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Cyclicity of elliptic curves modulo primes
in arithmetic progressions
Yıldırım Akbal and Ahmet M. Güloğlu
Abstract. We consider the reduction of an elliptic curve defined over the rational numbers modulo
primes in a given arithmetic progression and investigate how often the subgroup of rational points
of this reduced curve is cyclic.

1 Introduction

1.1 History of the cyclicity conjecture

Let E/Q be an elliptic curve given by a global minimal (see [33, Corollary VIII.8.3])
Weierstrass equation

y2 + a1x y + a3 y = x3 + a2x2 + a4x + a6 ,

where a1 , . . . , a6 ∈ Z. Primes that do not divide the discriminant ΔE of this equation,
or equivalently, its conductor NE , are called the primes of good reduction. For such
primes p, the reduction Ẽp of E modulo p is a nonsingular elliptic curve. In particular,
let Ẽ(Fp) denote the subgroup of Fp-rational points of the reduced curve Ẽp .

In 1976, Lang and Trotter formulated (cf. [21]) the following elliptic curve analogue
of Artin’s primitive root conjecture:

Conjecture 1 (Lang–Trotter Conjecture) Let E/Q be an elliptic curve of rank at least
1. Let P ∈ E(Q) be a fixed point on E of infinite order. Then, the density of primes p such
that Ẽ(Fp) = ⟨P mod p⟩ exists.

As the first step toward this conjecture, the same year, following Hooley’s condi-
tional proof of Artin’s conjecture (cf. [16]), Jean Pierre Serre proved (cf. [32]) assuming
Generalized Riemann Hypothesis (GRH) that

∣{p ⩽ x ∶ p ∤ NE , Ẽ(Fp) is cyclic}∣ = δE Li(x) + o(x/ log x),(1)
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with the density δE given by

δE = ∑
n⩾1

μ(n)
[Kn ∶ Q]

.(2)

Here, Li(x) = ∫
x

2 dt/ log t, and Kn = Q(E[n]) is the n-division field obtained by
adjoining to Q the affine coordinates of the group E[n](Q) of n-torsion points of
E, where Q is a fixed algebraic closure of Q.

Murty and Cojocaru have shown in [7, pp. 621–2] that δE > 0 for both Complex
Multiplication (CM) and non-CM curves (curves with and without complex mul-
tiplication), provided K2 ≠ Q. This result also follows as a byproduct of Theorem 4
by taking f = 1 for non-CM curves. Furthermore, the proof of Theorem 4 provides
an important modification needed in their argument for the non-CM case (see
Remark 2). All of these results assume that GRH holds.

In general, an explicit Euler product for δE is known only for the so-called Serre
curves (see, for example, [2, Section 2.4.1], both for the definition and the explicit
formula for δE ).

In 1975, Borosh et al. (cf. [3]) conjectured that for many elliptic curves E defined
over Q, there are infinitely many primes p for which Ẽ(Fp) is cyclic. Combining the
claim of [3] with the results of [7], we state the following.

Conjecture 2 Ẽ(Fp) is cyclic for infinitely many primes p if and only if E contains a
nonrational two-torsion point.

In 1990, Gupta and Murty showed in [12] that for any elliptic curve E, Ẽ(Fp) is
cyclic for at least cE x/(log x)2 primes for some positive constant cE , provided K2 ≠
Q. When K2 = Q, then the torsion group E(Q)tors of rational points on E contains a
subgroup of the form Z/2Z ×Z/2Z. Since for all primes p, except for a finite number
of them, the torsion group embeds into Ẽ(Fp), we deduce that there can be at most a
finite number of primes p for which Ẽ(Fp) is cyclic, thereby settling Conjecture 2.

The asymptotic formula (1), however, has been proven unconditionally only for CM
curves. In 1979, Ram Murty showed (cf. [28]) that (1) holds without GRH for all CM
elliptic curves. In 2010, Akbary and Murty [1, Theorem 1.1] improved the error term
of [28] to O(x/(log x)A) for any sufficiently large positive constant A. They, however,
assume that the curve has multiplication by the full ring of integersOK of an imaginary
quadratic field K.

For non-CM curves, Cojocaru showed (cf. [4]) in 2002 that if E is a non-CM elliptic
curve, then (1) holds with an error≪NE x log log x/(log2 x)under the assumption that
the Dedekind zeta functions of the division fields of E have no zeros to the right of
x = 3

4 .
Upon combining the results of [1, 12, 28], it follows that δE > 0 for curves with

complex multiplication by OK , provided that K2 ≠ Q, which gives a second proof of
Conjecture 2 for these curves via the asymptotic formula in [1].

In 2004, assuming GRH, Cojocaru and Murty (cf. [7, Theorems 1.1, 1.2])
improved the error terms in (1) to ONE (x5/6(log x)2/3) for non-CM curves, and to
O(x3/4(log NE x)1/2) for CM curves with explicit dependence on the conductor NE .
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This way, they were able to deduce estimates for the smallest prime pE for which Ẽ(Fp)
is cyclic.

1.2 The goal of this paper

For the rest of the paper, f ⩾ 1 is an integer, and a represents a residue class modulo f
and gcd(a, f ) = 1.

As a natural variation, we consider Conjecture 2 for primes p ≡ a mod f . More
precisely, for a given elliptic curve E, we try to determine all moduli f, and the
corresponding residue classes a for each modulus f such that Ẽ(Fp) is cyclic for
infinitely many primes p ≡ a mod f . This is in analogy with Artin’s Primitive Root
Conjecture considered for primes in arithmetic progressions, which was studied in
[23, 24, 26, 27].

We give unconditional lower bound estimates similar to the one given by Gupta
and Murty in [12]. Unfortunately, we obtain only partial results which impose certain
restrictions on f and a related to the use of the sieve method (see Section 1.3).

We also find asymptotic formulas obtained under GRH with error terms similar
to the ones given by Cojocaru and Murty in [7] mentioned above, and with explicit
dependence on the modulus f and certain constants related to the curve E. For Serre
curves, an explicit Euler product for the corresponding density, which we shall denote
by δE( f , a), is given in [2, Corollary 2.5.9]. To find an explicit product or to show
at least that the density is positive in all the cases that we predict (see Question 1)
seems out of reach, since one needs to know the nontrivial intersections of the division
fields Kn for an arbitrary elliptic curve, but these are not completely understood.
This is exactly the same reason why there is no explicit product in general for δE
in (1). What is known about them is given in the Appendix. Furthermore, in our
problem, one needs precise information about the intersections Kn ∩Q(ζ f ) for any
n ⩾ 1. What we know about these are given in Lemmas 7 and 8, which are obtained by
the results in Appendix. The corresponding density in the case of Artin’s Conjecture
with primes in progressions is given explicitly in [27, Theorem 1.2] since in this case
the corresponding intersections are known and given in [27, Lemma 2.4].

Before we state our prediction on what the analogue of Conjecture 2 should be in
our case, we first introduce some notation. We denote by ζn any fixed primitive nth
root of unity, and byQ(ζn) the corresponding cyclotomic extension. The letter σ when
used with a subscript is reserved for automorphisms of cyclotomic fields and the one
which takes ζn to ζ a

n , for each a coprime to the modulus in question, will be denoted
by σa . Also, the letters p and q always denote primes.

Question 1 Let E be an elliptic curve defined overQ and let f and a be relatively prime
positive integers. Is it true that there are infinitely many primes p ≡ a mod f for which
Ẽ(Fp) is cyclic unless Kd ⊆ Q(ζ f ) for some d ⩾ 2 and σa ∈ Gal(Q(ζ f )/Kd), in which
case there are at most a finite number of such primes?

One direction follows easily. To see this, we first need to quote two key facts from
[7, Lemma 2.1, Proposition 3.5.3]:
1. For odd p ∤ NE , Ẽ(Fp) is cyclic if and only if p does not split completely in Kq for

any prime q ≠ p.
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2. Q(ζn) ⊆ Kn for each integer n ⩾ 2.
Now, if Kd ⊆ Q(ζ f ) for some d ⩾ 2, and σa fixes Kd , then any p ∤ NE with p ≡ a mod f
will split completely in Kd , thereby in any Kq with q ∣ d. Thus, Ẽ(Fp) cannot be
cyclic for odd p ≠ q with p ∤ NE . We record this result below. But, first note that
Kd ⊆ Q(ζ f ) implies Kd is abelian overQ, and González-Jiménez and Lozano-Robledo
show (cf. [9]) that Kd is abelian only if d ∈ {2, 3, 4, 5, 6, 8} for non-CM curves, and if
d ∈ {2, 3, 4} for CM curves. Thus, we deduce the following result.

Proposition 1 Assume that (a, f ) = 1, Kd ⊆ Q(ζ f ) for some d ⩾ 2, and σa fixes Kd .
Then, Ẽ(Fp) is cyclic for at most finitely many primes p ≡ a mod f .

We also note that for f = 1, our claim reduces to Conjecture 2 since in this case,
Q(ζd) ⊆ Kd ⊆ Q(ζ f ) = Q is possible only for d = 1, 2.

As for the opposite direction of our claim, we have partial results which imposes
certain restrictions on f and a. For the remaining cases, other than the numerical
calculations we have done, we cannot provide a heuristic argument as evidence to
support our claim. In what follows, we list the partial results we were able to prove
that strongly support our prediction.

1.3 Unconditional results

Let Kab
n be the maximal abelian extension of Q in Kn . By the Kronecker-Weber

Theorem, Kab
n ⊆ Q(ζfn) for some positive integer fn , minimal with respect to this

inclusion, that is divisible exactly by the primes that ramify in Kab
n . This number fn is

called the conductor of Kab
n .

Theorem 1 Let E be an elliptic curve over Q satisfying [K2 ∶ Q] = 3 and let a and f
be any positive integers such that (a, f ) = 1 and (a − 1, f ) has no odd prime divisors.
Let A ⩾ 0 be given. Then, for x sufficiently large and assuming f ≪ (log x)A, the group
Ẽ(Fp) is cyclic for≫ x/(log x)2+A primes p ≡ a mod f , unless K2 ⊆ Q(ζ f ) and σa fixes
K2.

To see why this Theorem is consistent with and provides an affirmative answer to
Question 1, note that the Artin map ⟨p,Q(ζ f )/Q⟩ = σa for any prime p ∤ NE with
p ≡ a mod f . Thus, if Kq ⊆ Q(ζ f ) for some odd prime q, and σa fixes Kq , then it also
fixes Q(ζq), and this means q ∣ (a − 1, f ), contradicting our assumption in Theorem
1. Therefore, it is enough to check whether Kq ⊆ Q(ζ f ) and σa fixes Kq only for q = 2.

