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The regular reflection→Mach reflection
transition in unsteady flow over convex surfaces
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The non-stationary transition from regular reflection (RR) to Mach reflection (MR)
over convex segments has been the focus of many recent studies. Until recently,
the problem was thought to be very complicated because it was believed that many
parameters such as the radius of curvature, initial angle and geometrical shape of
the reflecting surface influenced this process. In this study, experiments and inviscid
numerical computations were performed in air (γ = 1.4) at an incident shock-wave
Mach number of 1.3. The incident shock waves were reflected over cylindrical
and elliptical convex surfaces. The computations were validated by high-resolution
experiments, which enabled the detection of features in the flow having characteristic
lengths as small as 0.06 mm. Therefore, the RR→MR transition and Mach stem
growth were successfully validated in the early stages of the Mach stem formation
and closer to the surface than ever before. The evolution of the RR, the transition
to MR and the Mach stem growth were found to depend only on the radius of the
reflecting surface. The reflected shock wave adjusts itself to the changing angles of
the reflecting surface. This feature, which was demonstrated at Mach numbers 1.3
and 1.5, distinguishes the unsteady case from the self-similar pseudo-steady case
and requires the formulation of the conservation equations. A modification of the
standard two-shock theory (2ST) is presented to predict the flow properties behind
a shock wave that propagates over convex surfaces. Until recently, the determination
of the time-dependent flow properties was possible solely by numerical computations.
Moreover, this derivation explains the controversial issue on the delay in the transition
from the RR to the MR that was observed by many researchers. It turns out that
the entire RR evolution and the particular moment of transition to MR, are based on
the essential ‘no-penetration’ condition of the flow. Therefore, we proposed a simple
geometrical criterion for the RR→MR transition.

Key words: compressible flows, shock waves

1. Introduction
The proper prediction of reflection configurations is crucial in many engineering

applications, e.g. shock-wave focusing, supersonic flights and protection against blasts.
While the criterion for non-stationary transitions is in dispute, the criterion for the
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FIGURE 1. (Colour online) Schematic illustrations of a reflection over a wedge.
(a) Regular reflection in a laboratory reference frame; (b) regular reflection in a reference
frame attached to the reflection point; and (c) Mach reflection in a reference frame
attached to the reflection point.

transitions from regular reflection (RR) to Mach reflection (MR) in pseudo-steady
and steady flow reflections is well established (Ben-Dor 2007). The reflection
configuration in pseudo-steady flows forms when a plane shock wave propagates
at a constant Mach number Ms and interacts with a plane surface inclined at an angle
θw. The orientation of the waves in this scenario remains constant throughout the
incident shock propagation along the surface. Hence, the boundary condition does not
change. The reflection is a regular reflection when θw is higher than a certain value.
Figure 1(a,b) depicts an RR configuration comprising the incident shock, i, and the
reflected shock, r, both intersecting at the reflection point, R.

The analytical treatment of pseudo-steady flows usually requires the use of a
Galilean transformation, such that the flow passing through the shock can be
considered steady. The transformation is performed by moving the laboratory reference
frame (figure 1a) to a frame attached to the reflection point (figure 1b). Both frames
differ only by a constant relative motion M0 = Ms/sin(φ1) along the surface. The
RR configuration can be analytically solved using the standard two-shock theory
(2ST) developed by von Neumann (1943a). This theory solves the conservation
equations of both shock waves under the geometrical restrain that dictates an equality
of the deflection angles, θ1 = θ2 (figure 1b). The MR consists of a three shock
waves configuration (i.e. i, r and a Mach stem m) intersecting at the triple point, T
(figure 1c). The analytical solution of the three-shock theory (3ST) was developed by
von Neumann (1943b).

von Neumann (1943a) argued that the RR↔MR transition depends on whether
the corner-generated signals, emanating from the wedge corner, can catch up with
the reflection point. Later, Hornung, Oertel & Sandeman (1979) introduced the
length scale criterion. This criterion is based on the assumption that an MR, which
includes a finite length of the Mach stem, must be related to a finite length scale. In
pseudo-steady flows, this length is the distance between the corner and reflection point.
Hence, for the RR to communicate with the corner, the flow behind the reflection
point must be subsonic. This criterion is also known as the ‘sonic criterion’, which
is very close to the ‘detachment criterion’ (the maximum deflection point, θm, is
very close to the sonic point, θs). The termination of the RR can be calculated using
the 2ST while constraining the deflection angle behind the reflected shock, θ2, to
be θ2 = θ2m or θ2 = θ2s (figure 1b). Although the conditions are practically similar
(Ben-Dor 2007), Lock & Dewey (1989) experimentally showed that in pseudo-steady
flows, transitions occur at the sonic criterion, where the corner-generated signals can
catch up with the reflection point. However, readers should note that this delicate
observation was made based on experiments having certain resolution limits that were
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FIGURE 2. Schematic description of the interaction between a signal originating from the
corner, OF, and the reflected shock wave over a wedge (Han 1991).

common 30 years ago. Hence, the reliability of accurately identifying the exact sonic
point is uncertain. Han (1991) applied modified shock dynamic relations, originally
developed by Whitham (1968), to pseudo-steady reflections in which a uniform flow
exists ahead of the shock wave. He was able to describe the mechanism through
which the reflected shock is disturbed and curved by sound waves emanating from
the corner (figure 2). The incident and reflected shock waves travel at Ms and Mr0,
respectively. The first sound wave originating from the corner, O, interacts with the
reflected shock and forms the first disturbance point, F. The part of the reflected shock
between R and F is straight and is not affected by the surface. Beyond this point,
the shock becomes curved. Evaluating the reflected shock strength and orientation in
this section is possible using the shock dynamic theory. Although Han’s modification
is useful, further improvements are still needed (Han & Yin 1993). The RR→MR
transition, according to this method, is acquired when the first disturbance originating
from the corner reaches the reflection point, R.

The unsteady shock-wave reflection over convex surfaces is far more complicated
than steady and pseudo-steady reflections. The complications arise because a
continuous change in the surface angle introduces a continuous change of the
boundary conditions. The flow Mach number, M0, and its orientation, φ1, are
continually changing. In the convex plane case, the reflection begins as an RR
(figure 3a). The reflection then transforms into an MR as the surface wedge angle
decreases and the RR configuration can no longer deflect the flow (figure 3b).
Takayama & Sasaki (1983) performed an extensive set of experiments in order to
investigate the RR→MR transitions over convex cylindrical models. They found
that the curvature radii, initial angles and incident shock-wave strengths affect the
transition. The RR→MR transition occurs at smaller angles than those predicted
by the known criteria both in steady and pseudo-steady flows. Similar trends were
observed by Skews & Kleine (2009, 2010) and Skews & Blitterswijk (2011) which
utilised the perturbation technique. Yet, as the radii increases, the transition approaches
the known pseudo-steady criterion (Ben-Dor 2007). Several analytical attempts were
made to model the complexity of the transition process.

Bryson & Gross (1961) applied the shock dynamic theory to the shock wave
diffraction by a cylinder. They found an analytical solution that describes the growth
of the Mach stem in an MR. Heilig (1969) utilised the shock dynamic theory to form
an RR→MR transition criterion. Later on, Itoh, Okazaki & Itaya (1981) adjusted
Heilig’s criterion by considering Milton’s (1975) modifications. Li (1988) used
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FIGURE 3. Illustration of the reflection configurations over a convex circular cylindrical
surface having an initial angle θi and a radius R: (a) RR, which consists of an incident
shock wave, i, and a reflected shock wave, r, and (b) MR, which consists of an incident
shock wave, i, a reflected shock wave, r, and a Mach stem, m.

the concept of disturbance propagation to obtain an RR→MR transition criterion.
Unfortunately, the proposed criteria that were mentioned above did not consider the
effect of the radius of curvature on the transition (Han & Yin 1993). Furthermore,
these criteria did not agree with the RR→MR transition recorded in any of the
high-resolution numerical and experimental studies (Kleine et al. 2014; Ram, Geva
& Sadot 2015).

