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This paper is devoted to the relaxation and integral representation in the space of
functions of bounded variation for an integral energy arising from optimal design
problems. The presence of a perimeter penalization is also considered in order to
avoid non-existence of admissible solutions and, in addition, this leads to an
interaction in the limit energy. More general models have also been taken into
account.

1. Introduction

The optimal design problem, devoted to finding the minimal energy configurations
of a mixture of two conductive materials, has been widely studied since the pioneer-
ing work of Kohn and Strang [28-30]. It is well known that, given a container {2
and prescribing only the volume fraction of the material where it is expected to
have a certain conductivity, an optimal configuration might not exist. To overcome
this difficulty, Ambrosio and Buttazzo in [6] imposed a perimeter penalization and
studied the minimization problem

min { / (04|Du\2 + g1(z,u)) de + / (6\Du|2 + go(z,u)) dz
E \E
+oP(E,2):EC, ue H&(Q)},

finding the solution (u, F) and describing the regularity properties of the optimal
set E.

In this paper we consider the minimization of a similar functional, where the
energy density | - |> has been replaced by the more general W;, i = 1,2, without
any convexity assumptions and with linear growth, and since the lower-order terms
g1(z,u) and go(x,u) do not play any role in the asymptotics, we omit them in our
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subsequent analysis. The case of W;, ¢ = 1,2, not convex with superlinear growth
has been studied in the context of thin films in [16].

Thus, given {2, a bounded open subset of RY, we assume that W;: RN — R
are continuous functions such that there exist positive constants o and S for which

alé SWi(&) < B+ ¢) for every € € RPN, i=1,2. (L1)

We consider the following optimal design problem

inf { / (xEW1(Vu)+ (1—xg)W2)(Vu)dz+P(E; 2): u= up on 8(2},
ueWwb(2;R?) n
xE€BV(£2;{0,1})
(1.2)
where y g is the characteristic function of E C {2, which has finite perimeter (see

(2.2)).
Note that by (2.2) and the definition of total variation, P(E; 2) = |Dxg|({2) and

we are led to the subsequent minimum problem

inf { / (xgW1+ (1 — xg)W2)(Vu)dz + |Dxg|(£2): u = uy on &Q}.
ueWb1(2;R?) (9}
xe€BV(£2:{0,1})

The lack of convexity of the energy requires a relaxation procedure. To this
end, we start by localizing our energy. As a first step, we introduce the functional
Fop: L'(£2;{0,1}) x L' (£2;RY) x A(£2) — [0, +occ] defined by

/A (x Wi (V) + (1 — x5)Wa(Va)) dz + [Dx|(A)
Fop(x,u; A) := in BV(A4;{0,1}) x Wl’l(A;Rd), (1.3)

+o00 otherwise.

We then consider the relaxed localized energy of (1.3) given by

Fop(x,u; A) := inf { liII_l)iIlf (W1 (Vuyn) + (1 — xn)Wa(Vuy,)) dz
n o0 A

+[Dxnl(A): {un} € WHHART), {xn} € BV(4;{0,1}),

Uy, — u in L'(A;RY) and y,, = x in BV(4; {0, 1})}

Let V: {0,1} x RN — (0, +00) be given by
Vg, z) :== qWi(2) + (1 — ) Wa(2) (1.4)
and let Fop: BV(£2;{0,1}) x BV(2;R?) x A(£2) — [0, +oc] be defined as

dDu

S U qpe
’d|DCu|) D%l

Fop(x,u; A) ::/AQV(X,Vu)der/AQVOO (x

+/ K(xtox T utum vy di ol (1)
J(qu)f‘lA
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where QV is the quasi-convex envelope of V given in (3.2), QV*° is the recession
function of QV, namely,

QV(q,t2)

: (1.6)

QV™(g,2) := lim
and
Ks(a,b,c,d,v)

= inf{ ; QV>=(x(z),Vu(z))dz + |Dx[(Q.): (x,u) € Az(a,b,c,d, 1/)}7 (1.7)

where
As(a,b,c,d,v)
= {(x.u) € BV(Qu; {0,1}) x WHH(Qu;RY):
ify-v= —%, (x,u) are 1-periodic in vy, ...,vNy_1 directions} (1.8)
for (a,b,c,d,v) € {0,1} x {0,1} x RY x R% x SN=1 with {vy,v0,...,un_1,V} an
orthonormal basis of RV, and @, the unit cube, centred at the origin, with one

direction parallel to v.
In §6 we obtain the following integral representation.

THEOREM 1.1. Let 2 C RN be a bounded open set and let W;: RIx N — [0, +00),
i =1,2, be continuous functions satisfying (1.1). Let Fop be the functional defined
in (1.5). Then, for every (x,u) € L'(£2;{0,1}) x L}(§2;RY),

Fop(x,u; A) if (x,u) € BV(£2;{0,1}) x BV(£;R?),

400 otherwise.

Fop(x,u; A) = {

This result will be achieved as a particular case of a more general theorem dealing
with special functions of bounded variation that are piecewise constants.

In fact, we provide an integral representation for the relaxation of the functional
F: LY(2;R™) x LY(2; RY) x A(£2) — [0, 4+00] defined by

/ f(v, Vu) dx—I—/ g, v, vy) dHN L
A ANy, 1 9)
in SBVo(4;R™) x Whi(4;RY), (L

400 otherwise,

F(v,u; A) :=

where SBV(A4;R™) is defined in (2.4) and f: R™ x RN — [0, +00[ and g: R™ x
R™ x SN=1 — [0, +-o0[ satisfy the following hypotheses:

(F1) f is continuous;
(F3) there exist 0 < 8/ < 8 such that

Bzl < flg,2) < B(L+|2])
for every (q,z) € R™ x RIXN;
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(F3) there exists L > 0 such that

1f(q1,2) = flg2,2)| < Llg1 — g2/(1 +[2])
for every q1,q2 € R™ and z € R¥™*N;
(F4) there exist o € (0,1) and C, L > 0 such that
tz] >L =

foo(qu) -

fla.t2)] _ ol

; i for every (¢,z) € R™ x RNt e R,

with f°° the recession function of f with respect to the last variable, defined as

f(q,t2)
t

(g, 2) := limsup

t—o00

(1.10)

for every (q,z) € R™ x RN,

(G1) g is continuous;

(Ga) there exists a constant C' > 0 such that

1
S+ =0) < g\, 0,0) < C(1+ A= 0))

for every (), 0,v) € R™ x R™ x SN-1,
(G3) g(\,0,v) =g(0,\, —v) for every (\,0,v) € R™ x R™ x SN-1L,
The relaxed localized energy of (1.9) is given by

F(v,u; A)

:= inf { lim inf (/ f(vn, Vuy) do + / gn T vn " 1) d’HN_1> :
n—o00 A JvnﬂA
{u,} € WHHA;RY), {v,} € SBV((4;R™),
U, — v in L*(A;R?) and v, — v in Ll(A;Rm)}.
(1.11)
Let Fy: SBVo(£2;R™) x BV(£2;RY) x A(£2) — [0, +00] be given by

— dDC
Ratvid) = [ Q. Vo [ @ (v g oo ) don

+/ Kg(v+7v_7u+,u_7u)dHN_1, (1.12)
J(,uyu)ﬁA
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where Qf is the quasi-convex envelope of f given in (3.2), Qf°° is the recession
function of Qf and K3: R™ x R™ x R? x R x SN~ — [0, +00[ is defined as

K3(a7 ba ¢, d7 V)

= inf{ Qf>(v(x), Vu(x)) dzx
Qv

+ /JvaV gt (@), v~ (z), v(z)) AHN: (v,u) € As(a,b, ¢, d, V)},

(1.13)

where

As(a,b, e, d,v)
= {(v,u) € (SBVo(Q,;R™) NL>®(Q,;R™)) x Wh(Q,;RY):
(v(y),u(y)) = (a,c) if y-v =5, (v(y),u(y)) = (b,d)
ify-v= f%, (v,u) are 1 — periodic in vy,...,UN_1 directions}

(1.14)

with {v1,vs,...,vn_1,v} an orthonormal basis of RY.

In the following theorem we present the main result.

THEOREM 1.2. Let 2 C RN be a bounded open set, let f: R™ x RN — [0, +00]
be a function satisfying (Fy)—(Fy) and let g: R™ x R™ x SN=1 — [0, +00] be a
function satisfying (G1)—(Gs). Let F be the functional defined in (1.9). Then, for
every (v,u) € LY(2;R™) x L'(2;R?),

Fo(v,u; 2) if (v,u) € SBVo(£2;R™) x BV(£2;RY),
400 otherwise.

}'(v,u;ﬂ)—{

The paper is organized as follows. Preliminary results dealing with functions of
bounded variation, perimeters and special functions of bounded variation that are
piecewise constant are covered in §2. The properties of the energy densities and
several auxiliary results involved in the proofs of representation theorems 1.1 and 1.2
are discussed in § 3. The proof of the lower bound for F in (1.11) is presented in §4,
while § 5 contains the upper bound and the proof of theorem 1.2. The applications
to optimal design problems as in [6] and the comparison with previous related
relaxation results as in [25] (such as theorem 1.1) are discussed in § 6.

2. Preliminaries

We give a brief survey of functions of bounded variation and sets of finite perimeter.

In the following, {2 C R¥ is an open bounded set and we denote by A(§2) the
family of all open subsets of 2. The N-dimensional Lebesgue measure is denoted
by £V, while HV~1 denotes the (N — 1)-dimensional Hausdorff measure. The unit

cube in RY, (f%, %)N, is denoted by @ and we set Q(xg,¢) := xo + €@ for € > 0.
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For every v € SV~1 we define Q, := R,(Q), where R, is a rotation such that
R,(en) = v. The constant C' may vary from line to line.

We denote by M(£2) the space of all signed Radon measures in {2 with bounded
total variation. By the Riesz representation theorem, M({2) can be identified with
the dual of the separable space Cy(§2) of continuous functions on {2 vanishing on
the boundary 92. If A € M(£2) and p € M({2) is a non-negative Radon measure,
we denote by d\/du the Radon—Nikodym derivative of A with respect to p.

The following version of the Besicovitch differentiation theorem was proven by
Ambrosio and Dal Maso [7, proposition 2.2].

THEOREM 2.1. If A and p are Radon measures in §2, u > 0, then there exists a
Borel measure set E C {2 such that u(F) =0 and, for every x € suppu — E,

Dy AEHO)
dp™’ " eso+ p(x +e0)

exists and is finite whenever C is a bounded conver open set containing the origin.

We recall that the exceptional set E does not depend on C'. An immediate corol-
lary is the generalization of the Lebesgue—Besicovitch differentiation theorem given
below.

THEOREM 2.2. If ju is a non-negative Radon measure and if f € Li (RN, u), then

loc
lin ——— [ 1fw) ~ f@)]duty) =0
m ——————— — X =
e=0t p(x +eC) Joyec Y HY
for p-almost everywhere (a.e.), v € RN and for every bounded convex open set C
containing the origin.

DEFINITION 2.3. A function w € L*(§2;R?) is said to be of bounded variation, and
we write w € BV(£2;RY), if all its first distributional derivatives Djw; belong to
M(2)forl<i<dand1<j<N.

The matrix-valued measure whose entries are D,w; is denoted by Dw and |Dw|
stands for its total variation. We observe that if w € BV (£2;R?), then w + | Dw|(£2)
is lower semi-continuous in BV (£2; R?) with respect to the L _(£2;R¢) topology.

We briefly recall some facts about functions of bounded variation. For more

details we refer the reader to [9,21,27,32].

DEFINITION 2.4. Let w,w, € BV(§2;R?). The sequence {w,} strictly converges in
BV(£2;R?) to w if {w, } converges to w in L*(£2;R?) and {|Dw,|(£2)} converges to
|Dw|(£2) as n — co.

DEFINITION 2.5. Given w € BV(Q;Rd) the approximate upper limit and the ap-

prozimate lower limit of each component w', i = 1,...,d, are defined by
. N 0 i y
(w')*(z) = inf{t eR: i S ERNQEE): wly) > 1)) :0}
e—0+ £

and

(w') ™ (x) := sup {t eR: lim

e—0+

LY({y € 2N Q(x,e): w'ly) <t}) _ 0},
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respectively. The jump set of w is given by

d
Jo = U{x € 2: (w)™(z) < (W) (z)}.

It can be shown that J, and the complement of the set of Lebesgue points of
w differ at most by a set of H¥~! measure 0. Moreover, J,, is (N — 1) rectifiable,
i.e. there are C' hypersurfaces I'; such that HV=1(.J,, \ Uy ) = 0.

