
r=1

z2r

r! + z2
∞∑
r=1

z2(r−1)

(r − 1)!
)

+O(n−2)

= e−z2 (ez
2 − 1+ z2ez

2
)+O(n−2)

= 1− e−z2 + z2 +O(n−2),
where the second equality uses the fact that for r� rmax we have

r! = exp{(1+ o(1))r log r}� exp{(3+ o(1)) log n},
and so

∞∑
r=rmax

z2r

r! + z2
∞∑

r=rmax

z2(r−1)

(r − 1)! < n−3+o(1) =O(n−2).
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Also
rmax∑
r=1

(r + 1)−2 � π2

6
− 1� 1.

Thus, since 0� z� ζ and f 2 =O( f ), we get

E[	dM(v, i)|Fi−1]� [((z + f )n1/2)2 + (1− e−z2 + z2)n+ fn] · 2
n2

+ Õ(n−3/2)

= [z2 + 2fz + f 2 + 1− e−z2 + z2 + f ]2n−1 + Õ(n−3/2)

= [2− 2e−z2 + 4z2 +O( f )]n−1 + Õ(n−3/2)

= [2− 2e−z(t(i−1))2 + 4z(t(i− 1))2 +O( f (t(i− 1)))]n−1 + Õ(n−3/2). (2.7)

Define variables

D±(v)=D±(v, i) :=
{
dM(v, i)− (2t(i)− z(t(i))± f (t(i)))n1/2 if Ei−1 holds,
D±(v, i− 1) otherwise.

We will show that the variablesD+(v) are supermartingales. Symmetric calculations show that the
D−(v) are submartingales. To do that, we first apply Taylor’s theorem to approximate the change
in the deterministic function by its derivative. Let g(t) := 2t − z(t)+ f (t) and t(i) := i/n3/2. Then

(g ◦ t)(i)− (g ◦ t)(i− 1)= (g ◦ t)′(i− 1)+ (g ◦ t)′′(ω)
2

= g′(t(i− 1))n−3/2 + (g ◦ t)′′(ω)
2

,

where ω ∈ [i− 1, i]. But

(g ◦ t)′′(i)= (g′(t(i))n−3/2)′ = g′′(t(i))n−3 = (− z′′(t)+ f ′′(t))n−3.

Furthermore, by (2.1) we get that |z′′(t)|� 24. Also

f ′′(t)=
(
100 log n
log log n

)2
exp

{
100 log n
log log n

· t
}
n−1/5 =

(
100 log n
log log n

)2
f (t).

Thus (g ◦ t)′′(ω)=O(n−3) and

(g ◦ t)(i)− (g ◦ t)(i− 1)= (2− z′(t(i− 1))+ f ′(t(i− 1)))n−3/2 +O(n−3). (2.8)

Now, if we are in Ei−1, then (2.7) and (2.8) for t = t(i− 1) imply

E[	D+(v, i)|Fi−1]� (− f ′(t)+O( f (t)))n−1 + Õ(n−3/2)

=
[
−

(
100 log n
log log n

)
f (t)+O( f (t))

]
n−1 + Õ(n−3/2)

� 0,

showing that the sequence D+(v, i) is a supermartingale.
We now apply the followingmartingale inequality due to Freedman [15] to show that the prob-

ability of D+(v) becoming positive is small, and thus so is the probability that dM(v) is out of its
bounds.

Lemma 2.1. (Freedman [15]). Let Y(i) be a supermartingale with 	Y(i)� C for all i, and let

V(i) :=
∑
k�i

Var [	Y(k)|Fk].
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Then

P[∃i : V(i)� b, Y(i)− Y(0)� λ]� exp
(

− λ2

2(b+ Cλ)

)
.

Observe that |	dM(v, i)| =O( log n)= Õ(1), since for any pair of vertices the codegree is
O( log n). Moreover, due to (2.8), |	(2t(i)− z(t(i))+ f (t(i)))n1/2| =O(1) trivially. The triangle
inequality thus implies that 	D+(v, i)=O( log n). Also, since the variable dM(v, i) is non-
decreasing, we have

E[|	dM(v, i)||Fi]=E[	dM(v, i)|Fi]=O(n−1)

by (2.7). So the one-step variance is

Var [	D+|Fk]�E[(	D+)2|Fk]�O( log n) ·E[|	D+||Fk]=O(n−1 log n).
Therefore, for Freedman’s inequality we use

b=O(n−1 log n) ·O(n3/2 log log n)= Õ(n1/2).
The ‘bad’ event here is the event that we have D+(v, i)> 0, and since D+(v, 0)= −n3/10 we set
λ = n3/10. Then Lemma 2.1 yields that the failure probability is at most

exp
{
− n3/5

Õ(n1/2)+ Õ(1) · n3/10
}
,

which is small enough to beat a union bound over all vertices.
Using symmetric calculations, one can apply Freedman’s inequality to the supermartingale

−D−(v, i) to show that the ‘bad’ event D−(v, i)< 0 does not occur w.h.p.

