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This paper is devoted to the relaxation and integral representation in the space of
functions of bounded variation for an integral energy arising from optimal design
problems. The presence of a perimeter penalization is also considered in order to
avoid non-existence of admissible solutions and, in addition, this leads to an
interaction in the limit energy. More general models have also been taken into
account.

1. Introduction

The optimal design problem, devoted to finding the minimal energy configurations
of a mixture of two conductive materials, has been widely studied since the pioneer-
ing work of Kohn and Strang [28–30]. It is well known that, given a container Ω
and prescribing only the volume fraction of the material where it is expected to
have a certain conductivity, an optimal configuration might not exist. To overcome
this difficulty, Ambrosio and Buttazzo in [6] imposed a perimeter penalization and
studied the minimization problem

min
{ ∫

E

(α|Du|2 + g1(x, u)) dx +
∫

Ω\E

(β|Du|2 + g2(x, u)) dx

+ σP (E, Ω) : E ⊂ Ω, u ∈ H1
0 (Ω)

}
,

finding the solution (u, E) and describing the regularity properties of the optimal
set E.

In this paper we consider the minimization of a similar functional, where the
energy density | · |2 has been replaced by the more general Wi, i = 1, 2, without
any convexity assumptions and with linear growth, and since the lower-order terms
g1(x, u) and g2(x, u) do not play any role in the asymptotics, we omit them in our
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subsequent analysis. The case of Wi, i = 1, 2, not convex with superlinear growth
has been studied in the context of thin films in [16].

Thus, given Ω, a bounded open subset of R
N , we assume that Wi : R

d×N → R

are continuous functions such that there exist positive constants α and β for which

α|ξ| � Wi(ξ) � β(1 + |ξ|) for every ξ ∈ R
d×N , i = 1, 2. (1.1)

We consider the following optimal design problem

inf
u∈W 1,1(Ω;Rd)

χE∈BV(Ω;{0,1})

{ ∫
Ω

(χEW1(∇u)+(1−χE)W2)(∇u) dx+P (E; Ω) : u = u0 on ∂Ω

}
,

(1.2)
where χE is the characteristic function of E ⊂ Ω, which has finite perimeter (see
(2.2)).

Note that by (2.2) and the definition of total variation, P (E; Ω) = |DχE |(Ω) and
we are led to the subsequent minimum problem

inf
u∈W 1,1(Ω;Rd)

χE∈BV(Ω;{0,1})

{ ∫
Ω

(χEW1 + (1 − χE)W2)(∇u) dx + |DχE |(Ω) : u = u0 on ∂Ω

}
.

The lack of convexity of the energy requires a relaxation procedure. To this
end, we start by localizing our energy. As a first step, we introduce the functional
FOD : L1(Ω; {0, 1}) × L1(Ω; Rd) × A(Ω) → [0, +∞] defined by

FOD(χ, u; A) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
A

(χEW1(∇u) + (1 − χE)W2(∇u)) dx + |DχE |(A)

in BV(A; {0, 1}) × W 1,1(A; Rd),

+∞ otherwise.

(1.3)

We then consider the relaxed localized energy of (1.3) given by

FOD(χ, u; A) := inf
{

lim inf
n→∞

∫
A

(χnW1(∇un) + (1 − χn)W2(∇un)) dx

+ |Dχn|(A) : {un} ⊂ W 1,1(A; Rd), {χn} ⊂ BV(A; {0, 1}),

un → u in L1(A; Rd) and χn
∗−⇀ χ in BV(A; {0, 1})

}
.

Let V : {0, 1} × R
d×N → (0, +∞) be given by

V (q, z) := qW1(z) + (1 − q)W2(z) (1.4)

and let F̄OD : BV(Ω; {0, 1}) × BV(Ω; Rd) × A(Ω) → [0, +∞] be defined as

F̄OD(χ, u; A) :=
∫

A

QV (χ,∇u) dx +
∫

A

QV ∞
(

χ,
dDcu

d|Dcu|

)
d|Dcu|

+
∫

J(χ,u)∩A

K2(χ+, χ−, u+, u−, ν) dHN−1, (1.5)
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where QV is the quasi-convex envelope of V given in (3.2), QV ∞ is the recession
function of QV , namely,

QV ∞(q, z) := lim
t→∞

QV (q, tz)
t

(1.6)

and

K2(a, b, c, d, ν)

:= inf
{ ∫

Qν

QV ∞(χ(x),∇u(x)) dx + |Dχ|(Qν) : (χ, u) ∈ A2(a, b, c, d, ν)
}

, (1.7)

where

A2(a, b, c, d, ν)

:= {(χ, u) ∈ BV(Qν ; {0, 1}) × W 1,1(Qν ; Rd) :

(χ(y), u(y)) = (a, c) if y · ν = 1
2 , (χ(y), u(y)) = (b, d)

if y · ν = − 1
2 , (χ, u) are 1-periodic in ν1, . . . , νN−1 directions} (1.8)

for (a, b, c, d, ν) ∈ {0, 1} × {0, 1} × R
d × R

d × SN−1, with {ν1, ν2, . . . , νN−1, ν} an
orthonormal basis of R

N , and Qν the unit cube, centred at the origin, with one
direction parallel to ν.

In § 6 we obtain the following integral representation.

Theorem 1.1. Let Ω ⊂ R
N be a bounded open set and let Wi : R

d ×N → [0, +∞),
i = 1, 2, be continuous functions satisfying (1.1). Let F̄OD be the functional defined
in (1.5). Then, for every (χ, u) ∈ L1(Ω; {0, 1}) × L1(Ω; Rd),

FOD(χ, u; A) =

{
F̄OD(χ, u; A) if (χ, u) ∈ BV(Ω; {0, 1}) × BV(Ω; Rd),
+∞ otherwise.

This result will be achieved as a particular case of a more general theorem dealing
with special functions of bounded variation that are piecewise constants.

In fact, we provide an integral representation for the relaxation of the functional
F : L1(Ω; Rm) × L1(Ω; Rd) × A(Ω) → [0, +∞] defined by

F (v, u; A) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
A

f(v,∇u) dx +
∫

A∩Jv

g(v+, v−, νv) dHN−1

in SBV0(A; Rm) × W 1,1(A; Rd),
+∞ otherwise,

(1.9)

where SBV0(A; Rm) is defined in (2.4) and f : R
m ×R

d×N → [0, +∞[ and g : R
m ×

R
m × SN−1 → [0, +∞[ satisfy the following hypotheses:

(F1) f is continuous;

(F2) there exist 0 < β′ � β such that

β′|z| � f(q, z) � β(1 + |z|)

for every (q, z) ∈ R
m × R

d×N ;
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(F3) there exists L > 0 such that

|f(q1, z) − f(q2, z)| � L|q1 − q2|(1 + |z|)

for every q1, q2 ∈ R
m and z ∈ R

d×N ;

(F4) there exist α ∈ (0, 1) and C, L > 0 such that

t|z| > L =⇒∣∣∣∣f∞(q, z) − f(q, tz)
t

∣∣∣∣ � C
|z|1−α

tα
for every (q, z) ∈ R

m × R
d×N , t ∈ R,

with f∞ the recession function of f with respect to the last variable, defined as

f∞(q, z) := lim sup
t→∞

f(q, tz)
t

(1.10)

for every (q, z) ∈ R
m × R

d×N ;

(G1) g is continuous;

(G2) there exists a constant C > 0 such that

1
C

(1 + |λ − θ|) � g(λ, θ, ν) � C(1 + |λ − θ|)

for every (λ, θ, ν) ∈ R
m × R

m × SN−1;

(G3) g(λ, θ, ν) = g(θ, λ, −ν) for every (λ, θ, ν) ∈ R
m × R

m × SN−1.

The relaxed localized energy of (1.9) is given by

F(v, u; A)

:= inf
{

lim inf
n→∞

( ∫
A

f(vn,∇un) dx +
∫

Jvn ∩A

g(vn
+, vn

−, νvn) dHN−1
)

:

{un} ⊂ W 1,1(A; Rd), {vn} ⊂ SBV0(A; Rm),

un → u in L1(A; Rd) and vn → v in L1(A; Rm)
}

.

(1.11)

Let F̄0 : SBV0(Ω; Rm) × BV(Ω; Rd) × A(Ω) → [0, +∞] be given by

F̄0(v, u; A) :=
∫

A

Qf(v,∇u) dx+
∫

A

Qf∞
(

v,
dDcu

d|Dcu|

)
d|Dcu|

+
∫

J(v,u)∩A

K3(v+, v−, u+, u−, ν) dHN−1, (1.12)
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where Qf is the quasi-convex envelope of f given in (3.2), Qf∞ is the recession
function of Qf and K3 : R

m × R
m × R

d × R
d × SN−1 → [0, +∞[ is defined as

K3(a, b, c, d, ν)

:= inf
{ ∫

Qν

Qf∞(v(x),∇u(x)) dx

+
∫

Jv∩Qν

g(v+(x), v−(x), ν(x)) dHN−1 : (v, u) ∈ A3(a, b, c, d, ν)
}

,

(1.13)

where

A3(a, b, c, d, ν)

:=
{

(v, u) ∈ (SBV0(Qν ; Rm) ∩ L∞(Qν ; Rm)) × W 1,1(Qν ; Rd) :

(v(y), u(y)) = (a, c) if y · ν = 1
2 , (v(y), u(y)) = (b, d)

if y · ν = − 1
2 , (v, u) are 1 − periodic in ν1, . . . , νN−1 directions

}
(1.14)

with {ν1, ν2, . . . , νN−1, ν} an orthonormal basis of R
N .

In the following theorem we present the main result.

Theorem 1.2. Let Ω ⊂ R
N be a bounded open set, let f : R

m × R
d×N → [0, +∞[

be a function satisfying (F1)–(F4) and let g : R
m × R

m × SN−1 → [0, +∞[ be a
function satisfying (G1)–(G3). Let F be the functional defined in (1.9). Then, for
every (v, u) ∈ L1(Ω; Rm) × L1(Ω; Rd),

F(v, u; Ω) =

{
F̄0(v, u; Ω) if (v, u) ∈ SBV0(Ω; Rm) × BV(Ω; Rd),
+∞ otherwise.

The paper is organized as follows. Preliminary results dealing with functions of
bounded variation, perimeters and special functions of bounded variation that are
piecewise constant are covered in § 2. The properties of the energy densities and
several auxiliary results involved in the proofs of representation theorems 1.1 and 1.2
are discussed in § 3. The proof of the lower bound for F in (1.11) is presented in § 4,
while § 5 contains the upper bound and the proof of theorem 1.2. The applications
to optimal design problems as in [6] and the comparison with previous related
relaxation results as in [25] (such as theorem 1.1) are discussed in § 6.

2. Preliminaries

We give a brief survey of functions of bounded variation and sets of finite perimeter.
In the following, Ω ⊂ R

N is an open bounded set and we denote by A(Ω) the
family of all open subsets of Ω. The N -dimensional Lebesgue measure is denoted
by LN , while HN−1 denotes the (N − 1)-dimensional Hausdorff measure. The unit
cube in R

N , (− 1
2 , 1

2 )N , is denoted by Q and we set Q(x0, ε) := x0 + εQ for ε > 0.
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For every ν ∈ SN−1 we define Qν := Rν(Q), where Rν is a rotation such that
Rν(eN ) = ν. The constant C may vary from line to line.

We denote by M(Ω) the space of all signed Radon measures in Ω with bounded
total variation. By the Riesz representation theorem, M(Ω) can be identified with
the dual of the separable space C0(Ω) of continuous functions on Ω vanishing on
the boundary ∂Ω. If λ ∈ M(Ω) and μ ∈ M(Ω) is a non-negative Radon measure,
we denote by dλ/dμ the Radon–Nikodým derivative of λ with respect to μ.

The following version of the Besicovitch differentiation theorem was proven by
Ambrosio and Dal Maso [7, proposition 2.2].

Theorem 2.1. If λ and μ are Radon measures in Ω, μ � 0, then there exists a
Borel measure set E ⊂ Ω such that μ(E) = 0 and, for every x ∈ suppμ − E,

dλ

dμ
(x) := lim

ε→0+

λ(x + εC)
μ(x + εC)

exists and is finite whenever C is a bounded convex open set containing the origin.

We recall that the exceptional set E does not depend on C. An immediate corol-
lary is the generalization of the Lebesgue–Besicovitch differentiation theorem given
below.

Theorem 2.2. If μ is a non-negative Radon measure and if f ∈ L1
loc(R

N , μ), then

lim
ε→0+

1
μ(x + εC)

∫
x+εC

|f(y) − f(x)| dμ(y) = 0

for μ-almost everywhere (a.e.), x ∈ R
N and for every bounded convex open set C

containing the origin.

Definition 2.3. A function w ∈ L1(Ω; Rd) is said to be of bounded variation, and
we write w ∈ BV(Ω; Rd), if all its first distributional derivatives Djwi belong to
M(Ω) for 1 � i � d and 1 � j � N .

The matrix-valued measure whose entries are Djwi is denoted by Dw and |Dw|
stands for its total variation. We observe that if w ∈ BV(Ω; Rd), then w 	→ |Dw|(Ω)
is lower semi-continuous in BV(Ω; Rd) with respect to the L1

loc(Ω; Rd) topology.
We briefly recall some facts about functions of bounded variation. For more

details we refer the reader to [9, 21,27,32].

Definition 2.4. Let w, wn ∈ BV(Ω; Rd). The sequence {wn} strictly converges in
BV(Ω; Rd) to w if {wn} converges to w in L1(Ω; Rd) and {|Dwn|(Ω)} converges to
|Dw|(Ω) as n → ∞.

Definition 2.5. Given w ∈ BV(Ω; Rd) the approximate upper limit and the ap-
proximate lower limit of each component wi, i = 1, . . . , d, are defined by

(wi)+(x) := inf
{

t ∈ R : lim
ε→0+

LN ({y ∈ Ω ∩ Q(x, ε) : wi(y) > t})
εN

= 0
}

and

(wi)−(x) := sup
{

t ∈ R : lim
ε→0+

LN ({y ∈ Ω ∩ Q(x, ε) : wi(y) < t})
εN

= 0
}

,
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respectively. The jump set of w is given by

Jw :=
d⋃

i=1

{x ∈ Ω : (wi)−(x) < (wi)+(x)}.

It can be shown that Jw and the complement of the set of Lebesgue points of
w differ at most by a set of HN−1 measure 0. Moreover, Jw is (N − 1) rectifiable,
i.e. there are C1 hypersurfaces Γi such that HN−1(Jw \

⋃∞
i=1Γi) = 0.

Proposition 2.6. If w ∈ BV(Ω; Rd), then the following hold.

(i) For LN -a.e. x ∈ Ω,

lim
ε→0+

1
ε

{
1

εN

∫
Q(x,ε)

|w(y) − w(x) − ∇w(x)(y − x)|N/(N−1) dy

}(N−1)/N

= 0.