PROPOSITION 2.6. If w € BV(£2;RY), then the following hold.
(i) For LN-a.e. z € 02,

—0.
(2.1)

(ii) For HN=t-a.e. x € J, there exist wt(z),w™ (z) € R? and v(x) € SN-1
normal to Jy, at x, such that

101 (N=1)/N
i oy [ ) = (@) - Vua) - )Y Y ay )

e—0t €

1
1 —wh(z)|dy=0
Jim —y /Q oy 1) = @) dy =0,
1
lim — —w ()] dy =0
S, % /Q oy [0) — @y =0,

where QF(5,2) = {y € Qulw,): (y— 2,0} > O} and Qy (w,2) = {y €
Qu(z,e): (y —x,v) <0}

(iii) For HN l-a.e. x € 2\ Jy,

lim — / lw(y) — w(z)|dy = 0.
Q(w,e)

We observe that in the vector-valued case, in general (w')* # (w*)’. In the
following w* and w™~ denote the vectors introduced in (ii), above.

Choosing a normal v, (x) to J,, at x, we denote the jump of w across J,, by [w] :=
wt —w™. The distributional derivative of w € BV (£2; R%) admits the decomposition

Dw = VLl |2+ ([w] @ vy)HY " Jw + Dw,

where Vw represents the density of the absolutely continuous part of the Radon
measure Dw with respect to the Lebesgue measure. The Hausdorff, or jump, part
of Dw is represented by ([w] ® vy,)HN 1| J, and Dw is the Cantor part of Dw.
The measure Dw is singular with respect to the Lebesgue measure and it is diffuse,
i.e. every Borel set B C 2 with H¥~1(B) < oo has Cantor measure 0.

The following result, which will be exploited later, can be found in [25, lemma 2.6].

LEMMA 2.7. Let w € BV(£2;RY). Then, for HN"'-a.c. z in J,,

. 1 - - -
tn v [ o () = 0™ () ARV = o (@) — 0 (@),
€ JwNQy(z) (,€)
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In the following we give some preliminary notions related to sets of finite perime-
ter. For a detailed treatment we refer the reader to [9)].

DEFINITION 2.8. Let E be an £N-measurable subset of RY. For any open set 2 C
RY the perimeter of E in {2, denoted by P(E;(2), is the variation of yz in 2, i.e.

P(E;2) :=sup {/ divdz: p € CH2;RY), [l¢]lz~ < 1}. (2.2)
B

We say that E is a set of finite perimeter in 2 if P(E;2) < +o0.

Recalling that if LV (E N £2) is finite, then yz € L'(2), by [9, proposition 3.6],
and it follows that E has finite perimeter in (2 if and ounly if xg € BV({2) and
P(E; (2) coincides with |Dyxg|(£2), the total variation in (2 of the distributional
derivative of xg. Moreover, a generalized Gauss—Green formula holds:

/diwdx=/<uE,so>d\DxE| Yo € CL(2;RY),
E 0

where Dx g = vg|Dxg| is the polar decomposition of Dxg.

We also recall that, when dealing with sets of finite measure, a sequence of sets
{E,} converges to E in measure in 2 if LV (2N (E,AE)) converges to 0 as n — oo,
where A stands for the symmetric difference. Analogously, the local convergence in
measure corresponds to the above convergence in measure for any open set A CC
2. These convergences are equivalent to L'(§2) and L (£2) convergences of the
characteristic functions. We also recall that the local convergence in measure in {2
is equivalent to the convergence in measure in domains {2 with finite measure.

Denoting by P(§2) the family of all sets with finite perimeters in {2, we recall
the Fleming—Rishel formula (see [22, (4.59)]): for every @ € WhH1(£2) the set {t €
R: {& >t} € P(£2)} is negligible in R and

“+o0
/h|Vq5|da::/ / hdHN 1 dt (2.3)
(0] —o0 “{D>t}

for every bounded Borel function h: {2 — R, where 0*{® > t} denotes the essential
boundary of {® > t} (see [9, definition 3.60]).

At this point we deal with functions of bounded variation whose Cantor part is
null.

DEFINITION 2.9. A function v € BV(£2;R™) is said to be a special function of
bounded variation, and we write v € SBV(£2;R™), if D% = 0, i.e.

Dv = VoL |2+ ([v] @ v,/ HN [ J,.
The space SBV(£2; R™) is defined by
SBV((£2;R™) := {v € SBV(£2;R™): Vo =0 and HV1(J,) < 400}.  (2.4)

Clearly, any characteristic function of a set of finite perimeter is in SBV(£2).
We recall that a sequence of sets {F;} is a Borel partition of a Borel set B €
B(RY) if and only if

E; € B(RY) for every i, E; N E; = () for every i # j and U E; = B.
i=1
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The above requirements could be weakened by requiring that |E; N E;| = 0 for
i # j and |[BA{J;Z, E;] = 0. Such a sequence {E;} is said to be a Caccioppoli
partition if and only if each FE; is a set of finite perimeter.
The following result, the proof of which can be found in [18], expresses the relation
between Caccioppoli partitions and SBV, functions.

LEMMA 2.10. If v € SBV((£2;R™), then there exists a Borel partition {E;} of {2
and a sequence {v;} C R™ such that

o
v = g ViXE;, G.e X € (2,
i=1

_ 1=, N1/ o 1 — 1 .
HN 1(JUOQ):§ZHN Lo EinQ) = > HNTHO'E; N 0" E; N 1),
i=1 i#j=1
(v, 1) = (0507, y)  ae. r€0"E;NOE; N,

where v; is the unit normal to 0*E; N OET,

In the following we identify (v,u) € SBV(£2;R™) x BV(£2; R?) with their precise
representatives (0, a). (See [9, definition 3.63 and corollary 3.80] for the definition.)

REMARK 2.11. Since we have that SBVy(§2;R™) C BV(£2;R™), it follows that
(v,u) € BV(2;R™+4) for every (v,u) € SBVo(£2;R™) x BV(£2; R?). Thus, (v,u)
is |D¢(v,u)| measurable and since D¢(v,u) = (0, Du), we may say that v is | D ul|
measurable.

The following compactness result for bounded sequences in SBV(£2; R™) is due
to Ambrosio (see [2,4]).

THEOREM 2.12. Let @: [0,+00) — [0,400) and O: (0,400] — (0,+00] be two
functions, conver and concave, respectively, such that

o(t)

lim —= = +o0, @ is non-decreasing,
t—o0
. . O() . .
O(+00) = lim O(t), lim —= =400, O is non-decreasing.
t—o00 t—o0t ¢

Let {v,} be a sequence of functions in SBV(£2;R™) such that

s%p{/gqsqwnndﬂ/J @([vn]|)dHN_1+/ﬂ|vn|da:} < 400,

Un

There then exzists a subsequence {v,, } converging in L'(£2;R™) to a function v €
SBV(£2;R™) and

Vun, — Vv in L(2;RN*™), [On,) @ v, HN T, = 0] @ i HV M,
/ O[]y dHN ! < liminf/ O(|[vn]]) dHN L.
J,NR no+o J g, ne
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3. Auxiliary results

This section is mainly devoted to describing the properties of the energy densities
involved in the integral representation of the relaxed functionals (1.5) and (1.12).

Recall that a Borel function f: R™ x RN — [—o00, +00] is said to be quasi-
convex if

fl0:2) < gy [ a2+ Vol dy (31)

for every open bounded set £2 C RN with £V (942) = 0 for every (¢, z) € R™ xRN
and every ¢ € W™ (2;R%) whenever the right-hand side of (3.1) exists as a
Lebesgue integral.

The quasi-convex envelope of f: R™ x R¥*N — [0, +00] is the largest quasi-
convex function below f and it is denoted by Qf. If f is Borel and locally bounded
from below then it can be shown that

Qf(q mf{/fq,z—l—V(p da: o € Wy~ (Q;Rd)} (3.2)

for every (q,z) € R™ x RIXN,

The following result guarantees that the properties of f are inherited by Qf.
Since the proof develops along the lines of [31, proposition 2.2], in turn inspired
by [19], we omit it.

PROPOSITION 3.1. Let f: R™ x RN — [0, 4+00) be a function satisfying (Fy)-
(F3) and let Qf: R™ x RN — [0, +00) be its quasi-convezification, as in (3.2).
Then Qf satisfies (F1)—(Fs).

REMARK 3.2. Let f: R™ x RN — [0,+00) be a function satisfying (F1)—(F4)
with f*° as in (1.10).

(i) Recall that the recession function f>°(q,-) is positively 1-homogeneous for
every g € R™.

11 e observe that 1 satisfies the growth condition (F2), then we have that
ii) We ob hat if f satisfies th h condition (F3), th h h
B'|z| < f>(q,2) < B|z| holds. Moreover, if f satisfies (F3), then f* satisfies

1f>(a,2) = f=(d',2)| < Llg — ¢'| |2],
where L is the constant appearing in (Fs).

(iii) As showed in [25, remark 2.2(ii)], if a function f: R™ x RN — [0, +o0) is
quasi-convex in the last variable and such that f(g,z) < ¢(1 + |z|) for some
¢ > 0, then its recession function f*(g,-) is also quasi-convex.

(iv) A proof entirely similar to [10, proposition 3.4] (see also [31, proposition 2.6])
ensures that for every (g,2) € R™ x RN Q(f~)(q,2) = (Qf)*(q,2), and
hence we will adopt the notation Qf*. In particular, if f satisfies (Fy)—
(F3), proposition 3.1 guarantees that @ f°° is continuous in both variables.
Furthermore, for every ¢ € R™, Qf>°(q,-) is Lipschitz continuous in the last
variable.
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(v) (Qf)°° satisfies the analogous condition to (F4). We also observe, as empha-
sized in [25], that (F4) is equivalent to saying that there exist C' > 0 and
a € (0,1) such that

[f*(a:2) = flg,2)] < C(L+[2]7%)
for every (q,z) € R™ x RN,

An argument entirely similar to [31, proposition 2.7] ensures that there exist o €
(0,1) and C’ > 0 such that

[(QF)*(a:2) = Qf(g,2)] < C"(L+ |2['7%)
for every (q,z) € R™ x RN,

The following proposition, whose proof can be obtained by arguing exactly as
in [12, p. 132], establishes the properties of the density Kj.

PROPOSITION 3.3. Let f: R™ x RN — [0, +00) and let g: R™ x R™ x SNt —
(0,400). Let K3 be the function defined in (1.13). If (F1)-(Fy) and (Gy)-(G3)
hold, then so do the following.

(a) |Ks(a,b,c,d,v) — Ks(a',b,c,d,v)| < C(la—d|+|b=V|+|c=c|+|d—d)
for every (a,b,c,d,v),(a’,b,c,d,v) € R™ x R™ x RY x RY x SN-1,

(b) v — Ks(a,b,c,d,v) is upper semi-continuous for every (a,b,c,d) € R™ x
R™ x R? x R,

(c) Kz is upper semi-continuous in R™ x R™ x R? x RY x SN—1,

(d) Ks(a,b,c,d,v) < C(la —b| + |c —d| + 1) for every v € SN=1. More pre-
cisely, from the growth conditions (F3), (G2) and the definition of K3 we
have K3(a,a,c,d,v) < C(lc —d|), Kz(a,b,c,c,v) < C(1+|a—1)|).

A Borel measurable function g: R™ xR™ x SV=1 — R is BV-elliptic (see [3,9,14])
if, for all (a,b,v) € R™ x R™ x SN~1 and for any finite subset T of R™,

/ glwt,w™, v,) dHY T = g(a, b, v) (3.3)
JuwNQy

for all w € BV(Q,;T) such that w = vg on 9Q,,, where

vy = a %ffL‘-l/>07 (3.4)
b ifx-v<O.

We are now in a position to provide some approximation results that allow us
to reobtain the relaxed functionals and the related energy densities in terms of
suitable relaxation procedures. To this end, we start by stating a result very similar
to [12, proposition 3.5], which allows us to obtain K.
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PROPOSITION 3.4. Let f: R™ x RN — [0, 4+00) and g: R™ x R™ x SN~ —
(0, +00) be functions such that (Fy)—(Fy) and (Gy)—(Gs) hold, respectively. Let K
be the function defined in (1.13) and let (vg,up) be given by

{c ifx-v >0,

vo(®) = d ifr-v<DO.

vo(x) :=

{a ifx-v>0, (3.5)

b ifr-v<O,

Then
Ks(a,b,c,d,v) = inf {liminf ( Q% (vn(x), Vuy(z)) de
Qu

(Umun) n—oo
@) )
QVOJ“W,
(Unaun) € SBVO(QV;Rm) X WLl(QV;Rd)v
(0nsta) = (0, 0) in L@ R™) |
=: k3(a,b,c,d,v).
REMARK 3.5.

