Proceedings of the Edinburgh Mathematical Society (2017) **60**, 349–360 DOI:10.1017/S0013091516000262

WELL-POSEDNESS OF SECOND-ORDER DEGENERATE DIFFERENTIAL EQUATIONS WITH FINITE DELAY

SHANGQUAN BU¹ AND GANG CAI^{2*}

¹Department of Mathematical Sciences, Tsinghua University, 100084 Beijing, People's Republic of China (sbu@math.tsinghua.edu.cn) ²School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, People's Republic of China (caigang-aaaa@163.com)

(Received 28 August 2014)

Abstract We give necessary and sufficient conditions for the L^p -well-posedness of the second-order degenerate differential equations with finite delay

$$(Mu)''(t) + \alpha u'(t) = Au(t) + Fu_t + f(t) \quad (t \in [0, 2\pi])$$

with periodic boundary conditions $(Mu)(0) = (Mu)(2\pi)$, $(Mu)'(0) = (Mu)'(2\pi)$. Here A and M are closed operators on a complex Banach space X satisfying $D(A) \subset D(M)$, $\alpha \in \mathbb{C}$ is fixed, F is a bounded linear operator from $L^p([-2\pi, 0], X)$ into X, and u_t is given by $u_t(s) = u(t+s)$ when $s \in [-2\pi, 0]$.

 $\label{eq:keywords: degenerate differential equation with delay; L^p-well-posedness; Lebesgue-Bochner spaces; Fourier multipliers$

2010 Mathematics subject classification: Primary 34G10; 47D06; 35G70; 34K13

1. Introduction

Recently, the first-order degenerate differential equations

$$(Mu)'(t) = Au(t) + f(t) \quad (0 \le t \le 2\pi)$$
 (1.1)

with periodic boundary condition have been studied by Lizama and Ponce, where A and M are closed linear operators on a complex Banach space X and f is an X-valued function. Under suitable assumptions on the modified resolvent operator determined by (1.1), they gave necessary and sufficient conditions to ensure the well-posedness of (1.1) in Lebesgue–Bochner spaces $L^p(\mathbb{T}, X)$, periodic Besov spaces $B^s_{p,q}(\mathbb{T}, X)$ and periodic Triebel–Lizorkin spaces $F^s_{p,q}(\mathbb{T}, X)$ [10], where $\mathbb{T} := [0, 2\pi]$. The well-posedness of similar second-order degenerate differential equations

$$(Mu')'(t) = Au(t) + f(t) \quad (0 \le t \le 2\pi)$$
(1.2)

* Corresponding author.

© 2016 The Edinburgh Mathematical Society

with periodic boundary conditions have been studied in [4] by Bu, who gave necessary or sufficient conditions for the well-posedness of (1.2) in $L^p(\mathbb{T}, X)$, $B^s_{p,q}(\mathbb{T}, X)$ and $F^s_{p,q}(\mathbb{T}, X)$ using operator-valued Fourier multiplier theorems of Arendt and Bu on $L^p(\mathbb{T}, X)$ and $B^s_{p,q}(\mathbb{T}, X)$ [1,2] and of Bu and Kim on $F^s_{p,q}(\mathbb{T}, X)$ [6].

On the other hand, Lizama studied the first-order equations with finite delay

$$u'(t) = Au(t) + Fu_t + f(t) \quad (0 \le t \le 2\pi),$$
(1.3)

where A is a closed linear operator on a complex Banach space X, $u_t(\cdot) = u(t + \cdot)$ is defined on $[-2\pi, 0]$, $f \in L^p(\mathbb{T}, X)$, and the delay operator $F: L^p([-2\pi, 0], X) \to X$ is a bounded linear operator [9]. He obtained necessary and sufficient conditions for (1.3) to be L^p -well-posed using Fourier multiplier theorems on $L^p(\mathbb{T}, X)$. Bu and Fang gave necessary and sufficient conditions for (1.3) to be well-posed in $B^s_{p,q}(\mathbb{T}, X)$ and $F^s_{p,q}(\mathbb{T}, X)$ under suitable assumptions on the Fourier transform of the delay operator F [5]. We note that the problem of characterization of the well-posedness for evolution equations with periodic conditions has been studied extensively in recent years: see, for example, [2, 4, 5, 7-9] and references therein.