(2.1)

(ii) For HN−1-a.e. x ∈ Jw there exist w+(x), w−(x) ∈ R
d and ν(x) ∈ SN−1

normal to Jw at x, such that

lim
ε→0+

1
εN

∫
Q+

ν (x,ε)
|w(y) − w+(x)| dy = 0,

lim
ε→0+

1
εN

∫
Q−

ν (x,ε)
|w(y) − w−(x)| dy = 0,

where Q+
ν (x, ε) := {y ∈ Qν(x, ε) : 〈y − x, ν〉 > 0} and Q−

ν (x, ε) := {y ∈
Qν(x, ε) : 〈y − x, ν〉 < 0}.

(iii) For HN−1-a.e. x ∈ Ω \ Jw,

lim
ε→0+

1
εN

∫
Q(x,ε)

|w(y) − w(x)| dy = 0.

We observe that in the vector-valued case, in general (wi)± �= (w±)i. In the
following w+ and w− denote the vectors introduced in (ii), above.

Choosing a normal νw(x) to Jw at x, we denote the jump of w across Jw by [w] :=
w+−w−. The distributional derivative of w ∈ BV(Ω; Rd) admits the decomposition

Dw = ∇wLN
Ω + ([w] ⊗ νw)HN−1
Jw + Dcw,

where ∇w represents the density of the absolutely continuous part of the Radon
measure Dw with respect to the Lebesgue measure. The Hausdorff, or jump, part
of Dw is represented by ([w] ⊗ νw)HN−1
Jw and Dcw is the Cantor part of Dw.
The measure Dcw is singular with respect to the Lebesgue measure and it is diffuse,
i.e. every Borel set B ⊂ Ω with HN−1(B) < ∞ has Cantor measure 0.

The following result, which will be exploited later, can be found in [25, lemma 2.6].

Lemma 2.7. Let w ∈ BV(Ω; Rd). Then, for HN−1-a.e. x in Jw,

lim
ε→0+

1
εN−1

∫
Jw∩Qν(x)(x,ε)

|w+(y) − w−(y)| dHN−1 = |w+(x) − w−(x)|.
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In the following we give some preliminary notions related to sets of finite perime-
ter. For a detailed treatment we refer the reader to [9].

Definition 2.8. Let E be an LN -measurable subset of R
N . For any open set Ω ⊂

R
N the perimeter of E in Ω, denoted by P (E; Ω), is the variation of χE in Ω, i.e.

P (E; Ω) := sup
{ ∫

E

div ϕ dx : ϕ ∈ C1
c (Ω; Rd), ‖ϕ‖L∞ � 1

}
. (2.2)

We say that E is a set of finite perimeter in Ω if P (E; Ω) < +∞.

Recalling that if LN (E ∩ Ω) is finite, then χE ∈ L1(Ω), by [9, proposition 3.6],
and it follows that E has finite perimeter in Ω if and only if χE ∈ BV(Ω) and
P (E; Ω) coincides with |DχE |(Ω), the total variation in Ω of the distributional
derivative of χE . Moreover, a generalized Gauss–Green formula holds:∫

E

div ϕ dx =
∫

Ω

〈νE , ϕ〉 d|DχE | ∀ϕ ∈ C1
c (Ω; Rd),

where DχE = νE |DχE | is the polar decomposition of DχE .
We also recall that, when dealing with sets of finite measure, a sequence of sets

{En} converges to E in measure in Ω if LN (Ω∩(EnΔE)) converges to 0 as n → ∞,
where Δ stands for the symmetric difference. Analogously, the local convergence in
measure corresponds to the above convergence in measure for any open set A ⊂⊂
Ω. These convergences are equivalent to L1(Ω) and L1

loc(Ω) convergences of the
characteristic functions. We also recall that the local convergence in measure in Ω
is equivalent to the convergence in measure in domains Ω with finite measure.

Denoting by P(Ω) the family of all sets with finite perimeters in Ω, we recall
the Fleming–Rishel formula (see [22, (4.59)]): for every Φ ∈ W 1,1(Ω) the set {t ∈
R : {Φ > t} �∈ P(Ω)} is negligible in R and∫

Ω

h|∇Φ| dx =
∫ +∞

−∞

∫
∂∗{Φ>t}

h dHN−1 dt (2.3)

for every bounded Borel function h : Ω → R, where ∂∗{Φ > t} denotes the essential
boundary of {Φ > t} (see [9, definition 3.60]).

At this point we deal with functions of bounded variation whose Cantor part is
null.

Definition 2.9. A function v ∈ BV(Ω; Rm) is said to be a special function of
bounded variation, and we write v ∈ SBV(Ω; Rm), if Dcv = 0, i.e.

Dv = ∇vLN
Ω + ([v] ⊗ νv)HN−1
Jv.

The space SBV0(Ω; Rm) is defined by

SBV0(Ω; Rm) := {v ∈ SBV(Ω; Rm) : ∇v = 0 and HN−1(Jv) < +∞}. (2.4)

Clearly, any characteristic function of a set of finite perimeter is in SBV0(Ω).
We recall that a sequence of sets {Ei} is a Borel partition of a Borel set B ∈

B(RN ) if and only if

Ei ∈ B(RN ) for every i, Ei ∩ Ej = ∅ for every i �= j and
∞⋃

i=1

Ei = B.
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The above requirements could be weakened by requiring that |Ei ∩ Ej | = 0 for
i �= j and |BΔ

⋃∞
i=1 Ei| = 0. Such a sequence {Ei} is said to be a Caccioppoli

partition if and only if each Ei is a set of finite perimeter.
The following result, the proof of which can be found in [18], expresses the relation

between Caccioppoli partitions and SBV0 functions.

Lemma 2.10. If v ∈ SBV0(Ω; Rm), then there exists a Borel partition {Ei} of Ω
and a sequence {vi} ⊂ R

m such that

v =
∞∑

i=1

viχEi a.e. x ∈ Ω,

HN−1(Jv ∩ Ω) = 1
2

∞∑
i=1

HN−1(∂∗Ei ∩ Ω) = 1
2

∞∑
i �=j=1

HN−1(∂∗Ei ∩ ∂∗Ej ∩ Ω),

(v+, v−, νv) ≡ (vi, vj , νi) a.e. x ∈ ∂∗Ei ∩ ∂E∗
j ∩ Ω,

where νi is the unit normal to ∂∗Ei ∩ ∂E∗
j ,

In the following we identify (v, u) ∈ SBV0(Ω; Rm)×BV(Ω; Rd) with their precise
representatives (ṽ, ũ). (See [9, definition 3.63 and corollary 3.80] for the definition.)

Remark 2.11. Since we have that SBV0(Ω; Rm) ⊂ BV(Ω; Rm), it follows that
(v, u) ∈ BV(Ω; Rm+d) for every (v, u) ∈ SBV0(Ω; Rm) × BV(Ω; Rd). Thus, (v, u)
is |Dc(v, u)| measurable and since Dc(v, u) = (0, Dcu), we may say that v is |Dcu|
measurable.

The following compactness result for bounded sequences in SBV(Ω; Rm) is due
to Ambrosio (see [2, 4]).

Theorem 2.12. Let Φ : [0, +∞) → [0, +∞) and Θ : (0, +∞] → (0, +∞] be two
functions, convex and concave, respectively, such that

lim
t→∞

Φ(t)
t

= +∞, Φ is non-decreasing,

Θ(+∞) = lim
t→∞

Θ(t), lim
t→0+

Θ(t)
t

= +∞, Θ is non-decreasing.

Let {vn} be a sequence of functions in SBV(Ω; Rm) such that

sup
n

{ ∫
Ω

Φ(|∇vn|) dx +
∫

Jvn

Θ(|[vn]|) dHN−1 +
∫

Ω

|vn| dx

}
< +∞.

There then exists a subsequence {vnk
} converging in L1(Ω; Rm) to a function v ∈

SBV(Ω; Rm) and

∇vnk
⇀ ∇v in L1(Ω; RN×m), [vnk

] ⊗ νvnk
HN−1
Jvnk

∗−⇀ [v] ⊗ νvHN−1
Jv,∫
Jv∩Ω

Θ(|[v]|) dHN−1 � lim inf
n→+∞

∫
Jvn ∩Ω

Θ(|[vn]|) dHN−1.
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3. Auxiliary results

This section is mainly devoted to describing the properties of the energy densities
involved in the integral representation of the relaxed functionals (1.5) and (1.12).

Recall that a Borel function f : R
m × R

d×N → [−∞, +∞] is said to be quasi-
convex if

f(q, z) � 1
LN (Ω)

∫
Ω

f(q, z + ∇ϕ(y)) dy (3.1)

for every open bounded set Ω ⊂ R
N with LN (∂Ω) = 0 for every (q, z) ∈ R

m×R
d×N

and every ϕ ∈ W 1,∞
0 (Ω; Rd) whenever the right-hand side of (3.1) exists as a

Lebesgue integral.
The quasi-convex envelope of f : R

m × R
d×N → [0, +∞] is the largest quasi-

convex function below f and it is denoted by Qf . If f is Borel and locally bounded
from below then it can be shown that

Qf(q, z) = inf
{ ∫

Q

f(q, z + ∇ϕ) dx : ϕ ∈ W 1,∞
0 (Q; Rd)

}
(3.2)

for every (q, z) ∈ R
m × R

d×N .
The following result guarantees that the properties of f are inherited by Qf .

Since the proof develops along the lines of [31, proposition 2.2], in turn inspired
by [19], we omit it.

Proposition 3.1. Let f : R
m × R

d×N → [0, +∞) be a function satisfying (F1)–
(F3) and let Qf : R

m × R
d×N → [0, +∞) be its quasi-convexification, as in (3.2).

Then Qf satisfies (F1)–(F3).

Remark 3.2. Let f : R
m × R

d×N → [0, +∞) be a function satisfying (F1)–(F4)
with f∞ as in (1.10).

(i) Recall that the recession function f∞(q, ·) is positively 1-homogeneous for
every q ∈ R

m.

(ii) We observe that if f satisfies the growth condition (F2), then we have that
β′|z| � f∞(q, z) � β|z| holds. Moreover, if f satisfies (F3), then f∞ satisfies

|f∞(q, z) − f∞(q′, z)| � L|q − q′| |z|,

where L is the constant appearing in (F3).

(iii) As showed in [25, remark 2.2(ii)], if a function f : R
m × R

d×N → [0, +∞) is
quasi-convex in the last variable and such that f(q, z) � c(1 + |z|) for some
c > 0, then its recession function f∞(q, ·) is also quasi-convex.

(iv) A proof entirely similar to [10, proposition 3.4] (see also [31, proposition 2.6])
ensures that for every (q, z) ∈ R

m × R
d×N , Q(f∞)(q, z) = (Qf)∞(q, z), and

hence we will adopt the notation Qf∞. In particular, if f satisfies (F1)–
(F3), proposition 3.1 guarantees that Qf∞ is continuous in both variables.
Furthermore, for every q ∈ R

m, Qf∞(q, ·) is Lipschitz continuous in the last
variable.
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(v) (Qf)∞ satisfies the analogous condition to (F4). We also observe, as empha-
sized in [25], that (F4) is equivalent to saying that there exist C > 0 and
α ∈ (0, 1) such that

|f∞(q, z) − f(q, z)| � C(1 + |z|1−α)

for every (q, z) ∈ R
m × R

d×N .

An argument entirely similar to [31, proposition 2.7] ensures that there exist α ∈
(0, 1) and C ′ > 0 such that

|(Qf)∞(q, z) − Qf(q, z)| � C ′(1 + |z|1−α)

for every (q, z) ∈ R
m × R

d×N .

The following proposition, whose proof can be obtained by arguing exactly as
in [12, p. 132], establishes the properties of the density K3.

Proposition 3.3. Let f : R
m × R

d×N → [0, +∞) and let g : R
m × R

m × SN−1 →
(0, +∞). Let K3 be the function defined in (1.13). If (F1)–(F4) and (G1)–(G3)
hold, then so do the following.

(a) |K3(a, b, c, d, ν) − K3(a′, b′, c′, d′, ν)| � C(|a − a′| + |b − b′| + |c − c′| + |d − d′|)
for every (a, b, c, d, ν), (a′, b′, c′, d′, ν) ∈ R

m × R
m × R

d × R
d × SN−1.

(b) ν 	→ K3(a, b, c, d, ν) is upper semi-continuous for every (a, b, c, d) ∈ R
m ×

R
m × R

d × R
d.

(c) K3 is upper semi-continuous in R
m × R

m × R
d × R

d × SN−1.

(d) K3(a, b, c, d, ν) � C(|a − b| + |c − d| + 1) for every ν ∈ SN−1. More pre-
cisely, from the growth conditions (F2), (G2) and the definition of K3 we
have K3(a, a, c, d, ν) � C(|c − d|), K3(a, b, c, c, ν) � C(1 + |a − b|).

A Borel measurable function g : R
m×R

m×SN−1 → R is BV-elliptic (see [3,9,14])
if, for all (a, b, ν) ∈ R

m × R
m × SN−1 and for any finite subset T of R

m,∫
Jw∩Qν

g(w+, w−, νw) dHN−1 � g(a, b, ν) (3.3)

for all w ∈ BV(Qν ; T ) such that w = v0 on ∂Qν , where

v0 :=

{
a if x · ν > 0,

b if x · ν � 0.
(3.4)

We are now in a position to provide some approximation results that allow us
to reobtain the relaxed functionals and the related energy densities in terms of
suitable relaxation procedures. To this end, we start by stating a result very similar
to [12, proposition 3.5], which allows us to obtain K3.
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Proposition 3.4. Let f : R
m × R

d×N → [0, +∞) and g : R
m × R

m × SN−1 →
(0, +∞) be functions such that (F1)–(F4) and (G1)–(G3) hold, respectively. Let K3
be the function defined in (1.13) and let (v0, u0) be given by

v0(x) :=

{
a if x · ν > 0,

b if x · ν < 0,
u0(x) :=

{
c if x · ν > 0,

d if x · ν < 0.
(3.5)

Then

K3(a, b, c, d, ν) = inf
(vn,un)

{
lim inf
n→∞

( ∫
Qν

Qf∞(vn(x),∇un(x)) dx

+
∫

Qν∩Jvn

g(v+
n (x), v−

n (x), νn(x)) dHN−1
)

:

(vn, un) ∈ SBV0(Qν ; Rm) × W 1,1(Qν ; Rd),

(vn, un) → (v0, u0) in L1(Qν ; Rm+d)
}

=: k∗
3(a, b, c, d, ν).

Remark 3.5.

(i) It is worthwhile observing that the above result ensures a sharper result than
the one that is stated; namely, the same type of arguments in [12, proposi-
tion 3.5] allow us to obtain K3(a, b, c, d, ν) as a relaxation procedure but with
test sequences in A3(a, b, c, d, ν) converging to (v0, u0) in (3.5).

(ii) Notice that in (1.14), by virtue of the growth conditions on Qf∞ (see re-
mark 3.2), we can replace the space W 1,1(Qν ; Rd) with W 1,∞(Qν ; Rd).

(iii) Under assumptions (G1)–(G3) the function K3 in (1.13) can be obtained by
taking test functions v either in BV(Ω; T ) for every T ⊂ R

m with card(T )
finite, or in SBV0(Ω; Rm) ∩ L∞(Ω; Rm). This is easy to verify by virtue of
lemma 2.10. Namely, one can approximate functions v in SBV0(Ω; Rm) ∩
L∞(Ω; Rm) by sequences {vn} in BV(Ω; Tn) with Tn ⊂ R

m and card(Tn)
finite. Moreover, (v+

n , v−
n , νvn

) → (v+, v−, νv) pointwise and we can apply the
reverse of Fatou’s lemma to obtain the equivalence between the two possible
definitions of K3.