Several recent studies claimed that the inconsistency between the unsteady and the
pseudo-steady measured transition angles simply arises from an insufficient optical
resolution. Thus, the transition criterion is the same as that in the pseudo-steady case
(Timofeev et al. 1999; Hakkaki-Fard & Timofeev 2012; Kleine et al. 2014). In the
high-resolution computational study by Hakkaki-Fard & Timofeev (2012), only a small
deviation was found between the RR→MR transition and sonic criterion. Their results
were obtained for a single unspecified radius of curvature and single initial angle. The
reflection was deemed as an MR if at least one grid cell had a subsonic speed in
the reference frame attached to the reflection point. To compute this condition, three
equivalent methods were demonstrated. Kleine et al. (2014) discussed the problematic
detection of the transition. Many studies determined the transition at the moment in
which the Mach stem is first observed. Since it is easier to resolve a Mach stem
when larger radii are involved, the transition seems to approach the pseudo-steady
criterion. However, if a proper experimental set-up that resolves 0.05 mm is used,
the radii dimension should not affect the transition. Ram et al. (2015) experimentally
investigated the RR→MR transition at high spatial and temporal resolutions. Their
experimental set-up could realise, for the first time, the desirable spatial resolution
suggested by Kleine et al. (2014). In this study, they also addressed the problematic
detection of the transition angle from the trajectory of the triple point and showed
that a clear difference exists between the detachment criterion and actual transition in
the experiments. Among the researchers who study transient shock reflections, there is
still a major debate concerning the proper RR→MR criterion and the accurate method
to detect the transition.

In the present study, high-resolution numerical computations were validated using
high-resolution spatial experiments. The tested convex models had varying radii, initial
angles and surface change rates. In the following sections of this paper, we show that
the RR evolution, the transition to MR and the Mach stem growth rate depend on
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a single geometrical scale, i.e. the radius of curvature. We present a modification of
the standard 2ST to suit the unsteady reflections. The modified 2ST solution is then
compared with validated numerical computations. We provide a physical explanation
to the inconsistency between the pseudo-steady and unsteady reflections, including the
possible reason for the delay in the RR→MR transition. Finally, we suggest a new
simple geometrical criterion for the transition based on the ‘no penetration’ of the
flow condition.

To the best of the authors’ knowledge, this is the first study to present a solution
that resolves the flow conditions around an unsteady shock-wave reflection and this
is the first time that all the parameters suggested by Takayama & Sasaki (1983) are
tested by numerical and experimental means.

2. Methodology
2.1. Numerical simulations

Computations were carried out using a commercial computational fluid dynamics
solver (Fluent, ANSYSr Academic Research, Release 15.0), which employed a
control-volume-based technique. The program solved the inviscid Euler equations
approximated with second-order (space and time) schemes. The spatial discretisation
of the convection and diffusion terms was evaluated using a second-order upwinding
total variation diminishing method that employed the Barth–Jespersen minmod limiter
(Barth & Jespresen 1989). Gradients in the upstream cell were calculated by the
Green–Gauss node-based gradient evaluation (Holmes & Connell 1989; Rausch,
Batina & Yang 1992). Transient terms in the differential equations were calculated
by second-order explicit time-stepping integration based on a four-stage Runge–Kutta
method (Jameson, Schmidt & Turkel 1981). A structured grid was refined at several
levels. Thus, the results presented in this paper are grid independent. Since a
commercial software was used, extra caution was taken during the experimental
validation of the results.

2.2. Experiments
The experiments were performed using a fully automated experimental apparatus
located at the shock tube laboratory in the Mechanical Engineering Department,
Faculty of Engineering Sciences of the Ben-Gurion University of the Negev. The
entire operation of the vertical shock tube together with single-frame schlieren
image-capturing system was computer controlled. The shock tube consists of a 4.5 m
driven section having a square cross-section of 80× 80 mm and a 2 m driver section
having a 90 mm circular section. The driver and driven sections are separated by a
fast opening valve (KB-40A, ISTA Inc.). The incident shock-wave Mach number was
measured using two piezoresistive pressure transducers (8530B-500, Endevco), which
were installed 600 mm apart. In each experiment, a single 16.2 Megapixel frame was
captured by a digital SLR camera (D7000, Nikon). The spatial resolution provided
a pixel size of 0.03 mm, which facilitated the tracing of features in the flow with
characteristic sizes of 0.06 mm. The temporal resolution obtained was 1–2 µs. More
details on the experimental set-up can be found in Geva, Ram & Sadot (2013) and
Ram et al. (2015).

2.3. Image-processing procedure
Both the numerical and experimental results were analysed using the same in-house
user-independent image-processing procedure, which is described in detail by Geva
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FIGURE 4. Dimension specifications of the circular–cylindrical convex models: (a) R =
40 mm, θi= 60◦; (b) R= 70 mm, θi= 60◦; (c) R= 70 mm, θi= 90◦; and (d) R= 100 mm,
θi = 60◦.

et al. (2013). In each frame, the procedure located the triple point and the reflection
point automatically. The reflection point was found to be the intersection of the
Mach stem and surface. Then, the length of the Mach stem and the surface angle
were computed. The major advantage of this procedure is the elimination of selective
interpretations that are sensitive to optical distortions and resolution limitations. A
discussion on obtaining the error estimation when using this method can be found in
Ram et al. (2015).

3. Results and discussion
3.1. Validation of the numerical computations

The investigation of the RR→MR transitions was initially performed using four
circular–cylindrical convex reflecting surfaces having different radii and initial angles
(figure 4). The different radii were 40, 70 and 100 mm, and the initial angles varied
between 60 and 90◦. Numerical computations were carried out for models (a–d) at
an incident shock-wave Mach number of 1.3. Experimental validations were executed
for models (b–d) which account for changes in curvature and initial angle. When
the reflection occurs over a cylindrical surface, the rate of change is held constant
during the process. However, to the best of the authors’ knowledge, the evolution of
RR and the transition to MR has not been analysed under a varying rate of change.
To analyse this effect, two elliptical convex models were examined numerically.
The dimensions of the models are shown in figure 5. As the reflection advances
downstream (figure 5a), the radius of curvature of the ellipse increases and the
rate of change decreases. However, the ellipse in figure 5(b) exhibits the opposite
behaviour. Figure 6 shows the successive reflection process over cylindrical model (d)
having a radius of 100 mm. Figure 6(a,b) shows the experimental results, whereas
figure 6(c,d) is obtained by the simulations. The incident shock wave travels from
left to right. In the early stages, the reflection is an RR (figure 6a,c). As the shock
continue to propagate, the transition to MR occurs (figure 6b,d). As can be seen, the
simulation results are in excellent agreement with the experimental results in terms
of the shape of the reflection.