The aim of this paper is to study the L^p -well-posedness of the second-order degenerate differential equations with finite delay

$$(Mu)''(t) + \alpha u'(t) = Au(t) + Fu_t + f(t) \quad (t \in [0, 2\pi]), \tag{P_2}$$

where A, M are closed operators on a complex Banach space X satisfying $D(A) \subset D(M)$, and where $\alpha \in \mathbb{C}$ is fixed, the delay operator $F: L^p([-2\pi, 0], X) \to X$ is a bounded linear operator, and u_t is defined by $u_t(s) = u(t+s)$ for $s \in [-2\pi, 0]$, where we identify a function defined on $[0, 2\pi]$ with its 2π -periodic extension on \mathbb{R} .

Let $1 \leq p < \infty$, let $\alpha \neq 0$ and let $f \in L^p(\mathbb{T}, X)$; $u \in L^p(\mathbb{T}, D(A))$ is called a strong L^p -solution of (P_2) if $u \in W^{1,p}_{\text{per}}(\mathbb{T}, X)$, Mu, $(Mu)' \in W^{1,p}_{\text{per}}(\mathbb{T}, X)$, and (P_2) is satisfied almost everywhere (a.e.) on \mathbb{T} , where $W^{1,p}_{\text{per}}(\mathbb{T}, X)$ is the first periodic Sobolev space (see the precise definition below). We say that (P_2) is L^p -well-posed if, for each $f \in L^p(\mathbb{T}, X)$, there exists a unique strong L^p -solution of (P_2) . Our main result gives a characterization of the well-posedness of (P_2) in $L^p(\mathbb{T}, X)$. Precisely, when $\alpha \neq 0$, $1 and the underlying Banach space is a UMD space, then <math>(P_2)$ is L^p -well-posed if and only if $\rho_{\alpha,M,F}(A) = \mathbb{Z}$ and the sets $\{k^2MN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are Rademacher bounded, where $N_k = (-k^2M + i\alpha k - A - B_k)^{-1}$ and B_k is the bounded linear operator on X given by $B_k x = F(e_k x)$, e_k is the scalar function on $[0, 2\pi]$ given by $e_k(t) = e^{ikt}$. Here $\rho_{\alpha,M,F}(A)$ denotes the modified M-resolvent set of A (see the precise definition below).

When $\alpha = 0$, then (P_2) has the following simpler form:

$$(Mu)''(t) = Au(t) + Fu_t + f(t) \quad (t \in [0, 2\pi]).$$
 (P₂)

In this case, for $f \in L^p(\mathbb{T}, X)$, the belonging of strong L^p -solutions of (P'_2) to $W^{1,p}_{\text{per}}(\mathbb{T}, X)$ is no longer needed. Precisely, $u \in L^p(\mathbb{T}, D(A))$ is called a strong L^p -solution of (P'_2) , if $Mu, (Mu)' \in W^{1,p}_{\text{per}}(\mathbb{T}, X)$ and (P'_2) is satisfied a.e. on \mathbb{T} . We say that (P'_2) is L^p -wellposed, if for each $f \in L^p(\mathbb{T}, X)$, there exists a unique strong L^p -solution of (P_2) . We

show that when 1 and X is a UMD Banach space (where UMD stands for $unconditional martingale difference), if the set <math>\{k(B_{k+1} - B_k) : k \in \mathbb{Z}\}$ is Rademacher bounded (R-bounded, for short), then (P'_2) is L^p -well-posed if and only if $\rho_{M,F}(A) = \mathbb{Z}$ and the sets $\{k^2MN_k : k \in \mathbb{Z}\}$ and $\{N_k : k \in \mathbb{Z}\}$ are Rademacher bounded, where $N_k =$ $(-k^2M + i\alpha k - A - B_k)^{-1}$. Here, $\rho_{M,F}(A)$ is the modified *M*-resolvent set of *A* (see the precise definition below). At the end of this paper we give an application of our results to a concrete example.

Our results may be regarded as generalizations of the previous known results of Arendt and Bu [1] about the L^p -well-posedness of (P_2) when $M = I_X$ is the identity operator on X and F = 0. The main tools we will use in the study of the L^p -well-posedness of (P_2) are operator-valued Fourier multiplier theorems obtained by Arendt and Bu on $L^p(\mathbb{T}, X)$ [1]. Indeed, we will transform the L^p -well-posedness of (P_2) to an operator-valued Fourier multiplier problem in $L^p(\mathbb{T}, X)$.