2.4 Tracking Cr(v)
We would now like to estimate E[	Cr(v, i)|Fi−1]. Since Cr(v, i) counts the number of vertices u
such that codegU(u, v)= r, we are interested to know how these codegree functions can increase
or decrease.

Note first that codegU(u, v) increases by at most 1 at any step. The only case in which
codegU(u, v) increases at step i is if we choose an edge ei = xy such that x= u (resp. x= v), y
is connected to v (resp. u), and ei does not create a triangle with other edges in U. In the event
Ei, the number of such edges ei is P0(u, v)− Õ(1), where the Õ(1) term accounts for the few edges
that may already be inM (by condition (i) in the event Ei).

On the other hand, codegU(u, v) can decrease by more than 1 in a single step, but we will argue
that w.h.p. this does not happen often, and codegU(u, v) never decreases by more than 6. For
example, a decrease of 2 occurs if the edge ei has both vertices in the common neighbourhood of
u and v (see Figure 1(a)). This happens with probability Õ(n−2). Another way for codegU(u, v) to
decrease by b� 2 is if the edge ei has one vertex in {u, v}, and the other vertex w has b neighbours
that are also neighbours of u and v (see Figure 1(b)). However, in the event Ei we never have b� 7
since the graph has no copy of K7,3, and for any fixed u, v the number of vertices w that could play
this role (for some b� 2) is at most Õ(1). Altogether, the probability that at step i the unmatched
codegree of u and v decreases by at least 2 is Õ(n−2), and w.h.p. we never see codegU(u, v) decrease
by more than 6 in any single step, for any vertices u, v.

Now we discuss the possibility that codegU(u, v) decreases by exactly 1. For any edge e= xy in
U =U(i− 1) let K(e) be the set of edges ei which, if chosen, would match the edge e, that is, ei, e
and some third unmatched edge form a triangle. Let

S(u, v)= {uw, vw |w ∈NU(u)∩NU(v)}
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here codegU (u, v) decreases by 2 here codegU (u, v) decreases by b = 3

(a) (b)

Figure 1. Rare ways for codegU(u, v) to decrease.

be the set of edges that are in paths of two edges between u and v (so |S(u, v)| = 2codegU(u, v)).
The number of edges ei that, if chosen, would decrease codegU(u, v) by 1 is⋃

e∈S(u,v)
K(e)=

∑
e∈S(u,v)

|K(e)| − Õ(1),

where the Õ(1) accounts for any edges that are in K(e) for multiple edges e (see previous
paragraph). Note also that for e= xy, |K(e)| = dU(x)+ dU(y)− Õ(1), so in the event Ei we have

|K(e)| ∈ 2(z ± f )n1/2 + Õ(1).
Summarizing, we calculate E[	Cr(v, i)|Fi−1] by considering separately edges ei that:

• increase codegU(u, v) by 1 for some u ∈ Cr−1(v),
• decrease codegU(u, v) by 1 for some u ∈ Cr+1(v),
• increase codegU(u, v) for some u ∈ Cr(v),
• decrease codegU(u, v) for some u ∈ Cr(v),
• decrease codegU(u, v) by b> 1 for some u ∈ Cr+b(v) (this is rare).

We get

E[	Cr(v, i)|Fi−1]

=
[ ∑
u∈Cr−1(v)

P0(u, v)+
∑

u∈Cr+1(v)
e∈S(u,v)

K(e)−
∑

u∈Cr(v)

(
P0(u, v)+

∑
e∈S(u,v)

K(e)
)]

· 2
n2

+ Õ(n−1)

�
[
2(cr−1 + r−3f ) · (p0 + f )+ 8(r + 1)(cr+1 + (r + 2)−3f )(z + f )

− 2(cr − (r + 1)−3f ) · [p0 − f + 4r(z − f )]
]
n−1/2 + Õ(n−1)

=
[
2cr−1p0 + 8(r + 1)cr+1z − 2cr(p0 + 4rz)

+ 16r(r + 1)−3zf +O((r + 1)−3f )
]
n−1/2 + Õ(n−1), (2.9)

where all functions are evaluated at point t(i− 1).
Define variables

C±
r (v)= C±

r (v, i) :=
{
Cr(v, i)− (cr(t(i))± (r + 1)−3f (t(i)))n if Ei−1 holds,
C±
r (v, i− 1) otherwise.
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As in the previous section, we apply Taylor’s theorem to approximate the change in the
deterministic function by its derivative. Since

c′′r (t)=
(4z4 − 8rz2 + 4r2 − 2z2 − 2r)z2r−2e−z2

r! ,

we get |c′′r (t(i− 1))| =O(n−3) and

	(cr(t(i− 1))+ (r + 1)−3f (t(i− 1)))n= [c′r(t(i− 1))+ (r + 1)−3f ′(t(i− 1))]n−1/2 +O(n−2).

