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Baroclinic instability of axially symmetric flow
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Observations and models of deep ocean boundary currents show that they exhibit
complex variability, instabilities and eddy shedding, particularly over continental
slopes that curve horizontally, for example around coastal peninsulas. In this article
the authors investigate the source of this variability by characterizing the properties
of baroclinic instability in mean flows over horizontally curved bottom slopes. The
classical two-layer quasi-geostrophic solution for linear baroclinic instability over
sloping bottom topography is extended to the case of azimuthal mean flow in an
annular channel. To facilitate comparison with the classical straight channel instability
problem of uniform mean flow, the authors focus on comparatively simple flows in
an annulus, namely uniform azimuthal velocity and solid-body rotation. Baroclinic
instability in solid-body rotation flow is analytically analogous to the instability in
uniform straight channel flow due to several identical properties of the mean flow,
including vanishing strain rate and vorticity gradient. The instability of uniform
azimuthal flow is numerically similar to straight channel flow instability as long as
the mean barotropic azimuthal velocity is zero. Non-zero barotropic flow generally
suppresses the instability via horizontal curvature-induced strain and Reynolds stress
work. An exception occurs when the ratio of the bathymetric to isopycnal slopes is
close to (positive) one, as is often observed in the ocean, in which case the instability
is enhanced. A non-vanishing mean barotropic flow component also results in a larger
number of growing eigenmodes and in increased non-normal growth. The implications
of these findings for variability in deep western boundary currents are discussed.

Key words: baroclinic flows, quasi-geostrophic flows, topographic effects

1. Introduction

Baroclinic instability is one of the main energy conversion processes to and from
the mesoscale in the ocean (McWilliams 2008). The baroclinic source of energy,
available potential energy due to tilting of isopycnals (constant density surfaces), is
ubiquitous. Studies based on high-resolution altimetry (Chelton, Schlax & Samelson
2011) reveal that virtually all areas of the world’s oceans are sources of mesoscale
eddies, and therefore may be baroclinically unstable. A few of the many roles
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mesoscale eddies play in the ocean are: supporting the forward and inverse turbulent
energy cascades, relaxing isopycnal slopes and thus restratifying the ocean, vertical
transfer of momentum via the eddy form stress and transport, and ventilation and
subdaction of tracers (McWilliams 2008; Dong et al. 2014).

Baroclinic eddy variability peaks in the ocean near strong persistent currents
(Chelton et al. 2011), such as large boundary currents (e.g. the Gulf Stream). The task
of measuring and characterizing eddy generation mechanisms is more challenging for
deep (sub-surface intensified) boundary currents, since they are much less amenable
to remote sensing, and since even after decades of oceanographic expeditions, in situ
measurements are quite sparse. A prominent example is the variability associated
with the deep western boundary current (DWBC) in the Grand Banks (GB) area,
where eddy shedding and interior flow pathways are prevalent, as observational
campaigns using deep Lagrangian floats have revealed (Lavender, Davis & Owens
2000; Lavender, Owens & Davis 2005; Bower et al. 2009).

The data presented in Bower et al. (2009) suggest that the horizontally curving
slopes around the GB and Flemish Cap (FC) areas are associated with increased eddy
generation relative to less curved portions. The curvature, convex or concave, we
refer to is of isobaths, horizontal lines of constant bottom depth. Thus ‘underwater
capes’ such as GB and FC are convex, while the area between them is concave.
Arguably, the data also visually suggest greater eddy generation at convex sections
of the continental slope than at concave sections. Their figure 1 suggests that nearly
all floats cross the 4000 m isobath off-shore after drifting south to FC (where the
continental slope is convex), most of which do not return to the DWBC further
downstream. The few floats that remain shoreward of the 4000 m isobath do not
drift significantly further off-shore until they reach the next convex segment, the
GB. In the GB area more floats are shed from the continental slope and cross the
4000 m isobath. Lavender et al. (2005) found similar loss of floats to the interior
ocean in the vicinity of FC, as well as a maximum in eddy kinetic energy there.
Since the floats are generally drifting with the (baroclinic) DWBC, these findings
raise the possibility that the influence of coastal curvature on baroclinic instability
could explain the localization of eddy generation around FC and GB. There are many
dynamically similar examples of boundary currents leaking around convex continental
slopes, such as the Mediterranean overflow water, which sheds submesoscale coherent
vortices as it propagates around the Iberian peninsula (McDowell & Rossby 1978;
McWilliams 1985; Bower, Armi & Ambar 1997). The California Undercurrent also
sheds submesoscale eddies at convex bends, for example at the mouth of Monterey
Bay (Stegmann & Schwing 2007; Molemaker, McWilliams & Dewar 2015).

To study the influence of horizontal curvature in a controlled setting, we employ
a model of minimal complexity that admits baroclinic instability, a two-layer
quasi-geostrophic (QG) model, in an annular channel. This model is a geometric
variant of the straight-channel two-layer QG model presented in Pedlosky (1964).
The case of linear baroclinic instability in horizontally uniform QG flow over a flat
bottom was solved by Phillips (1951) with two vertical layers and by Eady (1949)
with a continuous vertical coordinate. Blumsack & Gierasch (1972) extended the Eady
model to include a sloping bottom boundary. Mechoso (1980) similarly extended the
Phillips model, and systematically investigated the influence of a sloping bottom
boundary in both models. Pedlosky (1964) derived integral stability constraints
for instability, for a more general family of straight channel flows over sloping
bathymetry. Multiple investigators found that linear two-layer baroclinic instability
models compared well with observed variability in boundary currents over continental
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Layer 1

Layer 2

r

(a) (b)

FIGURE 1. (Colour online) Schematic drawing of the domain boundaries, bathymetry
and mean circulation. (a) Top-down view of the annular channel, with dashed lines
representing isobaths or mean streamlines. (b) Along-slope view of the mean flow
configuration. The dashed line represents the isopycnal profile z = ZI(r), the interface
between the two fluid layers. Two particular bathymetry (ηb(r)) and isopycnal profile
pairs are plotted here, linear and parabolic in r, corresponding to uniform azimuthal
flow and solid-body rotation, respectively. The isopycnal and bathymetric profiles for
uniform rectilinear flow are identical to those of uniform azimuthal flow, i.e. linear in the
cross-channel coordinate. A rigid lid is assumed, consistent with stratified quasi-geostrophy.
The δ parameter, i.e. ratio of bathymetric to isopycnal slopes, is negative in both specific
cases displayed here, although both signs are considered in this study.

slopes in various regions, including the Denmark straight overflow (Smith 1976), the
Norwegian current (Mysak & Schott 1977), and the Färoe-Shetland flow (Sherwin
et al. 2006). Phase speeds and wavelengths were within ∼30 % of observed values,
and eigenmode structures were qualitatively similar to those derived from observations.
Other authors have attempted to incorporate this theory into eddy parameterizations
over continental slopes (Stipa 2004b; Isachsen 2011).

Choboter & Swaters (2000) used a non-QG asymptotic derivation to analyse the
baroclinic instability of a double-frontal dense water layer over sloping topography in
an annulus. Their explicit solutions are for a relatively narrow (1.5 Rossby radii apart
at the bottom) coupled front on the bottom of an otherwise stationary fluid, whereas
we investigate wider and more horizontally uniform two-layer flows here. Since we
model wider currents, we use the approximation that isopycnals do not intersect the
bathymetry, consistent with the QG approximation. In addition, our focus here is
deducing the influence of horizontal curvature on the instability, whereas Choboter
& Swaters (2000) aimed to compare an existing theory for rectilinear bottom-trapped
flow against laboratory experiments in a rotating tank.

A key measure of the effect of bathymetry on baroclinic instability is the ratio
of the bathymetric slope to the mean isopycnal slope (hereafter δ, see also figure 1,
and § 2.4). Blumsack & Gierasch (1972) found that the wavelength of the most
rapidly growing mode was lower (higher) for negative (positive) δ, compared to
the wavelength at δ = 0, and that the mean flow was stable to all disturbances for
δ > 1. Mechoso (1980) reported the same result for the analogous case in a two-layer
model. Isachsen (2011) used δ to characterize the topographic regime in both Eady
model calculations and in nonlinear three-dimensional simulations. We similarly use
δ throughout this paper to quantify the influence of the topographic slope.
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The outline of this paper is as follows. In § 2 we present the model, and in § 3 we
derive integral theorems that constrain the growth rates and phase speeds of unstable
waves. In § 4 we apply the model to investigate instability of solid-body rotation over
parabolic bathymetry, and establish a close analogy with straight channel uniform flow
over linear bathymetry (appendix B, hereafter uniform rectilinear flow). In § 5 we
similarly, and in more detail, investigate instability of uniform azimuthal flow in an
annulus over linear bathymetry. In § 6 we discuss the essential factors, independent of
channel geometry, that make uniform rectilinear flow and solid-body rotation similar
and uniform azimuthal flow quite different. We briefly discuss a few other experiments
in support of the generality of these factors and their influence on baroclinic instability.
In § 7 we discuss our results and their relevance to the stability of oceanic boundary
currents.

2. Linear model of baroclinic growth in an annular channel
A schematic drawing of the domain and model is shown in figure 1. We model

a horizontally curved continental slope as an annular channel, in which the walls
represent the shoreward and offshore extents of a baroclinic slope-trapped current.
We model the mean current as a two-layer axisymmetric azimuthal flow, a minimal
discrete approximation to a continuous density stratification. We prescribe different
geostrophic mean velocities in each layer, creating a vertical shear and thus allowing
the possibility of baroclinic instability. The vertical axis is denoted by z, and the
reference frame is assumed to revolve around that axis to imitate the Earth’s rotation
(§ 2.1).