(iv) Observe that the properties of K3 and the assumptions on f and g allow us to
replace the set SBV0(Q; Rm)∩L∞(Ω; Rm) by SBV0(Ω; Rm) in the definition
of A3 (see (1.14)).

By the proposition below, in (1.11) we can replace f by its quasi-convexification
Qf . We will omit the proof, which is quite standard, and exploits the relaxation
results in the Sobolev spaces (see [19, theorem 9.8]).

Proposition 3.6. Let Ω ⊂ R
N be a bounded open set, let f and g be as in the-

orem 4.1, let Qf be as in (3.2) and let F be given by (1.11). Then, for every
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A ∈ A(Ω) and for every (v, u) ∈ SBV0(A; Rm) × BV(A; Rd),

F(v, u; A) = inf
{

lim inf
n→∞

∫
A

Qf(vn,∇un) dx+
∫

A∩Jvn

g(v+
n , v−

n , νn) dHN−1 :

{(vn, un)} ⊂ SBV0(A; Rm) × W 1,1(A; Rd),

(vn, un) → (v, u) in L1(A; Rm) × L1(A; Rd)
}

.

The following result is analogous to [24, proposition 2.4] and is devoted to replac-
ing the test functions in (1.11) with smooth ones. We will omit the proof and just
observe that (i) follows the same arguments as those in [1] with an application of
Morse’s measure covering theorem (see [23, theorem 1.147]).

Proposition 3.7. Let f : R
m×R

d×N → [0, +∞] be a function satisfying (F1)–(F3)
and let Qf be given by (3.2).

(i) Let B be a ball in R
N . If

F̄0(v, u; B) � lim inf
n→∞

( ∫
B

Qf(vn,∇un) dx +
∫

Jvn ∩B

g(v+
n , v−

n , νvn) dHN−1
)

(3.6)
holds for every (vn, un), (v, u) ∈ SBV0(Ω; Rm) × W 1,1(Ω; Rd) such that we
have (vn, un) → (v, u) in L1(Ω; Rm) × L1(Ω; Rd), then it holds for all open
bounded sets Ω ⊂ R

N .

(ii) For every (v, u) ∈ L1(Ω; Rm) × L1(Ω; Rd), {(vn, un)} ⊂ SBV0(Ω; Rm) ×
W 1,1(Ω; Rd) such that (vn, un) → (v, u) in L1(Ω; Rm) × L1(Ω; Rd), there
exists {(ṽn, ũn)} ⊂ C∞

0 (RN ; Rm) × C∞
0 (RN ; Rd) such that (ṽn, ũn) → (v, u)

strictly in BV(Ω; Rm) × BV(Ω; Rd) and

lim inf
n→∞

∫
Ω

Qf(ṽn,∇ũn) dx = lim inf
n→∞

∫
Ω

Qf(vn,∇un) dx.

In order to achieve the integral representation in (1.2) for the jump part, we need
to modify {(vn, un)} to match the boundary in such a way that the new sequences
will be in A3(v+(x), v−(x), u+(x0), u−(x0), ν(x0)), given in (1.14), and such that
the energy doesn’t increase. This is achieved in the next lemma that, for the sake
of simplicity, is stated in the unit cube Q ⊂ R

N and with the normal to the jump
set ν = eN . The proof relies on the techniques of [15, lemma 3.5], [25, lemma 3.1]
and [5, lemma 4.4].

Lemma 3.8. Let Q := [0, 1]N and

v0(y) :=

{
a if xN > 0,

b if xN < 0,
u0(y) :=

{
c if xN > 0,

d if xN < 0.

Let {vn} ⊂ SBV0(Q; Rm) and {un} ⊂ W 1,1(Q; Rd) such that vn → v0 in L1(Q; Rm)
and un → u0 in L1(Q; Rd).
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If ρ is a mollifier, ρn := nNρ(nx), then there exists {(ζn, ξn)} ∈ A3(a, b, c, d, eN )
such that

ζn = v0 on ∂Q, ζn → v0 in L1(Q; Rm),

ξn = ρi(n) ∗ u0 on ∂Q, ξn → u0 in L1(Q; Rd)

and

lim sup
n→∞

( ∫
Q

Qf(ζn,∇ξn) dx +
∫

Jζn ∩Q

g(ζ+
n , ζ−

n , νζn
) dHN−1

)

� lim inf
n→∞

( ∫
Q

Qf(vn,∇un) dx +
∫

Jvn ∩Q

g(v+
n , v−

n , νvn
) dHN−1

)
.

Proof. Without loss of generality, we may assume that

lim inf
n→∞

( ∫
Q

Qf(vn,∇un) dx +
∫

Jvn ∩Q

g(v+
n , v−

n , νvn
) dHN−1

)

= lim
n→∞

( ∫
Q

Qf(vn,∇un) dx +
∫

Jvn ∩Q

g(v+
n , v−

n , νvn
) dHN−1

)
< +∞.

The proof is divided into two steps.

Step 1. First we claim that for every ε > 0, denoting ‖(v0, u0)‖∞ by M0, there exist
sequences {ūn} ⊂ W 1,1(Q; Rd)∩L∞(Q; Rd) and {v̄n} ⊂ SBV0(Q; Rm)∩L∞(Q; Rm)
and a constant C > 0 such that ‖ūn‖∞, ‖v̄n‖∞ � C for every n and

lim inf
n→∞

( ∫
Q

Qf(v̄n,∇ūn) dx +
∫

Jv̄n ∩Q

g(v̄+
n , v̄−

n , νv̄n
) dHN−1

)

� lim
n→∞

( ∫
Q

Qf(vn,∇un) dx +
∫

Jvn ∩Q

g(v+
n , v−

n , νvn
) dHN−1

)
+ ε. (3.7)

To achieve the claim we can apply a truncation argument as in [15, lemma 3.5]
(see also [12, lemma 3.7]). For ai ∈ R (to be determined later) depending on ε and
M0, we define φi ∈ W 1,∞

0 (Rm+d; Rm+d) such that

φi(x) =

{
x, |x| < ai,

0, |x| � ai+1,
(3.8)

‖∇φi‖∞ � 1, with x ∈ R
m+d, x ≡ (x1, x2), x1 ∈ R

m and x2 ∈ R
d.

For any n ∈ N and for any i as above, let (vi
n, ui

n) ∈ SBV0(Q; Rm)×W 1,1(Q; Rd)∩
L∞(Q; Rm+d) be given by

(vi
n, ui

n) := φi(vn, un).
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Considering the bulk part of the energy F in (1.9) and exploiting proposition 3.6
and the growth conditions on f and Qf , we have∫

Q

Qf(vi
n,∇ui

n) dx =
∫

Q∩{|(vn,un)|�ai}
Qf(vn,∇un) dx

+
∫

Q∩{|(vn,un)|>ai+1}
Qf(0, 0) dx

+
∫

Q∩{ai<|(vn,un)|�ai+1}
Qf(vi

n,∇ui
n) dx

�
∫

Q

Qf(vn,∇un) dx + C|Q ∩ {|(vn, un)| > ai+1}|

+ C1

∫
A∩{ai<|(vn,un)|�ai+1}

(1 + |∇un|) dx.

Concerning the surface term of the energy in (1.9), given that ((vi
n)±, (ui

n)±) =
φi(v±

n , u±
n ), without loss of generality one can assume that |(v−

n , u−
n )| � |(v+

n , u+
n )|

HN−1-a.e. on J(vn,un) so we have that∫
Q∩Jvi

n

g((vi
n)+, (vi

n)−, νvi
n
) dHN−1

�
∫

Jvn \{ai+1�|(v−
n ,u−

n )|}∩Q

g(φi((vi
n)+, (ui

n)+), φi((vi
n)−, (ui

n)−), ν(vi
n,ui

n)) dHN−1.

Arguing as in [15, lemma 3.5] (see also [15, remark 3.6]) and exploiting the growth
conditions on g, we can estimate (1/k)

∑k
i=1F (vi

n, ui
n; Q) for any fixed k ∈ N and

for every n ∈ N, with k independent on n. Then

1
k

k∑
i=1

F (vi
n, ui

n; Q)

� F (vn, un; Q)

+
1
k

k∑
i=2

(
C|Q ∩ {|(vn, un)| > ai+1}| + C4

∫
Ji
2∩Q

(1 + |v−
n |) dHN−1

)

+
1
k

(
c2

∫
Q

(1 + |∇un|) dx + 3C4

∫
Jvn ∩Q

(1 + |v+
n − v−

n |) dHN−1
)

,

where J i
2 := {|v−

n | � ai, |v+
n | � ai+1}. By the growth conditions, there exists a

constant C such that

c2

∫
Q

(1 + |∇un|) dx + 3c4

∫
Jvn ∩Q

(1 + |v+
n − v−

n |) dHN−1 � C

for every n ∈ N. Choose k ∈ N such that c/k � ε/3. Moreover,

C �
∫

Ji
2∩Q

|v+
n −v−

n | dHN−1 �
∫

Ji
2∩Q

(|v+
n |−|v−

n |) dHN−1 � (ai+1−ai)HN−1(J i
2∩Q),
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whence ∫
Ji
2∩Q

(1 + |v−
n |) dHN−1 � C

1 + ai

ai+1 − ai
.

The sequence {ai} can be chosen recursively as follows:

C2|Q ∩ {|(vn, un)| > ai}| � ε

3
for every n ∈ N, ai+1 � M0,

c4C
1 + ai

ai+1 − ai
� ε

3
for every i ∈ N.

This is possible since {(vn, un)} is bounded in L1. We thus obtain

1
k

k∑
j=1

F (vij
n , uij

n ; Q) � F (vn, un; Q) + ε.

Therefore, for every n ∈ N there exists i(n) ∈ {1, . . . , k} such that

F (vin
n , uin

n ; Q) � F (vn, un; Q) + ε.

It suffices to define v̄n := vin
n and ūn := uin

n to achieve (3.7) and observe that {ūn}
and {v̄n} are bounded in L∞, by construction.

Step 2. This step is devoted to the construction of sequences {ξn} and {ζn} as in
the statement of lemma 3.8. Let v̄n and ūn be as in step 1. Define

wn(x) := (ρn ∗ u0)(x) =
∫

B(x,1/n)
ρn(x − y)u0(y) dy.

As ρ is a mollifier we have, for each tangential direction i = 1, . . . , N−1, wn(x+ei) =
wn(x) and so

wn(y) =

⎧⎪⎪⎨
⎪⎪⎩

c if xN >
1
n

,

d if xN < − 1
n

,

‖∇wn‖∞ = O(n), wn ∈ A1(c, d, eN ),

where

A1(c, d, eN ) := {u ∈ W 1,1(Qν ; Rd) : u(y) = c if y · ν = 1
2 , u(y) = d if y · ν = − 1

2

with u 1-periodic in ν1, . . . , νN−1directions}.

Let

αn :=
√

‖ūn − wn‖L1(Q;Rd) + ‖v̄n − v0‖L1(Q),

kn := n[1 + ‖ūn‖W 1,1(Q;Rd) + ‖wn‖W 1,1(Q;Rd)

+ ‖v̄n‖BV(Q) + ‖v0‖BV(Q) + HN−1(Jv̄n)]

and sn := αn/kn, where [k] denotes the largest integer less than or equal to k.
Since αn → 0+, we may assume that 0 � αn < 1 and set Q0 := (1 − αn)Q,
Qi := (1 − αn + isn)Q, i = 1, . . . , kn.
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Consider a family of cut-off functions ϕi ∈ C∞
0 (Qi), 0 � ϕi � 1, ϕi = 1 in Qi−1,

‖∇ϕi‖∞ = O(1/sn) for i = 1, . . . , kn and define

u(i)
n (x) := (1 − ϕi(x))wn(x) + ϕi(x)ūn(x).

Since u
(i)
n = wn on ∂Q, we have that u

(i)
n ∈ A1(c, d, eN ). Clearly,

∇u(i)
n = ∇ūn in Qi−1, ∇u(i)

n = ∇wn in Q \ Qi

and in Qi \ Qi−1,

∇u(i)
n = ∇wn + ϕi(∇ūn − ∇wn) + (ūn − wn) ⊗ ∇ϕi.

For 0 < t < 1 define

vt
n,i(x) :=

{
v0(x) if ϕi(x) < t,

v̄n(x) if ϕi(x) � t.

Clearly, limn→∞ ‖vt
n,i − v0‖L1(Q) = 0 as n → ∞, independently on i and t. For

every n and i, by the Fleming–Rishel formula (2.3), it is possible to find tn,i ∈ ]0, 1[
such that

{x ∈ Q : ϕi(x) < tn,i} ∈ P(Q),

HN−1(Jv0 ∩ {x ∈ Q : ϕi(x) = tn,i}) = HN−1(Jv̄n ∩ {x ∈ Q : ϕi(x) = tn,i}) = 0,

where P(Q) denotes the family of sets with finite perimeter in Q. Let

v
tn,i

n,i :=

{
v0(x) in Q ∩ {x ∈ Q : ϕi(x) < tn,i},

v̄n(x) in Q ∩ {x ∈ Q : ϕi(x) � tn,i}.

Clearly, limn→∞ ‖v
tn,i

n,i − v0‖L1(Q) = 0, {v
tn,i

n,i } ⊂ SBV0(Q; Rm) ∩ L∞(Q; Rm) and,
from step 1, it is uniformly bounded on n, i and t.