Thus, by (2.3) and (2.9) for t = t(i− 1), we have

E[	C+
r (v, i)|Fi−1]

� [16r(r + 1)−3zf (t)+O((r + 1)−3f (t))− (r + 1)−3f ′(t)]n−1/2 + Õ(n−1)

�
[
16rzf (t)+O(f (t))−

(
100 log n
log log n

)
f (t)

]
n−1/2(r + 1)−3 + Õ(n−1)

� 0,

since 16rz < 100( log n)/ log log n.
Now observe that |	Cr(v)| = Õ(n1/2). Indeed, if the new edge ei has one vertex at v and the

other at x, say, this only affects the codegree of v with the Õ(n1/2) neighbours of x. On the other
hand if ei is not incident with v, then v loses at most two unmatched edges, say vx and vy, in
which case only the codegree of v with the Õ(n1/2) neighbours of x and y can be affected. Thus we
also have |	C+

r (v)| = Õ(n1/2), since the deterministic terms have much smaller one-step changes.
Now we would like to bound E[|	Cr(v)||Fk], so we will re-examine (2.9). There are positive and
negative contributions to 	Cr(v), and of course (2.9) represents the expected positive contribu-
tions minus the expected negative contributions. Now by the triangle inequality |	Cr(v)| is at
most the sum of the positive and negative contributions, and so

E[|	Cr(v)||Fk]

�
[ ∑
u∈Cr−1(v)

P0(u, v)+
∑

u∈Cr+1(v)
e∈S(u,v)

K(e)+
∑

u∈Cr(v)

(
P0(u, v)+

∑
e∈S(u,v)

K(e)
)]

· 2
n2

+ Õ(n−1)

=O(n−1/2), (2.10)

since each term in (2.9) is O(n−1/2). Thus

E[|	C+
r (v)||Fk]�E[|	Cr(v)||Fk]+ |	(cr(t)+ (r + 1)−3f (t))|n=O(n−1/2),

and hence the one-step variance is

Var [	C+
r (v)|Fk]�E[(	C+

r (v))
2|Fk]= Õ(n1/2) ·E[|	C+

r (v)||Fk]= Õ(1).

The ‘bad’ event here is the event that C+
r (v, i)> 0. Since C+

r (v, 0)= −(r + 1)−3n4/5, we set
λ = (r + 1)−3n4/5 = Õ(n4/5). Then Lemma 2.1 yields that the failure probability is at most

exp
{
− Õ(n8/5)
Õ(n3/2)+ Õ(n1/2) · Õ(n4/5)

}
,

which is small enough to beat a union bound over all vertices as well as possible values of r.
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2.5 Tracking Pr(u, v)
Similarly, we calculate E[	Pr(u, v, i)|Fi−1]. It is not difficult to see that

E[	Pr(u, v, i)|Fi−1]

=
[
Qr,0(u, v)+Q0,r(u, v)+

∑
w∈Pr−1(u,v)

P0(w,w∗∗)+
∑

w∈Pr+1(u,v)
e∈S(w,w∗∗)

(K(e)− Õ(1))

−
∑

w∈Pr(u,v)

(
P0(w,w∗∗)+

∑
e∈S(w,w∗∗)∪{ww∗}

(K(e)− Õ(1))
)]

2
n2

(1+ Õ(n−1/2))

� [4(qr,0 + f )+ 2(pr−1 + f )(p0 + f )+ 8(r + 1)(pr+1 + f )(z + f )
− 2(pr − f )[p0 − f + 2(2r + 1)(z − f )]]n−1 + Õ(n−3/2)

= [4qr,0 + 2pr−1p0 + 8(r + 1)pr+1z − 2pr[p0 + (4r + 2)z]
+ 16rzf (t)+O( f (t))]n−1 + Õ(n−3/2). (2.11)

Define variables

P±
r (u, v)= P±

r (u, v, i) :=
{
Pr(u, v, i)− (pr(t(i))± f (t(i)))n1/2 if Ei−1 holds,
P±
r (u, v, i− 1) otherwise.

Note that by (2.4), (2.11) and Taylor’s theorem, in the event Ei−1 we have

E[	P+
r (u, v)|Fi]=E[	Pr(u, v)|Fi]− (p′

r(t)+ f ′(t))n−1 + Õ(n−3/2)
� [16rzf (t)+O( f (t))− f ′(t)]n−1 + Õ(n−3/2)
� 0,

where t = t(i− 1). Now, since the codegrees are all O( log n), we have that at any step at most
O( log n) edges become matched. Consider the effect on Pr(u, v) by removing one edge e from
GU . If e is incident with u, say e= ux, then the removal of e can only affect vertices w ∈ Pr(u, v)
such that w ∈ {x} ∪ (N(x)∩N(v)) of which there are only O( log n). Similarly, if e is incident
with v, then at most O( log n) vertices w ∈ Pr(u, v) are affected. Finally, if e is not incident with
u, v, then the only vertices w ∈ Pr(u, v) that could be affected are the endpoints of e. Thus, since
O( log n) edges are removed at any step and each one affects O( log n) vertices w, we always have
|	Pr(u, v)| =O( log2 n). Also, |	P+

r (u, v)| =O( log2 n), since the deterministic terms have much
smaller one-step changes. We can also see that E[|	Pr(u, v)||Fk]=O(n−1) by an argument anal-
ogous to the one used to justify (2.10). Indeed,E[|	Pr(u, v)||Fk] is at most the sum of the absolute
values of the terms in (2.11), all of which are O(n−1). Thus

E[|	P+
r (u, v)||Fk]�E[|	Pr(u, v)||Fk]+ |	(pr(t)+ f (t))n1/2| =O(n−1)

and

Var [	P+
r (u, v)|Fk]�E[(	P+

r (u, v))
2|Fk]=O( log n) ·E[|	P+

r (u, v)||Fk]= Õ(n−1).