Theorem 1 works for any elliptic curve, CM or non-CM and is also practical in the
sense that one can determine the moduli f, and whether K2 ⊆ Q(ζ f ) or not, and the
residue classes a for which Ẽ(Fp) is cyclic for infinitely many primes p ≡ a mod f . To
see this, note that if E is given by

y2 = x3 + a1x2 + a2x + a3 ,

with an irreducible cubic, then K2 is a cubic extension exactly when the discriminant
ΔE is a square in Q. In this case, Häberle describes in [13, Corollary 12] how to
determine the conductor f2 of a cubic extension of Q. In particular, f2 is of the form

q1q2⋯qr (r ⩾ 1),
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where each q i ≡ 1 mod 3 is a prime, with at most one exception, which then must be 9.
Therefore, any number f not divisible by f2 will be an admissible modulus, and we
may then choose the residue class a coprime to f such that (a − 1, f ) has no odd prime
divisors. Furthermore, in case K2 ⊆ Q(ζ f ), for any a whose order modulo f does not
divide φ( f )/3 = ∣Gal(Q(ζ f )/K2)∣, σa cannot fix K2.

In general, there are 2φ( f )/3 possible choices for a. In particular, when f is a prime
power divisible by f2, one can take any residue class a which is not a cubic residue
modulo f.

The proof of Theorem 1 uses linear sieve of Iwaniec (cf. [18]). The idea is to count
the primes p ⩽ x with p ≡ a mod f such that p − 1 is free of odd primes not exceeding
xα for some α > 1

4 . Having the exponent α > 1
4 is essential for the rest of the proof

to work, and one way to achieve this is to combine the linear sieve of Iwaniec [18,
Theorem 1] with a follow up paper by Fouvry and Iwaniec [8] with a necessary
modification provided later by Heath–Brown (see [15, Lemma 2]). Using sieve theory
also necessitates the restriction on residue classes in Theorem 1. Indeed, if some odd
prime q ⩽ xα were to divide (a − 1, f ), then p would split completely in Q(ζq); that
is, q ∣ p − 1, and one could not guarantee then that p does not split in Kq , which is the
only way the sieve can be used to prove Theorem 1.

Since it is desirable to remove the restriction on residue classes a, we also inves-
tigated ways to deal with the case when (a − 1, f ) is divisible by odd primes. To
understand the obstacles in this situation, we consider an example. Say, f > 5 is a
prime, and we want to count primes p ≡ 1 mod f for which Ẽ(Fp) is cyclic. Note that
these primes split completely in Q(ζ f ). Fortunately, there is hope for these primes
not to split completely in K f since it follows from [9] that K f is nonabelian when
f > 5. One has to make sure p does not split completely in Kq for primes q ≠ p.
To get an unconditional result using sieve methods, one has to count primes p ⩽ x,
p ∤ NE , p − 1 not divisible by primes q ⩽ xα with some α > 1

4 except for 2 and f,
and the Artin map ⟨p, K2 f /Q⟩ ⊆ C, where C is a conjugacy class that consists of
automorphisms in Gal(K2 f /Q(ζ f ))/{1K2 f }. This may be done using a result of Murty
and Petersen (cf. [29, Theorem 0.2]), but only, in the best scenario, with an exponent
α = 1/2(φ( f ) − 2) − ε < 1

4 (note φ( f ) = f − 1 > 4). Thus, unless [29, Theorem 0.2] can
be improved, getting an unconditional result seems to be out of reach with current
methods.

One last note relevant also to the next result is that when applying the sieve one
has to work with two congruences; namely, that p ≡ a mod f and p ≡ b mod f2. The
latter is needed to make sure that p does not split completely in K2 (see Lemma 2 and
Remark 4). When K2 is cubic, these two congruences are shown to be compatible in
Lemma 3, and this leads to Theorem 1 above. However, in what follows, we shall see
that this is not always the case when K2 is nonabelian, or a quadratic field. Thus, the
next result is slightly weaker than but is similar to the cubic case.

The character χD that appears in the statement of Theorem 2 is the real primitive
character of conductor ∣D∣ associated with the quadratic field Q(

√
D) given by the

Kronecker symbol χD(⋅) = ( D
⋅ ), and d2 stands for the discriminant of the quadratic

extension Kab
2 of conductor f2 = ∣d2∣.
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Theorem 2 Let E be an elliptic curve over Q satisfying [Kab
2 ∶ Q] = 2 and let a and f

be any positive integers such that (a, f ) = 1 and (a − 1, f ) has no odd prime divisors.
Let A ⩾ 0 be given. Then, for x sufficiently large and assuming f ≪ (log x)A, the group
Ẽ(Fp) is cyclic for ≫ x/(log x)2+A primes p ≡ a mod f if f2 ∤ f , unless f2 = 3( f , f2)
and χ−d2/3(a) = −1. The same lower bound holds if f2 ∣ f and σa does not fix Kab

2 .

In case one uses a Weierstrass model given by

y2 = g(x) = x3 + Ax2 + Bx + C ,

Kab
2 is generated by the square root of the square-free part of ΔE . So, in practice,

conditions given above can easily be checked to determine which moduli f and the
corresponding residue classes a are admissible.

Note that Theorem 2 comes close to, but falls short of providing the converse of
Proposition 1 due to the exceptional case when f2 ∤ f . To see what the problem is, we
consider an example:

Assume that Kab
2 = Q(

√
21), f = 7, and a = 5 so that

f2 = d2 = 21, (−d2/3
5
) = (−7

5
) = −1, 21 = 3 gcd(7, 21).

Since f2 ∤ f , Kab
2 /⊂ Q(ζ f ) = Q(ζ7). We require primes p ≡ 5 mod 7 not split com-

pletely in Kab
2 so that they do not split completely in K2. The latter is achieved

by imposing a condition that p ≡ b mod 21 for some b. We want to see why the
sieve cannot be applied. Note that the second congruence should guarantee that
σb ∈ Gal(Q(ζ21)/Q), but σb does not fix Kab

2 ; that is, σb(
√

21) = −
√

21. Here, b should
be chosen in such a way that (b − 1, 21) = 1. At the same time, we need 7 ∣ b − 5 so that
the congruences p ≡ 5 mod 7 and p ≡ b mod 21 are compatible. This implies then that
σb restricted to Q(ζ7) sends

√
−7 to −

√
−7 because σa = σ5 does. This can be seen as

follows:
The Artin map ⟨5,Q(ζ7)/Q⟩ = σ5 when restricted to K = Q(

√
−7) equals

⟨5, K/Q⟩, and thus, is not identity on K since 5OK is a prime ideal in K. This follows
from Kummer’s Theorem (cf. [19, Section 1, Theorem 7.4]) as x2 + 7 is irreducible
modulo 5; in other words, −7 is a quadratic non-residue modulo 5 and this is captured
by χ−7(5) = −1.

Hence, in order to get σb(
√

21) = −
√

21, we need σb(
√
−3) =

√
−3. This implies

that b ≡ 1 mod 3, hence p ≡ 1 mod 3, and p splits completely in Q(ζ3). As a result, the
sieve cannot be used since we could not choose b so that (b − 1, 21) = 1. Therefore,
we have to exclude cases where f2 = 3( f , f2) and χ−d2/3(a) = −1 when f2 ∤ f (see
Lemma 4).

1.4 Conditional results

Next, we move onto the asymptotic results similar to Serre’s Theorem in (1). We first
introduce a few facts and give some definitions.

For each integer m ⩾ 1, there exists a representation

ρm = ρE/Q,m ∶ GQ = Gal(Q/Q)  → Aut(E[m]) ≃ GL2(Z/mZ)
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determined by the action of the absolute Galois group GQ on the torsion group E[m].
The fixed field of its kernel is the m-division field Km , so

Gal(Km/Q) ≃ ρm(GQ).(3)

In 1972, Serre proved (cf. [31]) that

SE = {p prime ∶ ρp(GQ) ≠ GL2(Z/pZ)}

is finite if and only if E is non-CM. When E is non-CM, the Serre constant of E/Q is
defined as the number

A(E) = 30 ∏
p>5

p∈SE

p.(4)

Furthermore, we define the constant

ME = ∏
p∣A(E)NE

p.

We shall denote our prime counting function by

πE(x; f , a) = #{p ⩽ x ∶ p ∤ 2NE , p ≡ a mod f , and Ẽ(Fp) is cyclic}.

Arithmetic functions ω, τ, σ , and H that appear below are

ω(n) = ∑
p∣n

1, τ(n) = ∑
d>0,d ∣n

1, σ(n) = ∑
d>0,d ∣n

d , H(n) = ∑
d ∣n
∑

1⩽k⩽d
d ∣k2

1,(5)

and, as usual, φ is Euler’s totient function.

Theorem 3 Let E/Q be a non-CM curve. Assuming GRH holds for all Dedekind zeta
functions of the fields KdQ(ζ f ) for all square-free d ⩾ 1, we have

πE(x; f , a) = δE( f , a)Li(x) + E(x),

where

δE( f , a) ∶=
∞
∑
d=1

μ(d)γa , f (Kd)
[KdQ(ζ f ) ∶ Q]

,(6)

where μ denotes the Möbius function, and γa , f (Kd) = 1 if σa fixes Kd ∩Q(ζ f ), and is
0 otherwise, and the error term E(x) satisfies

E(x) ≪ x 1/2 f log( f xNE) + x5/6 (H( f ) log2( f xNE)
f

)
1/3

+ x5/8 ( τ( f2)M3
E log3( f xNE)

φ( f ) log x
)

1/4

+ τ( f2)M3
E

x 1/2φ( f ) log x
.

(7)

Here, f2 denotes the largest divisor of f that is coprime to ME .
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Remark 1 It follows from (19) that H(n) satisfies

2k σ
⎛
⎝∏i⩽k

p⌈α i/2⌉−1
i

⎞
⎠
⩽ H

⎛
⎝∏i⩽k

pα i
i
⎞
⎠
⩽ 2k σ

⎛
⎝∏i⩽k

p⌊α i/2⌋
i

⎞
⎠

.(8)

In particular, for f = ∏i⩽k pα i
i , it follows from [17] that

H( f ) < 2.59 ⋅ 2k√ f log log
√

f ,

whenever∏i p⌊α i/2⌋ ⩾ 7, and H( f ) < 2k+1√ f otherwise. The last inequality, of course,
gives only a crude estimate since the behavior of H is not very regular. For example, if
f is a large prime, then H( f ) = 2 while H( f 2) = 2 + f > f .

In this paper, we did not try to see if a weaker quasi-GRH would work as in [4],
but rather wanted to get explicit and smaller error terms that can be obtained under
GRH.

As for the positivity of the density, we have the following.

Theorem 4 Let E/Q be a non-CM curve. If ( f , ME) = 1, and K2 ≠ Q, then the quantity
δE( f , a) given by (6) satisfies

δE( f , a) ⩾ 1
φ( f ) ∏

p∤ME
(p, f )∣a−1

(1 − φ(p, f )
[Kp ∶ Q]

) ∏
2<p∣ME

(1 − 1
p − 1

)

⋅ 1
[K2 ∶ Q]

([K2 ∶ Q] − 1 − μ(f2)([Kab
2 ∶ Q] − 1)

∏2<p∣f2(p − 2) ) > 0,(9)

where φ(p, f ) stands for φ(gcd(p, f )).