We have∫
Q

Qf(vtn,i

n,i ,∇u(i)
n ) dx +

∫
J

v
tn,i
n,i

∩Q

g((vtn,i

n,i )+, (vtn,i

n,i )−, ν
v

tn,i
n,i

) dHN−1

�
∫

Q

Qf(v̄n,∇ūn) dx

+ C

∫
Qi\Qi−1

(
1 + |ūn(x) − wn(x)| 1

sn
+ |∇ūn(x)| + |∇wn(x)|

)
dx

+ C

∫
Q\Qi

(1 + |∇wn(x)|) dx +
∫

Q∩{ϕi>tn,i}1

g(v̄+
n , v̄−

n , νv̄n
) dHN−1

+ |Dv
tn,i

n,i |(Q ∩ {ϕi > tn,i}0) + HN−1((Q ∩ {ϕi > tn,i}0))

+ |Dv
tn,i

n,i |(∂∗{ϕi < tn,i}) + HN−1(∂∗{ϕi < tn,i})

�
∫

Q

Qf(v̄n,∇ūn) dx + I1 +
∫

Q∩Jv̄n

g(v̄+
n , v̄−

n , νv̄n
) dHN−1

+ C|Dv0|(Q \ Qi : {ϕi > tn,i}0) +
C

sn

∫
Qi\Qi−1

|v̄n − v0| dx +
1
sn

O(sn),

https://doi.org/10.1017/S0308210513001479 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001479


240 G. Carita and E. Zappale

where

{ϕi > tn,i}1 :=
{

x ∈ Q :
|{x ∈ Q : ϕi > tn,i} ∩ Bρ(x)|

|Bρ(x)| = 1
}

,

{ϕi > tn,i}0 :=
{

x ∈ Q :
|{x ∈ Q : ϕi > tn,i} ∩ Bρ(x)|

|Bρ(x)| = 0
}

,

I1 := C

∫
Qi\Qi−1

(
1 + |ūn(x) − wn(x)| 1

sn
+ |∇ūn(x)| + |∇wn(x)|

)
dx

+ C

∫
Q\Qi

(1 + |∇wn(x)|) dx

and we have used (2.3) in the last two terms of the above estimate.
Averaging over all layers Qi \ Qi−1 one obtains

1
kn

kn∑
i=1

( ∫
Q

Qf(vtn,i

n,i ,∇u(i)
n ) dx +

∫
Q∩J

v
tn,i
n,i

g((vtn,i

n,i )+, (vtni
n,i )

−, ν
v

tn,i
ni

) dHN−1
)

�
∫

Q

Qf(v̄n, ūn) dx +
∫

Q∩Jvn

g(v̄+
n , v̄−

n , νv̄n) dHN−1

+
C

kn

∫
Q

(1 + |∇ūn| + |∇v̄n|) dx +
C

kn

∫
Q

|ūn − wn| 1
sn

dx

+ C

∫
Q\Q0

(1 + |∇wn|) dx + C|Dv0|(Q \ Q0)

+
C

snkn

∫
Q\Q0

|v̄n − v0| dx +
C

kn

�
∫

Q

Qf(v̄n,∇ūn) dx +
∫

Q∩Jvn

g(v̄+
n , v̄−

n , νv̄n) dHN−1

+
C

kn

∫
Q

(1 + |∇ūn| + |∇v̄n|) dx +
C

αn
‖ūn − wn‖L1 + C

∫
Q\Q0

(1 + |∇wn|) dx

+ C|Dv0|(Q \ Q0) +
C

αn
‖v̄n − v0‖L1(Q) +

C

kn
.

Since |Q \ Q0| = O(αn) and ∇wn(x) = 0 if |xN | > 1/N , we estimate

∫
Q\Q0

(1+|∇wn|) dx � O(αn)+HN−1(Q\Q0∩{xN = 0})
∫ 1/n

−1/n

O(n) dxN = O(αn).

The same argument exploited above in order to estimate
∫

Q\Q0
dx applies to esti-

mate |Dv0|(Q \ Q0) since v0 is a jump function across xN = 0, namely, |Dv0|(Q \
Q0) = CHN−1(Q \ Q0 ∩ {xN = 0}), where we also recall that Q0 = αnQ.

Setting

εn := O

(
1
n

)
+ C

√
‖ūn − wn‖L1(Q;Rd) + ‖v̄n − v0‖L1(Q) + O(αn)
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we have that εn → 0+ and

1
kn

kn∑
i=1

( ∫
Q

Qf(vtn,i

n,i ,∇u(i)
n ) dx +

∫
Q∩J

v
tn,i
ni

g((vtn,i

n,i )+, (vtn,i

n,i )−, ν
v

tn,i
n,i

) dHN−1
)

�
∫

Q

Qf(v̄n,∇ūn) dx +
∫

Q∩Jv̄n

g(v̄+
n , v̄−

n , νv̄n) dHN−1 + εn

and so there exists an index i(n) ∈ {1, . . . , kn} for which∫
Q

Qf(vtn,i(n)

n,i(n) ,∇ui(n)
n ) dx +

∫
Q∩J

v
tn,i
ni

g((vtn,i

n,i )+, (vtn,i

n,i )−, ν
v

tn,i
n,i

) dHN−1

�
∫

Q

Qf(v̄n,∇ūn) dx +
∫

Q∩Jv̄n

g(v̄+
n .v̄−

n , νv̄n
) dHN−1 + εn.

It suffices to define ξn := u
i(n)
n and ζn := v

tn,i(n)

n,i(n) to get

lim sup
n→∞

( ∫
Q

Qf(ζn,∇ξn) dx +
∫

Jζn ∩Q

g(ζ+
n , ζ−

n , νζn) dHN−1
)

� lim inf
n→∞

( ∫
Q

Qf(v̄n,∇ūn) dx +
∫

Jv̄n ∩Q

g(v̄+
n , v̄−

n , νv̄n
) dHN−1

)
,

which concludes the proof.

Remark 3.9.
(i) Observe that arguing as in the first step of lemma 3.8, we have that for every
u ∈ BV(Ω; Rd) and v ∈ SBV0(Ω; Rm) ∩ L∞(Ω; Rm),

F(v, u; A)

= inf
{

lim inf
n→∞

( ∫
A

f(vn,∇un) dx +
∫

Jvn ∩A

g(vn
+, vn

−, νvn) dHN−1
)

:

{vn} ⊂ SBV0(A; Rm) ∩ L∞(A; Rm), {un} ⊂ W 1,1(A; Rd),

(vn, un) → (v, u) in L1(A; Rm+d), sup
n

‖vn‖∞ < +∞
}

.

(ii) Similarly, if u ∈ BV(Ω; Rd) ∩ L∞(Ω; Rd), then

F(v, u; A)

= inf
{

lim inf
n→∞

( ∫
A

f(vn,∇un) dx +
∫

Jvn ∩A

g(vn
+, vn

−, νvn) dHN−1
)

:

{vn} ⊂ SBV0(A; Rm) ∩ L∞(A; Rm), {un} ⊂ W 1,1(A; Rd) ∩ L∞(A; Rd),

(vn, un) → (v, u) in L1(A; Rm+d), sup
n

‖(vn, un)‖∞ < +∞
}

.

(iii) Notice that an argument entirely similar to [14, lemmas 13 and 14] allows us
to say that for every (v, u) ∈ SBV0(Ω; Rm) × BV(Ω; Rd), we have that

F(v, u; A) = lim
j→∞

F(φj(v, u); A),

where φj are the functions defined in (3.8).
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We conclude this section with a result that will be exploited later on.

Lemma 3.10. Let X be a function space. For any F : R × X → [0,∞],

lim sup
ε→0+

inf
u∈X

F (ε, u) � inf
u∈X

lim sup
ε→0+

F (ε, u).

Proof. For any ũ ∈ X,
inf

u∈X
F (ε, u) � F (ε, ũ).

Thus,
lim sup
ε→0+

inf
u∈X

F (ε, u) � lim sup
ε→0+

F (ε, ũ)

for every ũ ∈ X. Applying the infimum in the previous inequality, one obtains

inf
ũ∈X

lim sup
ε→0+

inf
u∈X

F (ε, u) � inf
ũ∈X

lim sup
ε→0+

F (ε, ũ).

Hence,

lim sup
ε→0+

inf
u∈X

F (ε, u) � inf
u∈X

lim sup
ε→0+

F (ε, u).

4. Lower bound

This section is devoted to the proof of the lower bound inequality for theorem 1.2.
Recall that F and F̄0 are the functionals introduced in (1.11) and (1.12).

Theorem 4.1. Let Ω ⊂ R
N be a bounded open set, let f : R

m × R
d → [0, +∞)

satisfy (F1)–(F4) and let g : R
m ×R

m ×SN−1 → [0, +∞) satisfy (G1)–(G3). Then,
for every (v, u) ∈ SBV0(Ω; Rm) × BV(Ω; Rd) and for every sequence {(vn, un)} ⊂
SBV0(Ω; Rm)×W 1,1(Ω; Rd) such that (vn, un) → (v, u) in L1(Ω; Rm)×L1(Ω; Rd),

F̄0(v, u; Ω) � lim inf
n→∞

F (vn, un; Ω), (4.1)

where F̄0 is given by (1.12).

Proof. Let (v, u) ∈ SBV0(Ω; Rm) × BV(Ω; Rd). Without loss of generality, we may
assume that for every {(vn, un)} ⊂ SBV0(Ω; Rm) × BV(Ω; Rd) converging to (v, u)
in L1(Ω; Rm) × L1(Ω; Rd),

lim inf
n→∞

( ∫
Ω

f(vn,∇un) dx +
∫

Jvn ∩Ω

g(v+
n , v−

n , νvn) dHN−1
)

= lim
n→∞

( ∫
Ω

f(vn,∇un) dx +
∫

Jvn ∩Ω

g(v+
n , v−

n , νvn) dHN−1
)

< +∞.

For every Borel set B ⊂ Ω define

μn(B) :=
∫

B

f(vn,∇un) dx +
∫

Jvn ∩B

g(v+
n , v−

n , νvn) dHN−1.
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Since {μn} is a sequence of non-negative Radon measures uniformly bounded in
the space of measures, we can extract a subsequence, still denoted by {μn}, weakly
∗ converging in the sense of measures to some Radon measure μ. Using the Radon–
Nikodým theorem we can decompose μ as the sum of four mutually singular non-
negative measures, namely

μ = μaLN + μc|Dcu| + μjHN−1
J(v,u) + μs, (4.2)

where we are considering (v, u) as a unique field in BV(Ω; Rm+d) and have exploited
the fact that Dc(v, u) = (0, Dcu) (see remark 2.11). By the Besicovitch derivation
theorem

μa(x0) = lim
ε→0+

μ(B(x0, ε))
LN (B(x0, ε))

< +∞ for LN -a.e. x0 ∈ Ω, (4.3 a)

μj(x0) = lim
ε→0+

μ(Qν(x0, ε))
HN−1(Qν(x0, ε) ∩ J(v,u))

< +∞ for HN−1-a.e. x0 ∈ J(v,u) ∩ Ω,

(4.3 b)

μc(x0) = lim
ε→0+

μ(Q(x0, ε))
|Du|(Q(x0, ε))

< +∞ for |Dcu|-a.e. x0 ∈ Ω. (4.3 c)

We claim that

μa(x0) � Qf(v(x0),∇u(x0)) for LN -a.e. x0 ∈ Ω, (4.4)

μj(x0) � K3(v+(x0), v−(x0), u+(x0), u−(x0), ν(v,u))

for HN−1-a.e. x0 ∈ J(v,u) ∩ Ω, (4.5)

μc(x0) � (Qf)∞
(

v(x0),
dDcu

d|Dcu| (x0)
)

for |Dcu|-a.e. x0 ∈ Ω, (4.6)

where Qf is the density introduced in (3.2), Qf∞ is its recession function as in
(1.10) and K3 is given by (1.13). If (4.4)–(4.6) hold, then (4.1) follows immediately.
Indeed, since μn

∗−⇀ μ in the sense of measures,

lim inf
n→∞

( ∫
Ω

f(vn,∇un) dx +
∫

Jvn ∩Ω

g(v+
n , v−

n , νvn
) dHN−1

)

� lim inf
n→∞

μn(Ω)

� μ(Ω)

�
∫

Ω

μa dx +
∫

J(v,u)

μj dHN−1 +
∫

Ω

μc d|Dcu|

�
∫

Ω

Qf(v(x),∇u(x)) dx +
∫

Ju∩Ω

K3(v+(x), v−(x), u+(x), u−(x), ν(v,u)) dHN−1

+
∫

Ω

(Qf)∞
(

v(x),
dDcu

d|Dcu| (x)
)

d|Dcu|,

where we have used the fact that μs is non-negative.

https://doi.org/10.1017/S0308210513001479 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001479


244 G. Carita and E. Zappale

We prove (4.4)–(4.6) using the blow-up method introduced in [24].

Step 1. Let x0 ∈ Ω be a Lebesgue point for ∇u and v such that x0 /∈ J(v,u) and
(2.1) applied to u and (4.3 a) hold.

We observe that

lim inf
n→∞

( ∫
Ω

f(vn,∇un) dx +
∫

Jvn ∩Ω

g(v+
n , v−

n , νvn
) dHN−1

)

� lim inf
n→∞

∫
Ω

f(vn,∇un) dx

� lim inf
n→∞

∫
Ω

Qf(vn,∇un) dx.

Note that, by proposition 3.1, Qf satisfies (F1)–(F3). By proposition 3.7, we may
assume that {(vn, un)} ⊂ C∞

0 (RN ; Rm) × C∞
0 (RN ; Rd) and applying [25, (2.10) in

theorem 2.19] to the functional

G : (v, u) ∈ W 1,1(Ω; Rm+d) →
∫

Ω

Qf(v,∇u) dx

we obtain (4.4).

Step 2. Now we prove (4.5).
Recall that J(v,u) = Jv ∪ Ju and ν(v,u) = νv for every (v, u) ∈ SBV0(Ω; Rm) ×

W 1,1(Ω; Rd). By lemma 2.7, proposition 2.6(ii) and theorem 2.1, we may fix x0 ∈
J(v,u) ∩ Ω such that

lim
ε→0+

1
εN−1

∫
J(v,u)∩Qν(x0,ε)

(|v+(x) − v−(x0)| + |u+(x) − u−(x0)|) dHN−1

= |v+(x0) − v−(x0)| + |u+(x0) − u−(x0)|, (4.7)

lim
ε→0+

1
εN

∫
{x∈Qν(x0,ε) : (x−x0)·ν(x)>0}

|v(x) − v+(x0)|N/(N−1) dx

+ lim
ε→0+

1
εN

∫
{x∈Qν(x0,ε) : (x−x0)·ν(x)>0}

|u(x) − u+(x0)|N/(N−1) dx = 0, (4.8)

lim
ε→0+

1
εN

∫
{x∈Qν(x0,ε) : (x−x0)·ν(x)<0}

|v(x) − v−(x0)|N/(N−1) dx

+ lim
ε→0+

1
εN

∫
{x∈Qν(x0,ε) : (x−x0)·ν(x)<0}

|u(x) − u−(x0)|N/(N−1) dx = 0, (4.9)

μj(x0) = lim
ε→0+

μ(x0 + εQν(x0))
HN−1
J(v,u)(x0 + εQν(x0))

exists and is finite. (4.10)

For simplicity of notation we write Q := Qν(x0). Then, by (4.10),

μj(x0) = lim
ε→0+

1
εN−1

∫
x0+εQ

dμ(x). (4.11)
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Without loss of generality, we may choose ε > 0 such that μ(∂(x0 +εQ)) = 0. Since
Qf � f , we have

μj(x0)

� lim
ε→0+

lim
n→∞

1
εN−1

( ∫
x0+εQ

Qf(vn(x),∇un(x)) dx +
∫

Jvn

g(v+
n , v−

n , νvn) dHN−1
)

= lim
ε→0+

lim
n→∞

ε

∫
Q

Qf(vn(x0 + εy),∇un(x0 + εy)) dy

+
∫

Q∩J(vn,un)−x0/ε

g(v+
n (x0 + εy), v−

n (x0 + εy), ν(vn,un)(x0 + εy)) dHN−1(y).

Define
vn,ε(y) := vn(x0 + εy), un,ε(y) := un(x0 + εy),

νn,ε(y) := ν(vn,un)(x0 + εy)

}
(4.12)

and

v0(y) :=

{
v+(x0) if yν(x0) > 0,

v−(x0) if yν(x0) < 0,
u0(y) :=

{
u+(x0) if yν(x0) > 0,

u−(x0) if yν(x0) < 0.