Therefore, using Lemma 2.1, our failure probability is at most

exp
{
− n3/5

Õ(n1/2)+ Õ(n3/10)

}
,

which is small enough to beat a union bound over all pairs of vertices and values of r.
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2.6 Tracking Qr,s(u, v)
Finally, we wish to calculate E[	Qr,s(u, v, i)|Fi−1]. Again it is not difficult to verify that

E[	Qr,s(u, v, i)|Fi−1]

=
[ ∑
w∈Qr−1,s(u,v)

P0(u,w)+
∑

w∈Qr,s−1(u,v)
P0(v,w)+

∑
w∈Qr+1,s(u,v)

e∈S(u,w)

K(e)+
∑

w∈Qr,s+1(u,v)
e∈S(v,w)

K(e)

−
∑

w∈Qr,s(u,v)

(
P0(u,w)+ P0(v,w)+

∑
e∈S(u,w)∪S(v,w)

K(e)
)]

2
n2

(1+ Õ(n−1/2))

� [2(qr−1,s + f + qr,s−1 + f )(p0 + f )
+ 8[(r + 1)(qr+1,s + f )+ (s+ 1)(qr,s+1 + f )](z + f )
− 4(qr,s − f )[p0 − f + 2(r + s)(z − f )]]n−1/2 + Õ(n−1)

= [2(qr−1,s + qr,s−1)p0 + 8[(r + 1)qr+1,s + (s+ 1)qr,s+1]z − 4qr,s[p0 + 2(r + s)z]
+ 12(r + s)zf (t)+O( f )]n−1/2 + Õ(n−1). (2.12)

Define variables

Q±
r,s(u, v)=Q±

r,s(u, v, i) :=
{
Qr,s(u, v, i)− (qr,s(t(i))± f (t(i)))n if Ei−1 holds,
Q±
r,s(v, i− 1) otherwise.

By (2.5) and (2.12), in the event Ei−1 we have

E[	Q+
r,s(u, v)|Fi]=E[	Qr,s(u, v)|Fi]− (q′

r,s(t)+ f ′(t))n−1/2 + Õ(n−1)
� [12(r + s)zf (t)+O( f (t))− f ′(t)]n−1/2 + Õ(n−1)
� 0.

Let us consider the effect on Qr,s(u, v) by removing one edge e from GU . If e is incident with u,
say e= ux, then the only vertices w ∈Qr,s(u, v) that could be affected are in the set x ∪N(x) which
has size Õ(n1/2); and similarly if e is incident with v. If e is not incident with u, v then the only
affected w ∈Qr,s(u, v) would be the endpoints of e. Thus we have |	Qr,s(u, v)| = Õ(n1/2), and also
|	Q+

r,s(u, v)| = Õ(n1/2) because the deterministic terms in Q+
r,s(u, v) have much smaller one-step

changes. We can also see that E[|	Qr,s(u, v)||Fk]=O(n−1/2) by another argument analogous to
the one used to justify (2.10). Indeed, E[|	Qr,s(u, v)||Fk] is at most the sum of the absolute values
of the terms in (2.12), all of which are O(n−1/2). Thus

E[|	Q+
r,s(u, v)||Fk]�E[|	Qr,s(u, v)||Fk]+ |	(qr,s(t)+ f (t))n| =O(n−1/2),

and the one-step variance is

Var [	Q+
r,s(u, v)|Fk]�E[(	Q+

r,s(u, v))
2|Fk]= Õ(n1/2) ·E[|	Q+

r,s(u, v)||Fk]= Õ(1).

Thus Lemma 2.1 yields that the failure probability is at most

exp
{
− n8/5

Õ(n3/2)+ Õ(n4/5 · n1/2)
}
,

which is again small enough to beat a union bound over all pairs of vertices and values of r, s.
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2.7 Proof of Theorem 1.2(i)
Let r� 1 and i� 0 be integers. Let Xr(i) be an indicator random variable such that Xr(i)= 1 if the
vertices of ei have codegree r. We showed that w.h.p.

Pr (Xr(i)= 1)� cr(t(i))+ (r + 1)−3f (t(i))� e−z(t(i))2z(t(i))2r

r! + n−1/10 =: pr(i).

LetX′
r(i) be an indicator random variable such that Pr (X′

r(i)= 1)= pr(i), and let theX′
r(i) all be

independent. Set Xr = ∑
i Xr(i) and X′

r = ∑
i X′

r(i), and observe that X′
r stochastically dominates

Xr . Moreover,

E(X′
r)=

cn3/2∑
i=1

e−z(t(i))2z(t(i))2r

r! + cn7/5.