Remark 2 Note that when f = 1, (9) would imply δE in (2) is at least

1
2
(1 − μ(f2)

∏2<p∣f2(p − 2)) ∏
2<p∣ME

(1 − 1
p − 1

) ∏
p∤ME

(1 − 1
[Kp ∶ Q]

) .

This is obtained in the same way as Cojocaru and Murty had their result in [7], yet
the two results are different. The reason is that when f2 is not a prime, then Kab

2
may have nontrivial intersections with Q(ζd) with square-free d ∣ ME , even though
Kab

2 ∩Q(ζq) = Q for each prime q ∣ d. They seem to have overlooked this point in
their work.

By the definition of ME , we have [Kp ∶ Q] = (p2 − p)(p2 − 1) ≍ p4 for p ∤ ME .
Thus, we obtain from (9) that

δE( f , a) ≫ 1
φ( f ) ∏

2<p∣ME

(1 − 1
p − 1

) = 2φ(ME)
φ( f )ME

≫ 1
φ( f ) log log ME

.

The restrictions on the modulus f in Theorem 9 can be discarded for Serre Curves.
Indeed, Julio Brau Avila showed in his thesis (cf. [2, Corollary 2.5.9]) that δE( f , a) is
positive for Serre curves for any co-prime a and f. Although an asymptotic formula
is not given in Brau’s work, the density δE( f , a) is given explicitly as a product using

https://doi.org/10.4153/S0008414X21000237 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000237


Cyclicity Conjecture 1285

a different approach. Since Nathan Jones proved (cf. [20]) that almost all non-CM
curves are Serre curves, Brau’s result strongly supports our prediction.

Brau also considers the non-CM and non-Serre curve

y2 = x3 + x2 + 4x + 4,

as an example, with K2 = Q(ζ4) (so f2 = 4), NE = 20, and A(E) = 30 (yielding ME =
30). Proposition 2.5.12 in [2] then states that δE( f , a) = 0 for this curve if and only
if 4 ∣ f and a ≡ 1 mod 4. Proposition 1 and Theorem 2 in this paper show that there
are infinitely many primes p ≡ a mod f for which Ẽ(Fp) is cyclic unless 4 ∣ f and a ≡
1 mod 4, in which case there are at most finitely many such primes, which agrees with
Brau’s result.

Next, we turn to CM curves. We assume as in [1] and [7] that the endomorphism
ring is isomorphic to the full ring of integers. The exact definition of the arithmetic
function GD(a, f ) that appears inside the error term below is given in the proof.

Theorem 5 Let E/Q be an elliptic curve with End
Q
(E) ≃OK , where OK is the ring

of algebraic integers of an imaginary quadratic field K = Q(
√
−D). If GRH holds for all

Dedekind zeta functions of the fields KdQ(ζ f ) for all square-free d ⩾ 1, then

πE(x; f , a) = δE( f , a)Li(x) + E(x),
where δE( f , a) is given by (6) and the error term E(x) satisfies

E(x) ≪ x3/4 ( log( f xNE)
log x

)
1/2

+ x3/4 ( log( f xNE)GD(a, f )
f 3 )

1/2

+ x 1/2 f log( f xNE) + x 1/2 ( 1
f
+ log x

f 2 )GD(a, f ).(10)

Here, GD(a, f ) is the cardinality of the set given by (23), is multiplicative in the second
variable and satisfies

GD(a, f ) < c ⋅ 4ω( f )τ( f ) f 2 ,(11)

where c = 2 if D ≡ 1, 2 mod 4, or D ≡ 3 mod 4 and f is odd, and c = 49 otherwise.

As for the density, we have the following result.

Theorem 6 The density δE( f , a) in Theorem 5 is positive if one of the following holds:
(1) K2 ∩ K = Q, γa , f (K2K) = γa , f (K2)γa , f (K), and both (a) and (b) hold, where

(a) K2 ⊊ Q(ζ f ) or σa does not fix K2 ∩Q(ζ f ),
(b) K ⊊ Q(ζ f ) or σa does not fix K ∩Q(ζ f ).

(2) Kab
2 = K, and either K2 ⊊ Q(ζ f ) or σa does not fix K2 ∩Q(ζ f ).

Remark 3 We did not attempt to handle the CM case without GRH in this paper
even though division fields are better understood for these curves, and one may be
able to improve Theorems 5 and 6. We leave this task to a separate paper.

As we mentioned above, the Appendix provided by Ernst Kani at the end of the
paper provides detailed exposition on the intersection of division fields, which play a
fundamental role in the proofs of all the results on the density δE(a, f ).
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2 Proofs of unconditional results

2.1 The linear sieve

Assume that F ⩾ 1 is an integer satisfying

F ≪ (log x)A for some A ⩾ 0,(12)

c is an integer coprime to F such that (c − 1, F) has no odd prime divisors. Put

A = {p − 1 ∶ p ⩽ x , p ≡ c mod F}

and, as usual, define

P(z) = ∏
q<z ,q∈P

q,

where P is the set of odd primes coprime to F. We seek a lower bound for

S(A,P, z) = ∣{n ∈ A ∶ (n,P(z)) = 1}∣.

For d ∣ P(z), we have

Ad ∶= ∑
n∈A
d ∣n

1 = π(x; dF , cd) =
ω(d)

d
Li(x)
φ(F) − r(A, d),

say. Here, π(x; dF , cd) denotes the number of primes p ⩽ x that are congruent to cd
modulo dF, cd is the unique integer (by Chinese Remainder Theorem) modulo dF
satisfying cd ≡ 1 mod d and cd ≡ c mod F, and ω(d) = d/φ(d) satisfies 0 < ω(q) < q
for all odd primes q. Furthermore, the inequalities

∏
w⩽p<z
p∤2F

(1 − ω(p)
p
)
−1

< exp
⎛
⎝ ∑p⩾w

p>2

1
p2 − 2p

⎞
⎠ ∏w⩽p⩽z

(1 − 1
p
)
−1

⩽ log z
log w

(1 + K
log w

)

and

∑
w⩽p<z

p∈P

∑
k⩾2

ω(pk)
pk = ∑

w⩽p<z
p∈P

1
(p − 1)2 ⩽

L
log(3w)

hold for all z > w ⩾ 2 for some constants K , L > 1, where in the second inequality of
the first equation we use Merten’s estimate [25, Theorem 2.7]

∏
p⩽x
(1 − 1

p
)
−1

= eγ log x + O(1).

We have verified so far that the necessary conditions given in [18] by equations (1) and
(2) are satisfied. Hence, we are now ready to use the lower bound sieve of Iwaniec in
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[18]. Thus, assume that ε1 ∈ (0, 1/3), and 2 ⩽ y1/4 ⩽ z < y1/2. Then, it follows from [18,
Theorem 1] that

S(A,P, z) ⩾ Li(x)
φ(F) ∏2<p<z

p∤F

(1 − 1
p − 1

){ f (s) − E(ε1 , y, K , L)} − R(A, y),

where s = log y/ log z, E(ε1 , y, K , L) ≪ ε1 + ε−8
1 eK+L(log y)−1/3 and

R(A, y) = ∑
l<exp(8/ε3

1 )
∑
d<y

d ∣P(z)

λ l(d)(
Li(x)
φ(dF) − π(x; dF , cd))

for some well factorable functions λ l (see the paragraph before [15, Lemma 2] for
the definition). Here, the implied constant is absolute. The function f (s) that appears
above is a continuous solution of a system of differential-difference equations given
in [18], and in the interval 2 ⩽ s ⩽ 4 that we are interested in f (s) is given by (cf. [11,
p. 126])

f (s) = 2eγ

s
log(s − 1),

where γ = 0.5772156649 . . . is the Euler–Mascheroni constant.
Now, we choose y = x4/7−ε2 and z = y1/(2+ε2) with a fixed ε2 ∈ (0, 1) so that s = 2 +

ε2, and

f (s) > ε2eγ

2 + ε2
> ε2/2.

For ε1 sufficiently small in terms of ε2 and x sufficiently large, we get

f (s) − E(ε1 , y, K , L) > ε2/3.

Furthermore, it follows from [15, Lemma 2] that for a given ε2 and any B > 0,

R(A, y) ≪ xF k(log x)−B ,

for some fixed positive integer k, where the implied constant may depend on c, ε2, and
B. Then, choosing B = (k + 1)A+ 3, it follows from (12) that

S(A,P, z) ⩾ c(ε2 , A) x
(log x)2+A

for sufficiently large x. For ε2 ∈ (0, 2/35), we see that z = xα with

α = α(ε2) =
4/7 − ε2

2 + ε2
= 1

4
+ 2/7 − 5ε2

8 + 4ε2
> 1

4
.
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Furthermore, since

∑
q⩾x α

∑
p⩽x

q2 ∣p−1

1 < ∑
x α⩽q<

√
x
( x

q2 + 1) ≪ x 1−α = o( x
log2+A x

) ,

we can also assume that each p − 1 counted in S(A,P, xα) has distinct odd prime
divisors q ⩾ xα coprime to F. Finally, since there are only finitely many divisors of NE ,
we obtain the following result:

Lemma 1 Let A ⩾ 0 and ε ∈ (0, 2/35) be given. Assume that c and F are positive
coprime integers such that F ≪ (log x)A and no odd prime divides (c − 1, F). Then, there
is some α = α(ε) > 1/4 and a positive constant c(α, A) such that for x sufficiently large,
there are at least c(α, A)x/(log x)2+A primes p ⩽ x with p ≡ c mod F and p ∤ NE such
that odd prime divisors q of p − 1 are distinct, coprime to F and satisfy q ⩾ xα .

2.2 Proofs of Theorems 1 and 2

As mentioned in the introduction, Murty and Gupta showed in [12] unconditionally
that for any elliptic curve E/Q for which K2 ≠ Q, there are infinitely many primes
p for which Ẽ(Fp) is cyclic. The first step in their proof is to make sure p does not
split completely in K2, which is established by imposing a congruence condition on
p as mentioned in [12, Lemma 3]. Since this result plays a fundamental role in this
paper and since they do not give any details, we show below that there is in fact an
appropriate arithmetic progression that serves this purpose.

Lemma 2 If K2 ≠ Q, there exists some b ∈ (Z/f2Z)× such that γb ,f2(K2) = 0 and the
odd part of f2 is coprime to b − 1.

Remark 4 As mentioned in the introduction, to be able to apply the linear sieve,
it is of fundamental importance to make sure that no odd prime divides (f2 , b − 1),
and that is exactly why we need to prove that there is at least one such b. Otherwise,
only finding some b ∈ (Z/f2Z)× such that γb ,f2(K2) = 0 can easily be accomplished
by choosing an automorphism σ in Gal(Q(ζf2)/Q) which does not fix K2 ∩Q(ζf2).

Proof Note that K2 ∩Q(ζf2) = Kab
2 .

