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We describe the parallel implementation of semi-Lagrangian Vlasov solvers, which
are an alternative to particle-in-cell (PIC) simulations for the numerical investiga-
tion of the behaviour of charged particles in their self-consistent electromagnetic
fields. The semi-Lagrangian method, which couples the Lagrangian and Eulerian
points of view, is particularly interesting on parallel computers, since the solution
is computed on grid points, the number of which remains constant in time on each
processor, unlike the number of particles in PIC simulations, and thus greatly sim-
plifies the parallelization process.

1. Introduction
Vlasov–Maxwell equations play a key role in plasma physics, since they describe
the collective motion of a collisionless plasma with a wide range of applications.

The numerical resolution of kinetic equations, whose solution depends, in addition
to the time, on three space variables and three velocity variables, is performed most
of the time using particle-in-cell (PIC) methods, which enable us to get satisfying
results with relatively few particles. However, for some applications, in particular
when particles in the tail of the distribution play an important physical role or when
particle noise is important, semi-Lagrangian methods that compute the solution on
a grid may better describe the physics (see Ghizzo et al. 1990, 1993, 1996; Feix et al.
1994). Such methods are all the more interesting when using parallel computers,
since unlike PIC methods, they are very scalable owing to their inherent parallelism,
as we shall try to show in this paper.

In this paper, we shall first introduce the semi-Lagrangian method and discuss
how it can be applied for different kinds of Vlasov equations. We shall then isolate
two special cases that need different parallelization methods and illustrate those
methods with two examples: the electrostatic two-dimensional (2D) Vlasov–Poisson
model and the 2D guiding-centre Vlasov–Poisson model.

2. The semi-Lagrangian method
Let us first recall the principles of the semi-Lagrangian method (see Bermejo
1991; Staniforth et al. 1991) for the Vlasov equations; we refer the reader to Son-
nendrücker et al. (1998) for more details.
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All the types of Vlasov equations in which we are interested can be written in
the following way:

∂f

∂t
+ U (X, t) · ∇Xf = 0, (2.1)

where X stands for the phase-space coordinates and U is a divergence-free vec-
tor field having up to six components in the full three-dimensional (3D) case. For
example, in the case of the 3D non-relativistic Vlasov equation,

X = (x, y, z, vx, vy, vz),

U (X, t) = (vx, vy, vz, Ex + vyBz − vzBy, Ey + vzBx − vxBz, Ez + vxBy − vyBx),

with all components of the electric and magnetic field depending on x, y, z and t.
Note that, since U is divergence-free, (2.1) can also be written in conservative

form
∂f

∂t
+∇X [U (X, t)f ] = 0. (2.2)

Let us now introduce the characteristics of (2.1), which are the solutions of the
dynamical system

dX

dt
= U (X(t), t). (2.3)

Let us denote by X(t;x, s) the solution at time t whose value is x at time s. Taking
X(t) to be a solution of (2.3), we have

d

dt
(f (X(t), t)) =

∂f

∂t
+
dX

dt
· ∇Xf =

∂f

∂t
+ U (X(t), t) · ∇Xf = 0,

which means that f is constant along the characteristics. This can also be written
as

f (X(t;x, s), t) = f (X(s;x, s), s) = f (x, s)

for any times t and s and phase-space coordinate x. It is this property that will be
used in the semi-Lagrangian method to solve a discrete problem, which is defined
by introducing a finite set of mesh points (xi)i=1,...,N , which may or may not be
equally spaced. Then, given the value of the function f at the mesh points, at any
given time step we obtain the new value at mesh point xi using the fact that

f (xi, tn + ∆t) = f (X(tn − ∆t;xi, tn + ∆t), tn − ∆t).

For each mesh point xi, f is computed in two steps:

1. Find the starting point of the characteristic ending at xi, i.e. X(tn −∆t;xi, tn +
∆t).

2. Compute f (X(tn−∆t;xi, tn+ ∆t), tn−∆t) by interpolation, f being known only
at mesh points at time tn − ∆t.

In order to deal with step 1, we need to introduce a time discretization of (2.3).
Since in general, no information on the advection function U is known at any given
time, we need to use a two-time-step scheme in order to remain second-order in
time. The starting point of the characteristic is obtained, to second-order accuracy,
by

xi −X(tn − ∆t)
2∆t

= U (X(tn), tn). (2.4)
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Writing X(tn) = 1
2 [X(tn+∆t)+X(tn−∆t)], there exists αi such that X(tn) = xi−αi

and X(tn − ∆t) = xi − 2αi. Then (2.4) becomes

αi = ∆t U (xi − αi, tn) (2.5)

which can be solved iteratively for the unknown αi by writing

αk+1
i = ∆t U (xi − αki , tn),

or using a Newton method. Note that U , known only on the mesh, is interpolated
linearly at xi−αki . Once αi is known, f (xi−2αi) is interpolated by a tensor product
of cubic B-splines.