However, further analysis is required near the reflection point so that the reflection
type can be accurately assessed (squares in figure 6). Therefore, images from both the
simulations and the experiments were analysed using the image-processing program.
The reflection was classified as an MR or an RR according to the calculated length
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(a)

(b)

FIGURE 5. Dimensions of the elliptical models: (a) ellipse with an increasing radius of
curvature and (b) ellipse with a decreasing radius of curvature.

of the Mach stem. If the Mach stem length was zero or larger, the reflection was
classified as an MR or RR, respectively. The results of the procedure can be seen
in figure 7. In figure 7(a,c), the program identified an RR, and in figure 7(b,d), it
identified an MR having a Mach stem length of approximately 0.8 mm. A noticeable
difference between the experiments and simulations was in the shock-wave width;
in the experiments, the shock appeared to be more dispersed. Because the program
locates the centre of the shock waves, it may yield a slight deviation between the
triple points identified by the procedure and its real location. The lengths of the Mach
stem and the related reflecting surface angle were obtained from the entire numerical
and experimental results and are plotted in figure 8. In this figure, the validation for
models (b–d) is shown. To account for the possible error in the evaluation of the
Mach stem length caused by the shock width, ±5 pixel limiters were added, which
are 65 times the standard deviation of the experimental results. The simulation results
were compared to hundreds of experimental images and showed great agreement with
the experimental results for the entire reflection process. Owing to the high spatial
resolution of the experimental set-up, the numerical computations were validated in the
early stages of the Mach stem formation. To the best of the authors’ knowledge, no
numerical computations have so far been validated below 1.5 mm. Thus, any previous
attempts to describe the behaviour at these minuscule lengths, measured so close to
the reflecting surface, cannot be considered as validated. Being rigorously validated,
the numerical simulation used in the following sections can be considered comparable
to using experimental results.

3.2. The evolution of an RR over a convex surface
The analogy between pseudo-steady and unsteady reflections in terms of the RR
evolution and RR→MR transition is simply inadequate as was performed by previous
studies (Hakkaki-Fard & Timofeev 2012; Vignati & Guardone 2016). Since the
physical behaviours of these flows are different, they cannot be described by the
same theoretical method. Figure 9 demonstrates this fundamental difference between
pseudo-steady and unsteady reflections. It is shown that pseudo-steady reflections are
self-similar and can be scaled by the distance from the edge of the surface to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

83
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.835


The RR→MR transition in unsteady flow over convex surfaces 55

(a) (b)

(c) (d )

FIGURE 6. (Colour online) Schlieren images from the experiment (a,b) and simulation
(c,d) for the 100 mm model at Ms= 1.3. (a,c) RRs at θw= 49.4◦, (b,d) MRs at θw= 34.2◦.

reflection point, R (figure 9a). Although, the wave configuration grows in time the
orientations of the waves remains the same. Resulting in the same thermodynamic
properties behind the reflected shock wave. This is in contrast with the unsteady
reflection shown in figure 9(b). The reflected shock wave adjusts itself to the changing
angles of the reflecting surface. Therefore, its orientation with respect to the incident
shock wave changes as well. The reflection evolution in the unsteady case is definitely
not self-similar and cannot be compared with the pseudo-steady reflections as will be
shown in the next sections.

The change in the reflected shock-wave orientation during the reflection process
over the 40 mm cylindrical model is demonstrated in figure 10. This figure shows
the full frames from the computations (a–c) and the magnification of the reflection
area in (d–f ). The inclination angles of a straight small section of the reflected shock
waves, α, were measured with respect to the incident shock direction. The angles were
found through an automatic image-processing routine and are marked in the magnified
images (figure 10d–f ). It is shown that the measured angles, α, decrease as the surface
angle continues to decrease. In non-stationary reflections the reflected shock wave is
continually communicating with the surface (Skews & Kleine 2010) where ‘signals’
emerge from the surface and influence the reflected wave.

In contrast to the non-stationary flows, in the case of pseudo-steady flow, the corner
is the only origin of disturbances communicating with the curved part of the reflected
shock wave. This distinction has a major influence not only on the inter-shock-waves
angle but also on the resulting thermodynamic properties near the reflection point.
Figure 11 compares the reflection configurations obtained at a straight wedge with
reflections obtained over the 40, 70 and 100 mm models at the same surface angle. In
(a–d), the magnified schlieren images and the reflected shock wave orientation as was
found automatically by the image-processing procedure are plotted. In pseudo-steady
flows (figure 11a), the two-shock theory predicts a 90◦ angle between the incident
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(a) (b)

(c)

Curve fit
Incident shock wave
Mach stem
Reflection point
Triple point

(d )

FIGURE 7. (Colour online) Image-processing analysis of the reflection area marked by red
rectangles in figure 6: (a,b) experiments and (c,d) simulations.

and reflected shock waves when a wedge is inclined at an angle of 47.5◦. This is
consistent with the numerical results shown in figure 11(a). For the convex models,
the radii dimensions clearly affect the reflected shock-wave orientations. As the radii
dimension decreases, the orientation of the reflected shock wave deviates considerably
from the horizontal line. The deviation is −3.9◦, −6.3◦ and −7.5◦ for the 100, 70 and
40 mm models, respectively. The radii dimensions clearly affect the reflected shock-
wave orientations, which in turn controls the thermodynamic properties behind the
reflected shock wave. This is demonstrated in figure 11(e–h), where the flow Mach
number distributions with respect to the reflection point are presented. The minimum
flow Mach numbers, obtained adjacent to the reflection point, increase when the radii
dimension decreases. Thus, any correlation between the two-shock theory and non-
stationary flows during the reflection process is questionable (Ben-Dor & Takayama
1986; Hakkaki-Fard & Timofeev 2012; Kleine et al. 2014).
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FIGURE 8. (Colour online) Experimental validation of the numerical computations
performed at Ms = 1.3 for reflections over (a) model R = 70 mm, θi = 60◦; (b) model
R= 70 mm, θi = 90◦; and (c) model R= 100 mm, θi = 60◦.
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FIGURE 9. Schematic description of the RR configuration evolution in (a) pseudo-steady
case and in (b) non-stationary case.

Since the RR evolution is dissimilar when considering pseudo-steady and non-
stationary reflections, it is expected that the termination of an RR and the transition
to an MR are not equivalent as well. Until now, locating the moment of transition
was inherently difficult and imprecise. In many experimental studies, the RR→MR
transition was determined to be the point where the Mach stem was first visualised.
The Mach stem visualisation not only depends on the resolution of the experimental
set-up but also locates the Mach stem long after its actual formation. High-resolution
experiments may resolve the early stages of the Mach stem formation; however,
the transition must be found by extrapolating the Mach stem length to zero. This
extrapolation results in significant uncertainty originating from the low slope near
the surface (Ram et al. 2015). So far, a suitable criterion to locate the transition
does not exist. Hakkaki-Fard & Timofeev (2012) suggested that the criterion of the
Mach-number-based technique is suitable for highly refined computations. According
to this approach, when an RR exists, the entire flow along the surface in a frame
of reference attached to the reflection point is supersonic. The MR evolves when a
sonic point is reached, i.e. when at least one grid cell behind the reflected shock
wave satisfies M2 = (U − u)/c 6 1, where U is the reflection point velocity along
the surface and u and c are the flow velocity and speed of sound in the grid cell,
respectively. Hakkaki-Fard & Timofeev (2012) and Kleine et al. (2014) stated that
when applying the above formulation on a highly refined grid, the transition angle
approaches the pseudo-steady criterion. In the present work, we were able to replicate
this phenomenon. However, a subsonic flow behind the reflected shock wave is a
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(a) (b) (c)

(d) (e) ( f )

FIGURE 10. (Colour online) Evolution of the reflected wave inclination angles along
the convex surface obtained by numerical simulations and computerised image processing.
(a–c) Simulation results for a 40 mm convex model; (d–f ) magnification of the images
presented in (a–c) and the corresponding measured inclination angles of the reflected
shock wave.
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FIGURE 11. (Colour online) Reflection over convex models having the same initial angle
at a surface angle of 47.5◦ and reflection over a wedge inclined at an angle of 47.5◦.
The magnifications of the computational results and the reflected shock-wave orientation
are shown in (a–d). The Mach number distributions calculated by the Mach-number-based
technique are shown in (e–h). (a,e) straight wedge; (b, f ) R = 100 mm, θi = 60◦; (c,g)
R= 70 mm, θi = 60◦; (d,h) R= 40 mm, θi = 60◦.

necessary condition for the existence of an MR but it is still an insufficient condition!
Figure 12 demonstrates this claim.