Assume first that [Kab
2 ∶ Q] = 2. Then, Kab

2 = Q(
√

D) for some square-free integer
D, and

f2 =
⎧⎪⎪⎨⎪⎪⎩

4∣D∣ if D ≡ 2, 3 mod 4,
∣D∣ if D ≡ 1 mod 4

(13)

is the absolute value of the discriminant d2 of Kab
2 over Q (cf. [19, Corollary VI.1.3]).

We choose b = 3 if D = −1, 2; b = 7 if D = −2. For ∣D∣ > 2, let p be the smallest odd
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prime divisor of D, and choose b as the unique solution modulo f2 of the system of
congruences

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b ≡ gp mod p
b ≡ g2

q mod q (∀q ∣ D/p)
b ≡ 1 mod 4

if D ≡ 3 mod 4

{b ≡ gp mod p
b ≡ g2

q mod q (∀q ∣ D/p) if D ≡ 1 mod 4

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b ≡ gp mod p
b ≡ g2

q mod q (∀q ∣ D/(2p))
b ≡ 1 mod 8

if D ≡ 2 mod 4

Here, gp denotes a primitive root modulo p for each odd prime divisor of D. Since
q > 3 for any q ≠ p, g2

q /≡ 1 mod q. Furthermore, σb(
√

D) = −
√

D. Thus, we have the
desired b.

Next, assume that [K2 ∶ Q] = 3 (note K2 = Kab
2 ). Hasse proved (cf. [14]) that

f2 = p1 p2⋯pr ,(14)

where p1 , . . . , pr are either all distinct primes with p i ≡ 1 mod 3, or all except one, say
pr , are such primes, and pr = 9.

If r = 1, any b which is not a cube modulo p1 works. In particular, there are 2φ(p1)/3
choices for b. If r > 1, write f2 = p1m. Since K2 ∩Q(ζn) = Q for any n ∣ m (otherwise,
K2 ⊂ Q(ζm)), we have

Gal(Q(ζm)K2/Q) ≃ Gal(K2/Q) ×Gal(Q(ζp2)/Q) ×⋯ ×Gal(Q(ζpr)/Q).
Thus, there are 2∏r

i=2(φ(p i) − 1) choices for an automorphism τ ∈
Gal(Q(ζm)K2/Q), which is not identity on K2 and on any Q(ζp i ) for i = 2, . . . , r.
Furthermore,

[Q(ζf2) ∶ Q] =
[Q(ζm)K2 ∶ Q][Q(ζp1) ∶ Q]

[L ∶ Q] = 3φ(f2)
[L ∶ Q] ,

where L = Q(ζm)K2 ∩Q(ζp1), implies [L ∶ Q] = 3. Since [Q(ζp1) ∶ Q] > 3, we can
extend τ∣L to a nonidentity automorphism β of Gal(Q(ζp1)/Q). Since τ and β agree
on L, it follows from Galois theory that there is a σ ∈ Gal(Q(ζf2)/Q) which extends
τ and β. Then, σ uniquely determines some b ∈ (Z/f2Z)× such that (b − 1, f2) = 1 and
γb ,f2(K2) = 0 as desired. ∎
Remark 5 Let χd2 be the real primitive character of conductor f2 given by the
Kronecker symbol (d2

⋅ ). Then, γb ,f2(K2) = 1 if and only if b ∈ ker χd2 (to see how this
character plays a role, see for example, [19, I.7.4 and pp. 250–1]). So, when [Kab

2 ∶ Q] =
2, we choose b in such a way that b /∈ ker χd2 and that b /≡ 1 mod q for odd q ∣ D.

The next result is needed in the proof of Theorem 1.
Lemma 3 Assume that [K2 ∶ Q] = 3. Let m > 1 be a proper divisor of f2 and a an integer
such that (m, a(a − 1)) = 1. Then, there is some b satisfying conditions of Lemma 2 such
that b ≡ a mod m.
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Proof Write f2 = pdm = pn, where p is a prime, d ⩾ 1 and (d , m) = 1. Since K2 ∩
Q(ζn) = Q, there is some τ ∈ Gal(Q(ζn)K2/Q) which is not identity on K2 and on
Q(ζq) for each prime (if any) q ∣ d, while it equals σa on Q(ζm). If p = 3, then
Q(ζn)K2 = Q(ζf2). Thus, τ = σb for some b. If 3 ∣ m, then b ≡ a mod m implies b ≡
2 mod 3 since (m, a(a − 1)) = 1. Otherwise, 3 ∣ d and σb ≠ 1Q(ζ3) implies b ≡ 2 mod 3.
In either case, we obtain the desired result. If p ≠ 3, we put L = Q(ζn)K2 ∩Q(ζp).
Then,

[L ∶ Q] =
[Q(ζn) ∶ Q][K2 ∶ Q][Q(ζp) ∶ Q]

[Q(ζf2) ∶ Q]
= 3φ(f2/p)φ(p)

φ(f2)
= 3 < φ(p).

Thus, we can extend τ∣L to a nonidentity automorphism β of Q(ζp). Since τ and β
agree on L, it follows from Galois theory that there is a σb ∈ Gal(Q(ζf2)/Q) which
extends τ and β for some b with the desired property. ∎

Proof of Theorem 1 If f2 ∤ f , then we can write f = mg with m = (f2 , f ) < f2.
Applying Lemma 2 if m = 1, and Lemma 3 for m > 1 yields some b with which the
system p ≡ b mod f2 and p ≡ a mod f is solvable since m ∣ a − b, and there is a unique
solution, say, c modulo F = [ f , f2]. Applying Lemma 1 to primes p ≡ c mod F, we find
some α > 1/4 and a set of primes Sα(x)having properties stated in Lemma 1. We would
like to show that the number of p ∈ Sα(x) for which Ẽ(Fp) is not cyclic is negligible.
The rest of the proof follows the proof of [12, Theorem 1], but we shall include it here.

Recall that ∣Ẽ(Fp)∣ = p + 1 − ap , where ap denotes the trace of the Frobenius
associated to E and p. Put

S(b, x) = {p ∈ Sα(x) ∶ ap = b}.

By Hasse’s inequality, Sα(x) is the union of S(b, x) with ∣b∣ ⩽ 2
√

x. Take a prime p ∈
S(b, x) for which Ẽ(Fp) is not cyclic. Then, p splits completely in Kq , for some odd
prime q. Since Q(ζq) ⊂ Kq , q ∣ p − 1 and the fact that p ∈ Sα(x) implies q ⩾ xα and is
coprime to [ f , f2]. Moreover, q2 ∣ ∣Ẽ(Fp)∣ = p + 1 − ap = p − 1 + (2 − b), thus q ∣ b − 2.
Notice that b ≠ 2 since odd prime divisors of p − 1 are distinct. Since q ⩾ xα with α >
1/4 and ∣ap − 2∣ ≪ x 1/2, there is only one such prime q for a given b, for x sufficiently
large. Therefore, any p ∈ S(b, x) for which Ẽ(Fp) is not cyclic satisfies

p ≡ b − 1 mod q2

and the number of such p is < x/q2 + O(1) ≪ x 1−2α . The total number of p ∈ Sα(x)
for which Ẽ(Fp) is not cyclic is, therefore,≪ x3/2−2α = o(x/(log x)2+A).

If f2 ∣ f and γa , f (Kab
2 ) = 0, we can apply Lemma 1 with the pair (a, f ), and repeat

the same arguments above. ∎

Lemma 4 Assume that [Kab
2 ∶ Q] = 2, m > 1 is a proper divisor of f2, (a, m) = 1 and

the odd part of m is coprime to a − 1. Then, there is some b satisfying conditions of Lemma
2 such that b ≡ a mod m unless f2 = 3m and χ−d2/3(a) = −1.

Proof By remark 5, we need to find some b with (b, f2) = 1 such that χd2(b) = −1
and that b /≡ 1 mod q for odd q ∣ D. Write f2 = pdm = pn with d ⩾ 1. Whenever p = 3,
we need to choose b ≡ 2 mod 3 so that 3 ∤ b − 1, and b ≡ a mod m. This gives χd2(b) =
( b

3 )χ−d2/3(b) = −χ−d2/3(b). If d = 1, this implies χ−d2/3(a) should be 1 since otherwise
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γb ,f2(Kab
2 ) = 1. If d ≠ 1 and (d , m) = 1, we choose b modulo d in such a way that q ∤

b − 1 for each odd q ∣ d and that χd2(b) = −1. This can be done since odd prime divisors
of d are larger than 3. If (d , m) ≠ 1, it equals 4 or 8. In this case, we choose b similarly
for odd prime divisors of d, and congruent to a modulo the odd part of m. We finally
choose b modulo (d , m) so that χd2(b) = −1. If 3 ∤ f2, then we choose b similarly. ∎

Proof of Theorem 2 If f2 ∤ f , then we can write f = mg with m = (f2 , f ) < f2.
Applying Lemma 2 if m = 1, and Lemma 4 for m > 1 yields some b with which the
system p ≡ b mod f2 and p ≡ a mod f is solvable since m ∣ a − b, and there is a unique
solution modulo [ f , f2]. Applying Lemma 1 and proceeding as in the proof of Theorem
1, we get the result. If f2 ∣ f and γa , f (Kab

2 ) = 0, we can apply Lemma 1 with the pair
(a, f ). ∎

3 Proofs of Theorems 3 and 4

Throughout this section, we assume that E is an elliptic curve over Q that has no
complex multiplication.

3.1 Preliminaries

Recall that fn is the conductor of Kab
n . It follows from [30, V Theorem 1.10, p.324] that

fn is divisible exactly by those primes that ramify in Kab
n . Also, primes that ramify in

Kn are among the divisors of nNE (see, for example, [33, p. 179]). Since these primes
also ramify in Kn , fn ∣ (nNE)∞. In particular, f2 ∣ M∞E and we use this implicitly in
the proof of Theorem 4.

Lemma 5 ([7, Lemma 2.1]) Let E be an elliptic curve defined overQ, and p a prime with
p ∤ NE . Then, for any prime q ≠ p, Ẽ(Fp) contains a subgroup isomorphic to Z/qZ ×
Z/qZ if and only if p splits completely in Kq . Therefore, for odd p, Ẽ(Fp) is cyclic if and
only if p does not split completely in Kq for any prime q ≠ p.

Lemma 6 If (d , e) = 1, then Kd e = Kd Ke .

Proof Since Kd , Ke ⊆ Kd e , Kd Ke ⊆ Kd e . Now, take any de-torsion point (x , y) of E,
and note that since (d , e) = 1, (x , y) = ad(x , y) ⊕ be(x , y) for some integers a and b,
where⊕ denotes the group operation on E; that is, (x , y) is the sum of a d-torsion and
an e-torsion point. Thus, the claim follows. ∎

Lemma 7 If (e , A(E)) = 1, then Ke ∩Q(ζg) = Q(ζ(e ,g)), where A(E) is Serre’s con-
stant defined in (4).