The method that we have just introduced deals with the most general case. How-
ever, in many cases, the process can be simplified by using an appropriate splitting
of the Vlasov equation. The theory of splitting has been well studied for conserva-
tion laws, and preserves the second-order accuracy in time when applied properly.
However, one has to be careful to perform the splitting such that the resulting equa-
tions can each be written in a conservative form corresponding to (2.2). This is only
possible if the divergence of each separate term with respect to the corresponding
advection variable does vanish; and thus it does not yield simple one-dimensional
(1D) equations in all cases. We refer the reader to Sonnendrücker et al. 1998 for
more details. On the other hand, even in cases where the splitting might be numer-
ically possible, physical considerations might prescribe not to do it.

The non-relativistic electrostatic Vlasov equation, which in one dimension reads

∂f

∂t
+ v

∂f

∂x
+ E(x, t)

∂f

∂v
= 0,

is an example where the splitting procedure can be applied. Indeed, it can be split
into

∂f

∂t
+ v

∂f

∂x
= 0 (2.6)

and
∂f

∂t
+ E(x, t)

∂f

∂v
= 0. (2.7)

In this case, we have two 1D equations, the advection function v and E respectively
being independent of x and v respectively. Thanks to this property, no iterations
are needed in order to solve (2.5), and a one-time-step scheme can be used.

When the equations can be split, all the variables that do not appear in the
derivatives, like v in (2.6) or x in (2.7), are really just parameters when solving
the corresponding equation. Hence a trivial parallelization can be performed by
distributing the computation on the processors according to the values of this pa-
rameter. It follows that there are really two distinct parallelization methodologies
that need to be followed, depending on whether or not the equations can be split. We
are now going to illustrate these methods with the following two examples: the 2D
electrostatic Vlasov–Poisson model, where a splitting between space and velocity
is performed; and the guiding-centre model, where no splitting can be performed.

3. Description of the models
The first model that we consider is the 2D electrostatic Vlasov equation

∂f

∂t
+ v ·∇xf + E(x, t) ·∇vf = 0,
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coupled with E = −∇φ, and Poisson’s equation

∇2φ = 1−
∫
f dv.

In this case, since v is independent of x and E(x, t) is independent of v, the above
Vlasov equation can be written in the conservative form

∂f

∂t
+∇x · (vf ) +∇v · [E(x, t)f ] = 0,

and then split between space and velocity coordinates into

∂f

∂t
+ v ·∇xf = 0 (3.1)

and
∂f

∂t
+ E(x, t) ·∇vf = 0. (3.2)

The second model that we consider is the guiding-centre Vlasov–Poisson model,
which is an approximation of the full Vlasov equation valid in the presence of a
large constant external magnetic field B0. In this case, the average movement of
the particles is an E× B0 drift. The equations read

∂ρ

∂t
+ vD ·∇xρ = 0,

where

vD =
E× B0

B2
0

,

the electric field being given by Poisson’s equation −∇2φ = ρ with E = −∇φ. Here
both components of vD depend a priori on the two space variables. Therefore the
splitting cannot be justified theoretically, and will not be performed.

4. The specific semi-Lagrangian algorithms
4.1. The semi-Lagrangian method for the electrostatic Vlasov equation

As we saw in the previous section, the equation can be split into two 2D advections,
with an advection field independent of the advection variable, namely

∂f

∂t
+ v ·∇xf = 0 (4.1)

and
∂f

∂t
+ E(x, t) ·∇vf = 0. (4.2)

Here we could even split the equation into four 1D advections. However, this would
have no influence on the parallelization strategy. Hence we shall not consider this
possibility in the sequel.