(i) Tt is worthwhile observing that the above result ensures a sharper result than
the one that is stated; namely, the same type of arguments in [12, proposi-
tion 3.5] allow us to obtain K3(a,b,c,d,v) as a relaxation procedure but with
test sequences in As(a, b, c,d,v) converging to (vo, ug) in (3.5).

(ii) Notice that in (1.14), by virtue of the growth conditions on Qf> (see re-
mark 3.2), we can replace the space W11(Q,;RY) with W1>(Q,;R%).

(iii) Under assumptions (G1)—(Gs) the function K3 in (1.13) can be obtained by
taking test functions v either in BV((2;T) for every T C R™ with card(T)
finite, or in SBV(£2;R™) N L>°(§2; R™). This is easy to verify by virtue of
lemma 2.10. Namely, one can approximate functions v in SBV(£2;R™) N
L>(2;R™) by sequences {v,} in BV(£2;T,) with 7,, C R™ and card(7},,)
finite. Moreover, (v, v, , vy, ) = (v,v7, 1) pointwise and we can apply the
reverse of Fatou’s lemma to obtain the equivalence between the two possible
definitions of K3.

(iv) Observe that the properties of K3 and the assumptions on f and g allow us to
replace the set SBV(Q; R™) N L>(2;R™) by SBV(£2; R™) in the definition
of Az (see (1.14)).

By the proposition below, in (1.11) we can replace f by its quasi-convexification
Qf. We will omit the proof, which is quite standard, and exploits the relaxation
results in the Sobolev spaces (see [19, theorem 9.8]).

PROPOSITION 3.6. Let 2 C RN be a bounded open set, let f and g be as in the-
orem 4.1, let Qf be as in (3.2) and let F be given by (1.11). Then, for every
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A€ A(£2) and for every (v,u) € SBVo(4;R™) x BV(A;RY),

F(v,u; A) = inf{liminf/ Qf(vn,Vun)dz+/ gl vy, vp) dHN L
A AN,

n—oo

{(Umun)} C SBVO(A;Rm) X Wl’l(A;Rd)v

(U, un) — (v,u) in L' (A;R™) x Ll(A;Rd)}.

The following result is analogous to [24, proposition 2.4] and is devoted to replac-
ing the test functions in (1.11) with smooth ones. We will omit the proof and just
observe that (i) follows the same arguments as those in [1] with an application of
Morse’s measure covering theorem (see [23, theorem 1.147]).

PROPOSITION 3.7. Let f: R™ xRN — [0, +o00] be a function satisfying (F1)—(Fs)
and let Qf be given by (3.2).

(i) Let B be a ball in RN . If

Fo<v,u;B)<hminf( / Qf (vn, V) dz + / g(vivv;,uun)dHN*)
B Ju,, NB

n—oo
(3.6)
holds for every (vn,un), (v,u) € SBVo(£2;R™) x Wh(£2;RY) such that we
have (Vn,un) — (v,u) in L'(2;R™) x L'(§2;R?), then it holds for all open
bounded sets 2 C RY.

(ii) For every (v,u) € L'(2;R™) x L'(§2;R?), {(vn,un)} C SBVo(2;R™) x
WL, RY) such that (vn,u,) — (v,u) in LY(2;R™) x LY(§2;RY), there
exists {(On,@n)} C CLRN;R™) x C5°(RN;RY) such that (D, in) — (v,u)
strictly in BV(£2;R™) x BV(2;R?) and

liminf | Qf(0n, Viy,)dr =liminf | Qf(vy, Vu,)dz.
Q fo)

n—oo n—oo

In order to achieve the integral representation in (1.2) for the jump part, we need
to modify {(v,,u,)} to match the boundary in such a way that the new sequences
will be in Az(vt(z), v~ (z),u™ (zo),u™ (x0),v(x0)), given in (1.14), and such that
the energy doesn’t increase. This is achieved in the next lemma that, for the sake
of simplicity, is stated in the unit cube @ C R and with the normal to the jump
set v = en. The proof relies on the techniques of [15, lemma 3.5], [25, lemma 3.1]
and [5, lemma 4.4].

LEMMA 3.8. Let Q :=[0,1]" and

a ifxn >0, c ifxy >0,
vo(y) = ) up(y) := .
b ifzy <0, d ifzy <O0.

Let {v,} C SBVo(Q;R™) and {u,} C WHH(Q;R?) such that v, — vy in L*(Q;R™)
and u, — ug in L'(Q;RY).
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If p is a mollifier, p, = n™ p(nzx), then there exists {(Cy,&n)} € Asz(a,b,c,d, en)
such that

Cn = Vp on aQ? Cn — Vo mn Ll(Qva)a
€n = Pi(n) * U0 0n 0Q, &, = ug in L'(Q;RY)

and

n—oo

lim sup < /Q QF (Cor V) da + /J Qg@:,cn,m)d?f“)
(nﬂ

< lim inf (/ Qf (v, Vuy,)dz + / g(vf v vy d’HN_l).
Q Jo, NQ

n—o0

Proof. Without loss of generality, we may assume that

n—oQ

liminf(/ Qf(vn,Vun)dx—i—/ g(v:{,v;,yvn)dHN_l>

Q Ju, NQ

= lim (/ Qf(vmVun)dx—i—/ g(v;",v;yvn)d?-{]v_l) < +o0.
Q Ju, NQ

The proof is divided into two steps.

STEP 1. First we claim that for every e > 0, denoting || (vo, uo)||co by Mo, there exist
sequences {i, } C WHH(Q;RY)NL>®(Q; R?) and {v,} C SBV(Q; R™)NL>(Q;R™)
and a constant C' > 0 such that ||y, ||co, ||Unlle < C for every n and

liminf</ Qf(@n,Van)der/ g(@;,@n,uvn)dHN1>
Q J5, NQ

n—oo

n— oo

< lim (/ Qf(vn,Vun)dx—l—/ g(vi,vn,uvn)d’HNl) +e. (3.7)
Q Ju, NQ

To achieve the claim we can apply a truncation argument as in [15, lemma 3.5]
(see also [12, lemma 3.7]). For a; € R (to be determined later) depending on ¢ and
My, we define ¢; € Wy ™ (R™+4; R™+4) such that

oi(x) = {”” =] <as, (3.8)

0, |z > ait1,
[Voilloo < 1, with 2 € R+ 2 = (2, 15), 71 € R™ and xo € RY.
For any n € N and for any i as above, let (v}, u?,) € SBV(Q; R™)x WH1(Q; RY)N
L>(Q;R™*4) be given by

(v;,u;) = i (Vn, Up,).
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Considering the bulk part of the energy F' in (1.9) and exploiting proposition 3.6
and the growth conditions on f and @ f, we have

/Qf(vfl,Vuil)dx:/ Qf(vp, Vuy,) dx
Q QN{|(vn,un)|<a; }

+ QF(0,0)dx
Qm{‘(”?uun)|>ai+l}

+ / Qf(vi,, Vi) da
QN{a;<|(vn,un)|<ais1}

< /Q Qf (0n, Vi) dz + ClQ (1 {| (0, )] > i1}

+01/ (14 |Vuy,|) d
An{a; <|(vn,un)|<ait1}

Concerning the surface term of the energy in (1.9), given that ((v,
éi(vE, ult), without loss of generality one can assume that |(v,u )| (v uh)]
HN"1-a.e. on J(v, un) SO We have that

/ g((0i ), (o) s ) RN

QnJ
< / g(Gi((W5)F, (W) ), i (08) ™ (u2) ™), Vs s y) AHV L,
Jop M air1<[(vn un)[3NQ

Arguing as in [15, lemma 3.5] (see also [15, remark 3.6]) and exploiting the growth
conditions on g, we can estimate (1//€)Zf:1F(vf1, ul; Q) for any fixed k € N and
for every n € N, with k independent on n. Then

k
Z (vh ui; Q)

< F(”na”vﬂQ)
k

w\'—k

=13 (N tmm) > aadl+ o [

(1+ |vn|)d’HN1)
JiNQ

1=2

<02/(1—|—|Vun|)dx—|—304/ (1+v,f—vn)d7{N1>,
Q

Jv,, NQ

_|_

=

where J§ := {|v;| < a;, |v;f| = a;r1}. By the growth conditions, there exists a
constant C' such that

02/(1+\Vun|)dx+3c4/ (1+|U;i'_U;DdHN—1 <C
Q JUan

for every n € N. Choose k € N such that ¢/k < £/3. Moreover,

Cx [ o [ (e DR > (e MY Q).
JinQ JinQ
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whence
]. —+ a;

/ (1+]or ) duN ' < 0219
J5NQ Fit1 — Oy

The sequence {a;} can be chosen recursively as follows:

€
Co|Q N A{|(Vnyun)| > a;}| < 3 for every n € N, a;41 = My,
1 .
C4C¢ < < for every ¢ € N.
Ai+1 — a4 3

This is possible since {(v,, u,)} is bounded in L'. We thus obtain

El e

k
ZF(U,%”,uf{'Q) < F(vn,un; Q) +e.
j=1

Therefore, for every n € N there exists i(n) € {1,...,k} such that
F(o,uy5Q) < F(vn, un; Q) + .

It suffices to define v, := vi» and 4, := u’r to achieve (3.7) and observe that {i,}
and {#,} are bounded in L*°, by construction.

STEP 2. This step is devoted to the construction of sequences {{,} and {¢,} as in
the statement of lemma 3.8. Let ©,, and 4,, be as in step 1. Define

wn(@) = (pn * o) () = / ol — y)uo(y) dy.

B(z,1/n)
As p is a mollifier we have, for each tangential direction i = 1,..., N—1, w,(z+e;) =
wp(x) and so
c ifxy>-—,
n
wy(y) = 1 [Vwyllo = O(n), wy, € Ai(c,d,en),

d ifry <——,
n
where

Ai(e,dyey) = {u e WHH(Q,;RY): u(y) =cify v = %, uly) =dify-v= —%

with u 1-periodic in vy, ..., vy_idirections}.
Let
Qp 1= \/Han - wn”Ll(Q;Rd) + Hﬁn - U0||L1(Q)7
kn =01+ |tnllwir(@mray + lwnllwi(gra
+ onllBvi) + llvollBvi) + HY 1 (Js,)]
and S, := ay/kn, where [k] denotes the largest integer less than or equal to k.
Since a;, — 0T, we may assume that 0 < o, < 1 and set Q¢ = (1 — a,)Q,

Qi=1—a,+is,)Q,i=1,... k.
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Consider a family of cut-off functions ¢; € C3°(Q;), 0 < ¢; <1, p; =11in Q;—1,
IVpilloo = O(1/sy) for i =1,... k, and define

u (@) = (1 = pi(@))wa () + i(@)itn ().
Since qu) = w, on 0@, we have that ugf) € Ai(e,d,ey). Clearly,
Vul) = Vi, in Qi_1,  Vul?) = Vw, in Q\ Q;
and in Q; \ Qi—1,
Vul) = Vw, + (Vi — Vw,) + (i, — wy) ® V.
For 0 <t < 1 define
Op(z) if i(z) > t.

vp (@) = {Uom if i) <t,

Clearly, lim,, o [[v}, ; — vollL1(@) = 0 as n — oo, independently on i and t. For
every n and 4, by the Fleming-Rishel formula (2.3), it is possible to find t,, ; € |0, 1]
such that

{z €Q: wilz) <tn:} € P(Q),
HY (T N {z € Q: pi(x) =tn}) = HYN "M Jp, N{z € Q: pi(x) = tni}) =0,
where P(Q) denotes the family of sets with finite perimeter in Q. Let
tui vo(x) Im@QN{reQ: pi(x) <tn.i},
’ Up(z) InQ@N{zreQ: pi(r) =tn:}
Clearly, lim,, o0 [0y = vollz1(g) = 0, {v3'} € SBVo(Q;R™) N L®(Q;R™) and,

n,t

from step 1, it is uniformly bounded on n, ¢ and t.
We have
[ sl vadyde s [ g @) an
Q ’ J 0@ ' ’ v

v !
n,i

< [ @fn Vi) s
Q
1
+C (1 + | (2) — wp(z)|— + |V, (z)| + |an(x)> dz
Qi\Qi-1 Sn
+0/ (1+|an(x)\)dx+/ g(TH, 07 v, ) dHN 1
Q\Q: QN{pi>tn,it1

Do 1(Q N {s > taito) + HYTH(Q N {9 > tai}o))
+ DO (0 i < tni}) + HY U0 @i < tni})

n,:

