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Wave Propagation in Strings with Continuous and Concentrated
Loads. By Mr HAROLD JEFFREYS, St John's College.

[Received 28 April, read 2 May, 1927.]

1*0. The normal modes of a stretched string, with equal masses
attached at equal intervals along it, are well known. But the
method of normal coordinates is not often a very convenient
way of treating the motion of systems when started off by impulses
or displacements at definite points, unless the number of degrees
of freedom is very small, and the most useful in practice is the
operational method of Heaviside or the equivalent method of
Bromwich depending on the use of complex integrals. Apart from
its intrinsic interest, the motion of a loaded string disturbed in
this way serves to illustrate several other questions.

First, if the length, total mass, and tension of the string are
kept constant, but the individual particles and the distance between
them are made very small, we approach in the limit the problem of
the uniform heavy string. Now the justification of the operational
method is complete for systems with a finite number of degrees
of freedom. Starting by defining <x~l to mean the operation of
integrating with regard to t from 0 to t, it can be shown without
appeal to complex integration that any operator is intelligible if,
when we regard <r temporarily as a complex variable, the operator
is regular near <r~* = 0 or a = oo. It can also be shown that all
the operators arising in the discussion of systems with a finite
number of degrees of freedom satisfy this condition*. We may
remark that <r is not defined explicitly: only powers of o-"1 occur
in the operational solution. The operational solution can therefore
be completely justified for light strings loaded at a finite number
of points.

But when the operational method is applied to continuous
systems the solution is found to involve such operators as e-"*"',
where h is positive and independent of t. This is not regular near
o-"1 = 0, and a new rule of interpretation is needed. The rule
adopted is that

(1).

This rule has been considered a symbolical form of Taylor's theorem;
but it gives the correct answer when <f> or some of its derivatives
are discontinuous between t and t — h/c, when Taylor's theorem is
untrue. If it is interpreted by means of complex integrals it is

* Cambridge Math. Tract! (in the press).
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found tovbe equivalent, in ordinary cases, to Fourier's theorem.
If we approach the continuous system as the limit of a finite one
we may hope to find out how the exponential arises and obtain
some light on the reason for its interpretation.

Second, the nature of the propagation of a disturbance in a
string loaded discontinuously proves to be more complicated than
in the continuous string, and dispersion occurs.

2-0. Consider a light string under tension, free to execute
either transverse or longitudinal vibrations. Particles of mass pi are
attached to it at intervals I. If y0, ̂ , y2... are the displacements of
the particles, the kinetic energy is given by

22' = ^(yo
2 + yl

2 + y2
a+ ...) (1)

and the potential energy by

For transverse vibrations pc2 is the tension; for longitudinal ones
it is the sum of Hooke's constant and the tension. The equations
of motion are of the form

If we make I approach zero while p and c remain constant, the
system approaches the continuous string with line density p, and
c becomes the velocity of propagation of waves. If further the
quantity on the right of (3) tends to a definite limit we put

rl = x (4),
and the equation reduces to the ordinary form

w=cil& ••; , (5)-
Suppose now that the system starts from rest, that the particle

corresponding to ym is kept fixed, and that ya is made to vary with
the time in some prescribed manner. By our rules we replace the
general equation of motion by

—yr=2yr-yr_i-yr+i (6),

subject to y0 being given, so that the first equation of type (6) to
arise involves a'Vi- Also

ym = o (7).
In obtaining the operational solution of these equations we must
treat a. as a constant and carry through the operations as for
equations of finite differences. We find that if

' yT = Aar + Bbr • (8),
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all the equations for r = 1 to m — 1 become identities provided that

a = ex; 6 = e"x (9),

where coshX = l+o3l*/2d» (10),

al
or sinh£\ = g- (11).

The conditions for r = 0 and r — m determine A and B, and our
operational solution is easily found to be

sinh (m-r)\

Now sinh mX/sinh \ is a polynomial in sinh Jx of degree 2 (wi— 1),
the term of highest degree being (2 sinh ^X)''"1"1' or (o-Z/c)3""̂ 11.
As was to be expected, the operator is therefore a regular function
of <r~] near a~x = 0, and its first term is (<rJ/c)~sr or (c/la-y". It
follows at once that the further a particle is from the disturbed
end the more gradually it will begin to move.