2.1. QG model equations in cylindrical coordinates
In this section we present the QG potential vorticity (PV) and energy equations for
axially symmetric mean flow and bathymetry. Quasi-geostrophy is an approximation
to fluid flow in a rotating reference frame, which is often a good approximation for
synoptic scale oceanic flows (oceanic mesoscale), i.e. with characteristic length scales
comparable with the Rossby radius of deformation, defined below (Pedlosky 1987).
The necessarily small parameter in the approximation is the Rossby number Ro =
U/fX� 1, where f is the Coriolis parameter, U the velocity scale and X the horizontal
length scale. In these cases the Coriolis force approximately balances the pressure
gradient, and to first order in Ro, the evolution of the flow field is given by the QG
PV equations. The QG approximation also requires the bathymetry and isopycnals
to exhibit small variations relative to their respective domain-wide averages. While
these conditions are not necessarily satisfied over continental slopes, previous studies
suggest that QG captures the essential features of large-scale flows over topographic
steepnesses typical of the ocean’s continental slopes (Williams, Read & Haine 2010;
Stewart, Dellar & Johnson 2011, 2014; Poulin et al. 2014; Stern, Nadeau & Holland
2015).

We use the f -plane approximation (Pedlosky 1987), in which the reference frame
revolves around the vertical axis with the same rate everywhere in the domain,
neglecting the effect of the Earth’s curvature on the Coriolis acceleration. This
isolates the effect of continental slope curvature, and thereby simplifies our analysis.
This is partially justified by the fact that, dynamically, a topographic gradient induces
a similar dynamical effect on rotating flow as does the latitudinal gradient of the
rotation rate. This so-called topographic β effect is usually much larger than the
planetary β effect in the local dynamics of slope-trapped currents.
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We write the two-layer QG PV equations (Pedlosky 1964) in cylindrical coordinates,
[
∂

∂ t̃
+ ũ1r

∂

∂ r̃
+ ũ1φ

r̃
∂

∂φ̃

] [
∇̃2ψ̃1 − 1

L2
1
(ψ̃1 − ψ̃2)

]
= 0, (2.1a)

[
∂

∂ t̃
+ ũ2r

∂

∂ r̃
+ ũ2φ

r̃
∂

∂φ̃

] [
∇̃2ψ̃2 − 1

L2
2

(
ψ̃2 − ψ̃1 − g′

f0
η̃b

)]
= 0. (2.1b)

The upper and lower layer variables are denoted by the subscripts 1 and 2 respectively.
Tildes are used since we will later non-dimensionalize the equations and use variables
without tildes. The annular channel interior and exterior radii are denoted by R̃i and R̃e

respectively. The radial (r̃) and azimuthal (φ̃) velocity components are related to the
streamfunction ψ̃j by (ũjr, ũjφ)= (−r̃−1∂ψ̃j/∂φ̃, ∂ψ̃j/∂ r̃). Vorticity ζ̃j is related to the
streamfunction by ζ̃j=∇̃2ψ̃j. Other parameters include the gravitational acceleration g,
the density ρj, the reduced gravity g′= g((ρ2 − ρ1)/ρ1), the average layer thicknesses
Hj, the reference Coriolis parameter f0, the Rossby radii of deformation Lj=

√
g′Hj/f0,

and the bottom elevation η̃b(r̃). For boundary conditions, we require that there be no
flow normal to the inner and outer walls, ∂ψ̃j/∂φ̃ = 0 |r̃=R̃i,R̃e

.
To study the instability of currents flowing parallel to the bathymetric isobaths,

we assume a geostrophic, axially symmetric, azimuthal mean flow Ũjφ(r̃) = ∂ψ̃ j/∂ r̃.
This is an exact steady solution of (2.1a)–(2.1b). We partition the streamfunction
into mean and perturbation components, ψ̃ j and ψ̃ ′j respectively. Linearizing the QG
PV equations (2.1a)–(2.1b) yields a linear system of equations for the perturbation
streamfunctions,

[
∂

∂ t̃
+ Ũ1φ

r̃
∂

∂φ̃

] [
∇̃2ψ̃ ′1 −

1
L2

1
(ψ̃ ′1 − ψ̃ ′2)

]
− 1

r̃
∂ψ̃ ′1
∂φ̃

∂Q̃1

∂ r̃
= 0, (2.2a)

[
∂

∂ t̃
+ Ũ2φ

r̃
∂

∂φ̃

] [
∇̃2ψ̃ ′2 −

1
L2

2
(ψ̃ ′2 − ψ̃ ′1)

]
− 1

r̃
∂ψ̃ ′2
∂φ̃

∂Q̃2

∂ r̃
= 0, (2.2b)

Q̃j = ∇̃2ψ̃j − 1
L2

j

[
(−1)j(ψ̃2 − ψ̃1)−∆j2

g′

f0
η̃b

]
. (2.2c)

Here ∆j2 = 0, 1 for j= 1, 2 respectively.
The model describes a concave (convex) continental slope if η̃b(r̃) is monotoni-

cally increasing (decreasing) with radius. A given convex (concave) along-slope flow
can be transformed to the analogous concave (convex) along-slope flow by a radial
reflection P(r̃− R̃i)→ P(R̃e− r̃), for any scalar radial property P(r̃− R̃i) of the mean
state, such as bathymetry η̃b(r) or isopycnal profile Z̃I(r̃).

The baroclinic growth rate in uniform rectilinear flow (Mechoso 1980) peaks close
to the wavenumber corresponding to the first baroclinic Rossby radius of deformation.
Therefore we non-dimensionalize the equations by scaling r̃∼ L, where

L=
√

g′H1H2

f 2
0 (H1 +H2)

. (2.3)

We denote the velocity scale (to be specified later) by U. The non-dimensional
variables are defined by

t= (L/U)−1 t̃, Ujφ =U−1Ũjφ, ηb = (ULf0/g′)−1η̃b, r= L−1r̃. (2.4a−d)
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For notational convenience we also define Fj = L2/L2
j = 1 − Hj/(H1 + H2), which

measures the fraction of the total depth that is not occupied by layer j. Although F1
and F2 are not independent, we shall keep both parameters to preserve some symmetry
in the presentation of the equations.

2.2. Method of solution
In what follows we drop the prime notation from the perturbation streamfunction
for ease of presentation. The eigenvalue problem is derived by decomposing the
perturbation streamfunction into normal azimuthal and temporal modes,

ψj =Re{Ψj(r) exp(i(mφ − σ t))}. (2.5)

The notation Re{} indicates the real part of the expression in the curly braces, and
i≡√−1. The azimuthal wavenumber is denoted as m, and σ is the non-dimensional
complex frequency (dimensional σ̃ scales like (U/L) by (2.4)). The real and imaginary
parts of σ are the frequency and the growth rate, respectively. The no normal flow
boundary condition (stated above) simplifies to Ψj|r=Ri,Re = 0. Writing ∇2

r = (∂/∂r +
1/r)∂/∂r, the linear vorticity equations (2.2a)–(2.2b) may be simplified as

[
U1φ

r
m− σ

] [
∇2

rΨ1 − m2

r2
Ψ1 − F1(Ψ1 −Ψ2)

]
− m

r
Ψ1
∂Q1

∂r
= 0, (2.6a)

[
U2φ

r
m− σ

] [
∇2

rΨ2 − m2

r2
Ψ2 − F2(Ψ2 −Ψ1)

]
− m

r
Ψ2
∂Q2

∂r
= 0, (2.6b)

∂Qj

∂r
= ∂

∂r

(
∂

∂r
+ 1

r

)
Ujφ − Fj(−1)j

[(
U2φ −U1φ

)−∆j2
∂ηb

∂r

]
. (2.6c)

In most cases presented below we solve the eigenproblem posed by (2.6a)–(2.6c)
numerically. We discretize equations (2.6a)–(2.6b) using second-order centred finite
differences and solve the resulting matrix eigenvalue problem using the ‘eig’ function
in Matlab, which uses the QZ algorithm (Moler & Stewart 1973). The grid resolution
is dr= 0.025, giving 40 grid points per Rossby radii, thus resolving well the spatial
scales normally associated with QG dynamics. Verification of the numerical set-up
including convergence tests and comparison with some analytic results are presented in
appendix A. The standard experiment parameters are: F1 = F2 = 1/2, Ri = 3, Re = 10.
The chosen channel width (Re − Ri) is motivated by the widths of DWBCs, which
are typically at least a few Rossby radii (Stommel & Arons 1972; Xu et al. 2015).
Similar bathymetric curvature radii (in the range of 3–10 Rossby radii) are found
around the GB and FC. Other parameter ranges and sensitivity tests are discussed in
appendix A.

2.3. Energy equation
To study the modes of energy conversion from the mean state to perturbations,
we derive the volume-integrated energy equation. The general method is standard
(Pedlosky 1987): multiplying equations (2.2a) and (2.2b) by D1ψ1 and D2ψ2
respectively, adding the two resulting equations together, integrating in the entire
domain, and using several integrations by parts and the no normal flow boundary
conditions. We defined the relative layer thicknesses Di by D1 = F2 = H1/(H1 + H2)
and D2=F1=H2/(H1+H2). In addition, one line integral over the domain boundaries,∑2

j=1 Dj
∮
ψ ′j (∂

2/∂t∂n)ψ ′j ds (where n is the normal to the boundary), is required to
vanish (McWilliams (1977), specifically equation (13)), for consistency with the
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analogous asymptotic expansion (in Rossby number) of the primitive equations’
energy balance. The derived energy equation in non-dimensional variables is

∂

∂t
E= ∂

∂t

{
2∑

j=1

EKEj + EPE

}
=

2∑

j=1

RSj + PEC, (2.7a)

EKEj = 1
2

Dj

∫∫ (
∇ψj

)2
r dr dθ, EPE= 1

2
D1D2

∫∫
(ψ1 −ψ2)

2r dr dφ, (2.7b,c)

RSj =Dj

∫∫ (
r
∂

∂r
Ujφ

r

)(
1
r
∂ψj

∂φ

)(
∂ψj

∂r

)
r dr dφ, (2.7d)

PEC=D1D2

∫∫
(U1φ −U2φ)ψ1

1
r
∂ψ2

∂φ
r dr dφ. (2.7e)

The energy of perturbations to the mean flow (E) is a sum of the so-called eddy
kinetic energy (

∑
EKEj) and eddy potential energy (EPE). Thus energy tendency ∂tE

is balanced by the volume-integrated Reynolds stress work (
∑

RSj) and by potential
energy conversion (PEC), i.e. conversion rates from mean kinetic and mean potential
energy, respectively (Pedlosky 1987). When the net perturbation energy tendency
(i.e. left-hand side of (2.7a)) is positive (i.e. perturbations grow), we may define a
purely baroclinic instability as one where the Reynolds stress volume-integrated work
is zero, as occurs in uniform rectilinear flow (Pedlosky 1987). We later show that
when RSj do not vanish, they in fact are negative, i.e. they decrease the perturbation
growth rate in all cases we study here.