2. Main results

Let X and Y be complex Banach spaces and let $\mathbb{T} := [0, 2\pi]$. We denote by $\mathcal{L}(X, Y)$ the space of all bounded linear operators from X to Y. If X = Y, we will simply denote it by $\mathcal{L}(X)$. For $1 \leq p < \infty$, we denote by $L^p(\mathbb{T}, X)$ the space of all equivalent classes of X-valued measurable functions f defined on \mathbb{T} satisfying

$$||f||_{L^p} := \left(\int_0^{2\pi} ||f(t)||^p \frac{\mathrm{d}t}{2\pi}\right)^{1/p} < \infty.$$

For $f \in L^1(\mathbb{T}, X)$, we denote by

$$\hat{f}(k) := \frac{1}{2\pi} \int_0^{2\pi} e_{-k}(t) f(t) \,\mathrm{d}t$$

the kth Fourier coefficient of f, where $k \in \mathbb{Z}$ and $e_k(t) = e^{ikt}$ when $t \in \mathbb{T}$.

Definition 2.1. If X and Y are complex Banach spaces and $1 \leq p < \infty$, we say that $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ is an L^p -Fourier multiplier if, for each $f \in L^p(\mathbb{T}, X)$, there exists $u \in L^p(\mathbb{T}, Y)$ such that $\hat{u}(k) = M_k \hat{f}(k)$ for all $k \in \mathbb{Z}$.

It follows easily from the closed graph theorem that when $(M_k)_{k\in\mathbb{Z}} \subset \mathcal{L}(X,Y)$ is an L^p -Fourier multiplier, then there exists a (unique) bounded linear operator $T \in \mathcal{L}(L^p(\mathbb{T},X), L^p(\mathbb{T},Y))$ satisfying $(Tf)^{\wedge}(k) = M_k \hat{f}(k)$ when $f \in L^p(\mathbb{T},X)$ and $k \in \mathbb{Z}$. The operator-valued Fourier multiplier theorem on $L^p(\mathbb{T},X)$ obtained in [1] involves the Rademacher boundedness for sets of bounded linear operators. Let γ_j be the *j*th Rademacher function on [0,1] given by $\gamma_j(t) = \operatorname{sgn}(\sin(2^j t))$ when $j \ge 1$. For $x \in X$, we denote by $\gamma_j \otimes x$ the X-valued function $t \to r_j(t)x$ on [0,1].

Definition 2.2. Let X and Y be complex Banach spaces. A set $\mathfrak{T} \subset \mathcal{L}(X, Y)$ is said to be R-bounded if there exists C > 0 such that

$$\left\|\sum_{j=1}^{n} \gamma_{j} \otimes T_{j} x_{j}\right\|_{L^{1}([0,1],Y)} \leq C \left\|\sum_{j=1}^{n} \gamma_{j} \otimes x_{j}\right\|_{L^{1}([0,1],X)}$$

for all $T_1, \ldots, T_n \in \mathfrak{T}, x_1, \ldots, x_n \in X$ and $n \in \mathbb{N}$.

The main tool in our study of the L^p -well-posedness of (P_2) is the operator-valued L^p -Fourier multiplier theorem established in [1]. The following results will be fundamental in the proof of our main result of this section. For the notion of UMD Banach spaces, we refer readers to [1] and references therein.

Proposition 2.3 (Arendt and Bu [1, Proposition 1.11]). Let X, Y be complex Banach spaces, let $1 \leq p < \infty$ and let $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ be an L^p -Fourier multiplier. The set $\{M_k : k \in \mathbb{Z}\}$ is then R-bounded.

Theorem 2.4 (Arendt and Bu [1, Theorem 1.3]). Let X, Y be UMD Banach spaces and let $(M_k)_{k\in\mathbb{Z}} \subset \mathcal{L}(X,Y)$. If the sets $\{M_k : k \in \mathbb{Z}\}$ and $\{k(M_{k+1} - M_k) : k \in \mathbb{Z}\}$ are R-bounded, then $(M_k)_{k\in\mathbb{Z}}$ defines an L^p -Fourier multiplier whenever 1 .