If we take y0 to be unity for all positive values of the time the
1 /ct\ir

first term in yr is . t f -j ) . If r is great we can approximate to

this by Stirling's formula and find

2rl)

ect\all
led
\2x

) (13).

If then x is greater than \ect, yr will tend to zero when I is made
to tend to zero. Similar considerations will apply to the later
terms in the expansion of the operator, and the fact that in a
continuous string it takes a finite time for a disturbance at x = 0
to produce any motion at all at a given distance from the end
therefore becomes intelligible. This proposition is untrue for the
string carrying discrete particles.

Still taking yB to be unity when t is positive, and using the
complex integral interpretation, we have

• 8 i n h ( w - r ) \ dy
sinhmX

where the integral is to be taken along a line parallel to the
imaginary axis and on the positive side of it, and X is defined now by

X = ^ . . . . , (15),
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subject to \ and 7 being real and positive at the same time. Then
on the path of integration

| e * | > l (16),
and we can expand in powers of e~imK. The wave-expansion method
that occurs so frequently in the operational treatment of continuous
systems is therefore applicable to the string with discrete particles.
The first term is

*r = i-l ev-*^ (17),

and the rest follow at once. The first term gives the direct wave,
the others the waves reflected at the ends. In operational form
we can write

zr = e~rk (18)

We can evaluate the integral (17) by the method of steepest
descents. For given values of t and r there is a saddle point where

d\
dy

that is, cosh %\ = rl/ct = x/ct = f say (20).

If f > 1, this makes \, and therefore y, real and positive. If f < 1,
there are two saddle points on the imaginary axis, which both
contribute to the integral.

If x > ct, 7 at the saddle point is equal to (2c/l) V(? - 1). Near
this point

7 < - r X = ^ [ ( ^ - l ) i - f c o S h - ^ ] + ^ ( ^ i ( 7 - 7 « ) a (21),

and the line of steepest descent is there perpendicular to the real
axis. We find by the usual formula

When f is great this approximates to (13).
If x < ct, \ at the saddle points will be ± i/j., where

2c
i i n £ ^ (23).

But it is found that the line of steepest descent through +ift is
in the direction \ir and goes to — 00; that through — i/j, is in the
direction f *• and also goes to — 00. These lines are therefore not
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together equivalent to the line L, because they pass the origin,
which is a pole, on the negative real side. A loop from — oo around
the origin must be added. This makes a contribution unity, and
we have

Considering now how (22) and (24) behave when I is made
small, we see that in front of the point where x = ct the displace-
ment falls off rapidly, and that at all such points it tends to zero
with I. Behind this point the displacement is unity except for a
rapidly alternating portion, whose wave-length and amplitude both
tend to zero with I. The solution for the continuous string is
therefore zero displacement for x>ct and unit displacement when
x< ct. This corresponds to the function H(t — xfc), which is the
solution obtained by direct operational methods.

The part of the solution we have just estimated is

( 2 5 ,

The operator is regular near a-"1 = 0. If, however, we make I tend
to zero, the operator tends (formally) to exp (— arl/c) or exp (— ax/c).
The rule that

ezp(-<rx/c)H(t) = H(t-x/c) .....(26),
is therefore j ustified provided that we define exp (— axle) as meaning

In this way the exponential operator is defined in terms of the
fundamental concept of definite integration. Further, since any
function of t can be built up out of the function H (t), this result
is immediately generalized to any function.

30. Consider next a string whose fixed ends correspond to
r = m and r\= - m'. Initially y and if are zero for all particles,
except that y0 = u and y0 = v. For positive values of r we still have

sinh (m — r)\ .,.
fr- y (1)

and for negative values, if r = — r,
sinh (m—r')\

The subsidiary equation for y0 is now

. - y I - y _ 1 = ^(o-tt + ao) (3),
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whence, with the same meaning of A. as in the last section,

I1 . . . sinhmXsinhm'X ,. .
yo = - ( ^ + ^ ) s i n h ( m + w , ) X s . n h x (4),

yr = l(+u + av) S inh "/^ S i n^( m 7 g X (5).
" <?K ' smh (m + m!) X sinh X w

If we expand yT by the wave-expansion method, we find that the
first wave is given by

78

zr = ^-2 (<T'U + <rv) e^/s inh X (6).

If the string is infinite" in length, with the same masses and spacing
of the particles, the reflected waves do not arise, and this expression
is "the complete solution.