Bathymetry does not enter the energy equation explicitly: it does contribute to
energy exchange locally, but integrates to zero over the entire domain. The energy
equation has zero energy tendency for an azimuthally constant perturbation, and
therefore such perturbations are necessarily neutral. RSj are identically zero when the
radial strain,

Sr ≡ r
∂

∂r
Ujφ

r
, (2.8)

is identically zero, which in an annular channel occurs everywhere only for flow in
solid-body rotation. Therefore solid-body rotation is the only annular flow that has
zero Reynolds stress volume-integrated work for any infinitesimal perturbation. If Sr
is non-zero anywhere then there exist many particular ψ(r, φ) perturbation shapes that
make RSj non-zero.

2.4. Mean flow profiles
Throughout this paper we compare our results against the case of uniform flow in
a straight channel over linear bathymetry (Pedlosky 1964; Mechoso 1980), which is
described in appendix B. We hereafter refer to this case as uniform rectilinear flow
for short. In the annular channel, we investigate in detail two specific configurations
of the bathymetry and the mean azimuthal flow. Since the mean flows we prescribe
are geostrophic, the isopycnal profile ZI(r) is determined by the Margules relation
(Cushman-Roisin 1994). In dimensional variables,

Ũ1φ − Ũ2φ =−g′

f
∂Z̃I

∂ r̃
. (2.9)
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The first case, solid-body rotation, is motivated by the fact that both uniform
rectilinear flow and solid-body rotation have zero strain rate, defined for solid-body
rotation by (2.8), and thus it is a simple starting point from which to study the effect
of horizontal curvature. We assume parabolic bathymetry to simplify the analysis,
though we later briefly explore linear bathymetry too (see § 6). Formally, we define
our solid-body rotation case as

Ujφ =Ωjr, ZI ∼−(Ω1 −Ω2)r2, ηb = 1
2 pr2, (2.10a−c)

where Ωj are the constant angular velocities of the flow in each layer, and p is a
quadratic coefficient for the bathymetry.

The second case is uniform azimuthal flow, where we assume constant mean
azimuthal velocity everywhere. This is similar to uniform rectilinear flow in that the
speed is uniform, and the isopycnals are linear in the cross-flow coordinate (r). It is
different in that the velocity direction varies, i.e. speed is azimuthal everywhere but
the azimuthal direction varies with the azimuthal angle φ. We take the bathymetry
to be linear as well (as in the uniform rectilinear flow case), though we later briefly
explore parabolic bathymetry as well (see § 6). Formally, we define our uniform
azimuthal flow case as

Ujφ = const., ZI ∼−(U1φ −U2φ)r, ηb = br, (2.11a−c)

where U1φ and U2φ are the azimuthal velocities and b is the linear coefficient for the
bathymetry.

We note that in uniform azimuthal velocity Ri cannot be chosen to approach r= 0,
both because the azimuthal velocity must be zero in the r→ 0 limit, and because
even before the actual limit, the centrifugal force becomes larger than the Coriolis
force, in violation of the QG conditions. The balance between the two forces results
in a local Rossby number, Ro=U/f r̃=U/(r

√
g′H1H2/(H1 +H2)). For example, taking

H1 =H2 ≈ 500 m, g′ ≈ 10−3 g, and U ≈ 0.1 m s−1, we have r> 1 (and Ri > 1) as an
approximate condition for Ro = o(1). Therefore our choice of Ri = 3 (§ 2.2) is also
consistent with the QG approximation.

We define the mean vertical rotation rate shear and velocity shear for solid-body
rotation and for uniform azimuthal flow as follows: Ωs =Ω1 −Ω2, and Us = U1φ −
U2φ , respectively. Motivated by the fact that the baroclinic instability growth rate in
uniform rectilinear flow varies linearly in the vertical velocity shear (Mechoso 1980),
we choose the velocity scale U=LΩ̃s for solid-body rotation, and U= Ũs for uniform
azimuthal flow. We assume everywhere that U > 0 (and hence ZI(r) is monotonously
decreasing). This assumption is general since we explore both positive and negative δ
and can then deduce corresponding results for U< 0 results by symmetry (see § 5.3).

Similarly we define for solid-body rotation and uniform azimuthal flow, the
barotropic mean rotation rate and velocity as follows: Ωbt = (Ω1 + Ω2)/2, and
Ubt = (U1φ + U2φ)/2, respectively. In fact Ωbt (or Ubt) is exactly the barotropic
component only if mean layer thicknesses are equal, but for ease of notation we refer
to it as the barotropic component in what follows.

3. Integral constraints on baroclinic growth
The classical theorem by Rayleigh (1880) on flow instability conditions was adapted

by Pedlosky (1964) to the straight-channel rotating baroclinic instability problem. It
gives necessary (though not always sufficient) conditions for instability to occur,
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using only knowledge of the mean flow. Equivalently, the theorem provides a range
of values for the physical parameters over which linear perturbations cannot grow.
Here we adapt Pedlosky’s derivation to the annular channel case, and use it to derive
stability bounds for the profiles described in § 2.4. The derivation and the results
remain unchanged if Ri→ 0 and also if Re→∞, and so are also applicable to other
phenomena, e.g. geophysical vortices (Paldor & Nof 1990; Olson 1991; Dewar &
Killworth 1995; Benilov 2005).

While qualitatively similar instability theorems have been derived in the literature
for a variety of flows (Pedlosky 1970), we were unable to find this derivation or result
elsewhere for azimuthal flow (QG or not) over bathymetry with no further constraints
(e.g. thin layers, flat bottom). We also derived bounds on the phase speed and on the
growth rate (semi-circle theorem, Pedlosky 1964) for general annular two-layer flow,
but we defer their presentation to appendix C.

3.1. Derivation of the Rayleigh theorem
Our starting point is the modal PV equations (2.6a)–(2.6b). We define the complex
phase speed c = σ/m, and its real (cr) and imaginary (ci) parts. By (2.5), only
unstable eigenmodes have a non-zero ci, so for unstable eigenmodes we may divide
the equation for the layer j by m(Ujφ/r− c).

∇2
rΨ1 − m2

r2
Ψ1 − F1(Ψ1 −Ψ2)− 1

U1φ − cr
Ψ1
∂Q1

∂r
= 0, (3.1a)

∇2
rΨ2 − m2

r2
Ψ2 − F2(Ψ2 −Ψ1)− 1

U2φ − cr
Ψ2
∂Q2

∂r
= 0. (3.1b)

We multiply the first and second of these last two equations by D1Ψ
∗

1 and D2Ψ
∗

2 ,
respectively (where ∗ denotes complex conjugate), and integrate with the volume
element (r dr) between the domain boundaries Ri and Re. The first (Laplacian) term
can be simplified via integration by parts, making use of the boundary conditions
Ψj(Ri)=Ψj(Re)= 0. The result is

∫ Re

Ri

[
2∑

j=1

Dj| ∂
∂r
Ψj|2 +

2∑

j=1

Dj
m2

r2
|Ψj|2 +D1D2|Ψ1 −Ψ2|2

]
r dr

+
∫ Re

Ri

[
2∑

j=1

Dj

Ujφ − cr
∂Qj

∂r
|Ψj|2

]
r dr= 0. (3.2)

The imaginary part of this expression is

ci

∫ Re

Ri

2∑

j=1

Dj

|Ujφ − cr|2
∂Qj

∂r
|Ψj|2r2 dr= 0. (3.3)

For an unstable mode ci is non-zero, and so the last integral must vanish. Therefore a
necessary condition for instability (hereafter, the Rayleigh criterion) is that the mean
PV gradient must be somewhere negative and somewhere positive in the domain
interior.
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Another necessary condition for instability can be found using the real part of (3.2).
Substituting (3.3) into (3.2) eliminates the terms proportional to cr and ci, leaving

∫ Re

Ri

2∑

j=1

Dj

|Ujφ − cr|2 |Ψj|2
(

Ujφ
∂Qj

∂r

)
r dr

=−
∫ Re

Ri

[
2∑

j=1

Dj

∣∣∣∣
∂

∂r
Ψj

∣∣∣∣
2

+
2∑

j=1

Dj
m2

r2
|Ψj|2 +D1D2|Ψ1 −Ψ2|2

]
r dr< 0. (3.4)

Therefore, another necessary instability condition (hereafter, the Fjortoft criterion) can
be stated as: at least one of the products U1φ(∂Q1/∂r) and U2φ(∂Q2/∂r) must be
negative inside at least part of the domain (Ri, Re).

Both the first and second conditions as phrased here are the same as found in
a straight channel (Pedlosky 1964). These (straight channel) conditions are used
frequently to identify unstable flow regimes in boundary currents, as well as other
ocean and atmosphere flow regimes.

3.2. Stability bounds for solid-body rotation and uniform azimuthal flow
For solid-body rotation, using the same notation as (Mechoso 1980), the ratio between
bathymetric slope and isopycnal slope is the bathymetric parameter δ= pr/Ωsr= p/Ωs.
Vorticity is constant and hence the PV gradients are simply

∂Q1

∂r
=−F1r,

∂Q2

∂r
= F2(1− δ)r. (3.5a,b)

By the Rayleigh criterion instability is possible only if the PV gradient changes sign,
which is seen from (3.5) to occur only if δ < 1, exactly as in uniform rectilinear flow.

For uniform azimuthal flow, in non-dimensional variables, U1φ = U2φ + 1. The
bathymetric parameter is now δ =−b, and from (2.6c),

∂Q1

∂r
=− 1

r2

(
U2φ + 1

)− F1,
∂Q2

∂r
=− 1

r2
U2φ + F2(1− δ). (3.6a,b)

Using (3.6) in the instability criteria (§ 3.1), it follows that a necessary condition for
instability is that, at least somewhere inside the domain,

δ < δ0(r)≡ 1− 1
F2

U2φ

r2
. (3.7)

Equivalently, a sufficient condition for stability is δ >max(δ0), similarly to the uniform
rectilinear flow case which is stable for δ > 1. Note that δ0 = 1 exactly if U2φ = 0,
and δ0≈ 1 if (1/F2)|U2φ(r)|/r2= o(1). Unlike the case in uniform rectilinear flow, the
stability threshold depends on the mean velocity magnitude, i.e. the cutoff bathymetric
parameter, δ0, increases (decreases) for negative (positive) U2φ . As evident from the
Rayleigh criterion and from (3.6), the difference is due to the non-zero mean relative
vorticity caused by curved streamlines.