Clearly cn7/5 �E(X′
r)� cn3/2. Consequently, the general form of the Chernoff bound yields that

Pr (X′
r �E(X′

r)+ cn7/5)� e−nε

for some absolute constant ε > 0. Thus w.h.p. we have

X′
r �

cn3/2∑
i=1

e−z(t(i))2z(t(i))2r

r! + 2cn7/5.

Recall that w.h.p. the codegree of two vertices is never larger than

rmax = 3 log n
log log n

and c= Õ(1). Consequently, the number of ‘wasted’ edges is at most
rmax∑
r=1

2(r − 1)Xr �
rmax∑
r=1

2(r − 1)X′
r

= 2
rmax∑
r=1

(r − 1)
cn3/2∑
i=0

e−z(t(i))2z(t(i))2r

r! + Õ(cn7/5)

= 2
cn3/2∑
i=0

rmax∑
r=1

(r − 1)
e−z(t(i))2z(t(i))2r

r! + Õ(cn7/5).

Since
∞∑
r=1

(r − 1)
e−z2z2r

r! = e−z2
(
z2

∞∑
r=1

z2(r−1)

(r − 1)! −
∞∑
r=1

z2r

r!
)

= e−z2 [z2ez
2 − (ez

2 − 1)]

= z2 − 1+ e−z2 ,

we get that w.h.p. we waste at most

2
cn3/2∑
i=0

[z(in−3/2)2 − 1+ e−z(in−3/2)2 ]+ Õ(cn7/5)

edges.
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Consider the function g(t) := z(t)2 − 1+ e−z(t)2 . Clearly g′(t)= 2z(t)z′(t)(1− e−z(t)2 ). From
the properties of z it follows that g′(t) is positive, and hence g(t) is increasing. Thus

2
cn3/2∑
i=0

[z(in−3/2)2 − 1+ e−z(in−3/2)2 ]� 2
∫ cn3/2+1

0
[z(ιn−3/2)2 − 1+ e−z(ιn−3/2)2 ] dι

= 2n3/2
∫ c+n−3/2

0
[z(t)2 − 1+ e−z(t)2 ] dt

= 2n3/2
∫ c

0
[z(t)2 − 1+ e−z(t)2 ] dt +O(1).

Furthermore, since the number of unmatched edges is w.h.p. at most (z(c)/2)n3/2 + n7/5, the
number of matched edges is at least

cn3/2 − z(c)
2

n3/2 − n7/5.

Therefore the number of edge-disjoint triangles at the end of the online triangle packing process
is w.h.p. at least

n3/2

3

[
c− z(c)

2
− 2

∫ c

0
[z(t)2 − 1+ e−z(t)2 ] dt

]
− Õ(cn7/5).

We now show that if c� n−(1/20)+ε , then Õ(cn7/5) is negligible. First we handle the case where
c= 
(1), in which case our claim will follow from the fact that the function

Lν(c)= 1
3

(
c− z(c)

2
− 2

∫ c

0
[z(t)2 − 1+ e−z(t)2 ] dt

)
is positive for all c> 0. Indeed, Lν(0)= 0 and we have

L′
ν(c)=

1
3

(
1− z′(c)

2
− 2[z(c)2 − 1+ e−z(c)2 ]

)
= 1− e−z(c)2 > 0,

where we have used the differential equation z′ = 2e−z2 − 4z2. This shows that for c= 
(1) we
have

ν(G(n, cn3/2)� (1+ o(1))Lν(c)n3/2.
Now we handle the case where n−(1/20)+ε � c< t0, where t0 is the constant obtained in (2.2).

By (2.2) we obtain

c− z(c)
2

� c− 2c− 4c3

2
= 2c3.

Since for any x� 0, e−x � 1− x+ x2/2, we have that e−z(t)2 � 1− z(t)2 + z(t)4/2. Hence z(t)2 −
1+ e−z(t)2 � z(t)4/2. Thus, again by (2.2),

2
∫ c

0
[z(t)2 − 1+ e−z(t)2 ] dt�

∫ c

0
z(t)4 dt�

∫ c

0
(2t)4 dt = 16

5
c5.

Consequently

n3/2

3

[
c− z(c)

2
− 2

∫ c

0
[z(t)2 − 1+ e−z(t)2 ] dt

]
� cn3/2

3

(
2c2 − 16

5
c4

)
= 
(cn7/5+2ε),

since by assumption

2c2 − 16
5
c4 = 
(n−(1/10)+2ε),
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and 
(cn7/5+2ε) is bigger than Õ(cn7/5), as required.
The remaining part of the theorem follows immediately from the facts that z(c)� ζ and z(t)2 −

1+ e−z(t)2 is increasing (as showed above). Thus
n3/2

3

[
c− z(c)

2
− 2

∫ c

0
[z(t)2 − 1+ e−z(t)2 ] dt

]
� n3/2

3

[
c(− 2ζ 2 + 3− 2e−ζ 2 )− ζ

2

]

= n3/2
[
c(1− 2ζ 2)− ζ

6

]
,

since ζ satisfies e−ζ 2 − 2ζ 2 = 0.