Proof By [6, Appendix Corollary 13],Q(ζe) is the maximal abelian extension ofQ in
Ke . Thus, Ke ∩Q(ζg), being abelian, lies in both Q(ζe) and Q(ζg), and also contains
their intersection since Q(ζe) ⊆ Ke . ∎

Lemma 8 (Theorem 1 in Appendix) If (m, nME) = 1, then Kn ∩ Km = Q.

Below we give an effective version of Chebotarev’s Density Theorem.
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Lemma 9 ([7, Theorem 3.1, Lemma 3.4]) Let L/Q be a Galois extension of discrim-
inant ΔL , G = Gal(L/Q), C ⊆ G a conjugacy class, and P(L) the set of primes p that
ramify in L. Then, assuming GRH for the Dedekind zeta function of L,

πC(x , L/Q) = ∣C∣∣G∣ Li(x) + O(x 1/2 log
⎛
⎝

x[L ∶ Q] ∏
p∈P(L)

p
⎞
⎠
),

where

πC(x , L/Q) = ∣{p ⩽ x ∶ p ∤ ΔL , Frobp(L/Q) ⊆ C}∣.

Lemma 10 For real Y ⩾ 1 and integer k ⩾ 1,

∑
n>Y

1
nk φ(n) ≪ Y−k .

Proof We have

∑
Y<e⩽Z

1
ek φ(e) = ∑

Y<e⩽Z

1
ek+1 ∏

p∣e

p
p − 1

<∏
p
(1 + 1

p2 − 1
) ∑

Y<e⩽Z

1
ek+1 ∑

d ∣e

μ(d)2

d

< eπ2/6 ∑
Y<ed⩽Z

1
ek+1dk+2

≪ ∑
d⩽Z

1
dk+2 ∑

e>Y/d

1
ek+1 ≪ Y−k ∑

d⩽Z

1
d2 ,

and taking limit as Z →∞, the result follows. ∎

Lemma 11 For Y > 1,

∑
n>Y

1
φ(n)2 ≪

1
Y

.

Proof Note that for any x ⩾ 1,

⌊x⌋ ⩽ ∑
n⩽x

n
φ(n) = ∑d⩽x

μ(d)2

φ(d) ∑
n⩽x/d

1 < x∑
d

μ(d)2

dφ(d) = cx

where c > 1 and the last inequality holds by Lemma 10. Thus,

∑
n⩽x

n2

φ(n)2 = ∑
n⩽x

n
φ(n) ∑d ∣n

μ(d)2

φ(d) ⩽ ∑d⩽x

μ(d)2d
φ(d)2 ∑

n⩽x/d

n
φ(n)

< cx∑
d⩾1

μ(d)2

φ(d)2 = c1x ,
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where the first inequality follows by using φ(dn) ⩾ φ(d)φ(n) and the second by
φ(d) ≫ d/ log log d (cf. [25, Theorem 2.9]). We conclude that for z > y > 1,

∑
y<n⩽z

1
φ(n)2 = ∫

z

y

1
x2 d ∑

n⩽x

n2

φ(n)2 =
1

z2 ∑
n⩽z

n2

φ(n)2 −
1

y2 ∑
n⩽y

n2

φ(n)2

+ 2∫
z

y
x−3 ∑

n⩽x

n2

φ(n)2 dx < 2c1 − 1
y

+ 1
y2 −

c1

z
.

Taking limit as z →∞, we get the result. ∎

3.2 Proof of Theorem 3

We shall assume f < 1
2
√

x since otherwise the theorem trivially holds. For a square-
free integer d ⩾ 1, put

πE ,d(x; f , a) = #{p ⩽ x ∶ p ∤ 2NE , p ≡ a mod f , p splits completely in Kd}.

If a prime p ⩽ x splits completely in Kd for some d > 1, then p splits completely in
Kq for each prime q ∣ d. Since p ramifies in Q(ζp) and Q(ζp) ⊆ Kp by [7, Propo-
sition 3.5#3], p ∤ d. Consequently, it follows from Lemmas 5 and 6 that d2 divides
∣Ẽ(Fp)∣. Then, by Hasse’s inequality d2 ⩽ (√p + 1)2, yielding d ⩽

√
x + 1. Hence, using

inclusion–exclusion principle we can write

πE(x; f , a) = ∑
d⩽
√

x+1
μ(d)πE ,d(x; f , a).

Put

Σ1 = ∑
d⩽y

μ(d)πE ,d(x; f , a), Σ2 = ∑
y<d⩽

√
x+1

μ(d)πE ,d(x; f , a),(15)

where y is a parameter satisfying 2 f ⩽ y ⩽
√

x.

3.2.1 Main term Σ1

For each square-free d ⩽ y, there is a unique automorphism in Gal(KdQ(ζ f )/Q)
whose restrictions to Kd and Q(ζ f ) are identity and σa , respectively, provided
that γa , f (Kd) = 1. Thus, πE ,d(x; f , a) counts primes p ⩽ x of good reduction whose
Frobenius automorphism coincides with this automorphism whenever γa , f (Kd) = 1.
Therefore, it follows from Lemma 9 that for each square-free d ⩽ y,

πE ,d(x; f , a) = Li(x)
[KdQ(ζ f ) ∶ Q]

+ O(x 1/2 log
⎛
⎝

x[KdQ(ζ f ) ∶ Q]∏
p

p
⎞
⎠
)

if γa , f (Kd) = 1, and is 0 otherwise. Here, the product is taken over primes p ∈
P(KdQ(ζ f )), where P(L), for any number field L, is defined in Lemma 9.

Note that [KdQ(ζ f ) ∶ Q] ⩽ [Kd ∶ Q]φ( f ) < d4 f , the second inequality holds by
(3). By [7, Proposition 3.5#3], Q(ζ f ) ⊆ K f . Thus, KdQ(ζ f ) ⊂ K[d , f ], and this implies
P(KdQ(ζ f )/Q) ⊆ P(K[d , f ]/Q). By [33, p. 179], we conclude that P(KdQ(ζ f )/Q) is a
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subset of the primes dividing d f NE . Therefore, the above error is≪ x 1/2 log(d f xNE),
and we conclude

Σ1 = Li(x) ∑
d⩽y

μ(d)γa , f (Kd)
[KdQ(ζ f ) ∶ Q]

+ O(yx 1/2 log( f xNE)).(16)

Replacing the sum over d ⩽ y by δE(a, f ) in (6) produces an error

≪ Li(x) ∑
d>y

μ2(d)
[KdQ(ζ f ) ∶ Q]

.

To estimate the sum over d > y, we write f = f1 f2, where f1 ∣ M∞E and ( f2 , ME) = 1.
Then,

∑
d>y

μ2(d)
[KdQ(ζ f ) ∶ Q]

= ∑
d e>y

d ∣ME ,(e ,ME)=1

μ2(de)
[Kd eQ(ζ f ) ∶ Q]

= ∑
d ∣ME

μ2(d)
[KdQ(ζ f1) ∶ Q]

∑
e>y/d
(e ,ME)=1

μ2(e)
[KeQ(ζ f2) ∶ Q]

⩽ ∑
d ∣ME

μ2(d)
φ( f1)

∑
e>y/d
(e ,ME)=1

μ2(e)[Ke ∩Q(ζ f2) ∶ Q]
[Ke ∶ Q][Q(ζ f2) ∶ Q]

.

Here, the second equality follows by Lemma 8 (see the proof of Lemma 12 for details).
By [7, Proposition 3.6.2] and Lemma 7, we get

[Ke ∶ Q] ≫ e3φ(e), [Ke ∩Q(ζ f2) ∶ Q] = φ(e , f2).

Thus, the last sum over e is

≪ 1
φ( f2)

∑
e>y/d

μ2(e)φ(e , f2)
φ(e)e3 = 1

φ( f2)
∑
k∣ f2

φ(k) ∑
e>y/d
(e , f2)=k

μ2(e)
φ(e)e3

⩽ 1
φ( f2)

∑
k∣ f2

1
k3 ∑

e>y/(kd)

1
φ(e)e3 ,

where, in the last inequality, we used φ(ek) ⩾ φ(e)φ(k). By Lemma 10, we
derive that

∑
d>y

μ2(d)
[KdQ(ζ f ) ∶ Q]

≪ τ( f2)
y3φ( f ) ∑d ∣ME

μ2(d)d3 ≪ τ( f2)
y3φ( f )M3

E .(17)

We will use (17) once we estimate Σ2.
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3.2.2 Estimate of the error Σ2

By Lemma 5, and the fact that p splits completely in Q(ζd), we obtain

Σ2 ⩽ ∑
y<d⩽

√
x+1

∑
p⩽x , p∤2NE
p≡a mod f
p≡1 mod d
d2 ∣#Ẽ(Fp)

1.

Writing ∣Ẽ(Fp)∣ = p + 1 − ap , we have by Hasse’s inequality, ∣ap ∣ < 2√p ⩽ 2
√

x. Thus,
Σ2 is

⩽ ∑
y<d⩽

√
x+1

∑
∣b∣⩽2

√
x

∑
p⩽x , p∤2NE
p≡a mod f
p≡1 mod d
d2 ∣p+1−b

ap=b

1 ⩽ ∑
y<d⩽

√
x+1

∑
∣b∣⩽2

√
x

d ∣b−2

∑
n⩽x

n≡a mod f
n≡b−1 mod d2

1

≪ ∑
y<d⩽

√
x+1

∑
∣b∣⩽2

√
x

d ∣b−2
(d2 , f )∣a+1−b

(1 + x
[ f , d2]) ≪ ∑

y<d⩽
√

x+1
(1 +

√
x

d
)(1 + x

[ f , d2])

≪
√

x log x + x
f ∑

y<d⩽
√

x+1

( f , d2)
d2 (1 +

√
x

d
) .

The last sum over d is

= ∑
n∣ f

n ∑
y<d⩽

√
x+1

( f ,d2)=n

1
d2 (1 +

√
x

d
) = ∑

n∣ f
n ∑

1⩽k⩽n
∑

y<d⩽
√

x+1
d≡k mod n
( f ,d2)=n

1
d2 (1 +

√
x

d
)

⩽ ∑
n∣ f

n ∑
1⩽k⩽n
n∣k2

∑
y<d⩽

√
x+1

d≡k mod n

1
d2 (1 +

√
x

d
) .

Using the estimate

∑
d>y

d≡k mod n

1
d�
< 1

n� ∑
m>(y−k)/n

1
m�
≪ 1

n(y − n)�−1 (� > 1),

and recalling that 2 f ⩽ y ⩽
√

x, we obtain

Σ2 ⩽
√

x log x + x
f ∑n∣ f

n ∑
1⩽k⩽n
n∣k2

∑
y<d⩽

√
x+1

d≡k mod n

1
d2 (1 +

√
x

d
)

≪
√

x log x + x3/2

f y2 H( f ),

(18)

where H( f ) is given by (5).
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3.2.3 Finale

Combining (16)–(18), we obtain

πE(x; f , a) − δE(a, f )Li(x) ≪ xτ( f2)M3
E

y3φ( f ) log x
+ x 1/2 y log( f xNE) +

x3/2

f y2 H( f ).