We add that for U2φ <−1−F1R2
i , instability is not prohibited, irrespective of the δ

value, since a PV gradient sign change occurs within a single layer. However, since
the mean flow becomes almost barotropic, that regime is less relevant to this study.
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4. Stability of flows in solid-body rotation

In this section, we investigate baroclinic instability of flow in solid-body rotation,
and show that it bears strong dynamical similarity to baroclinic instability of uniform
rectilinear flow. The isopycnal cross-flow profile for solid-body rotation is parabolic
(§ 2.4), and we specifically choose to investigate the flow over a cross-flow profile
similar to the isopycnal profile, namely a parabolic bathymetry profile. This simplifies
the PV equations significantly, and allows for some analytical results which help
with more general interpretation of the physical system. Linear bathymetry does not
qualitatively change the results, as discussed in § 6.

In the solid-body rotation case, equations (2.6a)–(2.6b) are,
[(
Ωbt + 1

2

)
m− σ

] [
∇2

rΨ1 − m2

r2
Ψ1 − F1(Ψ1 −Ψ2)

]
+mF1Ψ1 = 0, (4.1a)

[(
Ωbt − 1

2

)
m− σ

] [
∇2

rΨ2 − m2

r2
Ψ2 − F2(Ψ2 −Ψ1)

]
+mF2Ψ2[−1+ δ] = 0. (4.1b)

Since Ωs does not appear explicitly, it follows from the scaling in § 2.4 that the
dimensional growth rate and frequency depend linearly on the dimensional angular
shear Ω̃s. In addition, the variables Ωbt and σ appear only together, in the expression
(Ωbtm − σ) ≡ σ0. Solving (4.1) for σ0 would correspond to a σ solution Doppler-
shifted by Ωbtm. The only effect of the barotropic velocity is a real frequency Doppler
shift, with no influence on growth rate or streamfunction structure. Therefore to derive
the dispersion relation we may take Ωbt = 0, and after deriving it, just Doppler shift
the frequency back by adding to it the term Ωbtm.

The terms in the left brackets may vanish only for neutral modes. In this section we
are only interested in modal instability (non-normal growth is covered in § 5.2) and
hence assume that the terms in the left brackets do not vanish and rearrange (4.1) to
obtain a pair of coupled Bessel equations,

∇2
rΨ1 − m2

r2
Ψ1 + α1Ψ1 + F1Ψ2 = 0, (4.2a)

∇2
rΨ2 − m2

r2
Ψ2 + α2Ψ2 + F2Ψ1 = 0, (4.2b)

α1 = F1

1
2 m+ σ
1
2 m− σ , α2 = F2

(
1
2 − δ

)
m− σ

1
2 m+ σ . (4.2c,d)

The solution can be found in terms of Bessel functions of the first kind Jm and of
the second kind Ym. A complete and orthogonal set of Bessel functions in the radial
domain (Ri, Re) can be found as the solution set of the Bessel equation in the same
geometry with Dirichlet boundary conditions. This set is given by Pm(µir),

Pm(µr)= Jm(µr)− Jm(µRe)

Ym(µRe)
Ym(µr), (4.3)

provided that µi are determined from

Jm(µiRi)Ym(µiRe)−Ym(µiRi)Jm(µiRe)= 0. (4.4)
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The general solution to (4.2) may be then expanded in the Fourier–Bessel series,

Ψj =
∞∑

i=1

Aj,iPm(µir). (4.5)

The amplitudes Aj,i are constants. Plugging the general solution (4.5) into (4.2), using
the identity that a Bessel function of order m satisfies, ∇2

r Pm(µr)− (m2/r2)Pm(µr)=
−µ2Pm(µr), and exploiting the orthogonality of the Pm functions, one finds that the
solution (4.5) is consistent, under the following condition on the coefficients of each
Bessel function,

(α1 −µ2
i )A1,i + F1A2,i = 0, (4.6a)

(α2 −µ2
i )A2,i + F2A1,i = 0. (4.6b)

Requiring the determinant to disappear we find, after some algebra, the solid-
body rotation dispersion relation, relating the complex frequency σ to the radial
wavenumber-like parameter µi,

σi = Ωbt +m
µ2

i (F2 − F1 − F2δ)−mF1F2δ +
√

D
2µ4

i + 2µ2
i (F1 + F2)

, (4.7a)

D
m2
= µ8

i + (2F2δ)µ
6
i + (−4F1F2 + 2F1F2δ + F2

2δ
2)µ4

i

+ (−4F2
2F1δ + 2F2

2F1δ
2)µ2

i + F2
1F2

2δ
2. (4.7b)

The main result of this section is that the solid-body rotation dispersion relation
(4.7) is isomorphic to the uniform rectilinear flow dispersion relation (B 2), showing
that the dynamics are in some sense identical, although the geometries are different.
The mapping between the dispersion relations is symbolic (and simple), with
(Ωbt, m, µ)→ (Vbt, l, K). Here k, l, K =√k2 + l2 and Vbt are the uniform rectilinear
flow cross-stream, down-stream, total wavenumbers, and mean barotropic velocity,
respectively (see appendix B). Since the dispersion relations are analogous, the
dependences of the growth rates and frequencies on the dimensionless parameters are
similar, though not identical since the allowed µi are determined from (4.4), while
the allowed K are determined from an equation with harmonic functions instead of
Bessel functions.

In figure 2 we display numerical dispersion curves (growth rates and phase speeds
as a function of wavenumber m) for solid-body rotation and for uniform rectilinear
flow, setting δ = −0.2 for the purpose of illustration. We normalize the azimuthal
wavenumber by the mean radial coordinate R= (R1 + R2)/2, m̂=m/R to provide an
approximate analogue of the Cartesian wavenumber in uniform rectilinear flow. The
uniform rectilinear flow and solid-body rotation curves are very close to each other,
and the main qualitative features are identical for both cases.

(i) Two eigenmodes exist in each case (for other δ values either one or two
eigenmodes but no more exist per downstream wavenumber).

(ii) The global maximum in growth rate occurs at a wavenumber slightly smaller than
1 (in dimensional variables l≈ 1/L).

(iii) The phase speed has the opposite sign to δ. This is in fact true for all δ values
and is explained by a resonance condition (Pichevin 1998) with topographic
Rossby waves (which propagate with shallow water to their right in the northern
hemisphere).
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FIGURE 2. (Colour online) Properties of unstable modes for mean solid-body rotation
over parabolic bathymetry and for mean uniform rectilinear flow over linear bathymetry,
with δ =−0.2 in both cases. (a) Growth rate versus wavenumber and (b) phase velocity
versus wavenumber (all dimensionless). In both cases two independent eigenmodes
are found. The first (second) mode is presented with solid and dashed/dotted lines
for solid-body rotation (SBR) and uniform rectilinear flow (URF), respectively. The
abscissa is downstream Cartesian wavenumber (non-dimensional values). In solid-body
rotation the downstream wavenumber is defined as l ≈ m̂ = m/R. Here m is the
azimuthal wavenumber and R is the radius of the channel centre. In (b) the (real)
phase speed is approximately Doppler-corrected and normalized to Cartesian values (for
comparison with uniform rectilinear flow) via ĉr = crR − Ωbt. (c,d) Upper and lower
layer streamfunctions, respectively, for the first (fastest growing) eigenmode of solid-body
rotation with wavenumber m= 4 (m̂= 0.615). The inner and outer circles mark the domain
boundaries at r = Ri and Re, respectively. The lines intercepting the boundaries are the
zero contours of the streamfunctions, while positive (negative) streamfunction contours are
denoted by full (dashed) closed curves. The absolute value of contours is not given since
eigenmode amplitudes are arbitrary unless specified by initial conditions.

Figure 2(c,d) show a typical first (fastest growing) eigenmode streamfunction for
solid-body rotation. The streamfunction is centred in the channel, and no mean
horizontal tilt (relative to the cross-stream direction) is present in the circulation cells.
The second fastest growing eigenmodes (not shown) have two periods in the radial
axis, rather than one as the first mode, and are generally similar to the first mode in
that they have no horizontal tilt.

Figure 3(b) shows the solid-body rotation growth rate as a function of both m and
δ. Again, the growth rate values are almost identical to the uniform rectilinear flow
case (figure 3a). We also confirmed numerically that (as in uniform rectilinear flow)
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FIGURE 3. (Colour online) Linear growth rates as a function of along-flow wavenumber
and the ratio of the bathymetric to isopycnal slopes. All values are non-dimensionalized as
described in § 2.1. Where more than one unstable mode exists, the highest growth rate is
shown. (a) Mean uniform rectilinear flow (URF) over linear bathymetry, with wavenumber
l. In all other panels the wavenumber is the normalized azimuthal wavenumber m̂, defined
in § 4. (b) Mean solid-body rotation (SBR) over parabolic bathymetry. (c–f ) Mean uniform
azimuthal flow (UAF) over linear bathymetry, with the mean barotropic velocity equal to
(c) Ubt = 0, (d) Ubt =−1, (e) Ubt = 1 and ( f ) Ubt = 2. In contrast to uniform azimuthal
flow, the growth rates in the uniform rectilinear flow and solid-body rotation cases do not
depend on the barotropic velocity.
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there is no growth rate dependence on barotropic velocity. Thus we can summarize
the solid-body rotation case as follows.

(i) The dispersion relation is isomorphic to the previously derived uniform rectilinear
flow dispersion relation, thus demonstrating that the dynamics are essentially
identical. The growth rate is independent of the barotropic velocity and linearly
dependent on the vertical shear.

(ii) Thus, despite different geometries (affecting the boundary conditions) in solid-
body rotation and in uniform rectilinear flow, the growth rates are very similar
(figure 3a,b).

(iii) Both cases have vanishing strain rates and RSj and are thus pure baroclinic
instabilities.

5. Stability of uniform azimuthal flow
In this section we explore the stability of uniform azimuthal flow over bathymetry

that varies linearly with radius, as defined in § 2.4.