2.8 Proof of Theorem 1.2(ii)
In the proof of Theorem 1.2(i) we assumed that the number of edges is at most imax :=
(1/1000)n3/2 log log n. If the number of edges is bigger than imax, then we do the so called sprin-
kling. First we run the process for the first imax steps finding a packingM1. Next we start the next
round with imax steps finding a new packingM2. Here we make sure that we do not choose edges
from the previous round. So we decrease the probability of choosing a new edge. If necessary we
repeat the process again and again obtaining packingsM1, . . . ,Mk, where k=O(( log n)2). Recall
that we reveal G(n,m) one edge at a time by sampling edges without replacement, so the triangles
in the packing Mi will all be edge-disjoint from the triangles in Mj for i �= j. At any step of any
round the probability of choosing any particular edge that has not been chosen yet will always be
at least

1(n
2
) − ( log n)2 · (1/1000)n3/2 log log n = 2

n2
(1+ Õ(n−1/2)).

Furthermore, it follows from the proof of Theorem 1.2(i) that in each round the failure probability
is exponentially small in n. So after running at most ( log n)2 rounds the failure probability is still
o(1), yielding the triangle packing of size |M1| + · · · + |Mk|.

3. Proof of Theorem 1.3
We will prove the theorem in the random graph G(n, p) for suitable p, and show that this implies
the theorem for G(n,m).

First consider G=G(n, p) with p= o(n−4/5). This corresponds to c= o(n−3/10) in G(n, cn3/2),
as in part (ii) of the theorem. Let X be the random variable that counts the number of copies of
K4 minus an edge in G. Clearly E(X)=O(n4p5)= o(1), so almost all triangles are edge-disjoint,
yielding part (ii) of the theorem. Note that the graph property ‘all triangles are edge-disjoint’ is a
monotone property (since if a graph H has this property then so does any subgraph of H), so it
carries from G(n, p) to G(n,m).

To prove part (i) of the theorem, assume that
1

( log n)n4/5
� p� 2c

n1/2
.

Let Y be the random variable that counts the number of triangles in G that share no edge with
any other triangle. Clearly the set of all such triangles is a triangle matching, and thus ν(G)� Y .
Let Yu,v,w be an indicator random variable which equals 1 if u, v,w induce a triangle and there is
no vertex in V(G) \ {u, v,w} that induces a triangle with two vertices in {u, v,w}. Clearly u, v,w
induce a triangle with probability p3. Now we first reveal edges incident to u and then edges
incident to v while making sure that

(N(u) \ {v,w})∩ (N(v) \ {u,w})= ∅.
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This happens with probability (1− p)|N(u)|−2. Next we reveal edges incident to w, making sure
that

((N(u) \ {v,w})∪ (N(v) \ {u,w}))∩ (N(w) \ {u, v})= ∅.
The latter happens with probability (1− p)|N(u)|+|N(v)|−4. So

Pr (Yu,v,w = 1)= p3(1− p)2|N(u)|+|N(v)|−6.

The Chernoff bound now implies that a.a.s. for every v ∈V(G) we have deg (v)= (1+
o(1))2cn1/2. Hence, for any choice of u, v,w,

Pr (Yu,v,w = 1 | |N(u)|, |N(v)| = (1+ o(1))2cn1/2)

= p3(1− p)−(1+o(1))6cn1/2

= (1+ o(1))p3e−12c2 .

Thus

E(Y)=
∑
u,v,w

E(Yu,v,w)= (1+ o(1))
(
n
3

)
p3e−12c2 .

Subsequently the standard application of the Chebyshev inequality yields that w.h.p.

Y = (1+ o(1))
(
n
3

)
p3e−12c2 .

Note that the graph property ν(G)� s is monotone, so this result carries from G(n, p) to
G(n,m), completing the proof of the theorem.

4. Proof of Theorem 1.4
It is easy to see that in every graphG one can always cover all the triangles using at most half of the
edges. Indeed, let H be the largest bipartite subgraph of G. It is well known that |E(H)|� 1

2 |E(G)|
(see e.g. [11]). Now observe that E(G) \ E(H) cover all triangles. Thus we always have

τ (G(n,m))�m/2. (4.1)

Let G=G(n,m) withm= cn3/2 be a random graph. If c� 1, then (4.1) and Theorems 1.1 and
1.2 imply

τ (G)� 1
2
cn3/2 � 2 · 0.2965cn3/2 � 2ν(G).

Now, if c� 2.1243, then Theorem 1.2 implies

τ (G)� 1
2
cn3/2 � 2 · n3/2

[
c(1− 2ζ 2)− ζ

6

]
� 2ν(G).

On the other hand, for c� 0.2403 we can take one edge from each triangle obtaining a trivial
cover set, implying

τ (G)� t� � 2 · t�e−12c2 � 2ν(G).