For $1 \leq p < \infty$, we define the first-order periodic Sobolev spaces [1] by

 $W^{1,p}_{\text{per}}(\mathbb{T},X) := \{ u \in L^p(\mathbb{T},X) : \text{ there exists } v \in L^p(\mathbb{T},X), \\ \text{ such that } \hat{v}(k) = \mathrm{i}k\hat{u}(k) \text{ for all } k \in \mathbb{Z} \}.$

If $u \in L^p(\mathbb{T}, X)$, then $u \in W^{1,p}_{per}(\mathbb{T}, X)$ if and only if u is differentiable a.e. on \mathbb{T} and $u' \in L^p(\mathbb{T}, X)$; in this case u is actually continuous and $u(0) = u(2\pi)$ [1, Lemma 2.1].

We consider the following second-order degenerate differential equations with finite delay:

$$(Mu)''(t) + \alpha u'(t) = Au(t) + Fu_t + f(t), \quad t \in [0, 2\pi], \tag{P2}$$

where A, M are closed operators on a complex Banach space X satisfying $D(A) \subset D(M)$ and $\alpha \in \mathbb{C}, f \in L^p(\mathbb{T}, X)$ is given, and the delay operator $F: L^p([-2\pi, 0], X) \to X$ is a bounded linear operator. Here we identify a function defined on \mathbb{T} with its 2π -periodic extension on \mathbb{R} . Moreover, for fixed $t \in \mathbb{T}, u_t$ is an element of $L^p([-2\pi, 0], X)$ given by $u_t(s) = u(t+s)$ when $s \in [-2\pi, 0]$.

Let $1 \leq p < \infty$, $\alpha \neq 0$; we define the solution space of (P_2) in the L^p -well-posedness case by

$$S_p(A,M) := \{ u \in L^p(\mathbb{T}, D(A)) \colon u, Mu, (Mu)' \in W^{1,p}_{\text{per}}(\mathbb{T}, X),$$

where we consider D(A) to be a Banach space equipped with its graph norm. We note that when $u \in S_p(A, M)$, then $||Fu_t|| \leq ||F|| ||u||_p$ for all $t \in \mathbb{T}$, which implies that $Fu_{\cdot} \in L^p(\mathbb{T}, X)$. $S_p(A, M)$ is a Banach space with the norm

$$||u||_{S_p(A,M)} := ||u||_{L^p} + ||u'||_{L^p} + ||Au||_{L^p} + ||Mu||_{L^p} + ||(Mu)'||_{L^p} + ||(Mu)''||_{L^p}.$$

It follows from [1, Lemma 2.1] that when $u \in S_p(A, M)$, then u, Mu and (Mu)' are X-valued continuous functions on $\mathbb{T}, u(0) = u(2\pi), (Mu)(0) = (Mu)(2\pi)$ and $(Mu)'(0) = (Mu)'(2\pi)$.

Definition 2.5. Let $1 \leq p < \infty$, $\alpha \neq 0$ and $f \in L^p(\mathbb{T}, X)$; $u \in S_p(A, M)$ is called a strong L^p -solution of (P_2) if (P_2) is satisfied a.e. on \mathbb{T} . We say that (P_2) is L^p -well-posed if, for each $f \in L^p(\mathbb{T}, X)$, there exists a unique strong L^p -solution of (P_2) .

If (P_2) is L^p -well-posed, there exists a constant C > 0 such that for each $f \in L^p(\mathbb{T}, X)$, if $u \in S_p(A, M)$ is the unique strong L^p -solution of (P_2) , then

$$||u||_{S_p(A,M)} \leq C ||f||_{L^p}.$$
 (2.1)

This can be easily obtained by the closedness of the operators A, M and the closed graph theorem.

Let $F \in \mathcal{L}(L^p([-2\pi, 0], X), X)$ and $k \in \mathbb{Z}$; we define the operator B_k on X by $B_k x = F(e_k x)$ for all $x \in X$. It is clear that B_k is linear and $||B_k|| \leq ||F||$ as $||e_k||_{L^p} \leq 1$. A simple calculation shows that $(Fu.)^{\wedge}(k) = B_k \hat{u}(k)$. We define the modified M-resolvent set of A associated with (P_2) by

$$\rho_{\alpha,M,F}(A) := \{k \in \mathbb{Z} : -k^2 M + \alpha i k - A - B_k : D(A) \to X$$

is bijective and $[-k^2 M + \alpha i k - A - B_k]^{-1} \in \mathcal{L}(X)\}.$ (2.2)

We first give a necessary condition for the L^p -well-posedness of (P_2) .