5.1. Normal modes
In figure 3, we plot growth rate (GR) as a function of normalized wavenumber m̂
and of δ for uniform azimuthal flow (each panel for a different Ubt value), and for
reference also the GR of the uniform rectilinear flow and solid-body rotation cases.
Note that at each point in (m̂, δ) space there may be multiple unstable modes, so
we have plotted the growth rate of the most unstable mode in each case. While
for zero barotropic flow Ubt = 0 the growth rate is similar to uniform rectilinear
flow, non-zero barotropic velocity results in very different GR(m̂, δ) dependence. In
contrast, uniform rectilinear flow and solid-body rotation have no barotropic velocity
dependence. Additional local maxima in GR(m̂, δ) appear in uniform azimuthal flow
for non-zero barotropic velocity.

The streamfunctions for several unstable uniform azimuthal flow modes are
presented in figure 4. Two geometrical differences from uniform rectilinear flow
and solid-body rotation (see examples in figure 2) are evident: (i) while in solid-body
rotation streamfunctions are always centred in the channel, the streamfunctions in
uniform azimuthal flow cases with non-zero Ubt are shifted off the centre of the
channel; and (ii) while in uniform rectilinear flow the streamfunction circulation cell
axes are aligned with the radial direction, those in uniform azimuthal flow cases with
non-zero Ubt are often tilted. Reynolds stress work varies linearly with the strain and
the tilts of the circulation axes, and vanishes when the tilt is zero (Pedlosky 1987).
In polar coordinates,

RSj ∼−(Sr)j

(
∂r
∂φ

)

ψj

. (5.1)

The uniform azimuthal flow streamfunction for the first mode at Ubt = 0 (figure 4a,b)
has zero or very small tilt, implying insignificant Reynolds stress work. Figure 4(c–f )
(for the first and third eigenmodes with Ubt =−1) show progressively higher positive
tilts, implying higher negative RSj, since by (2.8) strain rate is positive for constant
negative velocity.

The local maxima in figure 3(d–f ) are due to changes in the number and character
of growing eigenmodes with Ubt value. This can be seen in figure 5, where we plot
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(a) (c) (e)

(b) (d) ( f )

FIGURE 4. (Colour online) Mean uniform azimuthal flow, selected unstable eigenmodes.
Upper (lower) layer streamfunctions are shown in the upper (lower) panels. The
bathymetric slope parameter is δ =−0.2, and the azimuthal wavenumber is m= 4. (a,b)
Ubt = 0, fastest growing eigenmode. (c,d) Ubt = −1, fastest growing eigenmode. (e, f )
Ubt =−1, third-fastest growing eigenmode. The inner and outer circles mark the domain
boundaries at r = Ri and Re, respectively. The lines intercepting the boundaries are the
zero contours of the streamfunctions, while positive (negative) streamfunction contours are
denoted by full (dashed) closed curves. The absolute value of the contours is not given
since eigenmode amplitudes are arbitrary unless specified by initial conditions.

several properties for all uniform azimuthal flow growing eigenmodes at δ = −0.2
and Ubt = 1 (compare with solid-body rotation and uniform rectilinear flow, figure 2).
We find that up to four unstable eigenmodes can co-exist at a given wavenumber,
whereas no more than two co-existed for uniform rectilinear flow and solid-body
rotation. While in uniform rectilinear flow the second mode has considerably lower
growth rate than the first, in uniform azimuthal flow they have similar maximum
values but still peak at different wavenumbers, thus explaining the multiple maxima
observed in figure 3(d–f ). The growth rates of the third- and fourth-most unstable
modes are considerably smaller. In figure 5(c) we plot the eigenmodes’ phase speeds,
Doppler-corrected and normalized via ĉr = crR− Ubt to compare approximately with
equivalent values in uniform rectilinear flow. While uniform rectilinear flow has waves
propagating with shallow water to their right (prograde), in uniform azimuthal flow
the second most rapidly growing mode is retrograde, and eigenmodes 3 and 4 have
much smaller propagation speeds ĉr.

Figure 5(b) shows the ratios of volume-integrated Reynolds stress work (ΣjRSj)
to potential energy conversion (PEC), which are negative in all cases. In contrast,
uniform rectilinear flow has zero RSj values in all cases. Thus the uniform azimuthal
flow unstable eigenmodes are largely baroclinic modes whose growth rates are
somewhat diminished by Reynolds stress work. The two extra eigenmodes that appear
with non-zero barotropic velocity have much higher ΣjRSj to PEC ratio magnitudes,
consistent with their very low growth rates. These results are also consistent with
the tilts of streamfunctions shown in figure 4, and are qualitatively similar for other
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FIGURE 5. (Colour online) Mean uniform azimuthal flow with barotropic velocity Ubt= 1
and bathymetric to isopycnal slopes ratio δ=−0.2. (a) Growth rate, (b) ratio of Reynolds
stress volume-integrated work to potential energy conversion, and (c) Doppler-corrected
Cartesian phase speed versus normalized azimuthal wavenumber m̂=m/R, for all growing
eigenmodes. In (c) the (real) phase speed is Doppler-corrected and normalized to Cartesian
values by ĉr= crR−Ubt, to facilitate comparison with the other mean flow cases (figure 2).

values of δ, m and Ubt. The general reduction in growth rate with |Ubt| is thus
partially attributed to an increase in Reynolds stress work.

In figure 6 (a,b) we plot the maximum growth rate over all unstable modes and
over all wavenumbers as a function of Ubt and δ. Unless δ ∼ 1, the growth rate
peaks at or close to Ubt = 0, and is close to peak growth rate for the uniform
rectilinear flow case, while lower growth rates are found for non-zero Ubt. However,
the uniform rectilinear flow instability has a cutoff at δ = 1, whereas the uniform
azimuthal flow cutoff depends on Ubt and can occur for δ larger than 1, as predicted
by the instability criteria derived in § 3.2. Therefore horizontal curvature decreases
the eigenmodes’ growth rates when Ubt is non-zero, unless the isopycnals are
approximately parallel to the bathymetry (δ ∼ 1) and Ubt < 0, in which case the
curvature destabilizes the flow. Although we report above that Reynolds stress work
is partially responsible for the reduction in growth rate (both relative to uniform
rectilinear flow and between different uniform azimuthal flow modes), figure 6(c)
demonstrates that a reduction in potential energy conversion is responsible for a
∼2–4 times larger fraction of the growth rate reduction than is the |ΣjRSj| increase.
For an eigenmode, GR = (PEC + ΣjRSj)/2 and hence the changes in growth rate
are proportional to changes in PEC and RSj. Generally PEC decreases monotonously
with |Ubt|, thus supporting the barotropic governor effect interpretation given below.

Reduction in baroclinic growth rate in the presence of lateral barotropic shear is a
somewhat general phenomenon, often called the barotropic governor effect (James &
Gray 1986; James 1987). James (1987) attributes the effect to the horizontal shear of
advection. To remain in phase in the cross-flow direction in the presence of advective
shear, the unstable eigenmodes are tilted in the horizontal plane and have a reduced
cross-flow extent. These circulation features make the unstable eigenmodes less ideally
suited for extracting mean potential energy and hence their growth rates are smaller.

Though the usual barotropic governor effect interpretation is due to barotropic
shear, we find that in curved flow geometry, it may be more general to refer to
barotropic strain rather than shear. In uniform azimuthal flow, the eigenmodes are
azimuthally travelling waves, with constant angular phase velocity (rad s−1). If they
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FIGURE 6. (Colour online) (a) Maximum growth rate (filled contours) in the uniform
azimuthal flow (UAF) case as a function of the barotropic velocity, Ubt, and the ratio
of the bathymetric to isopycnal slopes, δ. The dashed line marks the barotropic velocity
corresponding to the largest growth rates at each δ. The dotted line marks δ = 1, above
which straight channel uniform flow is stable. (b) Maximum uniform azimuthal flow
growth rate (full line) and the barotropic velocity at which it is achieved (full line
with circles), as a function of δ. The dashed line is maximum growth rate for uniform
rectilinear flow (URF). (c) (Half the value of) potential energy conversion (PEC) and
Reynolds stress work (RS=ΣjRSj), for the fastest growing eigenmode, in three different
δ values. Discontinuities (as a function of Ubt) are expected since PEC–RS distribution
changes with m, and since up to four different eigenmodes exist per m.
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were to have no tilt, azimuthal advection would need to be radially constant. The
azimuthally advecting quantity is the (mean) angular velocity, Ωj(r) ≡ Ujφ/r, and
its radial gradient is the strain rate (2.8). Thus the barotropic governor effect can
generally occur in azimuthal flow with non-zero strain, i.e. flow not in solid-body
rotation (§ 4). In accordance, we find (figure 4) that some uniform azimuthal flow
eigenmodes have substantial horizontal tilts, often with much lower growth rates.
Similar results were obtained in a primitive-equations two-layer vortex instability
model (Dewar & Killworth 1995). The authors found that Gaussian vortices with
co-rotating lower layers had reduced PEC and growth rates relative to vortices with
counter-rotating lower layers, and attributed the result to the barotropic governor
effect.

5.2. Non-normal growth
While the above diagnosis focuses on perturbation growth by individual eigenmodes
(aka normal modes), non-orthogonality of eigenmodes, which is a common occurrence
in sheared flow, means that what is known as non-normal growth is also possible
(Trefethen et al. 1993; Farrell & Ioannou 1996). Linear evolution of two or more
non-orthogonal eigenmodes, even if they are all neutral or decaying, can result in
transient (non-normal) growth before the eventual decay of the disturbance. For
parameter values where growing eigenmodes exist, they do dominate the linearized
dynamics, at long enough times. But transient non-normal growth may dominate at
shorter times, as well as for parameter ranges where no growing eigenmodes exist.