Recall, we assumed that 2 f ⩽ y ⩽
√

x. To balance the terms on the right side, we use
[10, Lemma 2.4] which states that there is some y in the interval [2 f ,

√
x] for which

the right hand side above is bounded by

≪ τ( f2)M3
E

x 1/2φ( f ) log x
+ x 1/2 H( f )

f
+ x 1/2 f log( f xNE)

+ x5/8 ( τ( f2)M3
E log3( f xNE)

φ( f ) log x
)

1/4

+ x5/6 (H( f ) log2( f xNE)
f

)
1/3

.

Note that writing n = b2c, where b2 is the largest square dividing n, yields

∑
1⩽k⩽n
n∣k2

1 = ∑
1⩽k⩽b

1 = b,(19)

and it follows that H( f ) is multiplicative. For k ⩾ 1, we have

H(p2k) = 2σ(pk−1) + pk , H(p2k−1) = 2σ(pk−1).

This gives the inequality in (8). In particular, H( f ) < f 2 holds. Thus, the second term
can be eliminated in the error term above, and we end up with (7). This completes the
proof.

3.3 Positivity of density δE( f , a)

Given a family

F = {Lp ∶ ∀p,Q ⊆ Lp ⊆ Kp , Lp/Q is Galois},

we define the density associated with F by

δF( f , a) ∶= ∑
d⩾1

μ(d)γa , f (Ld)
[LdQ(ζ f ) ∶ Q]

, with Ld =∏
p∣d

Lp ,

where, for any number field L,

γa , f (L) = {
1 if σa ∈ Gal(Q(ζ f )/L ∩Q(ζ f )),
0 otherwise.

In particular, δE( f , a) = δF( f , a) when Lp = Kp for each p.

https://doi.org/10.4153/S0008414X21000237 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000237


Cyclicity Conjecture 1297

Lemma 12 Let F = {Lp}p be a family where Q ⊊ Lp ⊆ Kp for each prime p. Then,
δE( f , a) ⩾ δF( f , a). Furthermore, if Lp = Kp for each p ∤ ME , then

δF( f g , a) = 1
φ( f g) ∏

p∤ME
(p, f )∣a−1

(1 − φ(p, f )
[Kp ∶ Q]

) ∑
d ∣ME

μ(d)γa ,g(Ld)
[Ld ∶ Ld ∩Q(ζg)]

,

where ( f , ME) = 1, g ∣ M∞E , and (a, f g) = 1.

Remark 6 For any prime p ∤ A(E), [Kp ∶ Q] = (p2 − p)(p2 − 1), so the product is
absolutely convergent.

Proof For any finite subset P of primes, the set

{p ⩽ x ∶ p ∤ 2NE , p ≡ a mod f ,∀q ∈ P, p does not split completely in Kq}

contains

{p ⩽ x ∶ p ∤ 2NE , p ≡ a mod f ,∀q ∈ P, p does not split completely in Lq}.

Thus, proceeding as in the proof of [7, Lemma 6.1], the first assertion follows.
As for the latter, we write

δF( f g , a) = ∑
d ∣ME

∑
e

(e ,ME)=1

μ(de)γa , f g(Ld e)
[Ld KeQ(ζ f g) ∶ Q]

.

First note that

[Ld KeQ(ζ f g) ∶ Q] =
[Ld e ∶ Q][Q(ζ f g) ∶ Q]
[Ld e ∩Q(ζ f g) ∶ Q]

=
[Ld ∶ Q][Ke ∶ Q][Q(ζ f g) ∶ Q]

[LdQ(ζg) ∩ KeQ(ζ f ) ∶ Q][Ke ∩Q(ζ f ) ∶ Q][Ld ∩Q(ζg) ∶ Q]
,

and since numerators are the same, so are the denominators. Furthermore, since
(e f , dgME) = 1, Lemma 8 gives

LdQ(ζg) ∩ KeQ(ζ f ) ⊆ K[d ,g] ∩ K[e , f ] = Q.

Thus, we have

[Ld e ∩Q(ζ f g) ∶ Q] = [Ke ∩Q(ζ f ) ∶ Q][Ld ∩Q(ζg) ∶ Q].

Since Ke ∩Q(ζ f ) and Ld ∩Q(ζg) are disjoint by Lemma 8, we see that

γa , f g(Ld e) = 1⇐⇒ γa , f (Ke) = γa ,g(Ld) = 1.

Finally, since Ke ∩Q(ζ f ) = Q(ζ(e , f )) by Lemma 7, δF( f g , a) is given by

1
φ( f g) ∑d ∣ME

μ(d)γa ,g(Ld)[Ld ∩Q(ζg) ∶ Q]
[Ld ∶ Q]

∑
e

(e ,ME)=1
(e , f )∣a−1

μ(e)φ(e , f )
[Ke ∶ Q]

,

and the result follows by writing the last sum as a product. ∎
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Proof of Theorem 4 We choose L2 = K2, Lp = Q(ζp) for p ∣ ME/2, Lp = Kp for
(p, ME) = 1. By Lemma 12,

δE( f , a) ⩾ δF( f , a) = 1
φ( f ) ∏

p∤ME
(p, f )∣a−1

(1 − φ(p, f )
[Kp ∶ Q]

) ∑
d ∣ME

μ(d)
[Ld ∶ Q]

.(20)

Splitting the sum over d, we obtain

∑
d ∣ME

μ(d)
[Ld ∶ Q]

= ∑
d ∣ME
2∤d

μ(d)
[Q(ζd) ∶ Q]

− ∑
d ∣ME/2

2∤d

μ(d)
[K2Q(ζd) ∶ Q]

= ∑
d ∣ME
2∤d

μ(d)
φ(d) (1 − [K2 ∩Q(ζd) ∶ Q]

[K2 ∶ Q]
)

= (1 − [K
ab
2 ∶ Q]

[K2 ∶ Q]
) ∑

f2 ∣d ∣ME
2∤d

μ(d)
φ(d) + (1 − 1

[K2 ∶ Q]
) ∑

f2∤d ∣ME
2∤d

μ(d)
φ(d) .

Here, we have used the fact that K2 ∩Q(ζd) = Kab
2 ∩Q(ζd) is either Q or Kab

2 .
The latter implies Kab

2 ⊆ Q(ζ(f2 ,d)), which holds if f2 = (f2 , d); that is, if f2 ∣ d. The
converse trivially holds. If f2 is not square-free, then

∑
d ∣ME

μ(d)
[Ld ∶ Q]

= (1 − 1
[K2 ∶ Q]

) ∏
2<p∣ME

(1 − 1
p − 1

) .

If f2 is square-free, then by (13) and (14), it must be odd. Then, writing

∑
f2∤d ∣ME

2∤d

μ(d)
φ(d) = ∑d ∣ME

2∤d

μ(d)
φ(d) − ∑

f2 d ∣ME
2∤d

(d ,f2)=1

μ(df2)
φ(df2)

we derive

∑
d ∣ME

μ(d)
[Ld ∶ Q]

= (1 − 1
[K2 ∶ Q]

) ∑
d ∣ME
2∤d

μ(d)
φ(d) −

[Kab
2 ∶ Q] − 1
[K2 ∶ Q]

∑
f2 d ∣ME

2∤d
(d ,f2)=1

μ(df2)
φ(df2)

.

The second sum on the right side can be written as

∑
f2 d ∣ME

2∤d
(d ,f2)=1

μ(df2)
φ(df2)

= μ(f2)
φ(f2)

∑
d ∣ME/f2

2∤d

μ(d)
φ(d) =

μ(f2)
φ(f2)

∏
2<p∣ME/f2

(1 − 1
p − 1

)

= μ(f2)
∏2<p∣ME

(1 − 1
p−1)

φ(f2)∏p∣f2 (1 −
1

p−1)
= μ(f2)
∏2<p∣f2(p − 2) ∑d ∣ME

2∤d

μ(d)
φ(d) ,
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where we have used the fact that ME and f2 are square-free (and, f2 is odd). Inserting
this expression back into the previous equation, we obtain

∑
d ∣ME

μ(d)
[Ld ∶ Q]

= 1
[K2 ∶ Q]

([K2 ∶ Q] − 1 − μ(f2)([Kab
2 ∶ Q] − 1)

∏2<p∣f2(p − 2) ) ∑
d ∣ME
2∤d

μ(d)
φ(d) .

Combining this identity with (20), we conclude that

δF( f , a) = 1
φ( f ) ∏

p∤ME
(p, f )∣a−1

(1 − φ(p, f )
[Kp ∶ Q]

) ∏
2<p∣ME

(1 − 1
p − 1

)

⋅ 1
[K2 ∶ Q]

([K2 ∶ Q] − 1 − μ(f2)([Kab
2 ∶ Q] − 1)

∏2<p∣f2(p − 2) ) > 0,

and this gives (9). ∎

4 Proofs of Theorems 5 and 6

Throughout this section, we assume that E is an elliptic curve over Q with complex
multiplication.

4.1 Proof of Theorem 5

We proceed as in the proof of Theorem 3. Everything up to equation (16) applies to
the CM case. We start with the estimate of Σ1 given by (15). By [7, Proposition 3.8],
[Kd ∶ Q] ≫ φ(d)2. Thus, using Lemma 11, we obtain

∑
d>y

μ2(d)
[KdQ(ζ f ) ∶ Q]

≪ ∑
d>y

1
φ(d)2 ≪ y−1 ,

which yields

Σ1 = Li(x)δE( f , a) + O ( x
y log x

+ yx 1/2 log( f xNE)) .(21)

Next, we deal with

Σ2 = ∑
y<d⩽

√
x+1

μ(d)πE ,d(x; f , a).

If p is a prime counted in πE ,d(x; f , a), then p splits completely in Kd and thus in
Q(ζd) since Q(ζd) ⊆ Kd . Thus, by Lemma 5, d2 divides ∣Ẽ(Fp)∣ and also d ∣ p − 1.
Hence, we note that ∣Ẽ(Fp)∣ ≠ p + 1, since otherwise, d ∣ p + 1 − (p − 1) = 2, which
is impossible since d > y > 2. This means no prime except possibly p = 3 that splits
completely in Kd can have supersingular reduction. Therefore, it follows from [5,
Lemma 2.2] that p ≠ 3 splits completely in Kd if and only if πp − 1 ∈ dOK . Here, πp
is one of the complex roots of the polynomial X2 − (p + 1 − ∣Ẽ(Fp)∣)X + p. Note that
NK/Q(πp) = πpπp = p. Thus, we deduce that

πE ,d(x; f , a) ⩽ 1 + ∣{3 ≠ p ⩽ x ∶ p ∤ NE , p ≡ a mod f , πp ≡ 1 mod dOK}∣.
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Since K is an imaginary quadratic extension of Q, K = Q(
√
−D) for some square-

free positive integer D, and OK = Z[ωD], where

ωD = {
√
−D if D ≡ 1, 2 mod 4

1
2 (1 +

√
−D) if D ≡ 3 mod 4.