</ Qf(an,van>dx+h+/ 9o, v, vp, ) RN
Q Q

NJs,

Sn

C 1
DI\ Qi {s > tasho) + - [ o —wlde+ = 0(s,),
Qi\Qi—1 n
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where
>t - s Qe BN B )
(pi> b = fre@ 3,00 |
o {req 1S Bl B] )
{901 > tn,z}O . {Qf c Q |BP(IL')| )
L:=C (1 + |ty (2) — wn(iL")|i + |V, (z)| + |an(x)|) dz
Qi\Qi-1 Sn

+ O/Q\Qi(l + [V, (z)]) dz

and we have used (2.3) in the last two terms of the above estimate.
Averaging over all layers @; \ Q;—1 one obtains

k
]' . n,i 7 n,i t"' - -
e (ool vuans [ ol 0l 0an )
™ oi=1 n Utn,i ¢

n,t

< / QF (B, 1) da + / o5 o7 v, ) AHN
Q Qvan

C C 1
+—/(1+|Vﬁn|+|wn|)dx+—/ [Ty, — wp|— dx
kn Q kn Q Sn

+C (1+ |[Vwn|)dz + C|Dvo|(Q \ Qo)

Q\Qo
C

i C
+ . [Ty, — vo| dz + P
SpRn Q\Qo n

< / QF (50, Vi) dar + / o, 57 v, ) dHN
Q QNJy,

C C
+—/(1+|Vﬂn|+|V@n|)dx+—||an7wn||p+C/ (14 |Vwy,|)dz
kn Q Qn Q

0

c . c
+ClDuol(@\ Qo) + ——[on — voll1(@) + 7~

Since |Q \ Qo| = O(ww,) and Vw,(z) =0 if |zx| > 1/N, we estimate

1/n

/ (14+|Vuwn|) dz < O(an)+HY 1 (Q\QoN{an = 0})/ O(n) dzx = O(ay).
Q\Qo

—1/n

The same argument exploited above in order to estimate f dx applies to esti-
mate |Duvg|(Q \ Qo) since vg is a jump function across xy = 0, namely, |Dvg|(Q \
Qo) = CHN=YQ\ Qo N {zn = 0}), where we also recall that Qp = @, Q.

Setting

1 — _
Ep = O(n> + Cy/llitn — wall (@) + 5 — volls (@) + Olan)
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we have that ¢, — 07 and

R . | |
? Z (/ Qf(’l}f:zla VUS)) dx + / g((vi’:é’)+, (U::f)_’ Vv‘nni ) dHN_l)
n . Q o

i=1

</ Qf(ﬁnvwn)dx+/ 9(B 0y ve, ) MY T 4 ey,
Q QNJsz,

and so there exists an index i(n) € {1,...,k,} for which
tn,i(n i(n n,i n,i\— —
[ @l varde s [ gl 6l ) ant
Q QNJ tn; i

vn
g

< / Qf (B, Vi) da + / o0 57 ve,) AHN T 4 e
Q QNJ

Un

It suffices to define &, := u™ and ¢, := v ™"

n,i(n)

to get

n—oo

lim sup (AQf(Cnavgn) d.’L‘-i-/J Qg(CJ,C;,VCTL)dHN_1>
¢

< lim inf (/ Qf (U, Vi) da + / 9(wt, v, ,vs,) dH“),
n—o0 Q J5,NQ
which concludes the proof. O

REMARK 3.9.

(i) Observe that arguing as in the first step of lemma 3.8, we have that for every
u € BV(£2;R?) and v € SBV(§2;R™) N L>=(2;R™),

F(v,u; A)
= inf { lim inf (/ f(vn, Vu,) dz + / gt v ) dHN_1> :
n—oo A Jy, NA
{v,} € SBVo(A;R™) N L®°(A;R™), {u,} € WHH(A;RY),
(U, tp) = (v,u) in LY (A;R™FY) sup ||[vg]|eo < +oo}.
(i) Similarly, if u € BV(£2;R%) N L>°(£2;RY), then
F(v,u; A)

= inf { lim inf (/ f(vn, Vu,)dz _|_/ g(vnt o0 ) drHN—l) .
n—00 A o, NA

{vn,} €SBV (A;R™) N L=®(A4;R™), {u,} € WH(A;RY) N L®(A;RY),

(U, uy) = (v,u) in LI(A;R””d), sup ||(vn, un)||co < +oo}.

(iii) Notice that an argument entirely similar to [14, lemmas 13 and 14] allows us
to say that for every (v,u) € SBVy(£2;R™) x BV(£2;R?), we have that

F(v,u; A) = lim F(¢;(v,u); A),
j—o0

where ¢, are the functions defined in (3.8).
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We conclude this section with a result that will be exploited later on.
LEMMA 3.10. Let X be a function space. For any F: R x X — [0, 00|,

limsup inf F(e,u) < inf limsup F'(e, u).
c 0+pu€X ( ’ )\ ueX 15 O+p ( ’ )
P?OO’. FOI‘ any U S )(7

i < w).
nf Fle,u) < Fle,a)

Thus,

limsup inf F(e,u) < limsup F(e, a)
e—0t+ Uu€X e—0t

for every 4 € X. Applying the infimum in the previous inequality, one obtains
inf limsup inf F(e,u) < inf limsup F (e, @).
ueX oo+ u€eX WEX oo+

Hence,

limsup inf F(e,u) < inf limsup F(e,u).
5H0+p“€X ( )\UEX E*)O*’p ( )

4. Lower bound

This section is devoted to the proof of the lower bound inequality for theorem 1.2.
Recall that F and Fj are the functionals introduced in (1.11) and (1.12).

THEOREM 4.1. Let 2 C RN be a bounded open set, let f: R™ x R? — [0, +00)
satisfy (F1)—(Fy) and let g: R™ x R™ x SN=1 — [0, +-00) satisfy (G1)—(Gs3). Then,
for every (v,u) € SBVo(£2;R™) x BV(§2;R?) and for every sequence {(vn,un)} C
SBV(§2;R™) x WHL(02;RY) such that (vn, un) — (v,u) in LY(2; R™) x L1 (£2; RY),

Fo(v,u; 2) < liminf F(v,,, un; 2), (4.1)

n— oo
where Fy is given by (1.12).

Proof. Let (v,u) € SBVy(£2;R™) x BV(£2; R?). Without loss of generality, we may
assume that for every {(v,,u,)} C SBV(£2;R™) x BV(£2;R?) converging to (v, u)
in LY(2;R™) x L' (2;R?),

n—roo

liminf(/ f(vn,Vun)da:+/ g(v:{,v;,uvn)d’HNﬂ)
Q Jun N2

= lim </ f(vn,Vun)dx—F/ g(v,f,vn,l/vn)dHN1> < 400.
Q Jon N2

n—roo

For every Borel set B C {2 define

tn(B) ::/ f(vn,Vun)dx—i—/ g(v,’f,v;,l/vn)dHN_l.
B J

Unt
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Since {p,} is a sequence of non-negative Radon measures uniformly bounded in
the space of measures, we can extract a subsequence, still denoted by {u, }, weakly
* converging in the sense of measures to some Radon measure p. Using the Radon—
Nikodym theorem we can decompose p as the sum of four mutually singular non-
negative measures, namely

= pa LY + pe| DUl + i HN T o) + s, (4.2)

where we are considering (v, u) as a unique field in BV (£2; R™*%) and have exploited
the fact that D¢(v,u) = (0, Du) (see remark 2.11). By the Besicovitch derivation

theorem
B
ta (o) = El_iféh m < 400 for LN-a.e. z9 € 12, (4.3a)
1(Qu (o, €))

< +oo for HN_l‘a«e« To € J(v,u) N “(27

_ li
pi(wo) = lim o= HQu(xo,8) N Jw,w)

(4.3b)
= lim M 00 or |Dul-a.e. c
te(zo) = ELO+ Dul(Qlzo, 2)) <+ for |Dul-a.e. zg € 2. (4.3¢)
We claim that
ta(z0) = Qf (v(z0), Vu(xg)) for LN-a.e. 2y € 12, (4.4)
2% ( ) = K3( ( ) ’Ui(ajo),u+($0),u7($0),lj(v7u))

for HN " l-ae. 2 € Jwuy N2, (4.5)

pe(zo) = (QF)™ (v(sco), %(m@) for |Dul-a.e. 2 € {2, (4.6)

where Qf is the density introduced in (3.2), Qf is its recession function as in
(1.10) and K3 is given by (1.13). If (4.4)—(4.6) hold, then (4.1) follows immediately.

. * .
Indeed, since p,, — p in the sense of measures,

liminf</ f(vmVun)dm—k/ gt v, vy)) ’HN_l)
Q Juy, N2

n—oo

> lim inf p, (£2)

n— oo

> pu(02)

>/ fa dx+/ ujd’HN’le/ fe d| D¢
2 J(v,u) 2

v(x u(x T v (z), v (z), v (z),u (z),v N1
>/QQf( (), Vu(z))d +/erzK3( (@), 0™ (@), u” (2), u” (), V(v,u)) dH

+ [ @0 (v S0 ) apul,

where we have used the fact that us is non-negative.
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We prove (4.4)—(4.6) using the blow-up method introduced in [24].

STEP 1. Let 2o € {2 be a Lebesgue point for Vu and v such that z¢ ¢ Ji, ., and
(2.1) applied to u and (4.3a) hold.
We observe that

liminf(/ f(vn,Vun)dx+/ g(v:{,v;,uvn)dHN_l>
o o, N$2

n—00

n—oo

>liminf/ f(n, Vuy,) dx
I7)

> liminf [ Qf(vn, Vu,)de.
7

n—oo

Note that, by proposition 3.1, @ f satisfies (F1)—(F3). By proposition 3.7, we may
assume that {(v,,u,)} C C5°(RY;R™) x C°(RY; R?) and applying [25, (2.10) in
theorem 2.19] to the functional

G: (v,u) € WH(2;R™H) - / Qf (v, Vu)dzx
Q

we obtain (4.4).

STEP 2. Now we prove (4.5).

Recall that Jg, ) = Jy U Jy and v, ) = v, for every (v,u) € SBVo(£2;R™) x
WH1(2;R?). By lemma 2.7, proposition 2.6(ii) and theorem 2.1, we may fix ¢ €
J(v,uy N §2 such that

) 1 _ _ _
im v | (1o () = o™ (o)l + fu* (@) = (o) ) A1V
€ J(w,0)NQu (20,€)

e—0t
= [v" (wo) — v (z0)| + |u™ (wo) — u™ (w0)], (4.7)

|v(x) — v+(:100)|N/(N_1) dz
e—o0t eV ~/{w6Qu(wo,6): (z—x0)-v(z)>0}

lu(z) — ut () NN Vdz =0, (4.8)
e—07F eN /{IGQV(:EO,S): (x—z0)-v(z)>0}

1 _ _
T// [o(2) = 0™ (o)|V/ NV da
e—0t € {z€Q. (z0,6): (z—2z0) v(x)<0}

— lu(z) — u™ (z0)|N/ V"V de =0, (4.9)
e—07F eN /{IGQV(IO,S): (x—z0)-v(z)<0}

o) =t ME0 T <tz
J e—0+ HN71 LJ(U,U,) (xO + EQV(Q?()))

exists and is finite. (4.10)

For simplicity of notation we write @ := @, (,). Then, by (4.10),

. 1
wi(zo) = lim 5N771/ dp(x). (4.11)
zo+eQ

e—0+t
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Without loss of generality, we may choose £ > 0 such that u(9(z¢+eQ)) = 0. Since
Qf < f, we have

tj (o)

1
= lim lim —— Qf(vn(x)avun(x))dx-f— g(v:vvnvl/vn)dHN !
em0tn—oo eN=LA f Lo J

Un

£—0t n—o0

= lim lim e/QQf(vn(:Eo+€y),vun($0+€y))dy

+ [ 907 (@0 +£9). 07 (@0 -+ 29). (0, 20+ €0) 413,
QNJ(vp,un)—zo/e

Define
vn,s(y) = Un(xO + Ey)7 un,a(y) = un(xO + Ey)a} (412)
Vn,s(y) = V(vn,un)(xo + €y)
and
~Jot(mo) if yr(zo) >0, " _ ut(zo) if yr(zo) >0,
wly) = {v‘(mo) if yv(zg) < 0, o) : {u‘(mo) if yv(zg) < 0.
(4.13)

Since (v, un) — (v,u) in L1(£2;R™*+4) by (4.8) and (4.9) one obtains

lim lim / |vn e (y) — vo(y)| dy

e—0t n—oo

lv(x) — v+(9:0)| dzx
e—0t eV (/{zezoJreaQ: (z—20)v(20)>0}

+/ lv(x) — v(a:o)|d:17> =0 (4.14)
{z€x0+e0Q: (z—x0)r(x0)<0}

and

lim lim / e (y) — wo(y)| dy
Q

e—0+t n—o0

= hm—

lu(z) — ut (zo)| do
e—0+ eV (/{zezo+58Q: (x—x0)v(x0)>0}

+ / |u(z) — u™ (zo)] dx) =0. (4.15)
{z€x0+e0Q: (z—x0)v(z0)<0}

Thus,

,Uj(xo) > lim lim </QQfOO (Un,fs(y)avun,e(y)) dy

e—0t n—o0

+ 90 v e ) AHN ()
Qm'](vﬂ 57”77,5)

N /Q (EQ}(vn,e<y>,ivun,e<y>) —Qfoo(vn,g,Vun,s)> dy)-
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Exploiting remark 3.2(v), we can argue as in the estimates [25, (3.3)—(3.5)], thus
obtaining

e—0t n—oo

wi(zo) = liminf lim inf </QQf°°(vn,s(y),Vunﬁs(y)) dy

+ [ g(vis,vn,e,u%f)d%fv1(y>).
QNI (Vn, e Un,e)

Since (Vpe,Une) = (vo,up) in LY(Q;R™F) as n — oo and € — 0F, by a stan-
dard diagonalization argument, as in [12, theorem 4.1, steps 2 and 3], we obtain a
sequence (T, Ux) converging to (vo,ug) in L'(Q;R™*?) as k — oo such that

pj(zo) > lim (/ Q> (v uy(y)) dy

+/ g(v;?av;avvk)dHNl(y))-
QNI vy )

Applying lemma 3.8 with @ f replaced by @ f°° and using remark 3.2(v), we may
find {(Ck, &)} € As(vF (o), v~ (z0), u (z0),u™ (z0),v(x0)) such that

(o) = Jim (/ Qfoo(Cmek)dw—i-/ g((,j,g“kwgk)dHN_l)
e QNJ(¢y.64)

2K3(’U+($0),U ( ) u+(ac0),u*(x0),1/(xo)).