To calculate the non-normal growth, using the same numerical eigenvalue solver
described above, we recast the PV equations (2.6) in the form: MΨ = σBΨ , where
M and B are differential operators, and Ψ = (Ψ1, Ψ2)

T (T for transpose). We refer the
reader to Farrell & Ioannou (1996) for details of the method. Assuming B is invertible
we can rewrite the differential equation as σΨ = LΨ , where L = B−1M. And since
Ψ ∼ exp(−iσ t),

∂tΨ =−iLΨ. (5.2)

So the propagator to time t is exp(−iLt). If we define L̂ = N1/2LN−1/2, where N is
the energy norm operator (Farrell & Ioannou 1996), then the maximal instantaneous
growth-rate of disturbances is given by the eigenvalues (and eigenstates) of the
operator H = i(L̂† − L̂)/2. The energy-norm operator in the annulus case is, prior to
the performed discretization of the differential operators and of r,

N = 1
2

(
rD1 0
0 rD2

)(
−∇2

r +
m2

r2

)
+ 1

2
D1D2

(
1 −1
−1 1

)
. (5.3)

In figure 7 the maximal instantaneous non-normal growth in energy norm is shown
for uniform azimuthal flow and uniform rectilinear flow. Interestingly, the result is
independent of δ, as the bathymetry does not appear in the energy equation (2.7).
Bathymetry affects local energy conversion but not its domain integral. However, in
finite time bathymetry certainly effects energy growth or decay since it affects the
streamfunction evolution, and would likely render sub-optimal the fastest-growing
non-normal perturbations calculated using (5.3). For Ubt = 0, uniform azimuthal flow
growth is very similar to uniform rectilinear flow (which is independent of barotropic
velocity), and both have non-normal growth just slightly higher than peak normal
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FIGURE 7. (Colour online) Maximal instantaneous (non-normal) growth rates. The blue
curve corresponds to mean uniform rectilinear flow. The other curves correspond to mean
uniform azimuthal flow with three different barotropic velocities Ubt. Linear bathymetry
was used in all cases.

growth rate (compare with figure 6). However, non-normal growth occurs for a wider
range of wavenumbers than the range in which unstable normal modes exist. The
decay of the non-normal growth rate with wavenumber is slower in uniform azimuthal
flow relative to uniform rectilinear flow. In addition, at non-zero Ubt, the uniform
azimuthal flow growth rate is higher everywhere, and decays even slower with m̂, or
even (not shown) grows and oscillates in m̂ before decaying again. Growth at very
high wavenumbers is probably not physical, and would likely not appear if some
form of scale-selective ‘eddy’ viscosity were included.

5.3. Convex and concave cases
The convex to concave transformation (by reflection of ηb(r) and ZI(r), as explained
in § 2.1), results for uniform azimuthal flow in b→−b and Ujφ→−Ujφ . Therefore
(2.6) are unaltered if in addition σ → −σ . Also, if {σ , Ψj(r)} are an eigenvalue–
eigenfunction pair of equations (2.6) then so are their complex conjugates {σ ∗, Ψ ∗j (r)},
as can be verified by taking the complex conjugate of (2.6). Combining the last two
observations, if {σ , Ψj(r)} is an eigenvalue–eigenfunction pair in a convex geometry,
then {−σ ∗, Ψ ∗j (r)} is an eigenvalue–eigenfunction pair in a concave geometry, and
vice versa. Thus the growth rate and the real (physical) part of the streamfunction are
unaltered, and the phase speed is reversed. The reversal of phase speed, along with
reflection of ηb(r) (shallow water at the other side of the channel) results in the same
phase speed direction relative to shallow water, and therefore the physical propagation
direction is also unaltered.
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Different eddy growth rate at convex versus concave sections is not accounted
for in the linear uniform azimuthal flow model, contrasting with the pronounced
instabilities observed around convex bends in the real ocean’s continental slopes
(see § 1). Despite this symmetry of our QG model, there is still a potentially important
difference between unstable modes growing over convex and concave bends in the
continental slope. If the perturbation streamfunction is displaced off the centre of the
channel, say toward shallower water, then switching between concave and convex
continental slopes will result in the streamfunction being displaced toward deep water
instead. As noted in § 5.1, the uniform azimuthal flow perturbation streamfunctions
are indeed typically displaced from the centre of the channel (see figure 4). The
significance of this difference between the structure of growing modes over convex
and concave continental slopes cannot be determined from our linear instability
analysis, and warrants further investigation using a nonlinear model.

6. Relation between baroclinic instability in straight and curved geometries
Although uniform azimuthal flow and uniform rectilinear flow share the same

cross-stream isopycnal and bathymetric profiles, the properties of their unstable
modes are quite different (§ 5). In contrast, we found strong similarity (§ 4) between
the uniform rectilinear flow and solid-body rotation cases, despite differing isopycnal
and bathymetric profiles. Using insights from § 4–5, we can reduce the parallel
between uniform rectilinear flow and solid-body rotation to three conditions.

(i) Vanishing horizontal mean strain, resulting in zero Reynolds stress work. From
a dynamical perspective, the mean flow does not shear waves propagating in the
direction of the mean flow.
The following two factors stem from the Rayleigh criterion (§ 3).

(ii) Vanishing horizontal gradient of the mean vorticity. Under this condition the
Rayleigh criterion depends only on the ratio of bathymetric to isopycnal slopes, δ.

(iii) Congruous cross-stream bathymetric and isopycnal profiles. This renders δ
constant. The implication can be understood by considering a uniform rectilinear
flow-like case of uniform channel flow (linear isopycnals) but over nonlinear
bathymetry. Then, using (2.9) and defining δ(x)= (∂ηb(x)/∂x)/(∂ZI/∂x), the PV
gradient (B 1) can be rewritten as

∂Qj

∂x
=−Fj(−1)j[1−∆j2δ(x)]. (6.1)

By the Rayleigh criterion (§ 3) if δ(x) < 1 anywhere, instability is not prohibited.
Thus even if δ̄ > 1 (the bar denoting a cross-stream average), but locally δ(x)< 1
somewhere, then this uniform flow case may be unstable.

For annular flow, the vanishing of the strain rate occurs only for parabolic
isopycnals (or equivalently, solid-body rotation), while zero horizontal gradient of
vorticity occurs only for parabolic or logarithmic isopycnals. Therefore the only
annulus flow case in which conditions (i)–(iii) all occur together is parabolic
isopycnals over parabolic bathymetry, which is our solid-body rotation case (§ 4).
Mean flow over any other bathymetry (such as linear bathymetry, as in § 5) will
necessarily violate at least one of (i)–(iii). For uniform azimuthal flow, condition (iii)
is satisfied, but the curvature results in non-zero strain rate and a non-zero vorticity
gradient. Superficially, uniform azimuthal flow may appear to be the most similar to
uniform rectilinear flow since both cases have linear isopycnals (and linear bathymetry
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in the present treatment) in the cross-stream direction, but conditions (i)–(iii) identify
solid-body rotation as the true dynamical analogue of uniform rectilinear flow.

We have verified conditions (i)–(iii) using some additional numerical experiments,
whose results are summarized in this paragraph, rather than plotted. The same
numerical solver was used in all cases. We considered two cases in which only
factor (iii) is violated: (1) uniform straight channel flow (i.e. linear isopycnals) over
parabolic bathymetry, and (2) solid-body rotation (i.e. parabolic isopycnals) over linear
bathymetry in an annular channel. Both have zero strain, and therefore were found
to be similar to uniform rectilinear flow/solid-body rotation in that the magnitudes of
their growth rates are very similar, in that the Reynolds stress work is zero, and in
that the results are independent of the barotropic velocity. However, non-zero (though
small) growth occurs for δ > 1 in (1) because condition (iii) is violated. We also tested
a third case, where only condition (i) is violated: (3) annular flow with logarithmic
isopycnals and bathymetry. We found this case to be similar to our uniform azimuthal
flow results, though with a more exaggerated dependence on the magnitude of the
barotropic velocity |Ubt|. Unlike uniform azimuthal flow, the logarithmic profile used
in case (3) has zero growth rate at δ > 1 because the vorticity is zero.

7. Summary and discussion
To study the effect of horizontal curvature in flow and bathymetry on baroclinic

instability, we study several mean flow and bathymetry cases in an annulus and
compare them with uniform mean flow over linear bathymetry in a straight channel
(uniform rectilinear flow). We consider uniform rectilinear flow a reasonable though
simple test case for DWBCs since these tend to be quite broad relative to the Rossby
radius (Stommel & Arons 1972; Xu et al. 2015). Some further justification may be
required for the use of a periodic annular channel in place of an open domain that is
approximately an annular section. We expect that for short time intervals compared
to the travel time of perturbations along the section, azimuthal edge effects will be
small, as long as the wavelength is somewhat smaller than the section length.

We find solid-body rotation (§ 4) to be very similar to uniform rectilinear flow,
with an exact simple transformation between the dispersion relations of both cases.
We trace the similarity in instability properties to the three commonalities between
the mean flows and bathymetries (§ 6): vanishing strain rate, vanishing vorticity, and
constant ratio of bathymetric slope to isopycnal slope δ(r)≡ δ. In contrast, the uniform
azimuthal flow case (§ 5), which has (like uniform rectilinear flow) linear isopycnals
(and bathymetry), has quite different stability properties because it has non-vanishing
strain rate and mean vorticity. While we began a preliminary exploration of more
significantly sheared velocity profiles (i.e. jets and free shear layers), an adequate
coverage of this topic requires at least a full additional paper. However, we would
like to stress that the analysis in § 6 is very general as it is based on the Rayleigh
criterion (§ 3) and on the energy equation (§ 2.3), and that a few experiments with
other simple profiles (§ 6) support the generality of these results.

Baroclinic instabilities in uniform azimuthal flow differ in several ways from
uniform rectilinear flow and solid-body rotation.

(1) The eigenmodes depend on the mean barotropic velocity. The growth rate of
unstable eigenmodes generally decreases with |Ubt|, unless δ ≈ 1.

(2) Whereas solid-body rotation and uniform rectilinear flow are stable for δ > 1,
uniform azimuthal flow is (weakly) unstable for a small interval of δ greater
than 1. That is due to non-zero mean flow vorticity.
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(3) Negative Reynolds stress work manifests as part of the barotropic governor effect
(BGE). Although BGE is usually attributed to barotropic shear, we find that in
non-parallel flow the cause may be generalized to barotropic strain (even when
cross-flow shear is zero, as in uniform azimuthal flow).

(4) For non-zero |Ubt|, more growing eigenmodes arise, with diverse growth rates,
phase speeds, and barotropic to baroclinic energy conversion ratios.