Thus, any α ∈OK with α ≡ 1 mod dOK can be written as

α = { bd + 1 + cd
√
−D if D ≡ 1, 2 mod 4

1
2 (bd + 2 + cd

√
−D) , b ≡ c mod 2 if D ≡ 3 mod 4,

for some integers b and c, and therefore has its norm equal to

NK/Q(α) = {
(bd + 1)2 + D(cd)2 if D ≡ 1, 2 mod 4

1
4 ((bd + 2)2 + D(cd)2) if D ≡ 3 mod 4.

Note that

NK/Q(πp) ≡ a mod f ⇐⇒ 4NK/Q(πp) ≡ 4a mod (gcd( f , 2)2 f ).

We shall use this equivalent form only when D ≡ 3 mod 4 since, in this case, 4NK/Q(α)
becomes a quadratic form in b, c, d with integer coefficients. Using this observation we
deduce that πE ,d(x; f , a) is at most

∣{(b, c) ∈ Z2 ∶ F(b, d , c) ≡ a′mod f ′ , F(b, d , c) ⩽ 4x , 2 ∣ b − c if D ≡ 3 mod 4}∣,

where

F(b, d , c) = (bd + 1)2 + D(cd)2 , a′ = a, f ′ = f if D ≡ 1, 2 mod 4

F(b, d , c) = (bd + 2)2 + D(cd)2 , a′ = 4a, f ′ = ( f , 2)2 f if D ≡ 3 mod 4.

Now, summing over d ∈ (y,
√

x + 1] leads to the bound

Σ2 ⩽ ∑
α ,β ,γ mod f ′

∑
y<d⩽

√
x+1

d≡β mod f ′

∑
b≡α ,c≡γ mod f ′

F(b ,d ,c)⩽4x
F(b ,d ,c)≡a′mod f ′
(b≡c mod 2)

1

⩽ ∑
α ,β ,γ mod f ′

F(α ,β ,γ)≡a′mod f ′
(α≡γ mod 2)

∑
y<d⩽

√
x+1

d≡β mod f ′

∑
∣b∣⩽ 2

√
x+2
d

b≡α mod f ′

∑
∣c∣⩽ 2

√
x

d
√

D
c≡γ mod f ′

1,

with the parity condition required only when D ≡ 3 mod 4. Note that the second
inequality follows from the fact that

F(b, d , c) ≡ F(b mod f ′ , d mod f ′ , c mod f ′)mod f ′

since F(b, d , c) has integer coefficients.
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For y ∈ [2 f ,
√

x], and uniformly for any α, β, γ modulo f,

∑
y<d⩽

√
x+1

d≡β mod f ′

∑
∣b∣⩽ 2

√
x+2
d

b≡α mod f ′

∑
∣c∣⩽ 2

√
x

d
√

D
c≡γ mod f ′

1≪ ∑
y<d⩽

√
x+1

d≡β mod f ′

(1 +
√

x
d f
)(1 +

√
x

d f
√

D
)

≪ ∑
y<d⩽

√
x+1

d≡β mod f ′

(1 +
√

x
d f
+
√

x
d f
√

D
+ x

d2 f 2
√

D
)

≪D

√
x

f
+
√

x log x
f 2 + x

y f 3 .

Note that the implied constant depends on K. Since E/Q has CM by OK , then K is
one of the nine imaginary quadratic fields of class number one, and so the implied
constant above can be replaced by an absolute constant. Inserting this estimate into
the previous estimate of Σ2, we deduce that

Σ2 ≪ (
√

x
f
+
√

x log x
f 2 + x

y f 3 )GD(a, f ),(22)

where GD(a, f ) is the cardinality of the set

{(α, β, γ) ∈ (Z/ f ′Z)3 ∶ F(α, β, γ) ≡ a′mod f ′ , 2 ∣ α − γ if D ≡ 3 mod 4}.(23)

Combining (21) and (22), we obtain the bound

πE(x; f , a) − δE(a, f )Li(x) ≪ x 1/2 y log( f xNE) +
x

y log x
+ x

y f 3 GD(a, f )

+ x 1/2 ( 1
f
+ log x

f 2 )GD(a, f ).

Recalling that 2 f ⩽ y ⩽
√

x and using [10, Lemma 2.4] yields the error

E(x) ≪ x 1/2 f log( f xNE) + x 1/2 GD(a, f )
f 3 + x3/4 ( log( f xNE)

log x
)

1/2

+ x3/4 ( log( f xNE)GD(a, f )
f 3 )

1/2

+ x 1/2 ( 1
f
+ log x

f 2 )GD(a, f ).

Note that the second term can be eliminated since it is already smaller than the fifth
term, and this gives the error in (10).

To complete the proof of Theorem 5, we need to estimate GD(a, f ). Since GD is
multiplicative in the second variable, it is enough to estimate GD(a, pk) for primes p
with pk∥ f ′. Note that p ∤ a since (a, f ) = 1.

Assume first that D ≡ 1, 2 mod 4. Recall, in this case, f ′ = f and a′ = a. Put

A i = {(α, β, γ) ∶ pi∥a − D(βγ)2 , F(α, β, γ) ≡ a mod pk}.
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Note that for any triple in A i with i ⩾ 1, p ∤ Dβγ. Also, if i ⩾ k, then for φ(pk)
possible choices of 1 ⩽ γ ⩽ pk , there are at most η(pk) choices for β satisfying

D(βγ)2 ≡ a mod pk ,

where η(pn) = 2 if p is odd, or p = 2 and n = 1, 2, and it equals 4 otherwise. Further-
more,

(αβ + 1)2 ≡ a − D(βγ)2 ≡ 0 mod pk

implies

αβ ≡ −1 mod p⌈k/2⌉ ,

and there is unique α modulo p⌈k/2⌉ satisfying this congruence, which gives pk−⌈k/2⌉

choices for α modulo pk . Hence,

∑
i⩾k
∣A i ∣ ⩽ η(pk)pk−⌈k/2⌉φ(pk).(24)

Next, assume that p ∤ a − D(βγ)2. Then,

X2 ≡ a − D(βγ)2 mod pk

has at most η(pk) solutions. If X0 = X0(β, γ) is one of these solutions, and pi∥β with
0 ⩽ i ⩽ k, then there are gcd(β, pk) = pi values of α ∈ [1, pk] satisfying

αβ ≡ X0 − 1 mod pk ,

provided pi ∣ X0 − 1. Since there are φ(pk−i) values of β modulo pk with pi∥β, and at
most pk values of γ, we get

∣A0∣ ⩽ η(pk)p2k + ∑
0⩽i⩽k−1

η(pk)pk φ(pk−i)pi = η(pk)p2k (k(1 − 1/p) + 1) .(25)

Finally, assume 1 ⩽ i ⩽ k − 1 and k > 2 (note for k ⩽ 2, this part will not contribute
as will be seen below). In this case, we have

D(βγ)2 ≡ a mod pi .

For φ(pk) choices of γ, there are at most η(pi)pk−i choices for β modulo pk . For these
values of γ and β,

X2 ≡ a − D(βγ)2 mod pk(26)

implies p⌈i/2⌉ ∣ X, which then yields pi+1 ∣ a − D(βγ)2 if i is odd. Thus, (26) has no
solutions for odd i < k. Otherwise, writing X = pi/2Y with 1 ⩽ Y ⩽ pk−i/2 gives

Y 2 ≡ a − D(βγ)2

pi mod pk−i .

Since the right side is now coprime to p, there are at most η(pk−i) solutions for Y
modulo pk−i , which gives η(pk−i)pi/2 choices for X. If X0 is one of these possible
solutions, then

αβ + 1 ≡ X0 mod pk
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has exactly one solution for α. Hence,

∑
1⩽i⩽k−1

∣A i ∣ ⩽ ∑
1⩽i⩽k−1

2∣i

φ(pk)η(pi)η(pk−i)pk−i pi/2

< η(pk)2φ(pk) ∑
1⩽i⩽⌊(k−1)/2⌋

pk−i < η(pk)2 p2k−1 .
(27)

Combining (24), (25), and (27), we conclude that

GD(a, pk) ⩽ η(pk)p2k(min{1, (k − 2)(k − 1)}η(pk)p−1

+ p−⌈k/2⌉(1 − 1/p) + k(1 − 1/p) + 1) < 2kη(pk)p2k .
(28)

Next, assume D ≡ 3 mod 4. We shall count the solutions to

F(α, β, γ) = (αβ + 2)2 + D(βγ)2 ≡ 4a mod pk .

Assume first that p is odd. Since p ∤ 4a in this case, the proof in the previous case goes
through and gives the same upper bound in (28) for GD(a, pk).

Next, assume 2k∥ f . Then, we consider F ≡ 4a mod 2k+2 with α ≡ γ mod 2. If γ is
even, then so is α and we have to count the solutions to

(αβ + 1)2 + D(βγ)2 ≡ a mod 2k ,

where α, γ ∈ [1, 2k+1] and β ∈ [1, 2k+2]. When all variables lie in [1, 2k], there are
at most 2kη(2k)22k triples by (28). Lifting variables, we get at most 32kη(2k)22k

solutions.
When α and γ are odd and β is even, we end up with the congruence

(αβ + 1)2 + D(βγ)2 ≡ a mod 2k ,

where α, γ ∈ [1, 2k+2] are odd, while β ∈ [1, 2k+1]. If β is odd,

γ2 ≡ D−1β−2 (a − (αβ + 1)2) mod 2k

has at most η(2k) solutions for γ since right hand is odd, and these can be lifted to
4η(2k) solutions mod 2k+2. Hence, there are at most 4η(2k)22k+1 triples modulo 2k+2.

If 2i∥β for 1 ⩽ i ⩽ k, then

X2 ≡ a − D(βγ)2 mod 2k

has at most η(2k) solutions. If X0 is one of the possible solutions, then

αβ ≡ X0 − 1 mod 2k

has at most 2i+2 solutions for α modulo 2k+2. There are 2k+1−i values of β modulo 2k+2

with 2i ∣ β, and 2k+1 odd values of γ ∈ [1, 2k+2]. Hence, we get at most

4η(2k)22k+1 + ∑
1⩽i⩽k

η(2k)2i+2+k+1−i+k+1 = (8 + 16k)η(2k)22k

solutions.
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Finally, if all the variables are odd, then we have

γ2 ≡ D−1β−2 (4a − (αβ + 2)2) mod 2k+2 .

Given odd α, β ∈ [1, 2k+2], there are at most η(2k+2) solutions for γ ∈ [1, 2k+2] since
the right hand side is odd. Hence, we obtain at most η(2k+2)22k+2 triples. Combining
all the estimates, we deduce that

GD(a, 2k) ⩽ η(2k)22k(48k + 16) < 49
2
⋅ 2kη(2k)22k .

Multiplying the bounds for GD(a, pk) over the prime powers dividing f, we obtain the
bound in (11). This completes the proof.