For steady and pseudo-steady flows, the Mach-number-based technique is contra-
dictory to the two-shock theory because it predicts an MR configuration in a domain
in which only an RR exists. The transition angle corresponding to the detachment
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FIGURE 12. (Colour online) Flow Mach number in the frame of reference attached to the
reflection point: (a) numerical Mach number distribution at θw= 46.35◦, and (b) analytical
Mach number behind the reflected shock wave versus the surface angle for Ms = 1.3.

criterion at Ms= 1.3 is 46.345◦. At a surface angle of 46.35◦, an RR is still possible.
According to the two-shock theory, the flow Mach number behind the reflected shock
wave in the frame of reference attached to the reflection point is M2 = 0.928. This
is consistent with the numerical Mach number distribution computed by the above
formulation (figure 12a). In fact, the Mach-number-based technique predicts the
transition at a higher surface angle in a domain in which only an RR is possible
(figure 12b). Because this criterion is not suitable for the steady and pseudo-steady
flows, its use in non-stationary flows to determine the transition is arguable.

The elementary difference between the pseudo-steady and non-stationary reflections
is the fact the reflected shock wave continuously adjusts to the varying surface angle.
Consequently, its orientation changes in time, which alters the RR solution from self-
similarity. In order to examine this transient mechanism it is necessary to measure
the reflected shock angle evolution during the shock propagation along the surface.
Figure 13 depicts the reflected shock wave angles with respect to the incident shock-
wave motion direction plotted against the flow time. The automatic image processing
procedure (Geva et al. 2013) was modified to evaluate these angles by fitting a linear
line to a small straight part of the reflected shock wave near the wall and measuring
its orientation. It should be noted that this measurement is inherently difficult. Properly
fitting a linear line obliges selecting the largest possible section of the reflected shock
wave near the wall. However, accounting for a distance, which is too long, degrades
the quality of the fitting since the reflected shock wave becomes curved. Based on
these limitations, figure 13(a,b) for Mach number 1.3 was plotted using a 1 mm length
of the reflected shock wave. Whereas figure 13(c), accounting for Mach number 1.5,
was plotted using 0.3 mm since higher Mach number increases the curvature of the
reflected shock wave. In order to fit a shorter section of the reflected shock wave, a
higher-resolution simulation was conducted for Mach number 1.5. The errors in these
measurements were assessed by fitting lines that were 20 % longer and 20 % shorter.

As can be seen in figure 13, the reflected shock wave is compelled to change its
orientation in time. During its propagation along the curved surface, the reflected
shock wave does not only translates but also rotates about the reflection point. This
phenomenon, which was overlooked in previous studies, is in complete contrast to
pseudo-steady flows, in which the reflected shock wave has only a translation motion
along the surface. This distinction is used for the modification of the 2ST which
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FIGURE 13. The variation in the reflected shock-wave angles, with respect to the
horizontal line (α), along the flow time (a) R = 70 mm, θi = 60◦, Ms = 1.3; (b) R =
100 mm, θi = 60◦, Ms = 1.3; and (c) R = 70 mm, θi = 60◦, Ms = 1.5. The angle α is
demonstrated in figure 10.

is presented in § 3.2.1. The modification is then successfully compared with the
experimentally validated high-resolution numerical computations.

Another interesting observation, based on figure 13, is the inflection points that
occur when the angle between the reflected shock wave and the incident shock-wave
motion direction are zero. These inflections indicate that the reflected shock-wave
rotation terminates when the waves are perpendicular. Just after the perpendicularity
of the waves, the reflected shock wave continues to rotate. In § 3.2.2, a criterion for
the non-stationary RR→MR transition will be given. As will be analytically explained
by the ‘no penetration’ of the flow condition, the transition is at the moment in which
the wave are perpendicular.

3.2.1. Modification of the standard 2ST for convex surfaces
In order to model correctly the reflections over curved surfaces, the curvature of the

surface and the rotational velocity, α̇, must be attended. For the sake of the arguments
that follow, the rotational velocity is evaluated as the time derivative of the angle α
(i.e. slopes presented in figure 14). The rate at which the reflected shock wave changes
its orientation depends on the radii dimensions. When radii are small, the reflected
shock wave is forced to adjust itself faster to the changing conditions and therefore
its rotation increases. Considering the above discussion, the fact that the reflected wave
continually changes its orientation implies that additional physics, which is influenced
by this non-inertial behaviour, must be considered.

The standard 2ST, which is suitable for pseudo-steady reflections, is solved when
the reference frame is attached to the reflection point. Thus, the shock waves are
considered stationary and the flow passes through the waves (figure 1b). Figure 15
illustrates the difference in the velocities entering the reflected shock waves when
pseudo-steady and non-stationary RR are considered. In figure 15(a) the pseudo-steady
RR configuration is presented. The flow enters the incident shock wave at M0 and then
it is deflected and is reduced to M1. So the flow that enters the reflected shock wave is
M1 (figure 15b). When considering the RR over convex surface (figure 5c), in addition
to M1, the reflected shock wave advances towards the incident shock wave. As a result
of this relative motion, an increase in the effective velocity that enters the reflected
shock wave is obtained, M′1 (figure 15d). Each point along the reflected shock wave
has a different velocity entering the wave at a different angle.

Another difference results from the curvature of the surface. Unlike the pseudo-
steady case where the surface angle is constant (figure 16a). In convex surfaces,
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FIGURE 14. Inclination angle results for the cylindrical (a), (b), (d) models shown in
figure 4 and elliptical model (a) shown in figure 5. The initial angle was not varied since
it does not affect the transition (Kleine et al. 2014 and § 3.2.2). Inclination angle α is
defined in figure 10.
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(r)

1

0

0

(a) (b)

(c) (d )

1

A

2 R

2

(i)
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FIGURE 15. (Colour online) Schematic description of the velocity field in domains 0
and 1 when the waves are considered stationary: (a) pseudo-steady RR and (b) velocity
entering the reflected shock wave in pseudo-steady reflection. (c) Non-stationary RR and
(d) velocity entering the reflected shock wave in non-stationary reflection. a1 is the speed
of sound at domain 1 and r is the distance from the reflection point. α̇ is the rotational
velocity obtained in figure 14.

the surface angle increases upstream from the reflection point. Since the incoming
flow must be parallel to any local surface angle (‘no-penetration’ condition of the
flow), the required deflection angle of the reflected shock wave is decreased along
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FIGURE 16. (Colour online) Schematic description of the flow field behind the reflected
shock wave (a) pseudo-steady reflection and (b) non-stationary reflections.

the wave (figure 16b). Hence, the modified 2ST solution requires the modification of
the velocity entering the reflected shock wave together with the modification of the
required deflection angle. Since both depend of the distance from the reflection point,
the reflected shock wave is divided into increments and the modification is calculated
along each point.
Modified 2ST. As regards the calculation of the flow conditions across the incident
shock wave, the modified 2ST that will be discussed here does not require any
different analysis from that used in the standard 2ST. The conditions behind the
incident shock are obtained by solving the standard oblique shock-wave relations
(setting j= 1 and i= 0):