In this case, the feet of the characteristics can be computed explicitly. The dis-
placement from the mesh points is the same everywhere, namely v∆t for the ad-
vection (4.1) over a time step ∆t, and E∆t for the advection (4.2) over a time step
∆t. Only the second step of the algorithm involves effective computation: the dis-
tribution function at the previous time step is interpolated by cubic splines (a 2D
tensor product of cubic B-splines in the each case).
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4.2. The semi-Lagrangian method for the guiding-centre model

Here, since no splitting can be performed, a full 2D scheme is necessary. The ad-
vection function vD(x, t) depends on position and time. Therefore we need to use a
two-time-step scheme in order to remain second order in time. The algorithm that
we described in Sec. 2 does not simplify. Let us give it explicitly for this specific
case. The characteristics are the solutions of the differential system

dX

dt
= vDx(x, y, t), (4.3a)

dY

dt
= vDy(x, y, t). (4.3b)

Then, applying the algorithm described in Sec. 2, for each mesh point (xi, yj), ρ is
computed in two steps:

1. Find the starting point of the characteristic ending at (xi, yj), i.e. (X(tn −
∆t;xi, yj , tn + ∆t), Y (tn − ∆t;xi, yj , tn + ∆t)), which is done by computing, for
each (i, j), the displacements (αij , βij) from the mesh point (xi, yj), by solving
iteratively the nonlinear system

αij = ∆t vDx(xi − αij , yj − βij , tn),

βij = ∆t vDy(xi − αij , yj − βij , tn).

Concerning the parallelization, once vD is known, the treatment of all the mesh
points can be performed concurrently. Moreover, the data involved in the com-
putation are the values of vD at neighbouring mesh points. So the problem is
essentially local, involving only interprocessor communication for mesh points
close to a boundary of the decomposition.

2. Compute ρ(X(tn−∆t;xi, yj , tn+∆t), Y (tn−∆t;xi, yj , tn+∆t), tn−∆t) by a tensor
product cubic B-spline interpolation, ρ being known only at mesh points at time
tn − ∆t.

Let us describe here more precisely the tensor-product cubic B-spline interpola-
tion procedure, since in this case it will have a direct influence on the parallelization
strategy. The first step consists in computing the coefficients ηνκ of the cubic spline
interpolation function s(x, y) given by

s(x, y) =
∑

−26ν6Nx−1

[ ∑
−26κ6Ny−1

ηνκB3ν(x)B3κ(y)

]
.

The spline s must satisfy the interpolation conditions

s(xi, yj) = ρ(xi, yj , tn − ∆t)

for i = 1, . . . , Nx, j = 1, . . . , Ny, and the two boundary conditions of the function
ρ in each direction, which in our case are periodic in the x direction and natural in
the y direction.

In order to compute the coefficients ηνκ, we first solve the Ny one-dimensional
interpolation problems

s(x, yj) =
∑

−26ν6Nx−1

γjνB3ν(x) for j = 1, . . . , Ny,
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each satisfying the Nx interpolation conditions s(xi, yj) = ρ(xi, yj , tn −∆t) and the
periodic boundary conditions, where we denote

γν(y) =
∑

−26κ6Ny−1

ηνκB3κ(y)

and

γjν = γν(yj).

Using these interpolation and boundary conditions, we are brought to solve Ny
linear systems, one for each value of j, involving the same (Nx + 2)-dimensional
tridiagonal matrix corresponding to the one-dimensional B-spline interpolation,
which gives us the γjν .

Then we obtain ηνκ by solving the Nx + 2 interpolation problems

γν(y) =
∑

−26κ6Ny−1

ηνκB3κ(y) for ν = −2, . . . , Nx − 1,

verifying the Ny interpolation conditions γν(yj) = γjν and natural boundary condi-
tions. Using these interpolation and boundary conditions, we have to solve Nx + 2
linear systems, one for each value of ν, involving the same (Ny + 2)-dimensional
tridiagonal matrix corresponding to the one-dimensional B-spline interpolation, in
order to obtain the ηνκ, which are the required coefficients.

Both steps described above involve a set of identical computations, namely tridi-
agonal solves with different right-hand sides. Hence, taken separately, these steps
are perfectly parallel in nature. However, assuming a distributed architecture, there
needs to be a data redistribution between the two steps.

Finally, once the B-spline coefficients ηνκ for all ν and κ have been computed,
the value of ρ at the origin of the characteristics is taken to be the value of the
B-spline s(xi − 2αij , yj − 2βij). This procedure is essentially local, since it involves
only points at the neighbourhood of the point being considered.