STEP 3. Here we show (4.6).
Let (v,u) € SBVo(£2;R™) x BV(£2;R?) and note, as already emphasized in
remark 2.11, that |D¢(v,u)| = |Du|. For |Dul-a.e. ¢y € {2, we have

D wl(Q0,e) _ . D], <)
e—0t |D(v,u)|(Q(xo,€)) =0t |Du|(Q(z0,¢))

And so, by [25, theorems 2.4(iii) and 2.11] and by theorem 2.1, for | D ul-a.e. 2y € 2
we have

=1.

1
Jm o [ () —uleo) (@) o)) dr =0

for HN-a.e. mg € 2\ Jip ),

71m(())(()) N o) = 4@ v
A(Zl'o) sl~>0+ |D<’U u)‘( ( ))7 ”A( 0)“ L A( 0) ®

with a € R? and v € SV-1,

b POWIQEo) _ | |Dul(@Q@o.e)) _
e—0+ eN-1 €~>O+ eN-1 )
D@, u)|[(Q(x,€)) _ . [Dul(Q(z0,€)) _
iy SR iy e =
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Arguing as in the end of step 1, by proposition 3.7(ii) we may assume that
{(Dn, n)} C C°(RY; R™H4). Applying [25, (2.12) in theorem 2.19] to the func-
tional G: (v,u) € WHH(2;R™) — [, Qf(v, Vu) dz, we obtain, for |[D¢(v, u)|-a.e.
o € {2,

pelan) > @) (ofan). (o) ).

which concludes the proof. O

5. Upper bound
This section is devoted to proving that F < Fp.

THEOREM 5.1. Let 2 C RY be a bounded open set, let f: R x R™ — [0, +00) be a
function satisfying (Fy)-(Fy) and let g: R™ x R™ x SN=1 — [0, +-00[ be a function
satisfying (G1)-(Gs).

Then, for every (v,u) € SBVo(£2;R™) x BV(£2;R?) and for every A € A($2),
there exist sequences {v,} C SBVo(£2;R™), {u,} € WHL(2;R?) such that v, — v
in LY(2;R™), u,, — u in L'(2;R?) and

linrr_1>i£f F(vn,un; A) < Fo(v,u; A).

Before proving the upper bound we recall our strategy, which was first proposed
in [8] and further developed in [25]. Namely, first we will show that F(v,u;-) is a
variational functional with respect to the L' topology and that

F(v,u;-) < LY + |Dv| + |Du| + HN 1,

Next, using Besicovitch’s differentiation theorem, a blow-up argument will provide
an upper bound estimate in terms of Fy, first for bulk and Cantor parts, then
also for the jump part, when the target functions (v,u) are bounded. Finally, the
same approximation as in [8, theorem 4.9] will give the estimate for every (v,u) €
SBV,(£2;R™) x BV(£2; RY).

We recall that F(v,u;-) is said to be a variational functional with respect to the
L' topology if the following hold.

(i) F(-,; A)islocal, ie. F(v,u;A) = F((',u'; A) for every v,v" € SBVy(A4;R™),
u,u’ € BV(4;R?) satisfying v = v’ and v = v a.e. in A.

(ii) F(-,-;A) is sequentially lower semi-continuous, i.e. if v,,v € BV(4;R™),
Un,u € BV(A;R?) and v, — v in LY(A;R™), u, — u in L'(A;RY), then
F(v,u; A) < liminf, 00 F(vn, upn; A).

(iii) F(-,-; A) is the trace on {A C £2: A is open} of a Borel measure on B({2), the
family of all Borel subsets of (2.

Since the lower semi-continuity and the locality of F(-,-; A) follow from its def-
inition, it remains to prove (iii). This is the target of the following lemma, where
(iii) will be obtained via a refinement of De Giorgi-Letta criterion (see [20, corol-
lary 5.2]).
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LEMMA 5.2. Let 2 C RN be an open bounded set with Lipschitz boundary and let f
and g be as in theorem 5.1. For every (v,u) € SBVo(£2;R™) x BV(£2;R?) the set
function F(v,u;-) in (1.11) is the trace of a Radon measure absolutely continuous
with respect to LN + |Dv| + |Du| + HN 1| J,.

Proof. An argument very similar to [13, lemma 2.6 and remark 2.7] and [10, lemma
4.7] entails

F(v,u; A) < C(LN (A) + | Dv|(A) + |Du|(A) + HN 1T, (A)).
By [20, corollary 5.2], to obtain (iii) it suffices to prove that
F(v,u; A) < F(v,u; B) + F(v,u; A\ U)

for all A,U, B € A(£2) with U CC B CC A, u € BV(£2;R?) and v € SBV(2;R™).
We start by assuming that v € SBV(£2; R™) N L (£2;R™).
Fix > 0 and find {w,} € WH((A\ U);R?), {v,} C SBVo(4\ U;R™)N
L*(A\ U;R™) (see remark 3.9) such that w, — u in L'((A\ U);R%), v, — v in
LY((A\ U);R™) and

n—oo

lim sup ( f(vp, Vw,) dx
AT

—|—/ g(v,‘f,v;,yvn)d?-lN_1> < Fu,u; A\U) +n. (5.1)
A\UNJ,,,

Extract a subsequence still denoted by n such that the above upper limit is a
limit.

Let Bg be an open subset of 2 with Lipschitz boundary such that U CC By CC
B. There then exist {u,} C W1 (Bg; R?) and {v,,} C SBV(Bo; R™)NL>(By; R™)
(see remark 3.9(i)) such that u,, — u in L'(Bg;R?), ,, — v in L'(Bg; R™) and

F(v,u; Bg) = lim ( f(@n, Vuy,) d:c—|—/
By

n—oo
Js,,NBo

g(@,t,an,m)dHN1>. (5.2)
For every (v, w) € SBVo(4;R™) N L®(A; R™) x WL1(A4;RY) consider

G (5, A) 1= / (1+ [Vwl)de + (1+ [6)HY 1 [(Js N A).
A
Due to the coercivity condition (1.1), up to a subsequence, not relabelled, v, :=
Gn(Vn, wn;+) + Gn(Un, up; ) restricted to By \ U converges in the sense of distri-
butions to some Radon measure v, defined on By \ U. Analogously, for every
w € SBVo(A;R™) N L*°(A;R™) we can define a sequence of measures

Hp(w; E) ::/ dHNL
JuwNE
For every t > 0, let B; := {z € By | dist(z,0Bp) > t}. Define, for 0 < § <
n, the subsets Ls := Byp_2s5 \ Bn+6- Consider a smooth cut-off function @5 €
C§°(By—-5;[0,1]) such that ¢s(x) = 1 on B,. As the thickness of the strip is of
order 0, we have an upper bound of the form ||Vis|| < C/6.

71*6)
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Define W, (x) := s(z)un(x) + (1 — ps(x))wy (z). Clearly, {w,} converges to u in
L'(A) as n — oo and

Vw, = gogvun + (1 - QD(;)VU)” -+ V(p5 ® (un - wn).

Arguing as in [5, lemma 4.4], we may consider a sharp transition for the SBVj
functions. Namely, let {v,} and {#,,} be as above. Then for every 0 < ¢t < 1 we
may define 9% such that o! — v in L'(A) as n — oo and

on(x) o {z: p5(z) >t}

3t (2) = {vn(ac) in {z: ps(x) < t},

Clearly, 0! (z) € {vn(z),0,(x)} almost everywhere in A and since we have that
HNL(T,,), HN=1(J;,) < 4oc for all but at most countable ¢ € ]0, 1], it results
that

HN (T, N{z € A: ps(x) =t}) = HN 1 (Jp, N{z € A: ps(z) =t}) = 0.

Moreover, using the coarea formula (2.3) and the mean value theorem it is possible
to find a t for which the integral over the level set is comparable to the double
integral with ¢ varying between 0 and 1. Thus, we have

c
/ dHN Tt < g,CN(Bn_(; \ B,) <C.
O {ps<t}

An analogous reasoning provides for the same t that

/ |[f)fl]|d"HN71 < g/ |vp () — U, ()] da. (5.3)
o {ps<t} 0 JB,_5\B,

Thus, as for the {G,, } above, we may extract a bounded subsequence, not relabelled,
from the sequence of measures H,, (7%, ) that is restricted to By \ U N 9*{ps < t},
converging in the sense of distributions to some Radon measure v; and defined on
Bo\ .

By (1.1) we have the estimate

[ s vmdes [ gy @, e
A AnJg "
< [ f(On, Vuy,)dz + / 9(v,, v, g, ) dHN !
By, Jz,, NBy,
+ / f(”nv an) dz + / Q(U:{a Uy, an) dpNt
(A\By-5) Tu N(A\By—5)

1
+C(gn(vn7wn7[f§)+gn(@n7unaL5))+g/ |wn_un|dx
Ls

+/ I[BE]) dHY = + Ho (08 Ls N 0" {5 < t})
O*{ps<t}
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< ﬂmﬂwﬁm+/ o5 o v, ) ARV
By Js, NBo

Un

+ / fwn, Vw,) dz + / gt v v,)) dpN-t
(A\D) T, N(A\D)

+ C(Gn(Vn, wn, Ls) + G (Un, Un, Ls)) Wy — Uy | da

+3
0 Jp,

[ AR @l L1 0 s < ).
O {ps<t}

Passing to the limit as n — co and applying (5.1)-(5.3) and the L' convergence
of {v,} and {o,,} to v, we have that

F(v,u; A) < F(v,u; Bo) + F(v,u; A\ U) +n+ Cv(Ls) + Cvy(Ls)

+ lim sup/ @] ARt
O*{ps<t}

n— oo

< F(v,u; B) + Fv,us A\ U) +n + Cv(Ls) + Cvi(Ls).
Letting ¢ go to 0, we obtain
F(v,u; A) < F(v,u; B) + F(v,u; (A\ U)) +n+ Cv(0B,) + Cv1(0By).

It suffices to choose a subsequence {n;} such that n; — 0" and v(9B,,) =
v1(0B,,) = 0 to conclude the proof of subadditivity for the case v € SBVy N L.

In the general case, by virtue of remark 3.9, we can argue as in the last part
of [14, theorem 10]. O

Proof of theorem 5.1. We assume first that (v,u) € (SBV(£2;R™) x BV(£2;R4)) N
L= (02; R4,

STEP 1. In order to prove the upper bound, we start by recalling that by proposi-
tion 3.6 we can replace Qf by f in (1.11). First we deal with the bulk part.