(4.13)
Since (vn, un) → (v, u) in L1(Ω; Rm+d), by (4.8) and (4.9) one obtains

lim
ε→0+

lim
n→∞

∫
Q

|vn,ε(y) − v0(y)| dy

= lim
ε→0+

1
εN

( ∫
{x∈x0+ε∂Q : (x−x0)ν(x0)>0}

|v(x) − v+(x0)| dx

+
∫

{x∈x0+ε∂Q : (x−x0)ν(x0)<0}
|v(x) − v−(x0)| dx

)
= 0 (4.14)

and

lim
ε→0+

lim
n→∞

∫
Q

|un,ε(y) − u0(y)| dy

= lim
ε→0+

1
εN

( ∫
{x∈x0+ε∂Q : (x−x0)ν(x0)>0}

|u(x) − u+(x0)| dx

+
∫

{x∈x0+ε∂Q : (x−x0)ν(x0)<0}
|u(x) − u−(x0)| dx

)
= 0. (4.15)

Thus,

μj(x0) � lim
ε→0+

lim
n→∞

( ∫
Q

Qf∞
(

vn,ε(y),∇un,ε(y)
)

dy

+
∫

Q∩J(vn,ε,unε )
g(v+

n,ε, v
−
n,ε, νvn,ε

) dHN−1(y)

+
∫

Q

(
εQf

(
vn,ε(y),

1
ε
∇un,ε(y)

)
− Qf∞(vn,ε,∇un,ε)

)
dy

)
.
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Exploiting remark 3.2(v), we can argue as in the estimates [25, (3.3)–(3.5)], thus
obtaining

μj(x0) � lim inf
ε→0+

lim inf
n→∞

( ∫
Q

Qf∞(vn,ε(y),∇un,ε(y)) dy

+
∫

Q∩J(vn,ε,un,ε)
g(v+

n,ε, v
−
n,ε, νvn,ε) dHN−1(y)

)
.

Since (vn,ε, un,ε) → (v0, u0) in L1(Q; Rm+d) as n → ∞ and ε → 0+, by a stan-
dard diagonalization argument, as in [12, theorem 4.1, steps 2 and 3], we obtain a
sequence (v̄k, ūk) converging to (v0, u0) in L1(Q; Rm+d) as k → ∞ such that

μj(x0) � lim
k→∞

( ∫
Q

Qf∞(v̄k(y),∇ūk(y)) dy

+
∫

Q∩J(vk,wk)

g(v̄+
k , v̄−

k , νv̄k
) dHN−1(y)

)
.

Applying lemma 3.8 with Qf replaced by Qf∞ and using remark 3.2(v), we may
find {(ζk, ξk)} ∈ A3(v+(x0), v−(x0), u+(x0), u−(x0), ν(x0)) such that

μj(x0) � lim
k→∞

( ∫
Q

Qf∞(ζk,∇ξk) dx +
∫

Q∩J(ζk,ξk)

g(ζ+
k , ζ−

k , νζk
) dHN−1

)

� K3(v+(x0), v−(x0), u+(x0), u−(x0), ν(x0)).

Step 3. Here we show (4.6).
Let (v, u) ∈ SBV0(Ω; Rm) × BV(Ω; Rd) and note, as already emphasized in

remark 2.11, that |Dc(v, u)| = |Dcu|. For |Dcu|-a.e. x0 ∈ Ω, we have

lim
ε→0+

|D(v, u)|(Q(x0, ε))
|Dc(v, u)|(Q(x0, ε))

= lim
ε→0+

|D(v, u)|(Q(x0, ε))
|Dcu|(Q(x0, ε))

= 1.

And so, by [25, theorems 2.4(iii) and 2.11] and by theorem 2.1, for |Dcu|-a.e. x0 ∈ Ω
we have

μc(x0) = lim
ε→0+

μ(Q(x0, ε))
|Du|(Q(x0, ε))

,

lim
ε→0+

1
εN

∫
Q(x0,ε)

(|u(x) − u(x0)| + |v(x) − v(x0)|) dx = 0

for HN−1-a.e. x0 ∈ Ω \ J(v,u),

A(x0) = lim
ε→0+

(D(v, u))(Q(x0, ε))
|D(v, u)|(Q(x0, ε))

, ‖A(x0)‖ = 1, A(x0) = a ⊗ ν

with a ∈ R
d and ν ∈ SN−1,

lim
ε→0+

|D(v, u)|(Q(x0, ε))
εN−1 = lim

ε→0+

|Du|(Q(x0, ε))
εN−1 = 0,

lim
ε→0+

|D(v, u)|(Q(x0, ε))
εN

= lim
ε→0+

|Du|(Q(x0, ε))
εN

= ∞.
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Arguing as in the end of step 1, by proposition 3.7(ii) we may assume that
{(ṽn, ũn)} ⊂ C∞

0 (RN ; Rm+d). Applying [25, (2.12) in theorem 2.19] to the func-
tional G : (v, u) ∈ W 1,1(Ω; Rm+d) →

∫
Ω

Qf(v,∇u) dx, we obtain, for |Dc(v, u)|-a.e.
x0 ∈ Ω,

μc(x0) � (Qf)∞
(

v(x0),
dDcu

d|Dcu| (x0)
)

,

which concludes the proof.

5. Upper bound

This section is devoted to proving that F � F̄0.

Theorem 5.1. Let Ω ⊂ R
N be a bounded open set, let f : R

d ×R
m → [0, +∞) be a

function satisfying (F1)–(F4) and let g : R
m × R

m × SN−1 → [0, +∞[ be a function
satisfying (G1)–(G3).

Then, for every (v, u) ∈ SBV0(Ω; Rm) × BV(Ω; Rd) and for every A ∈ A(Ω),
there exist sequences {vn} ⊂ SBV0(Ω; Rm), {un} ⊂ W 1,1(Ω; Rd) such that vn → v
in L1(Ω; Rm), un → u in L1(Ω; Rd) and

lim inf
n→∞

F (vn, un; A) � F̄0(v, u; A).

Before proving the upper bound we recall our strategy, which was first proposed
in [8] and further developed in [25]. Namely, first we will show that F(v, u; ·) is a
variational functional with respect to the L1 topology and that

F(v, u; ·) � LN + |Dv| + |Du| + HN−1
Jv.

Next, using Besicovitch’s differentiation theorem, a blow-up argument will provide
an upper bound estimate in terms of F̄0, first for bulk and Cantor parts, then
also for the jump part, when the target functions (v, u) are bounded. Finally, the
same approximation as in [8, theorem 4.9] will give the estimate for every (v, u) ∈
SBV0(Ω; Rm) × BV(Ω; Rd).

We recall that F(v, u; ·) is said to be a variational functional with respect to the
L1 topology if the following hold.

(i) F(·, ·; A) is local, i.e. F(v, u; A) = F(v′, u′; A) for every v, v′ ∈ SBV0(A; Rm),
u, u′ ∈ BV(A; Rd) satisfying u = u′ and v = v′ a.e. in A.

(ii) F(·, ·; A) is sequentially lower semi-continuous, i.e. if vn, v ∈ BV(A; Rm),
un, u ∈ BV(A; Rd) and vn → v in L1(A; Rm), un → u in L1(A; Rd), then
F(v, u; A) � lim infn→∞ F(vn, un; A).

(iii) F(·, ·; A) is the trace on {A ⊂ Ω : A is open} of a Borel measure on B(Ω), the
family of all Borel subsets of Ω.

Since the lower semi-continuity and the locality of F(·, ·; A) follow from its def-
inition, it remains to prove (iii). This is the target of the following lemma, where
(iii) will be obtained via a refinement of De Giorgi–Letta criterion (see [20, corol-
lary 5.2]).
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Lemma 5.2. Let Ω ⊂ R
N be an open bounded set with Lipschitz boundary and let f

and g be as in theorem 5.1. For every (v, u) ∈ SBV0(Ω; Rm) × BV(Ω; Rd) the set
function F(v, u; ·) in (1.11) is the trace of a Radon measure absolutely continuous
with respect to LN + |Dv| + |Du| + HN−1
Jv.

Proof. An argument very similar to [13, lemma 2.6 and remark 2.7] and [10, lemma
4.7] entails

F(v, u; A) � C(LN (A) + |Dv|(A) + |Du|(A) + HN−1
Jv(A)).

By [20, corollary 5.2], to obtain (iii) it suffices to prove that

F(v, u; A) � F(v, u; B) + F(v, u; A \ Ū)

for all A, U, B ∈ A(Ω) with U ⊂⊂ B ⊂⊂ A, u ∈ BV(Ω; Rd) and v ∈ SBV0(Ω; Rm).
We start by assuming that v ∈ SBV0(Ω; Rm) ∩ L∞(Ω; Rm).
Fix η > 0 and find {wn} ⊂ W 1,1((A \ Ū); Rd), {vn} ⊂ SBV0(A \ Ū ; Rm) ∩

L∞(A \ Ū ; Rm) (see remark 3.9) such that wn → u in L1((A \ Ū); Rd), vn → v in
L1((A \ Ū); Rm) and

lim sup
n→∞

( ∫
A\Ū

f(vn,∇wn) dx

+
∫

A\Ū∩Jvn

g(v+
n , v−

n , νvn
) dHN−1

)
� F(v, u; A \ Ū) + η. (5.1)

Extract a subsequence still denoted by n such that the above upper limit is a
limit.

Let B0 be an open subset of Ω with Lipschitz boundary such that U ⊂⊂ B0 ⊂⊂
B. There then exist {un} ⊂ W 1,1(B0; Rd) and {v̄n} ⊂ SBV0(B0; Rm)∩L∞(B0; Rm)
(see remark 3.9(i)) such that un → u in L1(B0; Rd), v̄n → v in L1(B0; Rm) and

F(v, u; B0) = lim
n→∞

( ∫
B0

f(v̄n,∇un) dx +
∫

Jv̄n ∩B0

g(v̄+
n , v̄−

n , νv̄n
) dHN−1

)
. (5.2)

For every (v̄, w) ∈ SBV0(A; Rm) ∩ L∞(A; Rm) × W 1,1(A; Rd) consider

Gn(v̄, w; A) :=
∫

A

(1 + |∇w|) dx + (1 + [v̄])HN−1
(Jv̄ ∩ A).

Due to the coercivity condition (1.1), up to a subsequence, not relabelled, νn :=
Gn(vn, wn; ·) + Gn(v̄n, un; ·) restricted to B0 \ Ū converges in the sense of distri-
butions to some Radon measure ν, defined on B0 \ Ū . Analogously, for every
w ∈ SBV0(A; Rm) ∩ L∞(A; Rm) we can define a sequence of measures

Hn(w; E) :=
∫

Jw∩E

dHN−1.

For every t > 0, let Bt := {x ∈ B0 | dist(x, ∂B0) > t}. Define, for 0 < δ <
η, the subsets Lδ := Bη−2δ \ B̄η+δ. Consider a smooth cut-off function ϕδ ∈
C∞

0 (Bη−δ; [0, 1]) such that ϕδ(x) = 1 on Bη. As the thickness of the strip is of
order δ, we have an upper bound of the form ‖∇ϕδ‖L∞(Bη−δ) � C/δ.
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Define w̄n(x) := ϕδ(x)un(x) + (1 − ϕδ(x))wn(x). Clearly, {w̄n} converges to u in
L1(A) as n → ∞ and

∇w̄n = ϕδ∇un + (1 − ϕδ)∇wn + ∇ϕδ ⊗ (un − wn).

Arguing as in [5, lemma 4.4], we may consider a sharp transition for the SBV0
functions. Namely, let {vn} and {v̄n} be as above. Then for every 0 < t < 1 we
may define ṽt

n such that ṽt
n → v in L1(A) as n → ∞ and

ṽt
n(x) :=

{
vn(x) in {x : ϕδ(x) < t},

v̄n(x) in {x : ϕδ(x) � t}.

Clearly, ṽt
n(x) ∈ {vn(x), v̄n(x)} almost everywhere in A and since we have that

HN−1(Jvn
),HN−1(Jv̄n) < +∞ for all but at most countable t ∈ ]0, 1[, it results

that

HN−1(Jvn ∩ {x ∈ A : ϕδ(x) = t}) = HN−1(Jv̄n
∩ {x ∈ A : ϕδ(x) = t}) = 0.

Moreover, using the coarea formula (2.3) and the mean value theorem it is possible
to find a t for which the integral over the level set is comparable to the double
integral with t varying between 0 and 1. Thus, we have∫

∂∗{ϕδ<t}
dHN−1 � C

δ
LN (Bη−δ \ Bη) � C.

An analogous reasoning provides for the same t that∫
∂∗{ϕδ<t}

|[ṽt
n]| dHN−1 � C

δ

∫
Bη−δ\Bη

|vn(x) − v̄n(x)| dx. (5.3)

Thus, as for the {Gn} above, we may extract a bounded subsequence, not relabelled,
from the sequence of measures Hn(ṽt

n, ·) that is restricted to B0 \ Ū ∩ ∂∗{ϕδ < t},
converging in the sense of distributions to some Radon measure ν1 and defined on
B0 \ Ū .

By (1.1) we have the estimate∫
A

f(ṽt
n,∇w̄n) dx +

∫
A∩Jṽt

n

g((ṽt
n)+, (ṽt

n)−, νt
ṽn

) dHN−1

�
∫

Bη

f(v̄n,∇un) dx +
∫

Jv̄n ∩Bη

g(v̄+
n , v̄−

n , νv̄n) dHN−1

+
∫

(A\B̄η−δ)
f(vn,∇wn) dx +

∫
Jvn ∩(A\B̄η−δ)

g(v+
n , v−

n , νvn) dHN−1

+ C(Gn(vn, wn; Lδ) + Gn(v̄n, un; Lδ)) +
1
δ

∫
Lδ

|wn − un| dx

+
∫

∂∗{ϕδ<t}
|[ṽt

n]| dHN−1 + Hn(ṽt
n; Lδ ∩ ∂∗{ϕδ < t})
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�
∫

B0

f(v̄n,∇un) dx +
∫

Jv̄n ∩B0

g(v̄+
n , v̄−

n , νv̄n
) dHN−1

+
∫

(A\Ū)
f(vn,∇wn) dx +

∫
Jvn ∩(A\Ū)

g(v+
n , v−

n , νvn) dHN−1

+ C(Gn(vn, wn, Lδ) + Gn(v̄n, un, Lδ)) +
1
δ

∫
Lδ

|wn − un| dx

+
∫

∂∗{ϕδ<t}
|[ṽt

n]| dHN−1 + Hn(ṽt
n; Lδ ∩ ∂∗{ϕδ < t}).

Passing to the limit as n → ∞ and applying (5.1)–(5.3) and the L1 convergence
of {vn} and {v̄n} to v, we have that

F(v, u; A) � F(v, u; B0) + F(v, u; A \ Ū) + η + Cν(L̄δ) + Cν1(L̄δ)

+ lim sup
n→∞

∫
∂∗{ϕδ<t}

|[ṽt
n]| dHN−1

� F(v, u; B) + F(v, u; A \ Ū) + η + Cν(L̄δ) + Cν1(L̄δ).

Letting δ go to 0, we obtain

F(v, u; A) � F(v, u; B) + F(v, u; (A \ Ū)) + η + Cν(∂Bη) + Cν1(∂Bη).