Theorem 2.6. Let X be a complex Banach space, let $1 \leq p < \infty$, let A, M be closed linear operators on X satisfying $D(A) \subset D(M)$, let $\alpha \neq 0$ and let $F \in \mathcal{L}(L^p([-2\pi, 0], X), X)$ be a delay operator. Assume that (P_2) is L^p -well-posed. Then $\rho_{\alpha,M,F}(A) = \mathbb{Z}$ and the sets $\{k^2MN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are R-bounded, where $N_k = [-k^2M + \alpha ik - A - B_k]^{-1}$ when $k \in \mathbb{Z}$.

Proof. Let $k \in \mathbb{Z}$ and $y \in X$ be fixed. We define $f(t) = e^{ikt}y$ $(t \in \mathbb{T})$. Then $f \in L^p(\mathbb{T}, X)$, $\hat{f}(k) = y$ and $\hat{f}(n) = 0$ for $n \neq k$. Since (P_2) is L^p -well-posed, there exists a unique $u \in S_p(A, M)$ satisfying

$$(Mu)''(t) + \alpha u'(t) = Au(t) + Fu_t + f(t)$$

a.e. on \mathbb{T} . We have $\hat{u}(n) \in D(A) \subset D(M)$ when $n \in \mathbb{Z}$ by [1, Lemma 3.1]. Taking Fourier transforms on both sides, we obtain

$$[-n^{2}M + \alpha in - A - B_{n}]\hat{u}(n) = \begin{cases} 0, & n \neq k, \\ y, & n = k. \end{cases}$$
(2.3)

We have shown that $-k^2M + \alpha ik - A - B_k$ is surjective. To show that $-k^2M + \alpha ik - A - B_k$ is also injective, we take $x \in D(A)$ such that $[-k^2M + \alpha ik - A - B_k]x = 0$. Let $u(t) = e^{ikt}x$ when $t \in \mathbb{T}$, then clearly $u \in S_p(A, M)$ and (P_2) holds a.e. on \mathbb{T} when f = 0. Thus u is a strong L^p -solution of (P_2) when f = 0. This implies that x = 0 by the

uniqueness assumption. We have shown that $-k^2M + \alpha ik - A - B_k$ is injective. Therefore, $-k^2M + \alpha ik - A - B_k$ is bijective from D(A) onto X.

Next we show that $[-k^2M + \alpha ik - A - B_k]^{-1} \in \mathcal{L}(X)$. For $f(t) = e^{ikt}y$, we let $u \in S_p(A, M)$ be the unique strong L^p -solution of (P_2) . Then

$$\hat{u}(n) = \begin{cases} 0, & n \neq k, \\ [-k^2M + \alpha ik - A - B_k]^{-1}y, & n = k, \end{cases}$$

by (2.3). Consequently, $u(t) = e^{ikt} [-k^2M + \alpha ik - A - B_k]^{-1}y$. By (2.1), there exists a constant C > 0 independent from y and k such that

$$||u||_{L^p} + ||u'||_{L^p} + ||Au||_{L^p} + ||Mu||_{L^p} + ||(Mu)'||_{L^p} + ||(Mu)''||_{L^p} \leq C||f||_{L^p}$$

This implies that $||N_k y|| \leq C||y||$ for all $y \in X$. Therefore, $||N_k|| \leq C$. Thus $\rho_{\alpha,M,F}(A) = \mathbb{Z}$.

Now we are going to show that if $M_k = -k^2 M [-k^2 M + \alpha i k - A - B_k]^{-1}$, $S_k = k N_k$ when $k \in \mathbb{Z}$, then $(M_k)_{k \in \mathbb{Z}}$ and $(S_k)_{k \in \mathbb{Z}}$ define L^p -Fourier multipliers. Let $f \in L^p(\mathbb{T}, X)$, then there exists a $u \in S_p(A, M)$ that is a strong L^p -solution of (P_2) by assumption. Taking Fourier transforms on both sides of (P_2) , we get that $\hat{u}(k) \in D(A)$ and