Therefore we can set c1 := 0.2403 and c2 := 2.1243 in the assumptions of Theorem 1.4. These
constants can be slightly improved by using the general bound (i) in Theorem 1.2, where the
function z can be found numerically.
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(a)

Lν (c)

(b)

Uτ (c)

(c)

Uτ (c)/Lν (c)

Figure 2. Uτ (c) versus Lν (c) (where the latter was defined in (1.1)).

5. Concluding remarks
We note in passing that an upper bound on τ (G(n,m)) can be obtained from the triangle-free
process. This process accepts a set of edges forming a triangle-free subgraph of G(n,m), so the
rejected edges form a triangle cover. We will refer to Bohman’s original triangle-free paper [5].
Recall that in this process one maintains a triangle-free subgraph GT(i)⊆G(n, i) by revealing one
edge at a time, and adding that edge to GT(i) only if it does not create a triangle in GT(i). When
we refer to Bohman’s paper, to avoid confusion with our variable names we will replace his ‘i’ with
‘î’ and we will replace his ‘t’ with ‘t̂’. So the number of edges accepted by the process after i= tn3/2
edges are proposed is î= t̂n3/2.

Bohman proved that w.h.p. for all î�O(n3/2) the number Q(î) of edges eligible to be inserted
into the triangle-free graph (i.e. edges that would be accepted if proposed) is

Q(î)= (1+ o(1))
(
n
2

)
e−4t̂2 .

Actually Bohman proved this for all î at most some constant times n3/2 log1/2 n, but we will not
fully use that here.

Heuristically, the number of edges the process proposes until it accepts the (î+ 1)st edge
behaves like a geometric random variable with expectation e4t̂2 . Thus we derive the differential
equation

dt̂
dt

= e−4t̂2 , t̂(0)= 0.

If the above heuristic analysis holds, then the number of edges rejected by the triangle-free process
after tn3/2 edges have been proposed should be (1+ o(1))(t − t̂)n3/2, which would then be an
upper bound on the triangle cover number. Also recall that the triangle cover number is always at
most half the edges. To combine these two upper bounds (and we stress that only one is rigorously
proven) on τ we let

Uτ (c) :=min{c/2, c− t̂(c)}.
Unfortunately, by itself such an improvement on the bound for τ would not be enough to show
that Tuza’s conjecture holds for allm. It would imply that Tuza’s conjecture holds forG(n,m) when
m� 1.0478n3/2, which is an improvement over the bound m� 0.2403n3/2 given in Theorem 1.4
(see also Figure 2).
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Lν (c) (in red) and L∗
ν (c) (in blue) Uτ (c)/L∗

ν (c)

(a) (b)

Figure 3. Uτ (c) versus L∗ν (c).

Nowwewill describe how onemight possibly improve the upper bound on the triangle packing
number. In this paper we studied a random process that finds in G(n,m) edge-disjoint subgraphs
of the form K1,1,s for s� 1, instead of edge-disjoint triangles. It is easy to guess what we would get
by considering a process where we take triangles only. Heuristically assume degrees in U are all
close to yn1/2 and that codegrees are Poisson with expectation y2. Then the number of unmatched
edges is 1

2yn
3/2. Calculating the one-step change in the number of unmatched edges is easy: we

gain one unmatched edge if ei has endpoints with codegree 0 (this happens with probability e−y2 ),
and otherwise we lose two unmatched edges which go into the constructed matching along with
ei. Using the expected one-step change as a derivative, we get the differential equation

1
2
y′ = 1 · e−y2 − 2 · (1− e−y2 ),

which is equivalent to y′ = 6e−y2 − 4. One can show again that y(t) is an increasing function such
that y(t)� υ, where υ ≈ 0.6367. Since the number of matched edges is cn3/2 − (y(c)/2)n3/2, we
conclude that the number of edge-disjoint triangles (and hence our lower bound for ν) we would
get is (1+ o(1))L∗

ν(c)n3/2, where

L∗
ν(c) :=

1
3
c− 1

6
y(c). (5.1)

If our heuristic prediction above actually holds w.h.p. for this process, and if our heuristic
analysis of the edges rejected by the triangle-free process also holds, then it would ‘close the gap’,
implying Tuza’s conjecture holds in G=G(n,m) for any m (see Figure 3). In fact numerical cal-
culations (see Figure 3(b)) would seem to show that that w.h.p. τ (G)� 1.9883 · ν(G). For c� 1
the bound (5.1) is also better, since in this case L∗

ν(c)= 1/3+ o(1) and this would imply that
almost all edges can be decomposed into edge-disjoint triangles. We know that this is the case
for c= 
( log2 n) (see Theorem 1.1).

However, such a process is significantly more difficult to analyse than the one discussed in this
paper. The reason is that when we choose an edge ei at step i, we potentially create many copies of
K3 that share ei. Since we would need to move only one such copy to the matched set, it is likely
that we could choose a copy of K3 sharing ei uniformly at random. This part will make the analysis
much more complicated.