θj = tan−1

 (M2
i sin2 φj − 1) cot φj

γ + 1
2

M2
i − (M2

i sin φj − 1)

 , (3.1)

M2
j =

[
1+ 1

2(γ − 1)M2
i sin2 φj

]2
+
[

1
4(γ + 1)M2

i sin 2φj
]2[

1+ 1
2(γ − 1)M2

i sin2 φj
] [
γM2

i sin2 φj −
1
2(γ − 1)

] , (3.2)

where φ1 = 90◦ − θw, M0 = Ms/ sin φ1 and γ is the heat capacities ratio. Figure 17
shows the velocity behind the shock, M1, and its orientation, φ1 − θ1. As for the
reflected shock wave, consider an arbitrary point A along the reflected shock wave
(figure 17). The effective velocity that enters the reflected shock wave is increased
because of the relative motion of the waves. Consequently, the Mach number of the
flow entering the reflected shock wave at an arbitrary point A is then calculated as
follows:

M′1A =
|V̄1 + ¯̇α× r̄A|

a1
, (3.3)

where a1 is the sound velocity behind the incident shock wave, and the fluid velocity
V1 = M1/a1 is calculated in the reference frame attached to the reflection point.
The orientation of rA with respect to the incident shock-wave motion is initially
estimated by a random value of α. This value is then updated through an iterative
procedure until a convergence of the energy equations was obtained. The required
deflection angle through the reflected shock wave decreases and is modified as follows
(figure 17):

θ ′2A = θ1 − (θw − θA). (3.4)
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r

i

R

2

1

0

FIGURE 17. Deflection mechanism and flow domains over a convex surface: velocities,
wave angles and turn angles related to the oblique shock-wave relations.

Note that the dependency of the reflecting surface on the curvature is embodied
both in α̇ and in the surface angle at point A. Previous analytical approaches, which
were presented in the introduction, failed to integrate this dependence. Substituting
the modifications of the flow Mach number and the required deflection angle,
equation (3.1) with i= 1 and j= 2 results in

θ ′2A = tan−1

 (M′21A sin φ2 − 1) cot φ2

γ + 1
2

M′21A − (M
′2
1A sin φ2 − 1)

 . (3.5)

A better estimation for α can be found as α = 90◦ − (φ1 − θ1) − φ2. The values of
M′1A and θ ′2A are updated with the improved estimation of α. Equation (3.5) can be
solved again. One should note that if there is no change in the angle α, the solution
converged and the conservation equations are satisfied. Following the modification,
all the flow properties can now be evaluated with respect to point A. The entire flow
field properties can be computed across the shock if the above-mentioned procedure
is repeated over the entire reflected shock wave. For the reader’s convenience, a
numerical example is presented in § A.1.

Results of modification and discussion. Figure 18 depicts the analytical results (white
lines) over the grey-scale results obtained by the numerical simulations. Figure 18(a–c)
shows the full frame results for the cylindrical models. While figure 18(d–f ) presents
the magnification of the corresponding red squares in figure 18(a–c), respectively.
Adjacent to the reflection point, a good agreement was obtained between the
simulations and the analytical formulation. The reader should bear in mind that
the rotational velocity used for the modification was estimated near the reflection
point, where the reflected shock was reasonably straight. Maintaining this notion
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(a) (b) (c)

(d) (e) ( f )

FIGURE 18. (Colour online) Modified 2ST calculated with α̇ obtained in figure 14
(marked by a white line). (a–c) Show the original images from the simulations. (d–f )
Denote the magnifications: (a,d) R = 40 mm, θi = 60◦, (b,e) R = 70 mm, θi = 60◦; (c, f )
R= 100 mm, θi = 60◦.

when the radii are small is more difficult because the wave rapidly grows and has
a more pronounced curvature. However, the rotational velocity estimation seems to
hold for a larger distance along the reflected shock wave as the radii of the model
increases.

Figure 19 shows a solution at which an optimal rotational velocity was found to
yield the best correlation to the numerical results along a 2 mm distance. The
rotational velocity that was found was lower than the previously computed α̇

(figure 14). Figure 20 shows the optimal rotational velocities correlating to the
numerical results at different distances along the reflected shock wave. The rotational
velocity decreases when larger distances from the reflection point are considered. The
same trend was obtained when the modified 2ST was applied for the elliptical model.
The previously computed rotational velocity (figure 14) yielded a good correlation
with the numerical results close to the reflection point (figure 21a,d). One should use a
smaller rotational velocity for the modified solution to be applicable further away. The
reflected shock waves presented in figure 21(b,c,e, f ) were calculated with optimal
velocities. These rotational velocities were plotted against the distance from the
reflection point (figure 22). Similar to the cylindrical models, the rotational velocity
of the reflected shock decreased with the increased distance from the reflection
point. Therefore, applying the rotational velocity that was found based on a small
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(a) (b) (c)

(d) (e) ( f )

FIGURE 19. (Colour online) Results of the modified 2ST (marked with white lines)
calculated with the optimal rotational velocity, α̇opt. (a–c) Show the original images from
the simulations. (d–f ) Denote the magnifications. (a,d) R = 40 mm, θi = 60◦; (b,e) R =
70 mm, θi = 60◦; and (c, f ) R= 100 mm, θi = 60◦.

straight part close to the reflection point was not suitable (figure 14). From a physical
perspective, the modification corresponding to the rotational speed is necessary. Yet,
the mathematical question on the proper evaluation of the rotational speed along the
reflected shock remains open. The rotational velocity evaluation is usually performed
using continuum mechanics methods. However, applying it here is impossible because
it requires the association of points on the reflected shock at different times. The
authors believe that the ‘no-penetration’ condition of the flow, which is presented in
the following section of this study, can serve as an additional equation to determine
the rotational velocity at each point along the reflected shock wave. As long as the
rotational velocity is known, the modified 2ST can be applied to any point along the
reflected shock wave. Since the modification is based on the fundamental condition
of ‘no penetration’ of the flow, it is not restricted to the area near the reflection
point. Yet the crucial area that relates to the transition is the region adjacent to the
reflection point.

Figure 23(a) presents a comparison between the standard 2ST and the modified
2ST over a 70 mm cylinder. The radial velocity and the deflection angle corrections
depend on the distance from the reflection point. Therefore, a very small correction is
required. This deviation increases from the reflection point. Figure 23(b) graphically
demonstrates the deviation by the shock polars. The r-polar of the modified 2ST starts
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FIGURE 20. Optimum rotational velocity as a function of the distance from the reflection
point, d, over cylindrical models.

(a) (b) (c)

(d) (e) ( f )

FIGURE 21. (Colour online) Results of the modified 2ST (marked by white lines) applied
to the reflection over the ellipse. (a–c) Denote the original images from the simulations.
(d–f ) Present the magnifications. (a,d) Modified 2ST with computed in figure 14; (b,e)
modified 2ST with the optimal rotational velocity for 2 mm length; and (c, f ) modified
2ST with the optimal rotational velocity for the 4 mm length.

at θ ′2, which is smaller than θ2. In addition, the flow Mach number of the modified
polar, M′1, is larger than that of the flow Mach number computed by the standard
2ST, M1. The two-shock solution is obtained at the intersection of the r-polar with
the vertical axis. One can see that the p′2/p1 < p2/p1.
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FIGURE 22. Optimum rotational velocity as a function of the distance from the reflection
point, d, over the ellipse.
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FIGURE 23. (Colour online) The difference between the standard and modified 2ST. (a)
Resulting reflected shock wave obtained by the standard 2ST and by the modified 2ST
over a 70 mm model. (b) Polar representation of the solutions.