$$[-k^2M + \alpha ik - A - B_k]\hat{u}(k) = \hat{f}(k)$$

when $k \in \mathbb{Z}$. Since $-k^2M + \alpha ik - A - B_k$ is invertible, this implies that $\hat{u}(k) = N_k \hat{f}(k)$ when $k \in \mathbb{Z}$. It follows from $u \in S_p(A, M)$ that $u, Mu, (Mu)' \in W^{1,p}_{\text{per}}(\mathbb{T}, X)$. We have $[(Mu)'']^{\wedge}(k) = -k^2M\hat{u}(k)$ when $k \in \mathbb{Z}$, and thus

$$[(Mu)'']^{\wedge}(k) = -k^2 M \hat{u}(k) = M_k \hat{f}(k)$$

and

$$(u')^{\wedge}(k) = \mathrm{i}k\hat{u}(k) = \mathrm{i}kN_k\hat{f}(k) = \mathrm{i}S_k\hat{f}(k)$$

when $k \in \mathbb{Z}$. We conclude that $(M_k)_{k \in \mathbb{Z}}$ and $(S_k)_{k \in \mathbb{Z}}$ define L^p -Fourier multipliers as $(Mu)'', u' \in L^p(\mathbb{T}, X)$. It follows from Proposition 2.3 that the sets $\{M_k : k \in \mathbb{Z}\}$ and $\{S_k : k \in \mathbb{Z}\}$ are R-bounded. This finishes the proof.

In the proof of our main result of this section, we will use the following result.

Proposition 2.7. Let A and M be closed linear operators on a UMD Banach space X satisfying $D(A) \subset D(M)$, $1 and <math>\alpha \neq 0$. Let $F: L^p([-2\pi, 0], X) \to X$ be a bounded linear operator. Suppose that $\rho_{\alpha,M,F}(A) = \mathbb{Z}$ and the sets $\{k^2MN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are R-bounded, where $N_k = (-k^2M + \alpha ik - A - B_k)^{-1}$. Then $(k^2MN_k)_{k\in\mathbb{Z}}$, $(kN_k)_{k\in\mathbb{Z}}$ and $(B_kN_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers.

Proof. Let $M_k = k^2 M N_k$, $S_k = k N_k$, $H_k = B_k N_k$. Then the sets $\{M_k : k \in \mathbb{Z}\}$ and $\{S_k : k \in \mathbb{Z}\}$ are R-bounded by assumption. It follows from [9, Proposition 3.2] that $\{B_k : k \in \mathbb{Z}\}$ is R-bounded. It is sufficient to show that the sets $\{k(M_{k+1} - M_k) : k \in \mathbb{Z}\}$, $\{k(S_{k+1} - S_k) : k \in \mathbb{Z}\}$ and $\{k(H_{k+1} - H_k) : k \in \mathbb{Z}\}$ are R-bounded by Theorem 2.4. We observe that

$$N_{k+1} - N_k = N_{k+1} (N_k^{-1} - N_{k+1}^{-1}) N_k$$

= $N_{k+1} [(2k+1)M - \alpha \mathbf{i} + B_{k+1} - B_k] N_k$
= $(2k+1)N_{k+1}MN_k + N_{k+1} (B_{k+1} - B_k - \alpha \mathbf{i}) N_k.$ (2.4)

It follows that

$$k(M_{k+1} - M_k) = k[(k+1)^2 M N_{k+1} - k^2 M N_k]$$

= $k^3 M(N_{k+1} - N_k) + k(2k+1)M N_{k+1}$
= $k^3 (2k+1)M N_{k+1}M N_k + k^3 M N_{k+1} (B_{k+1} - B_k - \alpha i)N_k + k(2k+1)M N_{k+1}$
= $\frac{k(2k+1)}{(k+1)^2} M_{k+1}M_k + \frac{k^2}{(k+1)^2} M_{k+1} (B_{k+1} - B_k - \alpha i)S_k + \frac{k(2k+1)}{(k+1)^2} M_{k+1},$
(2.5)

$$k(S_{k+1} - S_k) = k[(k+1)N_{k+1} - kN_k] = k^2(N_{k+1} - N_k) + kN_{k+1} = k^2(2k+1)N_{k+1}MN_k + k^2N_{k+1}(B_{k+1} - B_k - \alpha i)N_k + kN_{k+1} = \frac{2k+1}{k+1}S_{k+1}M_k + \frac{k}{k+1}S_{k+1}(B_{k+1} - B_k - \alpha i)S_k + \frac{k}{k+1}S_{k+1}$$
(2.6)

and

$$k(H_{k+1} - H_k) = k(B_{k+1}N_{k+1} - B_kN_k) = \frac{k}{k+1}B_{k+1}S_{k+1} - B_kS_k$$
(2.7)

when $k \neq -1$. It follows from (2.5)–(2.7) that the sets $\{k(M_{k+1}-M_k): k \in \mathbb{Z}\}, \{k(S_{k+1}-S_k): k \in \mathbb{Z}\}$ and $\{k(H_{k+1}-H_k): k \in \mathbb{Z}\}$ are R-bounded since the product of two R-bounded sets is still R-bounded. This completes the proof.