5. The field solves
The problems with which we deal involve a doubly periodic domain for the 2D
electrostatic model and a domain periodic in one direction and bounded in the other
for the guiding-centre model. The algorithms used for the solves are as follows.

For the first geometry (periodic in both directions) a 2D fast Fourier transform
(FFT) enables us to compute the electric field components directly.

For the second geometry (periodic in x and bounded in y), we want to compute
the electric fields to fourth-order accuracy. This is done using the procedure first
introduced by Knorr et al. (1980) which we shall recall here in order to get some
insight into the intrinsic parallelism of the method. We first need a fourth-order
Poisson solve, which consists of the following steps:

1. Perform a FFT in x, which yields for each discrete mode a 1D problem in the y
direction:

− ∂2

∂y2φk(y) + k2φk = ρk.
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2. Use of a fourth-order scheme for the resulting 1D problem in the y direction:

− 12
(∆y)2 (φk,j+1 − 2φk,j + φk,j−1) = (ρk,j+1 + 10ρk,j + ρk,j−1)

−k2(φk,j+1 + 10φk,j + φk,j−1).

Gathering the identical terms, this yields

(1− ck)φk,j+1 − (2 + 10ck)φk,j + (1− ck)φk,j−1 =
(∆y)2

12
(ρk,j+1 + 10ρk,j + ρk,j−1),

where ck = 1
12 ∆y2k2. This holds for j = 2, . . . , Ny − 1. In addition, we have

φk,1 = φk,Ny = 0 for vanishing Dirichlet boundary conditions. This gives us for
each mode k a tridiagonal system, which needs to be solved.

3. Perform an inverse FFT in x to obtain the result.

From a computational point of view, the first step consists of Ny simultaneous
independent FFT, and the second step consists of the resolution of 1

2Nx + 1 tridi-
agonal systems, which can be done concurrently. The third step consists of Ny
simultaneous independent inverse FFTs. Hence each of the three steps can be per-
formed completely in parallel; however, steps 1 and 3 involve data stored in the
rows of the matrix (ρi,j), whereas step 2 involves data stored in the columns of the
matrix (ρi,j). So, assuming a distributed memory architecture, this means that the
matrix (ρi,j) needs to be redistributed on the processors between the steps.

Once the potential φ is obtained to fourth-order accuracy, the electric field can
be computed, still to fourth-order accuracy, by simply using the following fourth-
order-accurate 1D scheme for computing a derivative:

f ′i+1 + 4f ′i + f ′i−1 =
3

∆x
(fi+1 − fi−1).

Thanks to the periodicity of the problem in the x direction, we can use this scheme
in the x direction as Ex = −∂xφ. This yields, for j = 1, . . . , Ny and i = 2, . . . , Nx−1,

Exi+1,j + 4Exi,j + Exi−1,j =
3

∆x
(φi+1,j − φi−1,j).

Moreover, because of the periodicity, we have

Ex1,j + 4ExNx−1,j + ExNx−2,j =
3

∆x
(φ1,j − φNx−2,j),

Ex2,j + 4Ex1,j + ExNx−1,j =
3

∆x
(φ2,j − φNx−1,j).

The same scheme can also be used in the y direction in order to compute Ey = −∂yφ
away from the boundary.

However, in order to keep fourth-order accuracy, a special treatment is necessary
at the boundary: as for the Poisson solver, we can transform the problem in a set
of 1D problems using the Fourier transform. Then the following 1D formula is
accurate to fourth order:

fi+1 − fi =
∆x
2

(f ′i+1 + f ′i )−
∆x2

12
(f ′′i+1 − f ′′i ).
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Applying this formula for f = φk, f ′ = −Eyk and f ′′ = k2φk − ρk, yields

Eyk,1 + Eyk,2 = −
[

2
∆y

(1 + ck)(φk,2 − φk,1) +
∆y
6

(ρk,2 − ρk,1)
]
,

Eyk,n + Eyk,n−1 = −
[

2
∆y

(1 + ck)(φk,n − φk,n−1) +
∆y
6

(ρk,n − ρk,n−1)
]
.

Then, using an inverse Fourier transform,

Eyi,1 + Eyi,2 = − 2
∆y
{(φi,2 − φi,1) + F−1[ck(φk,2 − φk,1)]} +

∆y
6

(ρi,2 − ρi,1),

Eyi,n + Eyi,n−1 = − 2
∆y
{(φi,n − φi,n−1) + F−1[ck(φk,n − φk,n−1)]} +

∆y
6

(ρi,n − ρk,n−1),

where ck = 1
12k

2(∆y)2. These two equations complete the system, which remains
fourth order.