3*1. The problem just solved operationally is not of immediate
interest, but has important extensions. Suppose first that y^^ and
y-r> are initially equal to u and v for all values of r'. Then each
initial disturbance makes its contribution to yT and zr, and we
have

But by 20 (11) this can be written

u\V\ ^ c*~rxdy (9)
y)2cosh$\e 7 W >

\ being now redefined as in 2'0 (15), and the saddle points are as
in 20. If x>ct, we can obtain the solution from 20(22) by
multiplying by the value of \ (u +v/y) e^x sech $\ at the saddle point

7 = j(f-l)* (10).

The factor required is found to be

and the disturbance when x > ct is again insignificant if / is small.
When x < ct the contribution from the saddle points 2'0 (23) is
again multiplied by a finite factor and therefore is comparable with

51—2
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its value when y0 is constrained to be unity. But the contribution
from the loop round the origin is altered in form, since the origin
is now a double pole. We find that this portion is

iu + Jt>{t-(r-i)*/cl (12),
or practically

x/c) (13).

By making I small and superposing motions due to assigned initial
disturbances we can easily obtain the D'Alembert solution for a
continuous string

1 rx+ct
a- v{x)dx ...(14),

where u and v are now functions of x.

32. Let us return now to the case where only particle number 6
is disturbed initially. Using 30 (6) we have

2r= jr- <7V".1' e-^ (15)
2c cosh $\ v

1 ffU + v (16).

Since the operational form of the Bessel functions is

^ (17),

^ + i : 4

zr — 2r_! and i r can be expressed explicitly in terms of Bessel
functions of integral order and their derivatives, as has been found
otherwise by Schrb'dinger*.

Consider the case where x = rl<ct, and interpret (15) as a
complex integral. Near a saddle point we have

yt _ rX = ̂  {v(1 _ f.) _ ̂ cos-. f, + w (LiLL* (7 _ 7o)2(18)>

and we find the approximation

f)c o s WW ~^-tC03"
* Ann. d. Phys. 44, 1914, 916-934.
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When £ is small, the argument of the periodic terms is nearly
2ct
-=-(1— \irt;), the variable part of which is —rir. Thus the dis-
placements of consecutive particles differ in phase by ir. As f
increases the difference of phase between consecutive particles
diminishes, and tends to zero as f -•• 1. The amplitude at the same
time increases steadily. But when £ is nearly unity the argument

4 — n Ct

of the periodic term is nearly •= V2 (1 — £)* -=-, and the difference of
phase between consecutive particles is comparable with (1 — £)*.
Also the actual displacements vary only slowly from one particle
to the next. It can be shown that analogous relations hold for the
velocities.

To estimate zr and zT — zr^ explicitly the easiest way is to
return to the expressions for them as complex integrals. For the
former we find

( £r [ jy W( - f')-f cos

( l n* _ £ . ) _ £ cos-£) + **•}] (20),

and the average kinetic energy of a given particle over a few
oscillations is

^ { ^ } (21)-
The average potential energy is the same. It can be verified by
integration that the total energy is equal to the initial energy.

4'0. It follows easily from the foregoing discussion that the
system has no property analogous to heat conduction. Suppose in
fact that n consecutive particles are initially given velocities dis-
tributed in frequency according to the error law. If the mean
square of these velocities is &2, we can regard s as the initial velocity
of agitation of the disturbed region and s2 as proportional to the
temperature. By 3'2 (20) the velocity of agitation sr of a particle
distant rl from the end of the disturbed region is given by

^ (1).

and since by hypothesis the v's are distributed at random they are
not correlated with the harmonic factors, and we have
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where £ is to be given a value between rl/ct and (r + n)l/ct. If
rjn is large we can ignore the difference and say that (2) gives
the distribution of temperature after time t.

This expression bears no resemblance to the solution of the
corresponding problem in heat-conduction. If in one-dimensional
flow a short stretch of the region is heated and the remainder left
at uniform temperature, the «temperature at distance x from the
heated place after time t is proportional to £~^exp(— x*/4h?t),
where h- is the thermometric conductivity. The factor t ~ 4 instead
of tr1 alone is enough to indicate a fundamental difference: the
extent of the region containing a given fraction of the energy
originally supplied increases' in proportion to t in our present
problem, instead of $ as in the thermal case *.