It suffices to choose a subsequence {ηi} such that ηi → 0+ and ν(∂Bηi
) =

ν1(∂Bηi) = 0 to conclude the proof of subadditivity for the case v ∈ SBV0 ∩ L∞.
In the general case, by virtue of remark 3.9, we can argue as in the last part

of [14, theorem 10].

Proof of theorem 5.1. We assume first that (v, u) ∈ (SBV0(Ω; Rm)×BV(Ω; Rd))∩
L∞(Ω; Rm+d).

Step 1. In order to prove the upper bound, we start by recalling that by proposi-
tion 3.6 we can replace Qf by f in (1.11). First we deal with the bulk part.

Since the F(v, u; ·) is a measure absolutely continuous with respect to LN +
|Du| + (1 + [v])HN−1
Jv, we claim that

dF(v, u; ·)
dLN

(x0) � Qf(v(x0),∇u(x0))

for LN -a.e. x0 ∈ Ω, where x0 is a Lebesgue point of v and u such that

lim
ε→0+

1
ε

{
1

εN

∫
B(x0,ε)

|u(x) − u(x0) − ∇u(x0)(x − x0)|N/(N−1) dx

}(N−1)/N

= 0,

lim
ε→0+

1
ε

{
1

εN

∫
B(x0,ε)

|v(x) − v(x0)|N/(N−1) dx

}(N−1)/N

= 0,

μa(x0) = lim
ε→0+

μ(B(x0, ε))
LN (B(x0, ε))

< ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.4)
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Let U := (v, u). By (5.4) and theorems 2.1 and 2.2, for LN -a.e. x0 ∈ Ω we have

lim
ε→0+

1
LN (B(x0, ε))

∫
B(x0,ε)

|U(x) − U(x0)|(1 + |∇U(x)|) dx = 0,

lim
ε→0+

|DsU |(B(x0, ε))
LN (B(x0, ε))

= 0,

lim
ε→0+

|DU |(B(x0, ε))
LN (B(x0, ε))

exists and is finite,

lim
ε→0+

1
LN (B(x0, ε))

∫
B(x0,ε)

Qf(v(x0),∇u(x)) dx = Qf(v(x0),∇u(x0)),

dF(v, u; ·)
dLN

(x0) exists and is finite.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)

We observe that the assumptions imposed on f and proposition 3.1 allow us to
apply, for every v ∈ SBV0(Ω; Rm), the global method (see [13, theorem 4.1.4]) to
the functional u ∈ W 1,1(Ω; Rd) × A(Ω) → G(u; A) :=

∫
A

Qf(v(x),∇u(x)) dx, thus
obtaining an integral representation for the relaxed functional

G(u; A) = inf
{

lim inf
n→∞

G(un; A) : un → u in L1(A; Rd)
}

(5.6)

for every (u, A) ∈ BV(Ω; Rd) × A(Ω).
Recall that the growth condition (G2) and the lower semi-continuity with respect

to the L1-topology of the functional v ∈ SBV0(Ω; Rm) 	→ (1 + [v])HN−1
(Jv ∩ A)
entail

F(v, u; A) � G(u; A) + (1 + [v])HN−1
(Jv ∩ A). (5.7)

Differentiating with respect to LN at x0 and exploiting (5.4) and (5.5), we obtain
that

dF((v, u); ·)
dLN

(x0) � f0(x0,∇u(x0)),

where for every x0 ∈ Ω and ξ ∈ R
d, f0(x0, ξ) is given as in [13, (4.1.5)], namely,

f0(x0, ξ) := lim sup
ε→0+

inf
z∈W 1,1(Q;Rd)
z(y)=ξy on ∂Q

{ ∫
Q

Qf(v(x0 + εy),∇z(y)) dy

}
. (5.8)

To conclude the proof, we claim that f0(x0, ξ) � Qf(v(x0), ξ) for every x0 ∈ Ω
satisfying (5.4) and (5.5) and ξ ∈ R

d.
By virtue of lemma 3.10 we have that

lim sup
ε→0+

inf
z∈W 1,1(Q;Rd)
z(y)=ξy on ∂Q

{ ∫
Q

Qf(v(x0 + εy),∇z(y)) dy

}

� inf
z∈W 1,1(Q;Rd)
z(y)=ξy on ∂Q

{
lim sup
ε→0+

∫
Q

Qf(v(x0 + εy),∇z(y)) dy

}
.
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Computing the lim sup on the right-hand side, we have

lim sup
ε→0+

∫
Q

Qf(v(x0 + εy),∇z(y)) dy

= lim sup
ε→0+

( ∫
Q

Qf(v(x0 + εy),∇z(y)) dy −
∫

Q

Qf(v(x0),∇z(y)) dy

)

+
∫

Q

Qf(v(x0),∇z(y)) dy.

Since x0 is a Lebesgue point for v and recalling that v ∈ SBV0(Q; Rm)∩L∞(Q; Rm),
by the Lebesgue dominated convergence theorem and (F3) applied to Qf (see propo-
sition 3.1), we have that

lim sup
ε→0+

( ∫
Q

Qf(v(x0 + εy),∇z(y)) dy −
∫

Q

Qf(v(x0),∇z(y)) dy

)

� lim sup
ε→0+

∫
Q

L|v(x0 + εy) − v(x0)|(1 + |∇z(y)|) dy = 0.

Hence,

lim sup
ε→0+

∫
Q

Qf(v(x0 + εy),∇z(y)) dy =
∫

Q

Qf(v(x0),∇z(y)) dy.

By the quasi-convexity of Qf(v(x0), ·) and (5.8), one obtains

f0(x0, ξ) � Qf(v(x0), ξ),

which concludes the proof on replacing ξ by ∇u(x0).

Step 2. We prove the upper bound for the Cantor part.
By the Radon–Nikodým theorem, we can write

|DU | = |Dcu| + σ, (5.9)

where U := (v, u) ∈ (SBV0(Ω; Rm)×BV(Ω; Rd))∩L∞(Ω; Rm+d) and where σ and
|Dcu| are mutually singular Radon measures.

Observe that U ≡ (v, u) is |Dcu|-measurable, Dv is singular with respect to |Dcu|
and, by theorems 2.1, 2.2 and [25, theorem 2.11] for |Dcu|-a.e. x ∈ B(x0, ε),

lim
ε→0+

μ(B(x0, ε))
|Dcu|(B(x0, ε))

= 0,

lim
ε→0+

|Du|(B(x0, ε))
|Dcu|(B(x0, ε))

exists and is finite,

lim
ε→0+

εN

|Dcu|(B(x0, ε))
= 0,

lim
ε→0+

1
LN (B(x0, ε))

∫
B(x0,ε)

(|u(x) − u(x0)| + |v(x) − v(x0)|) dx = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)

Moreover,

A(x) := lim
ε→0+

Dcu(B(x, ε))
|Dcu|(B(x, ε))

, lim
ε→0+

DcU(B(x, ε))
|DcU |(B(x, ε))

=: D(x) (5.11)
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exist and they are rank 1 matrices of norm 1. In particular,

A(x) = au(x) ⊗ νu(x), (5.12)

where (au(x), νu(x)) ∈ R
d × SN−1. By theorem 2.2 we have

lim
ε→0+

1
|Dcu|(B(x0, ε))

∫
B(x0,ε)

f∞(v(x0), A(x)) d|Dcu| = f∞(v(x0), A(x0)).

As in step 1, we recall that via the global method (see [13, theorem 4.1.4]) we
can obtain an integral representation for the functional G(u; A) in (5.6) for every
(v, u) ∈ BV(Ω; Rm+d). Moreover, by proposition 3.6, we can replace f by Qf in
(1.11) and (5.7) holds.

Differentiating with respect to |Dcu| at x0 and exploiting (5.9) and (5.10), we
deduce

dF((v, u); ·)
d|Dcu| (x0) � h(x0, au, νu),

where νu(x) agrees with the unit vector that, together with au, satisfies (5.12) for
|Dcu|-a.e. x ∈ Ω \ Ju and where h(x0, a, ν) is given as in [13, (4.1.7)], namely,

h(x0, a, ν)

:= lim sup
k→∞

lim sup
ε→0+

inf
z∈W 1,1(Q(k)

ν ;Rd)
z(y)=a(νy) on ∂Q(k)

ν

{
1

kN−1

∫
Q

(k)
ν

Qf∞(v(x0 + εy),∇z(y)) dy

}
,

(5.13)

where a ∈ R
d, ν ∈ SN−1, Q

(k)
ν := Rν((− 1

2k, 1
2k)N−1 ×(− 1

2 , 1
2 )) and Rν is a rotation

such that Rν(eN ) = ν.
We also recall that, by remark 3.2(iv), Q(f∞) = (Qf)∞ = Qf∞.
To conclude the proof, it is enough to show that

h(x0, a, ν) � Qf∞(v(x0), a ⊗ ν).

By lemma 3.10,

h(x0, a, ν)

� lim sup
k→∞

inf
z∈W 1,1(Q(k)

ν ;Rd)
z(y)=a(νy) on ∂Q(k)

ν

{
lim sup
ε→0+

1
kN−1

∫
Q

(k)
ν

Qf∞(v(x0 + εy),∇z(y)) dy

}
.

(5.14)

In order to compute

lim sup
ε→0+

1
kN−1

∫
Q

(k)
ν

Qf∞(v(x0 + εy),∇z(y)) dy,

we add and subtract inside the integral Qf∞(v(x0),∇z(y)). Then, as in step 1,
exploiting the fact that x0 is a Lebesgue point for v ∈ SBV0(Ω; Rm) ∩ L∞(Ω; Rm)
and that Qf∞ satisfies (F3) (see remark 3.2 where (F3) has been deduced for f∞
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and proposition 3.1), via Lebesgue’s dominated convergence theorem we conclude
that

lim sup
ε→0+

1
kN−1

∫
Q

(k)
ν

Qf∞((v(x0 + εy),∇z(y)) dy)

=
1

kN−1

∫
Q

(k)
ν

Qf∞(v(x0),∇z(y)) dy.

Finally, the quasi-convexity of Qf∞ (deduced via remark 3.2 and proposition 3.1)
provides

Qf∞(v(x0), a ⊗ ν) = inf
z∈W 1,1(Q(k)

ν ;Rd)
z(y)=a(ν·y) on ∂Q(k)

ν

{
1

kN−1

∫
Q

(k)
ν

Qf∞(v(x0),∇z(y)) dy

}
,

which, together with (5.14) concludes the proof of the upper bound for the Cantor
part when (v, u) ∈ (SBV0(Ω; Rm) × BV(Ω; Rd)) ∩ L∞(Ω; Rm+d).

Step 3. We now prove the upper bound for the jump. Namely, we claim that

F(U ; JU ) ≡ F(v, u, J(v,u)) �
∫

JU

K3(v+, v−, u+, u−, ν) dHN−1 (5.15)

for every U ≡ (v, u) ∈ (SBV0(Ω; Rm) × BV(Ω; Rd)) ∩ L∞(Ω; Rm+d).
The proof is divided into three parts according to the assumptions on the limit

function U .

Case 1. U(x) := (a, c)χE(x) + (b, d)(1 − χE(x)) with P (E, Ω) < ∞.

Case 2. U(x) :=
∑∞

i=1(ai, ci)χEi
(x), where {Ei}∞

i=1 forms a partition of Ω into
sets of finite perimeter and (ai, ci) ∈ R

m × R
d.

Case 3. U ∈ (SBV0(Ω; Rm) × BV(Ω; Rd)) ∩ L∞(Ω; Rm+d).

Proof of case 1. We start by proving that for every open set A ⊂ Ω,

F(U ; A) ≡ F(v, u; A) �
∫

A

Qf(v(x), 0) dx +
∫

JU ∩A

K3(a, b, c, d, ν) dHN−1.

(a) Assume first that

v(x) :=

{
a if x · ν > 0,

b if x · ν < 0,
and u(x) :=

{
c if x · ν > 0,

d if x · ν < 0.

We start with the case in which A = a + λQ is an open cube with two faces
orthogonal to ν. For simplicity we also assume that ν = eN and Qν will be denoted
simply by Q. Our proof develops as in [26, proposition 4.1 and lemma 4.2] (see
also [12, proposition 5.1]) and we will thus present only the main steps.

Suppose first that a = 0 and λ = 1. By proposition 3.4 (see also remark 3.5),
there exists (vn, un) ∈ A3(a, b, c, d, ν) such that (vn, un) → (v, u) in L1(Q; Rm+d)
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and

K3(a, b, c, d, ν)

= lim
n→∞

( ∫
Q

Qf∞(vn(x),∇un(x)) dx +
∫

Jvn ∩Q

g(v+
n (x), v−

n (x), νn(x)) dHN−1
)

.

(5.16)

We denote by Q′ the set {x ∈ Q : xN = 0}. For k ∈ N we label the elements of

(Z∩[−k, k])N−1 × {0}

by {ai}(2k+1)N−1

i=1 and we observe that

(2k + 1)Q̄′ =
(2k+1)N−1⋃

i=1

(ai + Q̄′)

with
(ai + Q′) ∩ (aj + Q′) = ∅ for i �= j.

We define

zn,k(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a if xN >
1

2(2k + 1)
,

vn((2k + 1)x) if |xN | <
1

2(2k + 1)
,

b if xN < − 1
2(2k + 1)

and

wn,k(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c if xN >
1

2(2k + 1)
,

un((2k + 1)x) if |xN | <
1

2(2k + 1)
,

d if xN < − 1
2(2k + 1)

.

By the periodicity of the functions vn and un, it is easily seen that

lim
n→∞

lim
k→∞

‖zn,k − v‖L1(Q;Rm) = 0, lim
n→∞

lim
k→∞

‖wn,k − u‖L1(Q;Rd) = 0.

Thus, by a standard diagonalization argument, we have

F(v, u; Q) � lim sup
n→∞

lim sup
k→∞

( ∫
Q

Qf(zn,k(x),∇wn,k(x)) dx

+
∫

Q∩Jzn,k

g(z+
n,k(x), z−

n,k(x), νn,k(x)) dHN−1
)

.

Arguing as in [12, proposition 5.1], for the bulk part we have

lim sup
k→∞

∫
Q

Qf(zn,k(x),∇wn,k(x)) dx

=
∫

Q

Qf(v(y), 0) dy +
∫

Q

Qf∞(vn(y),∇un(y)) dy,
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and for the surface term∫
Q∩Jzn,k

g(z+
n,k(x), z−

n,k(x), νn,k(x)) dHN−1

�
∫

Q∩Jvn

g(v+
n (y), v−

n (y), νn(y)) dHN−1(y).

Putting together the estimates for bulk and surface terms and exploiting (5.16), we
obtain that

F(v, u; Q) � lim sup
n→∞

( ∫
Q

Qf(v, 0) dx +
∫

Q

Qf∞(vn(y),∇un(y)) dy

+
∫

Q∩Jvn

g(v+
n (y), v−

n (y), νn(y)) dHN−1
)

=
∫

Q

Qf(v(x), 0) dx + K3(a, b, c, d, eN )

=
Qf(a, 0) + Qf(b, 0)

2
+ K3(a, b, c, d, eN ).