As for the Poisson solves, there is an inherent parallelism in the computation
of the electric field, which consists for both components in the resolution of a set
of tridiagonal systems. However, here again the distribution of the data on the
processors needs to be different for the computation of Ex and Ey.

6. The parallel algorithms
6.1. The guiding-centre model

Going through the different parts of the algorithm, we can explicitly describe the
different kinds of computation that have to be done. These are, for the density
advance in time, fixed-point iterations over the displacements from the mesh points,
tridiagonal solvers for computing the cubic B-spline coefficients (a whole set in each
direction, since we are using a tensor product interpolant), and evaluation of the
interpolated spline at the feet of the characteristics. On the other hand, for the field
solve the computations to be performed are multiple 1D FFTs and inverse FFT, as
well as multiple tridiagonal solvers.

We note that a few stages are completely local: finding the origin of the charac-
teristics, and computing the spline values, which only involves the mesh points in
the neighbourhood of the one being computed. And most stages (FFT, tridiagonal
solvers) involve whole lines of the domain, but unfortunately not always in the same
direction.

Normally, for a 2D problem like ours, a global 2D decomposition is optimal, since
it has the smallest interprocessor boundary and involves no data redistribution on
the processors. However, tridiagonal solves and FFTs are well known not to have
very good scalability when performed on multiple processors. On the other hand, we
saw that, for each stage of the algorithm, there is a 1D band decomposition for which
there is a natural optimal parallelism. Therefore our final choice was to take several
distinct decompositions, even though this would involve global communication. One
primary decomposition in 1D bands in the x direction would be used most of the
time, the global data being stored according to this decomposition, and several
secondary decompositions, not always the same, would be used where required.
That is in our specific case: the tridiagonal solvers for Poisson, for Ey and one
direction of the spline interpolation.
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Using these considerations, we start with a 1D band distribution along the x
direction and proceed at each time step through the following stages:

1. Compute the new electric field. For this, we first perform a Poisson solve, which
consists of the following:

(a) a multiple 1D FFT for ρ on each processor, the data being distributed evenly
according to their index j;

(b) a data redistribution – the data are now distributed across the processors
according to their mode number;

(c) multiple tridiagonal solves on each processor;
(d) a data redistribution to go back to the initial distribution according to the

index j;
(e) a multiple inverse FFT.

Then we compute the derivatives in each direction of the electric field, for which
the steps are as follows:

(a) multiple tridiagonal solves on each processor, where the data are distributed
according to the index j for computing the derivative with respect to x;

(b) a data redistribution, so that the distribution is along the index i;
(c) multiple tridiagonal solves on each processor, where the data are distributed

according to the index i for computing the derivative with respect to y;
(d) a data redistribution, to get back to the original distribution for the density

advance.

2. Advance the charge density ρ, which is performed as follows:

(a) Compute the feet of the characteristics: this needs information from the
neighbourhood; hence it involves interprocessor communication for mesh
points at the edge of the decomposition.

(b) Compute the spline coefficients in the x direction. This involves multiple
tridiagonal solves on each processor.

(c) Redistribute data so that the distribution is along the index i.
(d) Compute the tensor product spline coefficients. This involves multiple tridi-

agonal solves on each processor, which can be performed locally thanks to
the actual data distribution.

(e) Redistribute data to go back to the original distribution for the beginning
of the next time step.

(f) Evaluate splines at the feet of the characteristics: this needs information
from the neighbourhood, and thus a slight amount of local interprocessor
communication.

6.2. The electrostatic model

Let us now go through the steps of the algorithm for the electrostatic model in the
same way. Thanks to the splitting method that we use, the semi-Lagrangian method
is applied once for a 2D physical-space advection, with the velocity coordinate v as
a parameter, and once for a 2D velocity-space advection, with the physical space
coordinate x as a parameter. Thus, if the data are distributed in each case according
to the parameter, there will be no communication at all – not even the almost local
communications that occurred in the previous example. The computations in this
case, which are fully local, involve multiple tridiagonal solves for the cubic spline
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interpolation, and explicit computations for the spline evaluations. For the field
solve, we need a 2D FFT which is also best achieved by multiple 1D FFTs involving
data redistribution.