Since the F(v,u;-) is a measure absolutely continuous with respect to £V +
|Du| + (1 + [v])HN 1| J,, we claim that

df(va U3 )

T (w0) < Qf (v(wo), Vu(zo))

for LN-a.e. 2y € (2, where x¢ is a Lebesgue point of v and u such that

L1 (N=1)/N
lim {N / lu(z) — u(zo) — Vu(z)(z — )| N/ VD dx} =0,
€ JB(xo.e)

e—=0t €

(N-1)/N
b

lim 1{1/ lv(z) — v(zo)| VN1 da
B(xo,e)

e+ € | eN
. p(B(wg,¢))
o(20) = lim 020
Ha(zo) = lim, LN (B(zo,¢))
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Let U := (v,u). By (5.4) and theorems 2.1 and 2.2, for LN-a.e. 7y € £2 we have

Jim s | 0@~ V)| VU 2 =0,

i B8,

i B o, @), V(@) de = @ (e(wo), Tutao)),
%(zo) exists and is finite.

We observe that the assumptions imposed on f and proposition 3.1 allow us to
apply, for every v € SBV(£2;R™), the global method (see [13, theorem 4.1.4]) to
the functional v € W (£2;RY) x A(2) — G(u; A) == [, Qf(v(z), Vu(x)) dz, thus
obtaining an integral representation for the relaxed functional

G(u; A) = inf { liminf G (upn; A): up, — uw in L' (A4; Rd)} (5.6)
n—oo
for every (u, A) € BV(£2;R?) x A(£2).
Recall that the growth condition (Gs) and the lower semi-continuity with respect
to the L'-topology of the functional v € SBV(2;R™) + (1 + [p])HY L[ (J, N A)
entail

Fv,u; A) < Glus A) + (1+ [y HYH[(J, 0 A). (5.7)

Differentiating with respect to LV at zo and exploiting (5.4) and (5.5), we obtain
that
dF((v,u);-)

ALY (z0) < fo(zo, Vu(zo)),

where for every zo € 2 and £ € RY, fy(xo,€) is given as in [13, (4.1.5)], namely,

oo =timsw it | [ Qpwa+an Vs anf. 68)
e—0t zeWh(Q;RY) Q
z(y)=¢&y on 0Q

To conclude the proof, we claim that fy(z,&) < Qf(v(xg),§) for every xy € 2
satisfying (5.4) and (5.5) and ¢ € RY.
By virtue of lemma 3.10 we have that

lim sup inf { / Qf(v(zo +€y), Vz(y)) dy}
e—ot zeWh(@RY) [ Jg
z(y)=&y on 0Q

< inf { lim sup/ Qf(v(zo + ey), Vz(y)) dy}.
2eWHH(Q;RY) e—0t JQ
z(y)=¢y on 9Q
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Computing the limsup on the right-hand side, we have

thUp/QQf('U(xO+Ey)avz(y))dy

e—0t

— limsup ( /Q Qf (wlao + £y), Va(y)) dy - /Q Qf(v(xo>,Vz<y>>dy)

+ /Q Qf (v(w0), V2(y)) dy.

Since x is a Lebesgue point for v and recalling that v € SBV(Q; R™)NL>®(Q; R™),
by the Lebesgue dominated convergence theorem and (F3) applied to Q f (see propo-
sition 3.1), we have that

lim sup ( /Q Qf (v(ao + ey), V() dy — /Q Qf(v(wo)WZ(y))dy)

e—0t
<timsup [ Liu(eo + 2y) — vla)|(1+ V() dy = 0
e—=0t JQ
Hence,
lim sup / QF (v(zo + ey), Va(y)) dy = / QF (v(x0), Va(y)) dy.
e—0t Q Q

By the quasi-convexity of Qf(v(zg),-) and (5.8), one obtains

fO(x07€) < Qf(v($0)7€)a
which concludes the proof on replacing & by Vu(xg).

STEP 2. We prove the upper bound for the Cantor part.
By the Radon-Nikodym theorem, we can write

\DU| = | Dl + o, (5.9)

where U := (v,u) € (SBV(£2;R™) x BV(£2;R%)) N L*°(2; R™+4) and where o and
|D°u| are mutually singular Radon measures.

Observe that U = (v,u) is | Du|-measurable, Duv is singular with respect to | Du|
and, by theorems 2.1, 2.2 and [25, theorem 2.11] for |Dul-a.e. z € B(zo,¢),

 uBlan.e)
e—0+ |Du|(B(xo,€))
o 1Dul(B(xo.2)

——— "~ exists and is finite,
e—0+ |Deul|(B(xg,£)) £ 10
N (5.10)

:07

:07

13
1' - -
50+ [Deu|(B(zo, €))

. 1 B
0 ) o, () —HG o) — o)) de =0

Moreover,
A(x) := lim Du(B(z,¢)) . DU(B(z,¢))

e B@e)) W DB PW G
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exist and they are rank 1 matrices of norm 1. In particular,
A(z) = au(z) @ vu(z), (5.12)
where (a,(z),v,(z)) € R x SN¥~1. By theorem 2.2 we have

1

Jim e | (), A D = £ (0] Alro)

As in step 1, we recall that via the global method (see [13, theorem 4.1.4]) we
can obtain an integral representation for the functional G(u; A) in (5.6) for every
(v,u) € BV(2;R™*4). Moreover, by proposition 3.6, we can replace f by Qf in
(1.11) and (5.7) holds.

Differentiating with respect to |Du| at xo and exploiting (5.9) and (5.10), we
deduce

dF((v, u);-)

d|DCU,‘ (xo) < h(l’o,au,l/u),

where v, (x) agrees with the unit vector that, together with a,,, satisfies (5.12) for
|Dul-a.e. x € 2\ J, and where h(xg,a,v) is given as in [13, (4.1.7)], namely,

h(zo,a,v)
1
:= limsuplims inf e +ey),V dy ¢,
msuplimsup 3 {k.N—l o Q™ (v(zo +ey), Vz(y)) y}

2(y)=a(vy) on QY
(5.13)

where a € R4, v € SN-1, QP = R,((—3k, k)N 1 x (=1,1)) and R, is a rotation
such that R, (en) = v.

We also recall that, by remark 3.2(iv), Q(f*°) = (Qf)>® = Qf.

To conclude the proof, it is enough to show that

h(zg,a,v) < Qf*(v(xo0),a@v).

By lemma 3.10,

h’(an a, V)
< limsu inf lim sup —— (v(xg +ey),Vz dy .
lk—>oop zeWHH(QM)RY) { 5%0+p kN1 QM Qf ( ( 0 y) (y)) y}

2(y)=a(vy) on 0Q
(5.14)

In order to compute

Q> (v(xo +ey), Vz(y)) dy,

limsup ——
e—0t EN-1 Qf,k)

we add and subtract inside the integral Qf°°(v(xo), Vz(y)). Then, as in step 1,
exploiting the fact that z¢ is a Lebesgue point for v € SBV(£2;R™) N L>(£2;R™)
and that Qf>° satisfies (F3) (see remark 3.2 where (F3) has been deduced for f>
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and proposition 3.1), via Lebesgue’s dominated convergence theorem we conclude

that
e—0+ QP
1
~ N1 ol Q™ (v(zo), Vz(y)) dy.

Finally, the quasi-convexity of Qf*° (deduced via remark 3.2 and proposition 3.1)
provides
1

inf T
eW QMR { KN o
2(y)=a(v-y) on 9QLY)

QI (v(xo).a @ v) = Q> (v(x), V=(y) dy},

which, together with (5.14) concludes the proof of the upper bound for the Cantor
part when (v,u) € (SBVo(£2;R™) x BV(£2;R9)) N Lo (2; R™+4).

STEP 3. We now prove the upper bound for the jump. Namely, we claim that
F(U; Ju) = Fv,u, Jpu)) < Kt v ut,u™,v)dHN 1 (5.15)
Ju

for every U = (v,u) € (SBVo(£2;R™) x BV(£2;R9)) N L (2; R™+4).
The proof is divided into three parts according to the assumptions on the limit
function U.

CaseE 1. U(z) := (a,¢)xe(z) + (b,d)(1 — xe(x)) with P(E, 2) < co.

CASE 2. U(z) := Yo (ai, ¢;)xp, (z), where {E;}$2, forms a partition of {2 into
sets of finite perimeter and (a;, c;) € R™ x R9,

CASE 3. U € (SBV((£2;R™) x BV(2; R%)) N L>®(£2; R™+4).

Proof of case 1. We start by proving that for every open set A C (2,

F(U; A) = Fv,u; A) </Qf(v(x),0)dx+/ Ks(a,b,c,d,v)dHN 1
A J

unNA

(a) Assume first that

a ifz-v>0, c ifz-v>0,
v(x) == ) and wu(z) = )
b ifx-v<O, d ifx-v<O0.

We start with the case in which A = a + AQ is an open cube with two faces
orthogonal to v. For simplicity we also assume that v = ey and @, will be denoted
simply by @. Our proof develops as in [26, proposition 4.1 and lemma 4.2] (see
also [12, proposition 5.1]) and we will thus present only the main steps.

Suppose first that @ = 0 and A = 1. By proposition 3.4 (see also remark 3.5),
there exists (vn,u,) € As(a,b,c,d,v) such that (v,,u,) — (v,u) in L1(Q;R™+4)
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i(r'lgd(a, b,c,d,v)
= lim (/QQfOO(Un(x),Vun(x))dm—i—/JMQQ g(u;(x),v;(x),un(x))dHN—1>.

(5.16)
We denote by @’ the set {x € Q: xny = 0}. For k € N we label the elements of
(ZN[=k, k)™ x {0}

N—-1
by {ai}z(»iklﬂ) and we observe that

(2k+1)N -1
er+@ = U (@+Q)
i=1
with
(a; +Q)N(a; +Q) =0 fori#j.
We define
if > #
¢ n 2025 1)
Znk(x) = Qon((2k + 1)z) if [zn] < m7
b ifoy < o
NS Th0k+1)
and
it o
c 1951\f>2(2kJ1r1)7
= 2 1 if -
wn,k(x) : un(( k + )1‘) 1 |1‘N| < 2(2k+ 1)’
d ifoy < 1
NS kT 1)

By the periodicity of the functions v,, and u,, it is easily seen that

lim

ot klgrolo ||Zn,k - U”Ll(Q;Rm) = 0, lim ||wn,k - UHLI(Q;Rd) =0.

lim
n—o00 k—o00

Thus, by a standard diagonalization argument, we have

F(v,u; Q) < limsup lim sup (/QQf(znk(;v)7 Vuwnp i (z)) dz

n—o00 k— o0
+ /
QﬂJzn

Arguing as in [12, proposition 5.1], for the bulk part we have

g(Z:k(x)’ Zp 1 (T); Vn i (2)) d’HN1> )

Jk

limsup/QQf(zmk(z),an,k(:c)) dx

k—o0

=/Qﬁmmm@+/Qﬁwmmv%@m%
Q Q
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and for the surface term

[ @) o) v an
QNJ., ’ ’

k

< / (0 (), v (), v () AHY 1 (1),
QNJy,,

Putting together the estimates for bulk and surface terms and exploiting (5.16), we
obtain that

n—roo

Flo,u; Q) < limsup ( /Q QF(v.0)dz + /Q Q> (un(y). Vun(y)) dy
v v Vn N-1
. /Q S0 ) ) )

~ [ Q(v(@),0)do + Kala.b.code)
Q

_ Qf(a,0)+Qf(b,0)
2

+ KB(av ba C, d7 6N)~

In order to consider sets A = a + AQ with a € RV and X\ > 0, we define

(Qf))\(b?B) = Qf(b? f)a gA(ﬁan”) = %9(&@1’)

and, for every E C (2,

Fxa(v,u; E) :=  inf {liminf</E(Qf),\(vn(m),Vun(x))dx

(’Umun)} n—oo
s e @ @)
ENJ,,
(Un, un) € SBVo(E;R™) x WH(E;RY),
(Un, Up) = (v,u) in Ll(E;Rerd)}.
It is easily seen that for every (v,u) € L'(£2;R™*4) we have

f(U7U7A) = )\Nf)\(’l))\,’U,)\;Q),

oa(x) == v<”3 S “), un(z) = u(”“" S “).

Since Qfy° = (1/M)Qf>°, by the definition of K3 for fy and g, we have that
(K3)>\(a’ bv ¢, da V) = (I/A)K3(a7 b7 C, da V)'
By the definition of u) and vy we have that

{a if xy >0, {c if xty >0,
Uy = Uy =

where

b ifxy <O, d ifxy <O.
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So by the previous case, it results that

Qfx(a,0) + Qf(b,0)
2

F(v,u; AN = Fa(va, ur; Q) < /\N< +(K3)x(a, b, ¢, d, 6N))-
(b) Now let U := (v,u) as in (a) and let A be any open set. The proof of this step
is identical to [25, §5, step 3, case 1(b)]. Indeed, it is enough to apply the same
strategy but replacing v and K in [25] by U and K3, respectively, herein, thereby
obtaining

]—"(v,u;A)g/AQf(v(x),O)dx+/] mAKg(a,b,c,d,z/)d”HN’l. (5.17)

(¢) Now suppose that U has a polygonal interface, i.e. U = (a,c)xg+(b,d)(1—xE),
where F is a polyhedral set, i.e. F is a bounded strongly Lipschitz domain and O0F =
HyUH,U---UH)y are closed subsets of hyperplanes of type {z € RN : x-v; = a;}.