4.2 Proof of Theorem 6

Recall that End
Q
(E) ≃OK , where K = Q(

√
−D). By [28, Lemma 6], for all p ⩾ 3,

K ⊂ Kp . Suppose first that K2 ∩ K = Kab
2 ∩ K = Q and that

γa , f (K2K) = γa , f (K2)γa , f (K).(29)

Note that
[K2 ∩Q(ζ f ) ∶ Q][K ∩Q(ζ f ) ∶ Q] = [(K2 ∩Q(ζ f ))(K ∩Q(ζ f )) ∶ Q]

⩽ [K2K ∩Q(ζ f ) ∶ Q]
since

(K2 ∩Q(ζ f ))(K ∩Q(ζ f )) ⊆ K2K ∩Q(ζ f ).
Then, taking F = {K2 , K} and using [7, Lemma 6.1] yields

δF(a, f ) = 1
φ( f ) −

γa , f (K2)
[K2Q(ζ f ) ∶ Q]

−
γa , f (K)

[KQ(ζ f ) ∶ Q]
+

γa , f (K2)γa , f (K)
[K2KQ(ζ f ) ∶ Q]

⩾ 1
φ( f ) (1 −

γa , f (K2)[K2 ∩Q(ζ f ) ∶ Q]
[K2 ∶ Q]

)(1 −
γa , f (K)[K ∩Q(ζ f ) ∶ Q]

2
) .

Thus, δF(a, f ) > 0 if K2 ⊊ Q(ζ f ) or γa , f (K2) = 0, and K ⊊ Q(ζ f ) or γa , f (K) = 0,
provided (29) holds and K2 ∩ K = Q.

If Kab
2 = K, then taking F = {K2} yields

δF(a, f ) = 1
φ( f ) (1 −

γa , f (K2)[K2 ∩Q(ζ f ) ∶ Q]
[K2 ∶ Q]

) .

We conclude again that δF > 0 if K2 ⊊ Q(ζ f ) or γa , f (K2) = 0.

Appendix A Intersections of division fields

By Ernst Kani
Let E/K be an elliptic curve defined over a number field K. Recall that for each

integer m ⩾ 1, we have a natural representation

ρm = ρE/K ,m ∶ GK = Gal(K/K)  → GL(m) ∶= GL2(Z/mZ).
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The fixed field of its kernel is the m-division field K(E[m]) = K ker(ρm), so

Gal(K(E[m])/K) ≃ Gm ∶= Im(ρm).

Put

SE/K = {p prime ∶ Gp ≠ GL(p)}.

By Serre [31], SE/K is finite if (and only if) E is non-CM, which we assume henceforth.
In this case, the Serre constant of E/K is defined as the number

AE/K = 30 ∏
p>5

p∈SE/K

p.

The main aim of this appendix is to prove the following result.

Theorem 1 Let E/Q be a non-CM elliptic curve, and let m, n ⩾ 1 be integers with
(m, nNE AE/Q) = 1, where NE denotes the conductor of E/Q. Then,

Q(E[m]) ∩Q(E[n]) = Q.

Note that we cannot drop the condition of Theorem 1 that (m, NE) = 1, even if m
is a prime; cf. Proposition 2 and Example 1 below.

As we shall see presently, Theorem 1 follows from the following result which is valid
for elliptic curves over an arbitrary number field K. This, in turn, follows easily from
the results of the Appendix of [6].

Theorem 2 Let E/K be a non-CM elliptic curve, and let m, n ⩾ 1 be integers with
(m, nAE/K) = 1. Then, K(E[m]) ∩ K(E[n]) is an abelian extension of K.

Proof of Theorem 1 (using Theorem 2) Put L = Q(E[n]) ∩Q(E[m]). By Theorem
2, we know that L/Q is an abelian extension with L ⊂ Q(E[m]). Since m is coprime
to AE/Q, we know that Q(ζm) is the maximal abelian extension of Q in Q(E[m]);
cf. [6]. Thus, L ⊂ Q(ζm), and so L/Q is ramified only at the primes p ∣ m. On the
other hand, since L ⊂ Q(E[n]), we see by the criterion of Néron–Ogg–Shafarevič
that L/Q is ramified only at primes p ∣ nNE ; cf. Silverman [33, Theorem VII.7.1].
Thus, since (m, nNE) = 1, it follows that L/Q is everywhere unramified and so L = Q,
as claimed. ∎

To prove Theorem 2, we will use some basic facts about the nonabelian composition
factors of a subgroup G of GL(m) which were presented in the Appendix of [6]. For
this, let N(G) denote the set of (isomorphism classes) of nonabelian composition
factors of a group G, and put

Occ(G) = ⋃
H⩽G

N(H).

Proposition 1 (a) For any integer m > 1, we have that

Occ(GL2(Z/mZ)) = Occ(SL2(Z/mZ)) = ⋃
p∣m

Occ(PSL2(p)),

https://doi.org/10.4153/S0008414X21000237 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000237


1306 Y. Akbal and A. M. Güloğlu

where PSL2(p) = SL2(Z/pZ)/{±1}, if p is prime. Moreover, Occ(PSL2(p)) = ∅ when
p = 2 or 3, whereas for p ⩾ 5, we have

{PSL2(p)} ⊆ Occ(PSL2(p)) ⊆ {A5 , PSL2(p)}.

(b) If G ⩽ GL(m), where (m, 30) = 1, then

G ⩾ SL(m) ∶= SL2(Z/mZ) ⇔ ∀p ∣ m, PSL2(p) ∈ Occ(G).

If this is the case, then G/ SL(m) is abelian and N(G) = {PSL2(p) ∶ p∣m}.

Proof (a) This is Lemma 10 of the Appendix of [6].
(b) The first assertion is Theorem 2(b) of the same Appendix. To prove the others,

note that G/ SL(m) ⩽ GL(m)/ SL(m) ≃ (Z/mZ)× is abelian, so

N(G) = N(SL(m)) = ⋃
p∣m

N (SL(pvp(m))) ,

the latter because SL(m) = ∏p∣m SL(pvp(m)). Since the kernel of the homomorphism
SL(pr) → SL(p) is a p-group, we have that

N(SL(pr)) = N(SL(p)) = {PSL2(p)},

and so the last assertion follows. ∎

Corollary 1 If (m, AE/K) = 1, then SL(m) ⩽ Gm . Thus, if L/K is a solvable extension
with L ⊂ K(E[m]), then L/K is abelian.

Proof Since (m, AE/K) = 1, we have that Gp = GL(p) for all p ∣ m, and so PSL2(p) ∈
Occ(GL(p)) ⊂ Occ(Gm), the latter because Gp is a quotient of Gm , ∀p ∣ m. Thus,
SL(m) ⩽ Gm by Proposition 1 because (m, 30) = 1.

To prove the second assertion, let

H ∶= Gal(K(E[m])/L) ⊴ G ∶= Gal(K(E[m])/K).

Since G/H ≃ Gal(L/K) is solvable and G ≃ Gm , we have that Occ(H) = Occ(Gm).
Thus, by Proposition 1(b), there exists H1 ⩽ H with H1 ≃ SL(m), and then G/H1 is
abelian. Thus, the quotient G/H of G/H1 is also abelian. ∎

Proof of Theorem 2 Put L = K(E[n]) ∩ K(E[m]) and H = Gal(L/K). Then H is a
quotient of Gal(K([E[n])/K) ≃ Gn ⩽ GL(n) and also of Gal(K(E[m])/K) ≃ Gm , so

N(H) ⊂ Occ(GL(n)) ∩N(Gm)
⊂ ({A5} ∪ {PSL2(p) ∶ p ∣ n, p ⩾ 5}) ∩ {PSL2(p) ∶ p ∣ m},

where the last inclusion follows from both parts of Proposition 1 together with
Corollary 1. Since (n, m) = 1 and 5 ∤ m, we see that this intersection is empty
because PSL(p) ≃ A5 ⇔ p = 5 and PSL(p) ≃ PSL(q) ⇔ p = q; cf. [6]. Thus, N(H) =
∅, which means that H is solvable. Since L ⊂ K(E[m]), we have by Corollary 1 that
L/K is abelian. ∎

We now show that the condition (m, NE) = 1 in Theorem 1 cannot be dropped. This
follows from the following result together with Example 1 which shows that there exist
elliptic curves E/Q satisfying the hypotheses of Proposition 2.
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Proposition 2 Let E/Q be an elliptic curve with prime conductor NE = p with p ≡
3 mod 4. Suppose that the discriminant of some integral model of E/Q satisfies ΔE < 0
and vp(ΔE) ≡ 1 mod 2. Then, (p, AE/Q) = 1, but

Q(E[p]) ∩Q(E[2]) = Q(√−p).

Proof Since there are no elliptic curves of conductor NE < 11, the hypothesis implies
that p ⩾ 11. Moreover, since NE is squarefree, E/Q is semi-stable (and non-CM), so by
Corollary 1 of Section 5.4 of Serre [31], we know that p ∉ SE/Q because p > (

√
2 + 1)2 ≈

5.8. Thus p ∤ AE/Q.
For any integral model of E/Q, there exists an integer d ⩾ 1 such that

ΔE = d12Δmin
E/Q ,

where Δmin
E/Q denotes the minimal discriminant of E/Q. Thus, the given conditions on

ΔE do not depend on the choice of the model.
Since NE and Δmin

E/Q have the same prime divisors, we see that Δmin
E/Q = −pk , with k

odd, so ΔE = −d12 pk . By taking an integral model of the form Y 2 = f (X), where f (X)
is a cubic, we see that Q(E[2]) is the splitting field of f (X). Since ΔE = 16 disc( f ),
it follows from field theory that Q(√−p) ⊂ Q(E[2]). Moreover, Q(√−p) is the
maximal abelian extension of Q in Q(E[2]). Indeed, if f (X) is irreducible, then this
is clear by field theory, and otherwise we have that Q(E[2]) = Q(√−p) is abelian.

On the other hand, the condition p ≡ 3 mod 4 implies (cf. [22, Theorem V1.3.3])
that

Q(√−p) ⊂ Q(ζp) ⊂ Q(E[p]).

This proves the inclusion Q(√−p) ⊂ Q(E[p]) ∩Q(E[2]). Since the latter intersec-
tion is abelian by Theorem 2 and is contained in Q(E[2]), it follows from what was
said above that it is contained in Q(√−p), and so the assertion follows. ∎

Example 1 Consider the following elliptic curves E i/Q defined by the equations

E1 ∶ Y 2 = X3 − 432X + 8208,
E2 ∶ Y 2 = X3 − 432X + 15120
E3 ∶ Y 2 = X3 − 997056X − 383201712.

The discriminant of E i is ΔE i = −612 p i , for i = 1, 2, 3, where p1 = 11, p2 = 43 and
p3 = 19. Furthermore, NE i = p i ≡ 3 mod 4, and so E i/Q satisfies the hypotheses of
Proposition 2 with p = p i , for i = 1, 2, 3.
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