Finally, in this case for each time step, starting with a 1D band distribution along
the vx direction, the algorithm reads as follows:

1. perform a spatial shift over 1
2 ∆t; that is, apply the simplified semi-Lagrangian

algorithm for (3.1) over a time step of 1
2 ∆t.

2. Redistribute the distribution function in order to get a 1D band distribution
along the x direction. Then integrate to obtain ρ.

3. Compute the electrical field:

(a) perform a multiple 1D FFT along the y direction for the electric field;
(b) redistribute the field data along the y direction;
(c) perform a multiple 1D FFT along the x direction for the electric field;
(d) redistribute the distribution the electric field in order to get a 1D band

distribution along the y direction.

4. redistribute the distribution function in order to get a 1D band distribution
along the vx direction.

5. Perform a velocity shift over ∆t; that is, apply the simplified semi-Lagrangian
algorithm for (3.2) over a time step of ∆t.

6. Perform a second spatial shift over 1
2 ∆t.

7. The implementations
7.1. A shared memory implementation of the guiding-centre model

The easiest way to implement the parallel algorithm that we have described for the
guiding-centre model is to use the shared distributed memory concept available on
Silicon Graphics’ Origin 2000. This concept means that, even though the memory of
the computer is physically distributed, there exists a software system giving access
to the whole memory. When programming on such a platform, one still needs to
take care of the data distribution on the processors, but the communications are
handled by the system through compiler directives or system calls. Let us now give
a few more details.

The parallel implementation uses just one parallel loop over the number of pro-
cessors which appears after the initialization part of the code and is ended at the
end of the computation. This is implemented using the !$DOACROSS directive. The
arrays through which the communication will be carried are declared as shared at
the beginning of this parallel loop; all the others are local to each processor. Then
a matrix transpose is implemented by simple array copy:
do i=1,n

a(i,j)=b(j,i)

end do

where b is a shared array. Moreover, the almost-local communications that appear
in the computation of the feet of the characteristics and the spline evaluations are
transparent through the use of shared arrays for the drift velocity and the spline
coefficients.
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0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Step 1 Step 2 Step 3 Step 4

Processors:

Figure 1. Successive steps of the transposition of a matrix distributed by bands on four
processors.

Before each global data redistribution, there is a call to the system routine
mp_barrier for synchronization.

7.2. A message-passing implementation of the electrostatic model

In this case, we noticed that with our parallel algorithm, the only communications
are the row–column exchanges involved in the global data redistribution. No other
communication is necessary. The implementation that we used in this case was the
MPI message-passing library.

The most obvious approach for implementing the data redistribution consists
in having the processors send all at once the rows of the arrays to the processors
that need them for further computations, and then have them all receive their data
in the appropriate columns. This worked fine on Cray’s T3E, but overflowed the
Origin 2000’s message-passing buffers. Indeed, this communication scheme requires
each processor to bufferize the rows to be sent. As a consequence, the number of
required MPI buffers increases very rapidly with the number of processors, leading
to deadlock on the Origin 2000 : each processor blocks because all of its local buffers
are full, but still need to execute ‘send’ actions before actually starting to receive
columns – freeing by the way other processors’ buffers.

For this reason, a more refined algorithm was needed. The main idea that guided
the design of the new algorithm for this row–column exchange was to avoid buffering
most of the time. To do this, we chose to refine the algorithm into a sequence of
steps (not only ‘bulk send followed by bulk receive’), where each step would only
require one MPI buffer, whatever the total number of processors. Thanks to this, it
is possible to reduce the memory needs, and, most importantly, to avoid deadlock,
even if the architecture has only a few MPI buffers available.

The algorithm designed for this row–column exchange is to be applied recursively
by each processor on their local band. Its main advantage is that it ensures that,
at each step of the global exchange, each processor will only perform one point-
to-point communication. Consequently, all congestions and bufferizations can be
avoided during communications.

Let us see how the recursive algorithm works on an example. For this example,
we shall distribute the global matrix by bands on four processors. Figure 1 shows
the successive steps performed in parallel on the matrix.

At each step, the global matrix is virtually split into 16 blocks, so that each
processor will only have one partner to which to send its own data.
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Table 1. Speed-up for the whole code of the guiding-centre
model for a 1024× 1024 grid.