(5) Non-normal growth is generally faster and occurs over a larger wavenumber
range. The growth rate becomes even larger with increased |Ubt| magnitude.

The uniform azimuthal flow case has a small but non-zero growth rate for δ > 1,
due to the vorticity associated with curved streamlines, unlike the straight-channel
case (Mechoso 1980). Deep western (and some surface) boundary currents often have
isopycnal profiles similar to the bathymetric profile, i.e. δ(r)≈ 1 (Stommel & Arons
1972; Stipa 2004a; Spall 2010; Xu et al. 2015). Thus the increased instability of
uniform azimuthal flow relative to uniform rectilinear flow in the δ(r)≈ 1 regime is
potentially relevant for the DWBC eddy-shedding observations that motivate this work.
Assuming that the DWBC flow is faster in the deeper layer, and that the barotropic
flow is in the same direction as the flow in the deeper layer, flow on a convex slope
is described (in addition to δ ≈ 1) by Ubt < 0. Negative Ubt is indeed the range in
which we find the instability is possible for δ > 1 (figure 6, and § 3.2). Note that by
the symmetry described in § 5.3, a concave section would have the same linear growth
rates as the convex section described.

The result regarding instability of eigenmodes for δ ≈ 1 may also be relevant
for parameterizations of eddies on sloping boundaries, still a little-explored subject.
Isachsen (2011) compares parameterizations based on the extended Eady model with
eddy fluxes diagnosed in primitive equation simulations over a straight continental
slope. While the parameterization predicts zero flux at δ > 1, the diagnosed eddy flux
is very low but non-zero. This might be due to non-zero horizontal vorticity gradients
in the flow, which in any case may be relevant to the equivalent parameterization
problem on a horizontally curved slope. Non-normal growth, which we found has
larger maximal values in uniform azimuthal flow, may also play a role in eddy fluxes
when δ > 1, especially since maximal potential non-normal growth rate is independent
of the bathymetry. Disturbances with large non-normal growth, even if they occur
rarely, may produce non-zero eddy fluxes for any value of δ.

The curved streamlines and associated strain introduce more growing eigenmodes
in uniform azimuthal flow, generally with diminished growth rates and negative
Reynolds stress work. These propagate in various directions and speeds, unlike the
strictly topographic Rossby wave-like propagation direction (with shallow water to
the right) in uniform rectilinear flow. The wavenumber of maximum growth rate thus
changes, and in some cases more than one local maximum in wavenumber exists
(for a fixed δ value). This raises questions about the validity for curved slopes of
some continental slope eddy parameterizations (Stipa 2004b; Isachsen 2011), where
diffusivity is determined by solely the global maximum in wavenumber (of the Eady
model growth rate).

Perturbations over convex or concave continental slopes have the same perturbation
growth rates in uniform azimuthal flow, but the streamfunction profiles are reflected
relative to mid-channel on the shallow–deep water axis (§ 5.3). Uniform azimuthal
flow eigenmodes are generally not centred at mid-channel (figure 4). If an eigenmode
on a convex slope is centred offshore from mid-channel, the analogous eigenmodes
on a concave plane would be displaced shoreward from mid-channel, and vice versa.
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While in linear theory this has no direct implications for the growth rate, nonlinear
evolution, interaction with topography, and bottom boundary layers may result in
implications we cannot determine here.

While non-normal peak instantaneous growth rate and the range of unstable
wavenumbers are larger due to non-zero mean strain and mean vorticity gradient
in uniform azimuthal flow, their importance relative to individual eigenmodes’ growth
remains unclear due to the transience of non-normal amplification. Differentiating
between the two effects would probably require fully nonlinear, time evolving
integrations. The domain would preferably be open rather than periodic, to prevent
confusion with down and upstream disturbance interaction occurring in finite time. In
such a case and especially if the domain were to have changing curvature, it may be
that the transience of non-normal growth would not be as large a limitation to actual
growth. Non-orthogonality of growing eigenmodes may also influence their nonlinear
evolution: their non-zero mutual projections may encourage nonlinear interactions
between modes and accelerate the path to finite-amplitude effects.

While we have striven to choose relevant and similar flow profiles for comparison
of straight and curved flow and bathymetry, we can imagine a different criterion
for selection of the curved profile given a straight flow profile, viz., that the curved
profile is the downstream-adjusted profile of the straight flow after meeting a curve
in the continental slope. Assume that the upstream (straight flow) boundary current
has linear isopycnals and linear bathymetry, as in uniform rectilinear flow. Once
the current traverses a horizontally curved slope section, assuming adjustment to
solid-body rotation does not happen, then strain and relative vorticity are necessarily
induced in the mean flow (§ 6). Hence Reynolds stress will modulate and generally
decrease the baroclinic instability growth rates, and the relative vorticity will modulate
the range of unstable δ parameters. We find the same results in the uniform azimuthal
flow case (§ 5), which can also be regarded as a study of these effects, when the
linear isopycnals remain (cross-stream) approximately linear after meeting the bend
in the slope. In § 6 we find that a logarithmic isopycnal profile generally has similar
results to uniform azimuthal flow, and we expect this to hold quite generally for
other broad and relatively uniform flow profiles. Exactly how and how much the
mean isopycnal structure actually adjusts to curvature is a question worthy of further
investigation.

To summarize, the initial hypothesis is that horizontal curvature of bottom slopes
increases baroclinic instability. We find that on the contrary, peak growth rates are
mostly reduced in uniform azimuthal flow relative to uniform rectilinear flow. One
exception is the δ > ∼1 regime. δ ∼ 1 is actually quite common in deep boundary
currents (Stommel & Arons 1972; Xu et al. 2015), and despite the relatively smaller
values of growth rates (relative to δ < 1) the increased instability in this regime
thus appears relevant. We also find higher peak non-normal growth in uniform
azimuthal flow relative to uniform rectilinear flow, but the relative effect of transient
non-normal growth versus normal exponential growth is unclear and will remain so
unless evaluated in a particular context. The actual profile a DWBC adjusts to (from
which baroclinic instability arises) may be different than linear, but it is conjectured
above that the results may be quite similar in terms of the baroclinic instability.
Exceptions to that may occur, if one takes into account the finite width of the slope
and of the current.
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Appendix A. Numerical verification and sensitivity tests
In this appendix we give results of numerical convergence tests, including

comparison with some analytical results, to show the validity of the solver and
of the numerical solutions. We also give results of sensitivity tests where we vary Ri,
Re, F1 and F2, showing that the general results presented in the main text still hold
over a larger parameter range.

The numerical set-up in a straight channel was verified in the uniform rectilinear
flow case to reproduce the known (Mechoso 1980) analytical dispersion relation. We
also verified the numerical solution of the solid-body rotation case in a cylinder
(annulus with Ri = 0) relative to the analytical dispersion relation (4.7). A cylinder
(rather than annulus) is chosen because deriving the numerical value of growth rate
from the dispersion relation requires first solving the nonlinear algebraic equation
(4.4). That can be avoided since in a cylinder since the functions Pm are replaced
then by Bessel functions of the first kind Jm, and thereby only (tabulated) Bessel
zero values are needed for the calculation. The results (figure 8a) show a very small
relative error in the numerical result with the standard dr = 0.025, and decreasing
super-exponentially with decreasing dr in the range shown, implying the numerical
scheme is convergent.

Since the same solver was used for both solid-body rotation and uniform azimuthal
flow, the comparison described in the previous paragraph verifies partially the correct
set-up for uniform azimuthal flow too. We also present in figure 8(b) the difference
in growth rates computed, relative to the result with a higher resolution, namely
dr= 0.003125. The results suggest that growth rates of all four modes have probably
converged to a very good approximation at the resolution used through the paper,
i.e. dr = 0.025. While the specific plot is for m= 2, δ =−0.2, and Ubt = 1, we find
that the results are similar in other cases. The difference in the growth rates of the
most unstable mode calculated with dr = 0.025 relative to that with dr = 0.0125 are
generally <10−5 inside of the instability boundary.

Further verification for uniform azimuthal flow came from a test of convergence
of the uniform azimuthal flow growth rates and frequencies to uniform rectilinear
flow values, as the channel inner radius Ri is increased (with constant channel width
W = Re − Ri). That is since in the strict Ri →∞ limit, the mean state of uniform
azimuthal flow converges to the mean state of uniform rectilinear flow. We verified
that for large enough Ri the GR(m, b) functional form for any Ubt value indeed
became arbitrarily close to the channel result (which is independent of Ubt) for large
enough Ri values as far as was tested. The convergence test was deemed successful.

The standard experiment described has a radial extent [Ri, Re] = [3, 10]. It is found
that moderate increases to domain size (and hence also to current width) do not result
in significant changes to the growth rates. For example a current with radial extent
[Ri, Re] = [3, 15] has a similar GR(m̂, b) to the standard experiment considered (with
the wavenumber normalized by average domain width, m̂=mR). Increasing Ri while
keeping channel width constant generally results in more uniform rectilinear flow-like
results, as described in the previous paragraph. We find that convergence is slower for
larger |Ubt| cases, and so the differences described in the main text between annulus
and channel instabilities remain qualitatively similar. Decreasing Ri down to a value
of 1 (while either keeping (Re− Ri) constant, or keeping Re constant) barely changes
the growth rates of the fastest growing modes, though the pattern shifts to smaller m’s.
Note that, as derived in § 2.4, Ri . 1 is not consistent with QG.
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FIGURE 8. (Colour online) (a) Numerical convergence of growth rate for cylinder solid-
body rotation eigenmodes to that obtained from the analytical dispersion relation (4.7), for
azimuthal wavenumber m= 2 and bathymetric slope parameter δ = 0. The cylinder width
was set by R1 = 0 and W = R2 = 7 to be equivalent to the annulus width taken in §§ 4
and 5. The circles denote actual numerical values calculated, in which dr is decreased by
factors of two. Note the logarithmic scale of the ordinate. (b) Numerical convergence of
uniform azimuthal flow growth rates with various dr values to a value similarly calculated
with twice the highest resolution shown (dr = 0.00625), i.e. with dr = 0.003125. Results
for all four unstable eigenmodes shown. The presented results are for m = 2, δ = −0.2,
and Ubt = 1. The convergence was similarly tested for a large portion of the parameter
space. The value actually used to generate all other results in this paper is dr = 0.025
(or dx= 0.025 in the channel case).