In order to consider sets A = a + λQ with a ∈ R
N and λ > 0, we define

(Qf)λ(b, B) := Qf

(
b,

B

λ

)
, gλ(ξ, ζ, ν) :=

1
λ

g(ξ, ζ, ν)

and, for every E ⊂ Ω,

Fλ(v, u; E) := inf
{(vn,un)}

{
lim inf
n→∞

( ∫
E

(Qf)λ(vn(x),∇un(x)) dx

+
∫

E∩Jvn

gλ(v+
n (x), v−

n (x), νn(x)) dHN−1
)

:

(vn, un) ∈ SBV0(E; Rm) × W 1,1(E; Rd),

(vn, un) → (v, u) in L1(E; Rm+d)
}

.

It is easily seen that for every (v, u) ∈ L1(Ω; Rm+d) we have

F(v, u; A) = λNFλ(vλ, uλ; Q),

where

vλ(x) := v

(
x − a

λ

)
, uλ(x) := u

(
x − a

λ

)
.

Since Qf∞
λ = (1/λ)Qf∞, by the definition of K3 for fλ and gλ we have that

(K3)λ(a, b, c, d, ν) = (1/λ)K3(a, b, c, d, ν).
By the definition of uλ and vλ we have that

vλ =

{
a if xN > 0,

b if xN < 0,
uλ =

{
c if xN > 0,

d if xN < 0.
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So by the previous case, it results that

F(v, u; A)λN = Fλ(vλ, uλ; Q) � λN

(
Qfλ(a, 0) + Qfλ(b, 0)

2
+(K3)λ(a, b, c, d, eN )

)
.

(b) Now let U := (v, u) as in (a) and let A be any open set. The proof of this step
is identical to [25, § 5, step 3, case 1(b)]. Indeed, it is enough to apply the same
strategy but replacing u and K in [25] by U and K3, respectively, herein, thereby
obtaining

F(v, u; A) �
∫

A

Qf(v(x), 0) dx +
∫

JU ∩A

K3(a, b, c, d, ν) dHN−1. (5.17)

(c) Now suppose that U has a polygonal interface, i.e. U = (a, c)χE +(b, d)(1−χE),
where E is a polyhedral set, i.e. E is a bounded strongly Lipschitz domain and ∂E =
H1 ∪H2 ∪ · · ·∪HM are closed subsets of hyperplanes of type {x ∈ R

N : x ·νi = αi}.
The details of the proof are omitted since they are very similar to [25, § 5, step 3,

case 1(c)]. We just observe that, given an open set A contained in Ω, the argument
relies on an inductive procedure on I := {i ∈ {1, . . . , M} : HN−1(Hi ∩ A) > 0}
starting from the case I = 0 when u ∈ W 1,1(A; Rd) and v ∈ SBV0(A; Rm) ∩
L∞(A; Rm), for which it suffices to consider un = u and vn = v with (5.17) reducing
to

F(v, u; A) �
∫

A

Qf(v(x), 0) dx.

The case card I = 1 was studied in part (b), where E is a large cube so that
JU ∩ Ω reduces to the flat interface {x ∈ Ω : x · ν = 0}.

The induction step (which first assumes that (5.17) is true if card I = k, k �
M − 1, and then proves that it is still true if card I = k) then develops exactly as
in [12, proposition 5.1, step 2(c)], the only difference being that the slicing method
used to connect the sequence across the interfaces relies on the same techniques
as lemma 3.8 but referred to more general open sets than cubes (see also [25, § 5,
step 3, case 1(c)]). Thus, one can conclude that

F(v, u; A) �
∫

A

Qf(v(x), 0) dx +
∫

JU ∩A

K3(a, b, c, d, ν) dHN−1.

(d) If E is an arbitrary set of finite perimeter, the step develops in strong anal-
ogy with [25, § 5, step 3, case 1(f)]. Essentially, exploiting proposition 3.3(b), the
approximation via polyhedral sets with finite perimeter as in [11, lemma 3.1] and
applying Lebesgue’s monotone convergence theorem gives

F(v, u; A) �
∫

A

Qf(v(x), 0) dx +
∫

A∩JU

K3(a, b, c, d, ν) dHN−1.

This last inequality, together with lemma 5.2, yields

F(v, u; J(v,u)) �
∫

J(v,u)

K3(a, b, c, d, ν) dHN−1,

which gives (5.15) when U ≡ (v, u) = (a, c)χE + (b, d)(1 − χE) is the characteristic
function of a set of finite perimeter.
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Proof of case 2. Arguing as in [25, § 5, step 3, case 2] and referring to [8, proposition
4.8, step 1], we clearly obtain for every (v, u) ∈ BV(Ω; T ) × BV(Ω; T ), with T a
finite subset of R

d,

F(v, u; A) = F(v, u; A ∩ J(v,u))

�
∫

J(v,u)

K3(v+, v−, u+, u−, νv,u(x)) dHN−1(x).

Proof of case 3. For U ≡ (v, u) ∈ (SBV0(Ω; Rm)×BV(Ω; Rd))∩L∞(Ω; Rm+d) the
proof develops analogously to [8, proposition 4.8, step 2] and we add some details
for the reader’s convenience.

First we observe that the jump set JU ≡ J(v,u) can be decomposed as (Ju \ Jv) ∪
(Jv \ Ju) ∪ (Ju ∩ Jv), recalling that these sets are mutually disjoint and that the
tangent hyperplanes to Ju and Jv coincide up to a set of HN−1 measure 0.

Let A ∈ A(Ω) such that A ⊃ JU . We assume that U(x) ∈ [0, 1]m+d for a.e.
x ∈ A. For every h ∈ N, h � 2, it is possible to define a set

Bh := A \ JU ∪
{

x ∈ JU : |U+(x) − U−(x)| � 1
4(m + d)h

}

and define the sequence {Uh} ≡ {(vh, uh)} according to [8, proposition 4.8, step 2].
Observe that Jvh

⊂ Jv. Then, by step 2, we have that

F(v, u, ; A) � lim inf
h→∞

F(vh, uh; A)

= lim inf
h→∞

( ∫
A

Qf(vh, 0) dx

+
∫

A

Qf∞
(

vh,
dDcuh

d|Dcuh|

)
d|Dcuh|

+
∫

A∩(Juh
∪Jvh

)
K3(v+

h , v−
h , u+

h , u−
h , νvh,uh

) dHN−1
)

.

(5.18)

We restrict our attention to the surface integral. Clearly,∫
A∩(Juh

∪Jvh
)
K3(v+

h , v−
h , u+

h , u−
h , νvh,uh

) dHN−1

=
∫

A∩(Juh
∪Jvh

)∩Bh

K3(v+
h , v−

h , u+
h , u−

h , νvh,uh
) dHN−1

+
∫

A∩(Juh
∪Jvh

)∩(A\Bh)
K3(v+

h , v−
h , u+

h , u−
h , νvh,uh

) dHN−1.

By the decomposition of the jump set J(vh,uh), proposition 3.3(d), the fact that
Jvh

⊂ Jv and the same type of estimates as in [8, p. 300] entail (with the constant
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C varying from place to place)∫
A∩(Juh

∪Jvh
)∩Bh

K3(v+
h , v−

h , u+
h , u−

h , νvh,uh
) dHN−1

=
∫

A∩(Juh
\Jvh

)∩Bh

K3(v+
h , v−

h , u+
h , u−

h , νvh,uh
) dHN−1

+
∫

A∩(Jvh
\Juh

)∩Bh

K3(v+
h , v−

h , u+
h , u−

h , νvh,uh
) dHN−1

+
∫

A∩Juh
∩Jvh

∩Bh

K3(v+
h , v−

h , u+
h , u−

h , νvh,uh
) dHN−1

� C

∫
A∩(Juh

\Jvh
)∩Bh

|u+
h − u−

h | dHN−1

+ C

∫
A∩(Jvh

\Juh
)∩Bh

(|v+
h − v−

h | + 1) dHN−1

+ C

∫
A∩Juh

∩Jvh
∩Bh

(|v+
h − v−

h | + |u+
h − u−

h | + 1) dHN−1

� 2C(m + d)|Du|(A ∩ Bh) + C(m + d)|Dv|(A ∩ Bh) + CHN−1(Jv ∩ Bh ∩ A).
(5.19)

Moreover, by proposition 3.3(c), (d) and the reverse of Fatou’s lemma, we have∫
(Jvh

∪Juh
)∩(A\Bh)

K3(v+
h , v−

h , u+
h , u−

h , ν(vh,uh)) dHN−1

�
∫

A∩(Jv∪Ju)
K3(v+, v−, u+, u−, ν(v,u)) dHN−1.

Clearly, taking the limit as h → ∞, from the above inequality and (5.19) we may
conclude that

F(v, u; A) �
∫

A∩(Jv∪Ju)
K3(v+, v−, u+, u−, ν(v,u)) dHN−1

+ C(|Du|(A \ (Jv ∪ Ju)) + |Dv|(A \ (Ju ∪ Jv))) +
∫

A

Qf(v, 0) dx,

where we have exploited the fact that the Cantor term in (5.18) is 0 from the
construction of the uh and lim infh→∞ HN−1(Jv ∩Bh ∩A) = HN−1(Jv ∩ (A \ (Ju ∪
Jv))) = 0. Now, since F(v, u; ·) is a Radon measure, the above inequality holds for
every Borel set B and in particular for the set B = A ∩ (Jv ∪ Ju), and this gives

F(v, u; Jv ∩ Ju) �
∫

Jv∩Ju

K3(v+, v−, u+, u−, ν(v,u)) dHN−1.

This concludes the proof of step 2 when (v, u) ∈ SBV0(Ω; Rm) × BV(Ω; Rd) ∩
L∞(Ω; Rm+d).

The general case (v, u) ∈ SBV0(Ω; Rm)×BV(Ω; Rd) follows from remark 3.9(iii)
(see [25, § 5, step 4] and [8, theorem 4.9]).
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Proof of theorem 1.2. It follows from theorems 4.1 and 5.1

Remark 5.3. We observe that, as can be easily conjectured from the proofs of
theorem 4.1, step 2, and theorem 5.1, step 3, case 3(i) and (ii), K3 admits the
following equivalent representations.

• On Ju \ Jv, K3(a, a, c, d, ν) = Qf∞(a, (c − d) ⊗ ν), where Qf∞ represents
the recession function of the quasi-convexification of f , as in remark 3.2.
In fact, one inequality is trivial by definition 1.13, while the other can be
obtained through proposition 3.4 by invoking the quasi-convexity and the
growth properties of Qf∞(a, ·) (see remark 3.2) and analogous arguments to
the ones leading to [9, (5.84)].

• On Jv \Ju, K3(a, b, c, c, ν) = Rg(a, b, ν), where Rg represents the BV-elliptic
envelope of g; namely, the greatest BV-elliptic function less than or equal to
g, which under the assumptions (G1)–(G3) admits the representation

Rg(a, b, ν) = inf
{ ∫

Jw∩Qν

g(w+, w−, ν) dHN−1 :

w ∈ SBV0(Qν ; Rm) ∩ L∞(Qν ; Rm), w = v0 on ∂Qν

}
,

(5.20)

as in [14,15,17], where v0 is defined as in (3.4). This is a consequence of (1.13)
and (5.20).

We observe that the above characterizations of K3 could be deduced directly,
thereby reproducing the proofs of the lower bound and the upper bound for theo-
rem 1.2 for the jump part on the sets Ju \ Jv and Jv \ Ju, respectively.

6. Applications

This section is devoted to the proof of theorem 1.1, which is very similar to that of
theorem 1.2. In particular, we replace lemma 3.8 and proposition 3.3 by lemma 6.1
and proposition 6.2, respectively. However, keeping in mind the application that we
describe in more detail in remark 6.4, we state the proof with more generality but,
in order to prove theorem 1.1, we consider m = 1 and T = {0, 1}.

Let T ⊂ R
m be a finite set and let

V : T × R
d×N → (0, +∞) and g : T × T × SN−1 → [0, +∞[ (6.1)

satisfy (F1)–(F4) and (G1)–(G3), respectively. Denote by Afr the set defined in
(1.8), where the range {0, 1} is replaced by T .

For simplicity we will consider ν = eN and consequently Qν = Q = [0, 1]N .

Lemma 6.1. Let T ⊂ R
m be a finite set and let

v0(y) :=

{
a if xN > 0,

b if xN < 0,
u0(y) :=

{
c if xN > 0,

d if xN < 0.
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Let {vn} ⊂ BV(Ω; T ) and {un} ⊂ W 1,1(Q; Rd) be such that vn → v0 is in
L1(Q; Rm) and un → u0 is in L1(Q; Rd).

If ρ is a mollifier, ρn := nNρ(nx), then there exists a sequence of functions
{(ζn, ξn)} ∈ Afr(a, b, c, d, eN ), such that

ζn = v0 on ∂Q, ζn → v0 in L1(Q; Rm), (6.2)

ξn = ρi(n) ∗ u0 on ∂Q, ξn → u0 in L1(Q; Rd) (6.3)

and

lim sup
n→∞

( ∫
Q

QV (ζn,∇ξn) dx +
∫

Jζn ∩Q

g(ζ+
n , ζ−

n , νζn) dHN−1
)

� lim inf
n→∞

( ∫
Q

QV (vn,∇un) dx +
∫

Jvn ∩Q

g(v+
n , v−

n , νvn) dHN−1
)

, (6.4)

where QV represents the quasi-convex envelope of V as in (3.2).

We omit the proof since it is entirely similar to that of lemma 3.8. We just observe
that there is no need for the first step where a truncation argument for v was built,
since in the present context we deal with functions with finite range.

The following result, which contains the properties satisfied by K2 in (1.7), is
analogous to proposition 3.3 and it is stated for the reader’s convenience.

Proposition 6.2. Let V be as in (1.4). Let K2 be the function introduced in (1.7).
The following properties hold.

(a) |K2(a, b, c, d, ν) − K2(a′, b′, c′, d′, ν)| � C(|a − a′| + |b − b′| + |c − c′| + |d − d′|)
for every (a, b, c, d, ν), (a′, b′, c′, d′, ν) ∈ {0, 1} × {0, 1} × R

d × R
d × SN−1.

(b) ν 	→ K2(a, b, c, d, ν) is upper semi-continuous for every (a, b, c, d) ∈ {0, 1} ×
{0, 1} × R

d × R
d.

(c) K2 is upper semi-continuous in {0, 1} × {0, 1} × R
d × R

d × SN−1.

(d) K2(a, b, c, d, ν) � C(|a − b| + |c − d|) for every ν ∈ SN−1.

Proof of theorem 1.1. The arguments develop as in theorem 1.2, essentially replac-
ing f by V in (1.4), v by χ, the surface integral by |Dχ| and using the blow-up
argument introduced in [24]; thus, we will present just the main differences.

(i) Lower bound: let (χ, u) ∈ BV(Ω; {0, 1})×BV(Ω; Rd). Without loss of generality
we may assume that for every {(χn, un)} ⊂ BV(Ω; {0, 1}) × BV(Ω; Rd) converging
to (χ, u) in L1(Ω; {0, 1}) × L1(Ω; Rd), lim infn→∞(

∫
Ω

V (χn,∇un) dx + |Dχn|(Ω))
is indeed a limit. For every Borel set B ⊂ Ω define

μn(B) :=
∫

BV
(χn,∇un) dx + |Dχn|(B).