Number of
processors, p 1 2 4 8 16

Time (s) 608 324 163 85 47
Speed-up S(p) 1 1.88 3.73 7.15 12.94
Efficacity E(p) 1 0.94 0.93 0.89 0.80

The first step does not include any communication, since this step only involves
the data stored on the diagonal of the global matrix, which means that this block
does not need to be moved.

The three next steps then consist in point-to-point exchanges between processors.
It might be noticed that, at each step, each processor only has one send–receive
operation to complete, so that it only needs one buffer for the exchange.

Since our 2D Vlasov–Poisson application also required the use of 2D FFT over
the global matrix, we chose to extend this row–column global exchange to a true
matrix transposition in order to use it for a 2D parallel FFT. Indeed, the extension
to the previous algorithm was to actually transpose the data during the exchange.
This transposition was performed, on the fly, using MPI-derived datatype.

To perform the parallel 2D FFT over a matrix distributed in band-on processors,
we can use the following algorithm :

1. Each processor computes a multiple real-to-complex 1D FFT on its local
columns.

2. The result of this first multiple complex-to-real 1D FFT is globally transposed,
to swap directions.

3. Each processor computes a new complex-to-real 1D-FFT on these new columns.

4. The result is transposed once again, to get each direction in the right way.

Multiple 1D FFTs are available from the scsl library on CRAY and SGI platforms.
We implemented the row–column exchange algorithm with ‘on the fly’ transposition
thanks to MPI derived data types, to get a true transposition algorithm.

8. The parallel speed-ups
To study the performance of the parallel algorithms, we introduce the speed-up
S(p) and the efficacity E(p), defined as follows:

S(p) =
time on one processor
time on p processors

, E(p) =
S(p)
p
.

Owing to our parallel algorithms, the speed-up of the whole code is driven by the
speed-up of data transposition to exchange the data distributions of the density
function f . The performances of the parallel algorithms are summarized in Tables 1
and 2. For the guiding-centre model, S(p) is given for the whole code, whereas for
the electrostatic code, S(p) is only for the transposition, the rest of the algorithm
being perfectly parallel.

As we have shown in this paper, the semi-Lagrangian algorithm can be applied
such that most steps are perfectly parallel. In fact, in the case of the electrostatic
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Table 2. Speed-up of a 1024 × 1024 complex matrix
transposition using a message-passing algorithm based
on MPI.

Number of
processors p 8 16 32

Speed-up S(p) 7.53 11.1 16.75
Efficacity E(p) 0.94 0.69 0.52

Vlasov–Poisson model, where the feet of the characteristics are known, all stages
of the computation are perfectly parallel, provided that data redistributions are
performed at some points. Moreover, we have found a way to perform the data
redistribution in an efficient manner that enables us to have good parallel efficiency.

To explain the loss of efficacity in Table 2, we model the time of one commu-
nication by tcom = τ + LTB, where τ is the latency, L the length of the message,
and TB the bandwidth. With this definition, the ideal time spent in communication
for our algorithm to exchange data is trout = (p− 1)tcom, which can be rewritten as
trout = ts + LmTB, where ts = O(p)τ and Lm = O(N 2/p). For the configuration of
our Origin 2000, the measured τ (by a ping-pong) is 18 µs. Since τ is important here,
for a large number of processors the dominant term in trout is ts, which explains the
loss of speed-up in the transposition. Following some recent improvement by SGI
on both MPI and the system, the latency is now 4 µs.

In the shared memory model and the distributed one, loss of speed-up is due to
migration of data between processes. In the shared memory model, the hardware
is used directly (via the compiler) to move data; whereas in the MPI code, data are
moved explicitly by mpi-send and mpi-receive functions.

9. Conclusion
Parallelization of Vlasov codes is an essential task, since the numerical solution
of Vlasov equations is very time- and memory-consuming. The two special models
discussed above have been chosen to reflect the specific difficulties associated with
the parallelization process of more general Vlasov codes. The performances obtained
in these examples are very satisfying. Let us also mention that the examples that we
have developed here were essentially classical problems picked to test the numerical
algorithm and benchmark the codes. More complex and realistic problems related
to laser–plasma interaction are addressed in Bégué et al. 1998.

Building on the methods that we have introduced here, we are now ready to de-
velop a Fortran 90 module library implementing the different advection types that
are needed. Assembling these modules will then enable us to treat many problems
occurring in plasma physics using the semi-Lagrangian methodology.
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