While one is thinking of ways to produce large triangle matchings in random graphs, of course
it is also natural to consider of the random triangle removal process onG(n,m), where we take the
graphG(n,m) and then iteratively select a triangle uniformly at random and remove its edges until
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the graph is triangle-free. However, this process also seems difficult to analyse. For m= �(n3/2),
if we choose a random triangle in G(n,m) and remove its edges, the number of other triangles
destroyed (i.e. the triangles that share an edge with the one that is removed) is not concentrated
even for the very first step of the process, so the analysis of this process would not resemble the
analysis of random triangle removal on the complete graph as in [6]. To analyse the process on
G(n,m) we would need to find a way to reveal a small number of edges of G(n,m) at each step, in
a manner that allows us to track how many triangles are remaining after we have removed a lot of
them. However it is unclear how to do that.

Finally, let us mention one more problem that might be of some interest. The number of edges
in the unmatched graph U seems to achieve a maximum of �(n3/2) edges, although we were only
able to prove this in G(n,m) for m=O(n3/2 log log n). This is interesting because it is known
that the final graph produced by the triangle-free process, as well as the final graph produced by
random triangle removal process, also has n3/2+o(1) edges. It would be an interesting technical
challenge to analyse the online triangle packing process in G(n,m) for largerm. Ideally one would
try for m= (n

2
)
of course, but even m= n3/2+ε seems to be challenging. In particular, it would be

interesting to know if the unmatched graph always has at most ζn3/2 edges.
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Appendix A. The system of differential equations
Here we verify (2.3), (2.4) and (2.5). Recall that

z′ = 2e−z2 − 4z2

and that

cr = e−z2z2r

r! , pr = 2e−z2z2r+1

r! , qr,s = e−2z2z2r+2s

r!s! .

Equation (2.3) asserts that

c′
r = 2cr−1p0 + 8(r + 1)cr+1z − 2cr(p0 + 4rz).

On the one hand we have

c′
r =

2re−z2z2r−1 − 2e−z2z2r+1

r! (2e−z2 − 4z2)

= 4re−2z2z2r−1 − 4e−2z2z2r+1 − 8re−z2z2r+1 + 8e−z2z2r+3

r! , (A.1)

while on the other hand we have

2cr−1p0 + 8(r + 1)cr+1z − 2cr(p0 + 4rz)

= 2
(
e−z2z2r−2

(r − 1)!
)
(2e−z2z)+ 8(r + 1)

(
e−z2z2r+2

(r + 1)!
)
z − 2

(
e−z2z2r

r!
)
(2e−z2z + 4rz)

which, after expanding and getting a common denominator, matches (A.1) and so (2.3) is verified.
Equation (2.4) asserts that

p′
r = 4qr,0 + 2pr−1p0 + 8(r + 1)pr+1z − 2pr[p0 + (4r + 2)z].

On the one hand we have

p′
r =

2(2r + 1)e−z2z2r − 4e−z2z2r+2

r! (2e−z2 − 4z2)

= 4(2r + 1)e−2z2z2r − 8e−2z2z2r+2 − 8(2r + 1)e−z2z2r+2 + 16e−z2z2r+4

r! , (A.2)

while on the other hand we have

4qr,0 + 2pr−1p0 + 8(r + 1)pr+1z − 2pr[p0 + (4r + 2)z]

= 4
(
e−2z2z2r

r!
)

+ 2
(
2e−z2z2r−1

(r − 1)!
)

· 2e−z2z + 8(r + 1)
(
2e−z2z2r+3

(r + 1)!
)
z

− 2
(
2
e−z2z2r+1

r!
)
[2e−z2z + (4r + 2)z]

which, after expanding and getting a common denominator, matches (A.2) and so (2.4) is verified.
Equation (2.5) asserts that

q′
r,s = 2(qr−1,s + qr,s−1)p0 + 8

[
(r + 1)qr+1,s + (s+ 1)qr,s+1

]
z − 4qr,s

[
p0 + 2(r + s)z

]
.

On the one hand we have

q′
r,s =

(2r + 2s)e−2z2z2r+2s−1 − 4e−2z2z2r+2s+1

r!s! (2e−z2 − 4z2)

= 4(r + s)e−3z2z2r+2s−1 − 8e−3z2z2r+2s+1 − 8(r + s)e−2z2z2r+2s+1 + 16e−2z2z2r+2s+3

r!s! , (A.3)
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while on the other hand we have

2(qr−1,s + qr,s−1)p0 + 8
[
(r + 1)qr+1,s + (s+ 1)qr,s+1

]
z − 4qr,s

[
p0 + 2(r + s)z

]
= 2

(
e−2z2z2r+2s−2

(r − 1)!s! + e−2z2z2r+2s−2

r!(s− 1)!
)
2e−z2z

+ 8
[
(r + 1)

(
e−2z2z2r+2s+2

(r + 1)!s!
)

+ (s+ 1)
(
e−2z2z2r+2s+2

r!(s+ 1)!
)]

z

− 4
e−2z2z2r+2s

r!s!
[
2e−z2z + 2(r + s)z

]
,

which matches (A.3) and so (2.5) is verified.
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