The sequence {μn} behaves as in theorem 1.2 and its weak ∗ limit (up to a not
relabelled subsequence) μ can be decomposed as in (4.2), where, as in the remainder
of the proof, J(v,u) has been replaced by J(χ,u). Moreover, we emphasize that we
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have been considering (χ, u) as a unique field in BV(Ω; R1+d) and we have been
exploiting the fact that Dc(χ, u) = (0, Dcu) (see remark 2.11). By the Besicovitch
derivation theorem, we deduce (4.3).

We claim that

μa(x0) � QV (χ(x0),∇u(x0)) forLN -a.e. x0 ∈ Ω, (6.5)

μj(x0) � K2(χ+(x0), χ−(x0), u+(x0), u−(x0), ν(χ,u))

for HN−1-a.e. x0 ∈ J(χ,u) ∩ Ω, (6.6)

μc(x0) � (QV )∞
(

χ(x0),
dDcu

d|Dcu| (x0)
)

for |Dcu|-a.e. x0 ∈ Ω. (6.7)

If (6.5)–(6.7) hold then the lower bound inequality for theorem 1.1 follows.

Step 1. Observing that, by proposition 3.1, QV satisfies (F1)–(F3), the proof of
(6.5) develops as in step 1 of theorem 1.2, just applying [25, (2.10) in theorem 2.19],
to the functional G : (χ, u) ∈ W 1,1(Ω; R1+d) →

∫
Ω

QV (χ,∇u) dx.

Step 2. The proof of (6.6) is very similar to the one of (4.5). Recall that J(χ,u) =
Jχ ∪ Ju and ν(χ,u) = νχ for every (χ, u) ∈ BV(Ω; {0, 1}) × W 1,1(Ω; Rd). The same
arguments as those of step 2 in theorem 1.2 allow us to fix x0 ∈ J(χ,u) ∩ Ω such
that (4.7)–(4.11) hold.

Recall that we denote Qν(x0) by Q and we may choose ε > 0 such that μ(∂(x0 +
εQ)) = 0. We then have

μj(x0) � lim
ε→0+

lim
n→∞

1
εN−1

( ∫
x0+εQ

QV (χn(x),∇un(x)) dx + |Dχn|(x0 + εQ)
)

= lim
ε→0+

lim
n→∞

(
ε

∫
Q

QV (χn(x0 + εy),∇un(x0 + εy)) dy

+ |Dχn(x0 + εy)|
(

Q ∩ J(χn, un) − x0

ε

))
.

Define χn,ε, un,ε, νn,ε and χ0, u0 according to (4.12) and (4.13). Since (χn, un) →
(χ, u) in L1(Ω; R1+d), we obtain (4.14) and (4.15) with vn,ε and v0 replaced by χn,ε

and χ0, respectively.
Thus,

μj(x0) � lim
ε→0+

lim
n→∞

( ∫
Q

QV ∞(χn,ε(y),∇un,ε(y)) dy

+ |Dχn,ε|(Q) +
∫

Q

εQV

(
χn,ε(y),

1
ε
∇un,ε(y)

)

− QV ∞(χn,ε,∇un,ε) dy

)
.

By remark 3.2(v) we can argue as in the estimates [25, (3.3)–(3.5)], thereby
obtaining

μj(x0) � lim inf
ε→0+

lim inf
n→∞

( ∫
Q

QV ∞(χn,ε(y),∇un,ε(y)) dy + |Dχn,ε|(Q)
)

.
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Applying lemma 6.1 with QV replaced by QV ∞, T ⊂ R
m replaced by {0, 1}, the

surface integral replaced by the total variation, Kfr and Afr replaced by K2 and
A2, respectively, and using remark 3.2 we may find

{(ζk, ξk)} ∈ A2(χ+(x0), χ−(x0), u+(x0), u−(x0), ν(x0))

such that

μj(x0) � lim
k→∞

( ∫
Q

QV ∞(ζk,∇ξk) dx + |Dζk|(Q)
)

� K2(χ+(x0), χ−(x0), u+(x0), u−(x0), ν(x0)).

Step 3. The proof of (6.7) identically follows step 3 in the proof of theorem 4.1;
namely, by applying [25, (2.12) in theorem 2.19] to the functional G introduced in
step 1 here. This concludes the proof.

(ii) Upper bound: the proof of the upper bound develops in three steps in the same
way as the proof of theorem 5.1. Furthermore, proposition 3.6 can be readapted by
replacing Qf by QV and the surface integral by |Dχ|.

Step 1. For LN -a.e. x0 ∈ Ω, x0 is a Lebesgue point for U ≡ (χ, u) such that (5.4)
and (5.5) hold for QV . In analogy with theorem 5.1 step 1, we apply for every χ ∈
BV(Ω; {0, 1}) the global method [13, theorem 4.1.4] to the functional G : (u, A) ∈
W 1,1(Ω; Rm) × A(Ω) →

∫
Ω

QV (χ,∇u) dx to obtain an integral representation for
the functional (5.6) for every (u, A) ∈ BV(Ω; Rm) × A(Ω). Moreover, we can write

FOD(χ, u; A) � G(u; A) + |Dχ|(A).

Differentiating with respect to LN we obtain

dFOD(χ, u; ·)
dLN

� V0(x0,∇u(x0)),

where V0 is the co-respective of f0 in (5.8) where Qf has been replaced by QV .
Arguing as in the last part of theorem 5.1, step 1 and applying lemma 3.10, we
deduce that V0(x0, ξ0) � QV (χ(x0), ξ0) and this leads to the conclusion when u ∈
BV(Ω; Rd) ∩ L∞(Ω; Rd).

Step 2. The same type of arguments as those in step 1 apply to the proof of the
upper bound for the Cantor part. The Radon–Nikodým theorem implies (5.9) for
every U ≡ (χ, u) ∈ BV(Ω; {0, 1}) × (BV(Ω; Rd) ∩ L∞(Ω; Rd)), with |Dcu| and σ
mutually singular. Moreover, (5.10)–(5.12) hold, the global method [13, theorem
4.1.4] applies to (5.6) and a differentiation with respect to |Dcu| at x0 provides

dFOD(χ, u; ·)
d|Dcu| (x0) � h(x0, au, νu),

where h(x, a, ν) is given by (5.13). Remark 3.2 applied to QV ∞, lemma 3.10 and
the same techniques employed in the last part of theorem 5.1, step 2 entail

h(x0, a, ν) � QV ∞(χ(x0), a ⊗ ν),

which concludes the proof of the Cantor part for

(χ, u) ∈ BV(Ω; {0, 1}) × (BV(Ω; Rd) ∩ L∞(Ω; Rd)).
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Step 3. We claim that

FOD(U ; JU ) �
∫

JU

K2(χ+, χ−, u+, u−, νχ,u) dHN−1 (6.8)

for every (χ, u) ∈ BV(Ω; {0, 1}) × (BV(Ω; Rd) ∩ L∞(Ω; Rd)). The proof of (6.8) is
divided into three parts according to the assumptions on the limit functions u.

Case 1. U(x) := (1, c)χE(x) + (0, d)(1 − χE(x)), with P (E, Ω) < +∞.

Case 2. u(x) =
∑∞

i=1 ciχEi(x), where {Ei}∞
i=1 forms a partition of Ω into sets of

finite perimeter and ci ∈ R
d.

Case 3. u(x) ∈ BV(Ω; Rd) ∩ L∞(Ω; Rd).

Concerning case 1, we first consider the unit open cube Q ⊂ R
N and make the

same assumptions on the target function U as those in theorem 5.1, step 3, case 1.
We can then invoke an argument analogous to proposition 3.4 without invoking any
truncation arguments such as those in remark 3.5. This guarantees that there exist
(χn, un) ∈ A2(1, 0, c, d, eN ) such that (χn, un) → (χ, u) in L1(Q; R1+d) and

K2(1, 0, c, d, eN ) = lim
n→∞

( ∫
Q

QV ∞(χn(x),∇un(x)) dx + |Dχn|(Q)
)

. (6.9)

The proof then develops exactly as that of theorem 5.1 but taking into account
that the sequence zn,k therein is built by replacing a, b and vn by 1, 0 and χn,
respectively, thus leading to

FOD(χ, u; Q) � QV (1, 0) + QV (0, 0)
2

+ K2(1, 0, c, d, eN ).

With regard to a more general set A than Q, like that in theorem 5.1, step 3, case 1,
we achieve the following representation:

FOD(χ, u; A) �
∫

A

QV (χ(x), 0) dx +
∫

JU

K2(1, 0, c, d, ν) dHN−1.

Then the strategy follows (b), (c) and (d) in theorem 5.1, step 3, case 1, and hence
we obtain

FOD(χ, u; Jχ,u) �
∫

Jχ,u

K2(1, 0, c, d, ν) dHN−1.

Turning to case 2 and case 3, by the properties of K2 in proposition 6.2, the proof
develops in the same way as in [8, proposition 4.8, cases 2 and 3]. This concludes the
proof of the upper bound when (χ, u) ∈ BV(Ω; {0, 1})× (BV(Ω; Rd)∩L∞(Ω; Rd)).

The general case, since χ ∈ BV(Ω; {0, 1}) and can be fixed, is identical to [25, § 5,
step 4], where the truncation procedure involves just u.

Putting (i) and (ii) together, we achieve the desired result.

Remark 6.3. We observe that, as in remark 5.3, K2 admits the following equivalent
representations.

(i) On Ju \ Jχ, K2(a, a, c, d, ν) = QV ∞(a, (c − d) ⊗ ν) with QV ∞ as in (1.6).
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(ii) On Jχ \ Ju, K2(a, b, c, c, ν) = |(a − b) ⊗ ν|, i.e.∫
Jχ

K2(χ+, χ−, u+, u+, ν) dHN−1 = |Dχ|(Ω).

(iii) Note that

K2(a, b, c, d, ν)

� inf
{ ∫

Qν

(QV ∞(w(x),∇u(x)) + |∇w(x)|) dx : (w, u) ∈ A(a, b, c, d, ν)
}

,

where this latter density is the density K(a, b, c, d, ν) first introduced in [25] (see
also [9, (5.83)]) and

A(a, b, c, d, ν) := {(w, u) ∈ W 1,1(Qν ; R1+d) :

(w(y), u(y)) = (a, c) if y · ν = 1
2 ,

(w(y), u(y)) = (b, d) if y · ν = − 1
2 ,

(w, u) are 1-periodic in ν1, . . . , νN−1 directions}.

On the other hand, if Wi, i = 1, 2, in (1.1) are proportional (as in the model
presented in [6]), i.e. W2 = αW1, α > 1, taking V as in (1.4), since for every
q ∈ [0, 1] QV ∞(q, z) = qQW∞

1 (z) + α(1 − q)QW∞
1 (z), then we claim that K2 is

equal to K of [25]. Indeed, without loss of generality, assuming W1 is quasi-convex
and positively 1-homogeneous, it is enough to observe that, for every (w, u) ∈
A(a, b, c, d, ν),

K(1, 0, c, d, ν) �
∫

Qv

(w(x)W1(∇u(x)) + α(1 − w(x))W1(∇u(x)) + |∇w(x)|) dx

�
∫

Qν

(W1(∇u(x)) + 1) dx,

where we have used the fact that α + (1 − α)w � 1 and∫
Qν

|∇w| dx �
∣∣∣∣
∫

Qν

∇w

∣∣∣∣ dx =
∣∣∣∣
∫

∂Qν

w ⊗ ν(x) dHN−1
∣∣∣∣ = 1.

Taking a sequence of characteristic functions {χε}, admissible for A2(1, 0, c, d, ν)
in (1.8), such that their value is 1 in a strip of the cube orthogonal to ν and of
thickness 1 − ε, we have∫

Qν

W1(∇u(x)) dx + 1

= lim
ε→0+

∫
Qν

(χεW1(∇u(x)) + α(1 − χε)W1(∇u(x))) dx + |Dχε|(Qν)

� K2(1, 0, c, d, ν)

and this proves our claim. Observe also that if α ∈ (0, 1), then the result remains
true; it is enough to express W1 in terms of W2.
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As emphasized in [6, remark 2.4], one can consider mixtures of more than two
conductive materials, and hence we observe that theorem 1.1 can be extended with
minor changes to these models, thereby leading to (6.12) in the remark below.

Remark 6.4. Let T be a finite subset of R
m. Theorem 1.1 also applies to energies

of the type Ffr : L1(Ω; T ) × L1(Ω; Rd) × A(Ω) → [0, +∞] defined by

Ffr(v, u; A) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
A

V (v,∇u) dx +
∫

Jv

⋂
Ag(v+, v−, νv) dHN−1

in BV(A; T ) × W 1,1(A; Rd),

+∞ otherwise.

(6.10)

Indeed, consider the relaxed localized energy of (6.10) given by

Ffr(v, u; A)

:= inf
{

lim inf
n→∞

∫
A

V (vn,∇un) dx +
∫

Jvn ∩A

g(v+
n , v−

n , νvn) dHN−1 :

{(vn, un)} ⊂ BV(A; T ) × W 1,1(A; Rd),

(vn, un) → (v, u) in L1(A; T ) × L1(A; Rd)
}

,

with V and g as in (6.1) satisfying (F1)–(F4) and (G1)–(G3), respectively.
Moreover, define F̄fr : BV(A; T ) × BV(A; Rd) × A(Ω) → [0, +∞] as

F̄fr(v, u; A) :=
∫

A

QV (v,∇u) dx +
∫

A

QV ∞
(

v,
dDcu

d|Dcu|

)
d|Dcu|

+
∫

J(v,u)
⋂

A

Kfr(v+, v−, u+, u−, ν) dHN−1,

where QV is the quasi-convex envelope of V given in (3.2), QV ∞ is the recession
function of QV , introduced in (1.6), and

Kfr(a, b, c, d, ν) := inf
{ ∫

Qν

QV ∞(v,∇u(x)) dx

+
∫

Qν

g(v+, v−, νv) dHN−1 : (v, u) ∈ Afr(a, b, c, d, ν)
}

,

(6.11)

where Afr is the set defined in (1.8) with {0, 1} replaced by the finite set T ⊂ R
m.

Thus, we are led to the following representation: for every (v, u) ∈ L1(Ω; T ) ×
L1(Ω; Rd),

Ffr(v, u; A) =

{
F̄fr(v, u; A) if (v, u) ∈ BV(A; T ) × BV(A; Rd),
+∞ otherwise.

(6.12)

Remark 6.5. In general we cannot expect K3 = Kfr since in (6.11) the function
g is defined in T × T × SN−1 with T ⊂ R

d and card(T ) finite, while in (1.13), g is
defined in R

d × R
d × SN−1. In particular, we recall that in Jv \ Ju, K3 coincides
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with Rg, the SBV-elliptic envelope of g as in [14], while Kfr in (6.11) is given
by the BV-elliptic envelope introduced by Ambrosio and Braides (see [9, definition
5.13]). Analogously, it is easily seen that K2 coincides with |Dχ| in Jχ \ Ju.
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