Next we give a necessary and sufficient condition for the L^p -well-posedness of (P_2) that is the main result of this section.

Theorem 2.8. Let X be a UMD Banach space, let 1 and let A, M be closed $linear operators on X satisfying <math>D(A) \subset D(M)$ and $\alpha \neq 0$. Let $F: L^p([-2\pi, 0], X) \to X$ be a bounded linear operator. Then (P_2) is L^p -well-posed if and only if $\rho_{\alpha,M,F}(A) = \mathbb{Z}$ and the sets $\{k^2MN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are R-bounded, where $N_k = [-k^2M + \alpha ik - A - B_k]^{-1}$ when $k \in \mathbb{Z}$.

Proof. If (P_2) is L^p -well-posed, then $\rho_{\alpha,M,F}(A) = \mathbb{Z}$ and the sets $\{k^2MN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are R-bounded by Theorem 2.6. Conversely, we assume that $\rho_{\alpha,M,F}(A) = \mathbb{Z}$ and the sets $\{k^2MN_k : k \in \mathbb{Z}\}$ and $\{kN_k : k \in \mathbb{Z}\}$ are R-bounded. Let $M_k = k^2MN_k$, $S_k = kN_k$ and $H_k = B_kN_k$ when $k \in \mathbb{Z}$. It follows from Proposition 2.7 that $(M_k)_{k\in\mathbb{Z}}$, $(S_k)_{k\in\mathbb{Z}}$ and $(H_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers. Then, for all $f \in L^p(\mathbb{T}, X)$, there exists $u \in L^p(\mathbb{T}, X)$ satisfying

$$\hat{u}(k) = -M_k \hat{f}(k) \tag{2.8}$$

when $k \in \mathbb{Z}$. Since $((1/k)I_X)_{k\in\mathbb{Z}}$ is an L^p -Fourier multiplier by Theorem 2.4, it follows that $(N_k)_{k\in\mathbb{Z}}$ is also an L^p -Fourier multiplier as the product of two L^p -Fourier multipliers is still an L^p -Fourier multiplier. There exists $v \in L^p(\mathbb{T}, X)$ such that $\hat{v}(k) = N_k \hat{f}(k)$ for all $k \in \mathbb{Z}$. This implies that $\hat{v}(k) \in D(A) \subset D(M)$ and

$$(-k^{2}M + \alpha ik - A - B_{k})\hat{v}(k) = \hat{f}(k)$$
(2.9)

when $k \in \mathbb{Z}$. On the other hand, since $((i/k)I_X)_{k\in\mathbb{Z}}$ and $(M_k)_{k\in\mathbb{Z}}$ are L^p -Fourier multipliers, we deduce that $(ikMN_k)_{k\in\mathbb{Z}}$ is also an L^p -Fourier multiplier. Thus there exists $h \in L^p(\mathbb{T}, X)$ such that

$$\hat{h}(k) = \mathrm{i}kMN_k\hat{f}(k) = \mathrm{i}kM\hat{v}(k).$$

Thus $v(t) \in D(M)$ for almost all $t \in \mathbb{T}$ and $Mv \in W^{1,p}_{per}(\mathbb{T}, X)$ by [1, Lemmas 2.1 and 3.1]. In view of (2.8), we obtain

$$\hat{u}(k) = -k^2 M N_k \hat{f}(k) = -k^2 M \hat{v}(k) = ik[(Mv)']^{\wedge}(k)$$