The details of the proof are omitted since they are very similar to [25, § 5, step 3,
case 1(c)]. We just observe that, given an open set A contained in (2, the argument
relies on an inductive procedure on I := {i € {1,...,M}: HN"1(H; N A) > 0}
starting from the case I = 0 when u € W1(A;R?) and v € SBVy(A;R™) N
L>°(A;R™), for which it suffices to consider u,, = u and v,, = v with (5.17) reducing
to

}“(v,u;A)g/AQf(v(:c),O)dx.

The case cardI = 1 was studied in part (b), where E is a large cube so that
Ju N 2 reduces to the flat interface {z € 2: z-v = 0}.

The induction step (which first assumes that (5.17) is true if cardI = k, k <
M — 1, and then proves that it is still true if card I = k) then develops exactly as
in [12, proposition 5.1, step 2(c)], the only difference being that the slicing method
used to connect the sequence across the interfaces relies on the same techniques
as lemma 3.8 but referred to more general open sets than cubes (see also [25, §5,
step 3, case 1(c)]). Thus, one can conclude that

f(v,u;A)g/AQf(v(x),O)dx—l—L mAK3(a,b,c,d,V)d’;’-[N_l.

(d) If E is an arbitrary set of finite perimeter, the step develops in strong anal-
ogy with [25, §5, step 3, case 1(f)]. Essentially, exploiting proposition 3.3(b), the
approximation via polyhedral sets with finite perimeter as in [11, lemma 3.1] and
applying Lebesgue’s monotone convergence theorem gives

F(v,u; A) < / Qf(v(x),0)dx + / Ks(a,b,c,d,v)dHN 1.
A ANJy
This last inequality, together with lemma 5.2, yields
FoiJun) < [ Kalabed ) an,
J

(v,u)

which gives (5.15) when U = (v,u) = (a,¢)xg + (b,d)(1 — xg) is the characteristic
function of a set of finite perimeter. O
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Proof of case 2. Arguing as in [25, § 5, step 3, case 2] and referring to [8, proposition
4.8, step 1], we clearly obtain for every (v,u) € BV(£2;T) x BV(§2;T), with T a
finite subset of RY,

]:(U7 u; A) = ]:(1), Uu; AN J(v,u))

< / Ks(ut, v ut um, vy u(2) dHY L (x).
J,

(v,u)
O

Proof of case 8. For U = (v,u) € (SBVo(£2;R™) x BV(£2;R4)) N L>®(2; R™+4) the
proof develops analogously to [8, proposition 4.8, step 2] and we add some details
for the reader’s convenience.

First we observe that the jump set Jy = J(,) can be decomposed as (J, \ J,) U
(Jp \ Ju) U (Jy, N Jy), recalling that these sets are mutually disjoint and that the
tangent hyperplanes to .J, and .J, coincide up to a set of HV~1 measure 0.

Let A € A(f2) such that A D Jy. We assume that U(x) € [0,1]™*9 for a.e.
x € A. For every h € N, h > 2, it is possible to define a set

By :=A\Jy U {I € Jy: U (z) - U™ (2)] < WL}

and define the sequence {Uy} = {(vn,up)} according to [8, proposition 4.8, step 2].
Observe that J,, C J,. Then, by step 2, we have that

F(v,u,; A) < lihm inf F(vp, up; A)
— 00

=lihrgi£f</AQf(vh70)dfﬂ

dD%u
+ / Q> (vmh)dww
A

d|Dcup|
o
AN(Jy, U

We restrict our attention to the surface integral. Clearly,

. N-1
K3(vh7U}L7uh7uhvyvh7“h)d7{ )

(5.18)

o)

+ = o4 - N-1
/ Ks(vy vy, s uy Uy, s Vo ) dH
AN(J

Uh UJUh )

+ o= o+ - N-1
Ks(vy, vy, 5wy, Uy, s Ve u,) AH

/Aﬁ(]uhquh)ﬂBh

_ _ N-1
-|-/ K3(UZ,Uha“;—rauhal’vh,un)d?’i :
AN(Jup, Uy, )N(A\Bg)

By the decomposition of the jump set J(,, 4,), proposition 3.3(d), the fact that
Ju, C Jp and the same type of estimates as in [8, p. 300] entail (with the constant
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C varying from place to place)

+ = ot - N-1
/ K (vy s vp, s up Uy, s Ve u, ) dH
AO(J“}LUJ,l,h)ﬁBh

+ = ot .= N-1
K3(UhavhauhvuhaVvh,Uh)dH

/%ﬂ(Juh\J/uh)ﬁBh

+ o= oyt o= N—-1
+/ Kg(vh,Uh,Uh;uhv’/v;”uh)dH
Am(Jvh’\Juh)mBhr

+ o= o+ N-1
+/ K (vy s vp s up g, s Vo uy, ) AH
ANy, Oy, N B

<C luf — uy, [dHN !
AN(Jup, \Jv), )N B

+C (lojf — vy [+ 1) dHN !
AN(Jy, \Ju, )NBp

+C (Jo;f = v |+ Ju)f =y |+ 1) dHN 1
ANJy, NJy, NBy,

< 2C(m 4+ d)|Dul(AN By) + C(m +d)|Dv|(AN By) + CHN=1(J, N B, N A).
(5.19)

Moreover, by proposition 3.3(c), (d) and the reverse of Fatou’s lemma, we have

/ Kg(v}f,v;,uz,u;,V(vh’uh))d’HNfl
(Jup, U, )O(A\By)

< / K3(U+,v_,u+,u_,V(v,u))dHN_l.
AN(J,UJy,)

Clearly, taking the limit as h — oo, from the above inequality and (5.19) we may
conclude that

.7:(1),’(,&; A) g/ KB(UJraviaquauiaV(v,u))dHNil
AN(J,UJy)

4+ C(Dul(A\ (J, U J)) +1Dol(A\ (Ju U J,))) + /A Qf(v,0)dz,

where we have exploited the fact that the Cantor term in (5.18) is 0 from the
construction of the uy, and liminf, oo HYN"1(J, N BN A) = HVN 1 (J,N(A\ (J, U
J»))) = 0. Now, since F(v,u;-) is a Radon measure, the above inequality holds for
every Borel set B and in particular for the set B = AN (J, U J,), and this gives

F(u,u; J, N Jy) < / Kg(v+,v_,u+7u_,u(v’u))dHN_l.
JoN T
This concludes the proof of step 2 when (v,u) € SBVo(£2;R™) x BV(2;R%) N
L® (97 Rm+d).
The general case (v,u) € SBV(§2;R™) x BV (§2; R?) follows from remark 3.9(iii)
(see [25, §5, step 4] and [8, theorem 4.9]). O
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Proof of theorem 1.2. Tt follows from theorems 4.1 and 5.1 O

REMARK 5.3. We observe that, as can be easily conjectured from the proofs of
theorem 4.1, step 2, and theorem 5.1, step 3, case 3(i) and (ii), K5 admits the
following equivalent representations.

e On J, \ Ju,, Ks(a,a,c,d,v) = Qf(a,(c — d) ® v), where Qf> represents
the recession function of the quasi-convexification of f, as in remark 3.2.
In fact, one inequality is trivial by definition 1.13, while the other can be
obtained through proposition 3.4 by invoking the quasi-convexity and the
growth properties of @ f*(a,-) (see remark 3.2) and analogous arguments to
the ones leading to [9, (5.84)].

e On J,\ Ju, K3(a,b,c,c,v) = Rg(a,b,v), where Rg represents the BV-elliptic
envelope of g; namely, the greatest BV-elliptic function less than or equal to
g, which under the assumptions (G1)—(Gs) admits the representation

Rg(a,b,v) = inf { / glwt,w™,v)dHN L
JwNQu

w € SBVo(Q,;R™) N L>¥(Q,; R™), w= vy on 8QV},
(5.20)

as in [14,15,17], where vy is defined as in (3.4). This is a consequence of (1.13)
and (5.20).

We observe that the above characterizations of K3 could be deduced directly,
thereby reproducing the proofs of the lower bound and the upper bound for theo-
rem 1.2 for the jump part on the sets J,, \ J, and J, \ J,, respectively.

6. Applications

This section is devoted to the proof of theorem 1.1, which is very similar to that of
theorem 1.2. In particular, we replace lemma 3.8 and proposition 3.3 by lemma 6.1
and proposition 6.2, respectively. However, keeping in mind the application that we
describe in more detail in remark 6.4, we state the proof with more generality but,
in order to prove theorem 1.1, we consider m =1 and T' = {0, 1}.

Let T'C R™ be a finite set and let

VT xRN (0, 4+00) and g: T x T x SN=1 = [0, +o0] (6.1)

satisty (F1)-(F4) and (G1)—(Gs), respectively. Denote by Ay, the set defined in
(1.8), where the range {0, 1} is replaced by T.
For simplicity we will consider v = ey and consequently Q, = Q = [0, 1]".

LEMMA 6.1. Let T' C R™ be a finite set and let

a ifxy >0, ¢ ifxy >0,
vo(y) = ) up(y) := .
b ifzy <0, d ifzy <O0.

https://doi.org/10.1017/50308210513001479 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210513001479

Relazation for an optimal design problem 261

Let {v,} C BV(;T) and {u,} C WHHQ;R?) be such that v, — wvo is in
LY(Q;R™) and u, — ug is in L' (Q;RY).

If p is a mollifier, p, = n™p(nz), then there exists a sequence of functions
{(Cn: &)} € Apr(a,b,c,d en), such that
Cn =19 on 0Q, Cn — vg in LY(Q;R™),
&n = Pin) * U0 01 0Q, &, — ug in LY (Q;RY) (6.3)
and

hmsup( /Q QV (Cny V) dz + /J Qg(q,c;,wn)dHN‘l)
gnﬂ

n—oo

< lim inf (/ QV (vn, Vuy,) dx +/ g(v:{,vn,yvn)dHNl>, (6.4)
Q Ju, NQ

n— oo

where QV represents the quasi-convex envelope of V' as in (3.2).

We omit the proof since it is entirely similar to that of lemma 3.8. We just observe
that there is no need for the first step where a truncation argument for v was built,
since in the present context we deal with functions with finite range.

The following result, which contains the properties satisfied by Ko in (1.7), is
analogous to proposition 3.3 and it is stated for the reader’s convenience.

PROPOSITION 6.2. Let V be as in (1.4). Let Ky be the function introduced in (1.7).
The following properties hold.

(a’) |K2(a7ba C, d7 V) - KQ(alablaclad/’V” < O(|CL—(Z/| + |b_ bl| + |C_ C/| + |d_d/|)
for every (a,b,c,d,v), (a’,b',c,d',v) € {0,1} x {0,1} x R? x RY x SN—1,

(b) v — Ks(a,b,c,d,v) is upper semi-continuous for every (a,b,c,d) € {0,1} x
{0,1} x R? x R

(c) Ky is upper semi-continuous in {0,1} x {0,1} x RY x R? x SN-1,
(d) Ka(a,b,c,d,v) < C(la—1b|+ |c—d|) for every v € SN—1.

Proof of theorem 1.1. The arguments develop as in theorem 1.2, essentially replac-
ing f by V in (1.4), v by x, the surface integral by |Dx| and using the blow-up
argument introduced in [24]; thus, we will present just the main differences.

(i) Lower bound: let (x,u) € BV(£2;{0,1}) x BV(£2; R%). Without loss of generality
we may assume that for every {(xn,u,)} C BV(£2;{0,1}) x BV(£2;R%) converging
to (x,u) in L'(£2;{0,1}) x L'(2;R?), liminf, oo ([, V (Xn, Vun) dz + |Dx,[(£2))
is indeed a limit. For every Borel set B C {2 define

o) = [ (02 V) do -+ 1D, (B).

The sequence {u,} behaves as in theorem 1.2 and its weak * limit (up to a not
relabelled subsequence) u can be decomposed as in (4.2), where, as in the remainder
of the proof, J(, . has been replaced by J(, ). Moreover, we emphasize that we
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have been considering (y,u) as a unique field in BV(£2; R'*9) and we have been
exploiting the fact that D¢(x,u) = (0, D) (see remark 2.11). By the Besicovitch
derivation theorem, we deduce (4.3).