5'0. In consequence of the failure to find any phenomenon
resembling conduction in a string loaded with equal particles
equally spaced, it is desirable to investigate whether it can occur
when the particles are unequal and their masses are distributed
at random. The restriction that they are equally spaced is retained.
An operational solution can be obtained without much difficulty,
apart from the writing down of large determinants and their
expansion in series. Unfortunately, however, no satisfactory way of
evaluating the resulting solution has been found. The nature of
the solution can be seen more simply by considering a simpler
system. Suppose that y0 is given, that the string is infinite in the
positive direction, and that all the particles have mass pi except
one, which has mass pi (1 + ak). Let its displacement be yk. Then
the waves reaching it are given by

yr = e~rXy0 • (1).
and the effect of the exceptional mass is to reflect part of the
disturbance. We assume therefore

r<k (2),
yr = e-r-»xyk r>k ,.(3).

But yr must reduce to yk when r = k, and therefore
A = yk-e-*xy0 (4).

The equation of motion for this particle is

^ ? ( 1 + a*)} y k - y t + 1 = 0 ......(5),

whence, with 2~ = sinh£\ • (6),

* A general discussion of the related problem of thermal conduction in solids,
with references, is given by M. Born, Atomtheorie.det festen Zmtandet, 1923, 708.
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Considering (9) now, we see that k does not appear explicitly. The
effect of a particle of abnormal mass upon the transmitted wave is
the same whichever it may be. Also, if yr is found by the method
of steepest descents, the situation of the saddle points is unaffected,
and we can estimate the transmitted wave at once. If there is a
pole at the origin, where X is zero, its contribution is therefore
unaffected. This was to be expected, because in the limit when
the particles become indefinitely numerous this part of the solution
reduces to the solution for a continuous string, which is obviously
unaffected by increasing the mass of an indefinitely short piece by
a finite fraction of itself. But the saddle points are at

\ = £ = H/c£ (10),

and we must introduce a factor \l +iat.——„ > . This factor
I ? J

is complex and therefore gives a shift of phase as well as a change
of amplitude. The amplitude is multiplied by

* (11).

When f is nearly unity, corresponding to the arrival of the first
pulse, the amplitude is therefore hardly affected. But as time goes
on and f decreases, this factor also decreases, and when £ is small
it approximates to f/at. The energy is at the same time multiplied
b ( £ / )( £ / )

This result shows that irregular distribution of mass must
have a very marked effect on the propagation of the waves produced
by a given initial disturbance. We have here considered such
irregularity in its mildest form, where only one particle has a mass
differing from the average, and we have found that it reflects the
shortest waves almost completely. If many particles have abnormal
masses, the small transmission factor will be raised to a high power.
A certain fraction of the energy will therefore be concentrated near
the region disturbed originally, and will not spread out according
to the laws of dispersion. The longest waves, oh the other hand,
including those that travel fastest, are not much affected by the
irregularity. We may say that the effect of irregularity will be to
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destroy the tail of the train of waves spreading out, and to retain
its energy in the form of irregular movement near the origin of the
disturbance. Irregularity in the coefficients of (yr — yr-\Y in the
potential energy has also been found to give internal reflexion of
similar type.

The effect is very marked. If for instance sinh^X = £i, corre-
sponding to \ = \iri and a wave length 61, £ is \\/3 and the
group velocity is 0'866c. But if the irregularity is as great as in
an ordinary glass we may suppose a£ on an average > TJ^ and the
transmission by a single particle is under (lj^y)"1. If then the atomic
spacing is lO^cm. the energy is reduced as the wave travels 1 cm.
to e~33xl°5 of its initial value. Yet a long wave travels with velocity
c without loss. Most of the energy supplied in such a case must
therefore be regarded as converted into thermal agitation by
internal reflexion.

Summary.

The motion of a light string loaded with equal masses at
regular intervals has been discussed by operational methods. It
is found that the system, though possessing only a. finite number
of degrees of freedom, shows most of the characteristic features
of dispersion. The operator e~n>lc that occurs in the discussion of
uniform continuous strings is found to arise as the limit of an
operator defined wholly in terms of definite integration, and its
interpretation involves a theorem analogous to Taylor's theorem,
but apparently more general. There is no phenomenon analogous
to the conduction of heat. Any irregularity in the distribution of
mass, however, produces strong internal reflexion of the shortest
waves, and may provide a mechanism for conduction.
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