A layer thickness ratio of 1 (F1 = F2 = 1/2) was taken throughout the numerical
experiments. Further experiments were done as sensitivity tests with non-equal layers
in uniform azimuthal flow, and these show similar growth rate dependence on Ubt and
m as in the standard experiments, with a few differences. The growth rate maximum
is achieved at Fj = 1/2 and decreases as |Fj − 1/2| increases. If a line of maximum
instability (in m) per δ is fit (in figure 3), then its slope generally increases with
H1/H2 (maximum δ < 0 instability occurs at higher wavenumbers).

Appendix B. Straight channel equations
We use the uniform rectilinear flow instability case (Pedlosky 1964; Mechoso 1980)

as a point of comparison for our investigations. Since it is not new, and to avoid
confusing notation, we provide details in this appendix.

Generalizing uniform rectilinear flow by allowing non-uniform currents in a
straight channel, we provide below the perturbation modal equations for mean
geostrophic along-channel flow V̄j = Vj(x)ŷ, and bathymetry ηb(x), which vary in
the cross-channel coordinate (x) only (and in each layer). The background and
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perturbation streamfunctions are again denoted by ψ j and ψj respectively, and
therefore Vj(x) = ∂ψ j/∂x. Note that usually the straight channel is modelled with
the x coordinate along the channel axis (in the downstream direction). We chose
to take the x coordinate in the cross-stream direction for easy comparison with
the annular channel, which naturally has the cross-stream coordinate (the radial
coordinate r) as the first coordinate of a right-handed triplet.

Assuming an harmonic solution in x and in t, ψj = Re
{
Ψj(x) exp(i(ly− σ t))

}

(where Re is the real part of the expression that follows, l is a real down-stream
wavenumber, and σ is the complex frequency), we have the (non-dimensional) QG
potential vorticity equations (Pedlosky 1964):

[V1l− σ ]
[
∂2

∂x2
Ψ1 − l2Ψ1 − F1(Ψ1 −Ψ2)

]
− lΨ1

∂Q1

∂x
= 0, (B 1a)

[V2l− σ ]
[
∂2

∂x2
Ψ2 − l2Ψ2 − F2(Ψ2 −Ψ1)

]
− lΨ2

∂Q2

∂x
= 0, (B 1b)

∂Qj

∂x
= ∂2

∂x2
Vj − Fj

[
(−1)j (V2 − V1)−∆j2

∂ηb

∂x

]
. (B 1c)

For uniform rectilinear flow, ∂ηb/∂x and the Vj are constants. We state the equations
in more general form for easy comparison with the general annulus case given in the
equation set (2.6). The eigenvalue problem is defined by the PV equations together
with no normal flow boundary conditions. The channel boundaries are denoted by Xi

and Xe, and since only their difference (channel width) is important, Xi= 0 is chosen.
In the standard uniform rectilinear flow experiment, Xe = 7, F1 = F2 = 1/2 and Vbt ≡
(V1+V2)/2= 0. The last condition (zero barotropic velocity) is not limiting since the
growth rates and eigenmodes are invariant with Vbt, which just Doppler shifts the (real)
frequency. The numerical solution is obtained in a similar way as for the annulus.

The eigenmode streamfunctions are sums of harmonic functions and the non-
dimensional uniform rectilinear flow dispersion relation is

σ = Vbt + l
K2(F2 − F1 − F2δ)− lF1F2δ +

√
D

2K4 + 2K2(F1 + F2)
, (B 2a)

D
l2
= K8 + (2F2δ)K6 + (−4F1F2 + 2F1F2δ + F2

2δ
2)K4

+ (−4F2
2F1δ + 2F2

2F1δ
2)K2 + F2

1F2
2δ

2. (B 2b)

Here k and K = √k2 + l2 are the cross-stream, and total wavenumbers, respectively.
The non-dimensionalization is similar to the uniform azimuthal flow case, and (in non-
dimensional variables) δ =−∂ηb/∂x.

Appendix C. Semicircle theorem

In this section we adapt the Pedlosky (1964) semi-circle theorem, which gives
growth-rate bounds and the associated phase-speed bounds to the annular channel,
and we extend it for the general case where the bathymetry is not flat. First, we
make the transformation Ψj= (Ujφ − cr)bj in (3.1a)–(3.1b), then multiply the first and
the second equations by D1b∗1(U1φ − cr) and D2b∗2(U2φ − cr) respectively. Summing
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both equations and integrating the result with the volume element (r dr), results, after
an integration by parts of the Laplacian terms, in

2∑

n=1

∫ Re

Ri

(Ujφ − cr)2Pjr dr

=D1D2
1
2

∫ Re

Ri

(U1φ −U2φ)
2|b1 − b2|2r dr−D1

∫ Re

Ri

(U2φ − cr)J2
∂ηb

∂r
r dr. (C 1)

Here we made use of the identity,

(U1φ − cr)(U2φ − cr)=− 1
2 [(U1φ −U2φ)

2 − (U1φ − cr)2 − (U2φ − cr)2], (C 2)

with the following definitions:

Pj =Dj

[∣∣∣∣
∂

∂r
bj

∣∣∣∣
2

+ m2 − 1
r2
|bj|2

]
+D1D2

1
2
|b1 − b2|2 (C 3a)

Jj =Dj|bj|2. (C 3b)

The real part of (C 1) is thus

2∑

n=1

∫ Re

Ri

(U2
jφ + c2

r r2 − 2Ujφcrr− c2
i r2)Pjr dr

= 1
2

D1D2

∫ Re

Ri

(U1φ −U2φ)
2|b1 − b2|2r dr−D1

∫ Re

Ri

(U2φ − crr)J2
∂ηb

∂r
r dr. (C 4)

If ci 6= 0, from the imaginary part of (C 1) we have

∫ Re

Ri

2∑

n=1

(Ujφ − crr)Pjr2 dr=−D1

2

∫ Re

Ri

J2
∂ηb

∂r
r2 dr. (C 5)

For m> 1, we can derive the following inequality between integrals of Jj and Pj:

∫ Re

Ri

Pjr2 dr = D1

∫ Re

Ri

[[∣∣∣∣
∂

∂r
bj

∣∣∣∣
2

+ m2 − 1
r2
|bj|2

]
+D1D2

1
2
|b1 − b2|2

]
r2 dr

> m2 − 1
R2

e

Dj

∫ Re

Ri

|bj|2r2 dr, (C 6)

from which follows a result we will refer to as the J–P inequality:
∫ Re

Ri

Jjr2 dr 6 R2
e

m2 − 1

∫ Re

Ri

Pjr2 dr. (C 7)

Pedlosky (1964) found a tighter J–P type inequality for the straight-channel case,
using a spectral estimate, which we were unable to adapt to the annulus case. The next
two subsections will derive phase speed and growth rate bounds respectively, based on
the results so far derived in this section.
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Condition Phase speed bounds

ηb ≡ 0 umin 6 cr 6 umax

(
∂ηb

∂r

)

max

< 0 umin −
D1

∣∣∣∣
(
∂ηb

∂r

)

min

∣∣∣∣ R2
e

2Ri(m2 − 1)
6 cr 6 umax

(
∂ηb

∂r

)

min

< 0 and
(
∂ηb

∂r

)

max

> 0 umin −
D1

∣∣∣∣
(
∂ηb

∂r

)

min

∣∣∣∣ R2
e

2Ri(m2 − 1)
6 cr 6 umax +

D1

(
∂ηb

∂r

)

max

R2
e

2Ri(m2 − 1)

(
∂ηb

∂r

)

min

> 0 umin 6 cr 6 umax +
D1

(
∂ηb

∂r

)

max

R2
e

2Ri(m2 − 1)

TABLE 1. Summary of phase speed bounds.

C.1. Bounds on phase speed
Defining uj =Ujφ/r, equation (C 5) can then be written as

∫ Re

Ri

2∑

n=1

(uj − cr)Pjr3 dr=−D1

2

∫ Re

Ri

J2
∂ηb

∂r
r2 dr. (C 8)

Bounds on the phase speed can be found from the last equation, using the J–P
inequality, assuming that information on ηb and u is available. The bounds are
derived separately for four different types of ηb profiles, and are summarized in
table 1.

C.2. Growth rate bound
We define umax=maxj=1,2{maxRi6r6Re[uj(r)]} and umin=minj=1,2{minRi6r6Re[uj(r)]}, and
use the following inequality:

0 6
∫ Re

Ri

2∑

n=1

(uj − umin)(umax − uj)Pjr3 dr

=
∫ Re

Ri

2∑

n=1

[−u2
j + uj(umax + umin)− uminumax]Pjr3 dr. (C 9)

In a similar manner to the straight-channel case (Pedlosky 1964), we take (C 9) + (C 4)
−(umin + umax − 2cr)(C 5), resulting in

2∑

n=1

[(
cr − umin + umax

2

)2

+ c2
i −
(

umax − umin

2

)2
] ∫ Re

Ri

Pjr3 dr 6

−D1

∫ Re

Ri

(
umax + umin

2
− u2

)
J2
∂ηb

∂r
r2 dr. (C 10)
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Now, using |((umax + umin)/2)− uj|6 ((umax − umin)/2) together with the J–P inequality
(assuming m> 1), we obtain the semi-circle inequality:

(
cr − umin + umax

2

)2

+ c2
i 6
(

umax − umin

2

)2

+
R2

eD1

∣∣∣∣
∂ηb

∂r

∣∣∣∣
max

Ri(m2 − 1)

(
umax − umin

2

)
. (C 11)

The first term on the left may be dropped as it is positive definite. In fact, by the
phase speed bounds derived (in table 1), this term may attain a zero value in all cases.

A tighter bound may be derived by noting that

−D1

∫ Re

Ri

(
umax + umin

2
− u2

)
J2
∂ηb

∂r
r2 dr

6 −D1 min
[

0,min
[(

umax + umin

2
− u2

)
∂ηb

∂r

]] ∫ Re

Ri

J2r2 dr, (C 12)

from which follows

c2
i 6
(

umax − umin

2

)2

− R2
eD1

Ri(m2 − 1)
min

[
0,min

[(
umax + umin

2
− u2

)
∂ηb

∂r

]]
. (C 13)
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