We claim that

ta(z0) = QV (x(z0), Vu(xo)) forCN-a.e. xo € 12, (6.5)

115 (o) = Ka(x™ (w0), X~ (w0), ut (20), u™ (20), Y(xu))
for HN " tae. 29 € Jo N2, (6.6)

Dcu

pe(zo) = (QV)™ (X(xo), (TD(:UO)) for |Dul-a.e. ¢y € £2. (6.7)

cu|
If (6.5)—(6.7) hold then the lower bound inequality for theorem 1.1 follows.

STEP 1. Observing that, by proposition 3.1, QV satisfies (F1)—(F3), the proof of
(6.5) develops as in step 1 of theorem 1.2, just applying [25, (2.10) in theorem 2.19],
to the functional G: (x,u) € WH(2;R) — [, QV (x, Vu)da.

STEP 2. The proof of (6.6) is very similar to the one of (4.5). Recall that Ji, ,) =
Jy U Jy and vy ) = vy for every (x,u) € BV(£2;{0,1}) x W1(£2;R?). The same
arguments as those of step 2 in theorem 1.2 allow us to fix zo € J(y,4) N {2 such
that (4.7)—(4.11) hold.

Recall that we denote @, (5,) by @ and we may choose £ > 0 such that 1(9(zo +
€Q)) = 0. We then have

1
(xp) = lim lim
,uj( 0) = om0 eN-1

(/ @V (@) Vi) -+ D o + Q)

= lim lim (a / QV (xn(xo +€y), Vun(xo + €y)) dy
Q

e—0t n—oo

Zo

+ IDxa(an + 20l (@0 Tt m) = 2 ).
Define Xp e, Un,es Vn,e and Xo, up according to (4.12) and (4.13). Since (xn, un) —
(x,u) in LY (£2; R ), we obtain (4.14) and (4.15) with v,, . and vg replaced by X,

and xq, respectively.
Thus,

pji(zo) = lim  lim (/QQV‘X’(xn,a(y),Vun,E(y))dy

e—0+T n—oo
1
+ |DXn,s|(Q) + 4 €QV <Xn,s(y)a gvun,s(y)>
- QVOO (Xn,Ea vun,e) dy) .

By remark 3.2(v) we can argue as in the estimates [25, (3.3)—(3.5)], thereby
obtaining

pj(zo) = liminf lim inf (/QQVOO(XmE(y), Vune(y))dy + |DXn7E|(Q)>.

e—0t n—oo
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Applying lemma 6.1 with QV replaced by QV>°, T'C R™ replaced by {0, 1}, the
surface integral replaced by the total variation, Ky, and Ay, replaced by K» and
As, respectively, and using remark 3.2 we may find

{(Crs &)} € Aa(XT (20), X (o), u™ (o), u™ (0), v(20))
such that

ptan) > i ([ @V (. v&) o +10Q))
—00 Q

> Ka(xt (20), X~ (z0), u™ (w0),u™ (20), v(w0)).

STEP 3. The proof of (6.7) identically follows step 3 in the proof of theorem 4.1;
namely, by applying [25, (2.12) in theorem 2.19] to the functional G introduced in
step 1 here. This concludes the proof.

(ii) Upper bound: the proof of the upper bound develops in three steps in the same
way as the proof of theorem 5.1. Furthermore, proposition 3.6 can be readapted by
replacing @ f by QV and the surface integral by |Dx].

STEP 1. For LN-a.e. zg € £, m is a Lebesgue point for U = (x, u) such that (5.4)
and (5.5) hold for QV. In analogy with theorem 5.1 step 1, we apply for every x €
BV(£2;{0,1}) the global method [13, theorem 4.1.4] to the functional G: (u, A) €
WHL(2;R™) x A(2) — [, QV (x, Vu) dz to obtain an integral representation for
the functional (5.6) for every (u, A) € BV(£2; R™) x A({2). Moreover, we can write

Foo(x;u; A) < G(u; A) + [Dx|(A).
Differentiating with respect to £V we obtain
d]:OD (Xa Uus; )
dcN

where Vj is the co-respective of fy in (5.8) where Qf has been replaced by QV.
Arguing as in the last part of theorem 5.1, step 1 and applying lemma 3.10, we
deduce that Vo (xg,&) < QV (x(x0),&) and this leads to the conclusion when u €
BV (§2; RY) N L>°(£2;RY).

< ‘/()(ZL'O, VU(.’IJO)),

STEP 2. The same type of arguments as those in step 1 apply to the proof of the
upper bound for the Cantor part. The Radon—Nikodym theorem implies (5.9) for
every U = (x,u) € BV(£2;{0,1}) x (BV(£2;R%) N L>(£2;R%)), with |Du| and o
mutually singular. Moreover, (5.10)—(5.12) hold, the global method [13, theorem
4.1.4] applies to (5.6) and a differentiation with respect to |Dul| at o provides
dFop (X, u;-)
d|Deul|

where h(z,a,v) is given by (5.13). Remark 3.2 applied to QV*°, lemma 3.10 and
the same techniques employed in the last part of theorem 5.1, step 2 entail

h(a:Ov a, V) < QVOOOC(xo)v a® I/),
which concludes the proof of the Cantor part for

(x,u) € BV(£2;{0,1}) x (BV(£2;R%) N L>=(£2; RY)).

(x0) < h(zo, Gy, Vu)s
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STEP 3. We claim that

Foo(U; Ju) < | Ko(xF,x " ubu” vy ) dHN ! (6.8)
Ju
for every (x,u) € BV(£2;{0,1}) x (BV(£2;R?) N L*>=(£2;R%)). The proof of (6.8) is
divided into three parts according to the assumptions on the limit functions u.

Casg 1. U(z) = (1,¢)xe(z) + (0,d)(1 — xg(x)), with P(E, 2) < +oo.

CASE 2. u(z) = Y2, ¢;ixE, (x), where {E;}2, forms a partition of {2 into sets of
finite perimeter and ¢; € R%.

CasE 3. u(z) € BV(2;RY) N L= (2;RY).

Concerning case 1, we first consider the unit open cube @ C RY and make the
same assumptions on the target function U as those in theorem 5.1, step 3, case 1.
We can then invoke an argument analogous to proposition 3.4 without invoking any
truncation arguments such as those in remark 3.5. This guarantees that there exist
(Xn,Un) € A2(1,0,¢,d, en) such that (xn,un) = (x,u) in L (Q; R'*?) and

n—r oo

Ko(1,0,¢,d,en) = lim (/QQVOO(X,L(J;),vun(x))dH|DXn|(Q)>. (6.9)

The proof then develops exactly as that of theorem 5.1 but taking into account
that the sequence z, j; therein is built by replacing a, b and v, by 1, 0 and x,,
respectively, thus leading to

QV(1,0) +QV(0,0)
2

With regard to a more general set A than @, like that in theorem 5.1, step 3, case 1,
we achieve the following representation:

fOD(X,’U/;Q) g +K2(1,0,C,d,61\])-

f(’)D(X? U3 A) < / QV(X(‘%)’ 0) dz + KQ(L 0, & da V) dHN?l'
A Ju
Then the strategy follows (b), (¢) and (d) in theorem 5.1, step 3, case 1, and hence
we obtain
Foplvuid) < [ Ka(1,0.c.d,p)an
Jx,u

Turning to case 2 and case 3, by the properties of K5 in proposition 6.2, the proof
develops in the same way as in [8, proposition 4.8, cases 2 and 3|. This concludes the
proof of the upper bound when (y,u) € BV(£2;{0,1}) x (BV(£2;R?) N L>(§2; RY)).

The general case, since xy € BV(£2;{0,1}) and can be fixed, is identical to [25, § 5,
step 4], where the truncation procedure involves just u.

Putting (i) and (ii) together, we achieve the desired result. O

REMARK 6.3. We observe that, as in remark 5.3, K5 admits the following equivalent
representations.

(i) On Jy, \ Jy, Ka(a,a,c,d,v) = QV>(a, (c — d) ® v) with QV> as in (1.6).
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(ii) On Jy \ Ju, Ka(a,b,c,c,v) = |(a —b) @ 1|, ie.

Ko(xt, x— ut,uh,v) dHN 1 = [Dx|(9).
JX
(iii) Note that
Ks(a,b,c,d,v)

>inf{/ (QV™(w(x), Vau(z)) + |Vew(z)]) de: (w, ) eA(a,b,c,d,u)},

where this latter density is the density K(a,b,c,d,v) first introduced in [25] (see
also [9, (5.83)]) and

Ala,b, e,d,v) = {(w,u) € WH!
(w(y),u

(w,u

v R
= (a,c)ify-v =1,

uy)) = (b,d) ify-v=—3,
are 1-periodic in vy, ...,vy_1 directions}.

/-\\.//\

~—

On the other hand, if W;, ¢« = 1,2, in (1.1) are proportional (as in the model
presented in [6]), i.e. Wao = aWi, a > 1, taking V as in (1.4), since for every
q €[0,1] QV(q,z) = qQW°(2) + a(l — q)QW:°(2), then we claim that K is
equal to K of [25]. Indeed, without loss of generality, assuming W; is quasi-convex
and positively 1-homogeneous, it is enough to observe that, for every (w,u) €

A(a’a b7 c, d7 V)a

K(1,0,¢,d,v) > / (w(x)W1(Vu(x)) + a(l — w(z)) Wi (Vu(z)) + |Vw(z)|) dz

v

2/ (W1 (Vu(z)) + 1) dz,

v

where we have used the fact that a + (1 — a)w > 1 and

|Vw|dz '/ Vw‘dx‘/ z)dHN T = 1.
7]

Taking a sequence of characteristic functions {x.}, admissible for As(1,0,¢,d,v)
n (1.8), such that their value is 1 in a strip of the cube orthogonal to v and of
thickness 1 — ¢, we have

Wi(Vu(z))de +1
Qv

= lim [ (xcWi(Vu(z)) + a(l = xo)Wi(Vu(z))) dz + [ Dxe[(Qy)

e—0t Q.

2 KQ(I,O,C, d’ Z/)

and this proves our claim. Observe also that if « € (0,1), then the result remains
true; it is enough to express Wi in terms of Ws.
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As emphasized in [6, remark 2.4], one can consider mixtures of more than two
conductive materials, and hence we observe that theorem 1.1 can be extended with
minor changes to these models, thereby leading to (6.12) in the remark below.

REMARK 6.4. Let T be a finite subset of R™. Theorem 1.1 also applies to energies
of the type Fy.: LY(2;T) x L' (£2;R?) x A(£2) — [0, +0oc] defined by
/ V(v,Vu)dz + ﬂAg(v+,v_,uv) dHN !
A v
Fpo(v,u; A) = " i BV(AT) x WEYHARY),  (6.10)
+00 otherwise.

Indeed, consider the relaxed localized energy of (6.10) given by
Frr(v,u; A)

= inf { liminf/ V(vn, Vuy,) dz + / glvt vy vy YAHN L
A

n— oo Jo, NA

{(Vn,up)} CBV(A4T) x WH(A;RY),
(Vn, ) — (v,u) in LY(A;T) x LI(A;Rd)},

with V' and g as in (6.1) satisfying (F1)—(F4) and (G1)—(Gs), respectively.
Moreover, define Fy,.: BV(4;T) x BV(4;R?) x A(£2) — [0, +00] as

Fpr(v,u; A) ::/ QV(v,Vu)dx—i—/ QV™ (v, dDu) d|Du|
A A d|Deul

—|—/ Kfr(v+,v_,u+,u_,y)dHN_1,
Jw,u) NA

where QV is the quasi-convex envelope of V given in (3.2), QV*° is the recession
function of QV, introduced in (1.6), and

K¢r(a,b,c,d,v) == inf { QV>(v,Vu(z)) dx
Qu
+/ gt v, v dHN T (v,u) € App(a, b, ¢, d, V)},
(6.11)
where Ay, is the set defined in (1.8) with {0, 1} replaced by the finite set ' C R™.
Thus, we are led to the following representation: for every (v,u) € L'(£2;T) x
LY(2;RY),
Fro(v,u; A) if (v,u) € BV(4;T) x BV(4;RY),

] (6.12)
400 otherwise.

Frr(v,u; A) = {

REMARK 6.5. In general we cannot expect K3 = Ky, since in (6.11) the function
g is defined in T x T' x SN~ with T R? and card(7) finite, while in (1.13), g is
defined in R? x R% x SN~=1. In particular, we recall that in .J, \ J,, K3 coincides
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with Rg, the SBV-elliptic envelope of g as in [14], while K, in (6.11) is given
by the BV-elliptic envelope introduced by Ambrosio and Braides (see [9, definition
5.13]). Analogously, it is easily seen that K, coincides with |Dx| in J, \ J,,.
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