These modified conditions make it easier for the flow to be deflected. Consequently,
the RR can be retained for smaller surface angles in comparison with pseudo-steady
flows. This explanation sheds new light on the transition criterion disagreements
between the pseudo-steady and unsteady reflections. As the effective flow entering
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FIGURE 24. Schematic description of the flow regions in pseudo-steady RR.

the reflected shock wave is increased and the required deflection angle is decreased,
the reflected shock-wave angle and the induced flow behind the reflected shock are
decreased (for further explanation see § A.2). The rotation of the reflected shock wave
alters the effective flow Mach number entering the reflected wave. This velocity is
determined so the ‘no-penetration’ condition is maintained (as will be shown in the
next section). For smaller radii, the rapid change in the surface angles affects both α̇
and the required deflection angle, θ ′2. Hence, a significant modification is needed and
the delay in the transition will be more noticeable. This finding is consistent with
the observation that the radius of curvature is the only available length scale over
curved surfaces (Ram et al. 2015) and strengthens the claim that the transition angles
depend of the radius of curvature (Takayama & Sasaki 1983; Ben-Dor 2007). No
difference between the pseudo-steady and unsteady reflections was observed near the
reflection point. Nevertheless, these data are insufficient in determining whether the
transition criteria are similar (Hakkaki-Fard & Timofeev 2012; Kleine et al. 2014).
Basing the transition criterion on the conditions very close to the reflection point is
insufficient because the zone behind the reflection point that leads to the transition is
unknown. Moreover, their observation that coarser grid numerical results depart from
the pseudo-steady results can also be explained now. The shock waves in coarser grids
tend to be thicker. Therefore, they force a large artificial modification in the required
deflection angles, θ ′2. The MR is eventually formed when the RR can no longer
sustain the required deflection of the flow. Consequently, in unsteady reflections, the
increase in the flow Mach number along with the decrease in the required deflection
angle will delay the transition.

3.2.2. The physical mechanism that leads to transition at 90◦ inter-shock-waves angle
The RR configuration is formed so that a supersonic flow can be negotiated about

an obstacle. Consider the pseudo steady flow that is shown in figure 24. The induced
flow behind the reflected shock wave, u2, is parallel to the surface and the velocity
component, which is perpendicular to the surface, is therefore zero (‘no-penetration’
condition).

The flow velocity along the surface behind the reflected shock wave in region 2 is
given by:

u2 =1ui sin φ1 +1ur sin θr, (3.6)
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r
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FIGURE 25. Unsteady RR configuration in which the reflected and incident shock waves
are perpendicular.

where 1ui and 1ur are the induced flow velocities from the incident and the
reflected shock waves, respectively. Due to the ‘no-penetration’ condition, the normal
components of the induced flow velocities of the incident and reflected shock waves
counter each other:

1ui cos φ1 =1ur cos θr. (3.7)

Hryniewicki, Gottlieb & Groth (2016) used (3.7) and constructed an error function

E(θr)= 1−
1ur cos θr

1ui cos φ1
. (3.8)

When this equals zero a solution for a regular reflection occurs. In other words,
the reflected shock-wave angle is chosen in order to maintain the geometrical
‘no-penetration’ requirement.

The elementary requirement that the flow will not penetrate the surface exists in
both pseudo-steady and unsteady flows. The particular moment at which the reflected
shock becomes perpendicular to the incident shock wave was found to be the moment
at which the RR→MR transition occurs. An explanation to this finding is that at
this perpendicular angle equation (3.8) becomes identically zero. (This moment is
illustrated in figure 25.):

1−
1ur

1ui

cos θr

cos φ1
= 1− tan θw

cos θw

cos(90− θw)
= 1− tan θw

cos θw

sin θw
= 0. (3.9)

Before the transition, in order for the ‘no-penetration’ condition to be held, a rotational
velocity of the reflected shock wave must be introduced. This velocity causes an
increase in the effective flow Mach number entering the reflected shock wave. As a
result, the reflected shock-wave angle and the induced flow behind the reflected wave
are reduced so (3.8) is maintained. The analytical justification is consistent with the
findings presented in figure 11. As the radius decreases, higher rotational velocities
are involved enabling the configuration to adjust quickly to the changing surface. This
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in turn is possible only if the angle between the reflected and incident shock waves
increases.

The particular 90◦ inter angle between the incident and reflected shock waves
enables the existence of an RR without the need of an additional rotational velocity.
Indeed, it was demonstrated in figure 13 that when the reflected shock wave is
perpendicular to the incident shock wave, the rotation of the reflected shock wave
reaches zero. Soon after, the reflected shock wave is no longer perpendicular to the
incident shock wave. The only way to enable an RR, so that (3.8) is held, is by
introducing an additional rotational velocity of the reflected shock wave. Due to the
inertial movement of the flow around the shock wave, the buildup of the rotational
velocity cannot transpire immediately. The delay in the rotational velocity buildup is
demonstrated in the inflections of the rotational velocity shown in figure 13. Since
an RR cannot deflect the flow so that ‘no-penetration’ condition is held, MR is then
formed. The geometrical fundamental obligation of ‘no penetration’ is the criterion
for the RR→MR transition in unsteady reflection.

The use of a highly refined computational mesh and high-resolution experiments
enabled us to observe that this intriguing behaviour happened near the RR→MR
transition. It was evident from both methods that an MR could not be formed if the
angle between the incident and reflected shock waves was larger than 90◦. It was very
difficult to decide if this 90◦ angle was the precise angle at transition considering the
above listed methods to determined transition. However, based on the high-resolution
findings, it was reasonable to assume that the transition occurred very close to this
point at moderate incident shock-wave Mach numbers.

Figure 26 depicts the perpendicular behaviour of the reflected and incident shock
waves for reflections over models (a–d) near the transition point. Corresponding
to the inflections in figure 13, the perpendicularity was observed to sustain over
a certain period. The ranges of the corresponding surface angles at which this
behaviour was evident are given in table 1. Optical limitations and changing the
simulation time increments may slightly vary these ranges. Geometrical dependence
of the perpendicularity is obtained in term of a slight increase in the transition
angle when the radius of the model increases. For cylindrical model (d), which
has a 100 mm radius, the transition was found to be similar to the pseudo-steady
criterion. The effect of the initial angle on the transition angle was also examined
by using two models having 70 mm radii and initial angles of 60 and 90◦. Similar
to the findings in Skews & Kleine (2010), it was found that the initial angle did not
influence the transition. Figures 26( f ) and 26(h) show the magnification of the red
regions shown in figures 26(b) and 26(d), respectively. The horizontal behaviour of
the reflected shock waves adjacent to the reflection is apparent at the same surface
angle (table 1). This also reinforces the notion that the perpendicularity of the waves
and the corresponding transition depends on the geometric scaling.

For the case of reflections over the elliptical models, a geometric scaling was also
observed. In these cases, due to the varying curvature, a varying rate of change is
imposed on the transition process. Table 2 presents the surface angles of the ellipses
corresponding to the moment in which the perpendicularity behaviour of the shock
waves was observed. Figure 27 demonstrates the perpendicularity of the reflected and
incident shock waves over the elliptical models. For the ellipse with a decreasing
radius of curvature (model b), the transition angle is closer to the detachment criterion
and is similar to the transition angle found for reflections over the 100 mm cylindrical
model. For the elliptical model with an increasing radius of curvature (model a), the
transition angle is similar to the transition angle obtained for reflections over the
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

0° 0° 0° 0°

FIGURE 26. (Colour online) Simulation results for reflections over models (a–d) near the
transition angles (table 1). The original images from the computations are shown in (a–d).
The magnification of the areas marked by red squares of the results and the reflected
shock-wave orientation as extracted by the program are shown in (e–h). (a,e) R= 40 mm,
θi = 60◦, θw = 45.4◦; (b, f ) R= 70 mm, θi = 60◦, θw = 45.8◦; (c,g) R= 100 mm, θi = 60◦,
θw = 46.3◦; (d,h) R= 70 mm, θi = 90◦, θw = 45.8◦.

Model Radius Initial angle θw when waves are perpendicular
(mm) (deg.) (deg.)

a 40 60 45.4± 0.5
b 70 60 45.7± 0.4
c 70 90 45.7± 0.3
d 100 60 46.3± 0.4a

Detachment criterion 46.345

TABLE 1. Surface angles corresponding to the horizontal behaviour of the reflected
shock wave over cylindrical surfaces.

aThe upper boundary of the theoretical error is limited by the detachment criterion.

70 mm cylindrical model. This deviation implies that geometrical scaling may be
a solution to eliminate this discrepancy. Using Pratt (1987) method, a circle was
fitted to the area after the transition to describe the MR growth (figure 28), and the
scale that was found appropriate for the transition was the best-fit circle prior to the
transition (46◦ 6 θw 6 60◦). The radii of the resulting equivalent circles are 68 and
93 mm for models (a) and (b), respectively (figure 28). In fact, as long as a circle
can be fitted, the surface curvature does not play a role in the determination of the
transition.

Figure 29 demonstrates the perpendicularity of the reflected shock wave near the
transition points that was obtained experimentally. The Mach stems were measured
in the following frames, and the angles between the incident and reflected shock
waves were found to be smaller than 90◦. Figure 29(g) demonstrates the inflection
process as was obtained experimentally. The surface angles at which the reflected
shock wave was horizontal, i.e. perpendicular to the incident shock wave, were found
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0° 0°

(a) (b)

(c) (d)

FIGURE 27. (Colour online) Simulation results for reflections over elliptical models near
the transition (table 2). (a,b) The original images obtained by the computations. (c,d) The
magnification of the areas marked by red squares and the reflected shock-wave orientation
extracted by the program. (a,c) a= 150 mm, b= 70 mm, θi = 60◦, θw = 45.8◦; (b,d) a=
70 mm, b= 150 mm, θi = 90◦, θw = 46.2◦.

Model Radii Initial angle θw when waves are perpendicular
(mm) (deg.) (deg.)

a a= 150 b= 70 60 45.8+ 0.5
b a= 70 b= 150 60 46.2± 0.3
Detachment criterion 46.345

TABLE 2. Surface angles corresponding to the horizontal behaviour of the reflected
shock wave over elliptical surfaces.

to be consistent with the transition angles obtained by extrapolation, with the former
method having the advantage of producing smaller uncertainties.

The perpendicularity that was found to exist in both experiments and simulations
could be regarded as a geometrical criterion for the RR→MR transition. Incidentally,
this 90◦ condition is similar to the condition suggested by Shirouzu & Glass (1986)
for the transition between a single Mach reflection and transitional Mach reflection

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

83
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.835


The RR→MR transition in unsteady flow over convex surfaces 73

46°

60°

46°

60°

R68
R93

(a) (b)

FIGURE 28. Best-fit circle to the ellipse in the area prior to the transition at surfaces
angles 46◦ 6 θw 6 60◦: (a) a circle with a 68 mm radius is fitted to an ellipse with an
increasing radius of curvature, and (b) a circle with a 93 mm radius is fitted to an ellipse
with a decreasing radius of curvature.

0° 0° 0°

42

–5

0

5

10

44 46 48

(a)

(d)

(b)

(e)

(c)

(g)

( f )

Experiments
Inviscid simulations

FIGURE 29. (Colour online) Experimental results for reflections over cylindrical models
at angles at which the reflected shock is horizontal. (a–c) The original images from the
experiments. (d–f ) The magnification of the areas marked by red squares of the results and
the reflected shock-wave orientation. (a,d) R=70 mm, θi=60◦, θw≈45◦; (b,e) R=70 mm,
θi = 90◦, θw ≈ 45◦; (c, f ) R = 100 mm, θi = 60◦, θw ≈ 46◦; (g) variation of the reflected
shock-wave angle along the surface for R= 70 mm, θi = 60◦.

in pseudo-steady reflections. Until now, the rotation of the reflected shock wave
was not considered significant and its existence was neglected. However, it was
demonstrated that the rotation of the reflected shock wave affects the RR evolution
and its termination. The RR evolution and transition to MR waves are perpendicular,
stem from the ‘no penetration’ of the flow condition. Which is a fundamental
condition that must be held for any flow that passes over any solid body. While
performing experiments, it is considerably easier to visualise the perpendicularity of
the reflected and incident shock waves. Rather than the incorrect determination based
on the appearance of a Mach stem or to carry out the more complicated and uncertain
task of measuring the Mach stem length and extrapolating it to zero (Kleine et al.
2014; Ram et al. 2015).
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FIGURE 30. (Colour online) Simulation results of the Mach stem length for reflections
over cylindrical and elliptical models: (a) Mach stem length versus the corresponding
surface angle and (b) normalised Mach stem length versus the corresponding surface angle.

3.3. Geometry governing Mach stem growth over convex surfaces
Following the formation of the MR, the obtained wave configuration is a direct Mach
reflection and the Mach stem grows as the surface angle decreases (Ben-Dor 2007).
The triple point trajectories obtained from the simulations are plotted in figure 30(a).
For cylindrical models, having a large radius of curvature, the growth of the Mach
stems is faster than that for smaller radii. This is expected because as the radius
increases, the amount of flow that must be deflected also increases. The similarity
between our case and that of Kleine et al. (2014) enabled us to normalise the Mach
stem length with the cylinder radius. The resulting normalised triple point trajectories
are plotted in figure 30(b). The most noteworthy observation is that a change in the
initial angle, i.e. 60◦ and 90◦, does not affect the Mach stem growth, as can be seen in
figure 30(a), where both the curves for the 70 mm radius coincide (triangular markers).
The joined normalised curve demonstrates the consistent behaviour of the Mach stem
growth over cylindrical convex surfaces having different radii of curvature and initial
angles.

Regarding the elliptical models, both the trajectories for reflections over the
elliptical surfaces fall within the trajectories of the cylindrical models. It is interesting
to note that the normalisation parameter was not related to the geometrical shape of
the ellipse. Different parameters that were ellipse oriented were examined, e.g. radius
of curvature, distance from foci and in-circles. However, none of them was suitable.
Surprisingly, the appropriate normalisation scale was the radius of the best-fit circle
at surface angles in the range 30◦ 6 θw 6 45◦. The circles were obtained using the
Pratt method (Pratt 1987), and the computed circles are plotted in figure 31. The
suitable normalisation radii were 95 and 54 mm for ellipses (a) and (b), respectively
(figure 31). The normalised trajectories of the elliptical models coincide with those of
the cylindrical models. This significant finding leads to the conclusion that regardless
of the geometrical shape and its characteristic size, if a circle can be fitted, the
growth of the Mach stem can be found.

The aforementioned finding also reinforces the difference between pseudo-steady
and non-stationary reflections in which a circle can never be fitted to a straight wedge.
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30°

45°

60°

30°

45°

60°

R95 R54

(a) (b)

FIGURE 31. (Colour online) Best-fit circle to the ellipse in the area just after transition
at surface angles in the range 45◦ 6 θw 6 30◦: (a) a circle with a 95 mm radius fitted to
an ellipse with an increasing radius of curvature, and (b) a circle with a 54 mm radius
fitted to an ellipse with a decreasing radius of curvature.

1.65

44

0.60

0.62

0.58
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1.70 1.75 1.80 1.85 1.65 1.70 1.75 1.80 1.85

(a) (b)

FIGURE 32. The reflected shock-wave angle and the induced flow Mach number behind
the wave as a function of the flow Mach number at θ1 = 10.7◦. (a) Was computed using
(A 6) and (b) was computed using (A 7).

Conversely, the simplification of a circle-like assumption is not suitable for larger
Mach stems. As the Mach stem grows, it is influenced not only by the surface curve
but also by far-field effects. Therefore, additional parameters must be accounted for
when evaluating the Mach stem length at smaller surface angles when the Mach stem
is no longer perpendicular.

To find the geometrical parameters that influence the Mach stem buildup, several
parameters were analysed. It was found that neither the initial angle nor the varying
rate of curvature change is related to the buildup. Instead, the only geometrical
dependency is in the radius of the surface. Even when considering a non-circular
shape, the problem can be normalised by finding the best-fit circle. This geometrical
dependence in the Mach stem growth is consistent with the geometrical dependence
found to be dominant when RR was evident. This simple geometrical dependence
reduces the complexity of the analysis of the reflection over convex surfaces and the
complexity in the RR→MR transition in particular.
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4. Conclusions
In this study, the non-stationary reflections over cylindrical and elliptical convex

models were analysed numerically. Numerical computations were validated by
experiments with extremely high spatial resolutions, thus enabling features as small
as 0.06 mm to be resolved. The influence of the radius of the surface, initial
angle, and varying rates of surface change were examined in the context of the
RR evolution, RR→MR transition and Mach stem growth. It was found that the
only geometrical parameter that affected the reflected is the radios of the surface.
Regardless of the geometry involved, as long as a circle could be fitted to the
surface, the radius of the best-fit circle was the characteristic length of the problem.
This simplification eliminated all kinds of geometrical shape–oriented parameters and
reduced the problem complexity considerably.

Unlike the self-similarity in pseudo-steady reflections, in non-stationary flows the
reflection configuration is not self-similar. The curved surface imposes the reflected
shock wave a changing boundary conditions. The reflected shock orientation is varied
as it responds to the continuous change in the surface angle. For the first time,
the existence of the reflected shock-wave rotation about the reflection point was
examined. This behaviour was demonstrated at Mach numbers 1.3 and 1.5. Based on
the ‘no-penetration’ condition of the flow the evolution of and RR and its transition
to MR were explained. When smaller radii are introduced, the reflected shock wave
adjusts itself quicker to the changing surface, resulting in a higher rotation. In order
for the no penetration of the flow to be held, the angle between the incident and
reflected shock waves increases and the configuration deviates considerably from the
pseudo-steady case. It was found that when the waves are perpendicular the rotation
vanishes and the ‘no-penetration’ condition is identically zero. The high-resolution
experimental and computational results revealed that this moment is the moment of
RR→MR transition. The perpendicularity of the incident and reflected shock waves
was easier to resolve when performing experiments. Therefore, we propose using this
criterion as the RR→MR transition criterion rather than using the methods known
today. In this study, this feature together with the curvature of the surface were
introduced to the oblique shock wave relations. Consequently, the two-shock theory
was successively modified to account for the fact that the reflection is non-stationary.
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Appendix A
A.1. The modification of the 2ST

We consider the following input: Ms= 1.3; R= 40 mm; θw= 47.62◦, and α̇= 4.397×
104 s−1. The wave angle (i.e. φ1 = 42.38◦) and the flow Mach number (i.e. M0 =

1.3/ sin(42.38◦)) for the incident shock wave was substituted in (3.1) and (3.2) (setting
j= 1, i= 0). We obtain the following values:

M1 = 1.524, θ1 = 11.33◦, T1 = 357.25 K,
V1 =M1a1 = 577.4 m s−1,

V1x = V1 sin(φ1 − θ1)= 297.77 m s−1,

V1y = V1 cos(φ1 − θ1)= 494.69 m s−1.

 (A 1)
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Simulation Analytical Relative error (%)

V ′2 (m s−1) 515.33 515.01 0.06
T2 (K) 413.17 413.94 0.18

TABLE 3. Comparison between the numerical and analytical values at the point located
in rA = 1.09× 10−3 m.

The procedure that follows must be computed at each point along the reflected shock
wave to solve the entire reflected shock wave. For an arbitrary point A located at rA=

1.092× 10−3 m away from the reflection point, we start by guessing the orientation
of rA, α.

First iteration
Guessing α= 9◦ and evaluating the modified values of the flow Mach number ahead

of the shock and the deflection angle with (3.3)–(3.4) lead to:

M′1A =
|V̄1 +ω · r̄A|

a1
=
|V1x î+ V1y ĵ+ α̇rA · (−sinαî+ cos αĵ)|

a1
= 1.6237,

θ ′2 = θ1 − (θA − θw)= 10.128◦, where θA = f (R, rA, α)= 48.821◦.

 (A 2)

We find the shock-wave angle φ2 for the reflected shock wave ( j = 2 and i = 1)
from (3.5) as follows:

φ2 = 50.284◦ → α = 90◦ − (φ1 − θ1)− φ2 = 8.66◦. (A 3)

One should repeat the iteration until convergence if α is not equal to the guessed value
(α = 9◦ in the present case).

Second iteration
Continuing the process with α = 8.66◦ and evaluating the modified values of the

flow Mach number ahead of the shock and the deflection angle with (3.3)–(3.4) lead
to:

M′1A =
|V̄1 +ω · r̄A|

a1
=
|V1x î+ V1y ĵ+ α̇rA · (−sinαî+ cos αĵ)|

a1
= 1.6241,

θ ′2 = θ1 − (θw − θA)= 10.134◦, where θA = f (R, rA, α)= 48.816◦.

 (A 4)

We find the shock-wave angle φ2 for the reflected shock wave ( j= 2 and i= 1) from
(3.5) as follows:

φ2 = 50.277◦ → α = 90◦ − (φ1 − θ1)− φ2 = 8.67◦. (A 5)

The calculated angle α is practically the same as the initial guess (α = 8.66◦).
Therefore, the conservation equations are satisfied across point A. Table 3 demonstrates
the good agreement obtained between the numerical and analytical results.
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A.2. The shock-jump relation of an oblique shock wave
This section explains how an increase in the effective Mach number entering the
reflected shock wave causes a decrease in both the reflected shock-wave angle and
the induced flow Mach number behind the reflected shock wave.

The relation between the deflection angle (θ ), the shock angle (φ) and the flow
Mach number entering the shock wave (Mi) is given by

tan θj =
(M2

i sin2 φj − 1) cot φj

1+M2
i

(
γ + 1

2
− sin2 φj

) . (A 6)

From the above equation, for a particular θj, an increase in Mi will lead to a decrease
in the shock angle φi.

The induced flow velocity behind a shock wave (1u) depends on the flow Mach
number and the shock-wave angle:

1uj =
2

γ + 1

(
Mi sin φj −

1
Mi sin φj

)
ai. (A 7)

For a solution across the reflected shock set i= 1, j= 2.
Figure 32(a,b) shows the behaviour of the reflected shock-wave angle and the

induced flow Mach number behind the reflected shock wave at a constant deflection
angle.
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