when $k \in \mathbb{Z}$, which implies that $(Mv)' \in W_{\text{per}}^{1,p}(\mathbb{T}, X)$ by [1, Lemmas 2.1 and 3.1]. We note that $(Fv.)^{\wedge}(k) = B_k \hat{v}(k) = B_k N_k \hat{f}(k) = H_k \hat{f}(k)$. Hence $Fv. \in L^p(\mathbb{T}, X)$ since $(H_k)_{k \in \mathbb{Z}}$ is an L^p -Fourier multiplier. On the other hand, $ik\hat{v}(k) = ikN_k\hat{f}(k) = iS_k\hat{f}(k)$ when $k \in \mathbb{Z}$. It follows from the fact that $(S_k)_{k \in \mathbb{Z}}$ defines an L^p -Fourier multiplier that $v \in W_{\text{per}}^{1,p}(\mathbb{T}, X)$ by [1, Lemma 2.1]. We have $\hat{v}(k) \in D(A)$ and $A\hat{v}(k) = \hat{u}(k) + \alpha i k \hat{v}(k) - B_k \hat{v}(k) - \hat{f}(k) = [u + \alpha v' - Fv. - f]^{\wedge}(k)$ by (2.9). By [1, Lemma 3.1], we conclude that $v \in L^p(\mathbb{T}, D(A))$ as $u + \alpha v' - Fv. - f \in L^p(\mathbb{T}, X)$. We have shown that $v \in S_p(A, M)$ and thus

$$(Mv)''(t) + \alpha v'(t) = Av(t) + Fv_t + f(t)$$

a.e. on $[0, 2\pi]$ by the uniqueness of Fourier coefficients [1, p. 314]. Therefore, v is a strong L^p -solution of (P_2) . This shows the existence.

To show the uniqueness, we let $v \in S_p(A, M)$ satisfy

$$(Mv)''(t) + \alpha v'(t) = Av(t) + Fv_t$$

a.e. on \mathbb{T} . Taking Fourier transforms on both sides, we have $\hat{v}(k) \in D(A)$ and $-k^2 M \hat{v}(k) + \alpha i k \hat{v}(k) = A \hat{v}(k) + B_k \hat{v}(k)$ when $k \in \mathbb{Z}$. It follows that

$$[-k^2M + \alpha ik - A - B_k]\hat{v}(k) = 0$$

for all $k \in \mathbb{Z}$. Since $\rho_{\alpha,M,F}(A) = \mathbb{Z}$, this implies that $\hat{v}(k) = 0$ for all $k \in \mathbb{Z}$ and thus v = 0. Therefore, (P_2) is L^p -well-posed. The proof is complete.

When $\alpha = 0$, the problem (P_2) has the simpler form

$$(Mu)''(t) = Au(t) + Fu_t + f(t), \quad t \in [0, 2\pi],$$
 (P₂)

without the term $\alpha u'$. In this case, it is more natural to consider the solution space as

$$S'_{p}(A,M) = \{ u \in L^{p}(\mathbb{T}, D(A)) \colon Mu, (Mu)' \in W^{1,p}_{per}(\mathbb{T}, X) \}.$$

Here again we consider D(A) to be a Banach space equipped with its graph norm. It follows from [1, Lemma 2.1] that when $u \in S'_p(A, M)$, then Mu and (Mu)' are X-valued continuous functions on \mathbb{T} , $(Mu)(0) = (Mu)(2\pi)$ and $(Mu)'(0) = (Mu)'(2\pi)$.

For $f \in L^p(\mathbb{T}, X)$, $u \in S'_p(A, M)$ is called a strong L^p -solution of (P'_2) if (P'_2) is satisfied a.e. on \mathbb{T} . We say that (P'_2) is L^p -well-posed if, for each $f \in L^p(\mathbb{T}, X)$, there exists a unique strong L^p -solution of (P'_2) .

We define the modified *M*-resolvent set of *A* associated with (P'_2) by

$$\rho_{M,F}(A) := \{k \in \mathbb{Z} \colon k^2 M + A + B_k \colon D(A) \to X$$

is bijective and $[k^2 M + A + B_k]^{-1} \in \mathcal{L}(X)\}.$

A similar argument to that used in the proofs of Theorems 2.6 and 2.8 gives the following results. We notice that in our characterization of the L^p -well-posedness of (P'_2) , an extra condition on the delay operator F is needed.

Theorem 2.9. Let X be a complex Banach space, let $1 \leq p < \infty$, let A, M be closed linear operators on X satisfying $D(A) \subset D(M)$, and let $F \in \mathcal{L}(L^p([-2\pi, 0], X), X)$ be a delay operator. Assume that (P'_2) is L^p -well-posed. Then $\rho_{M,F}(A) = \mathbb{Z}$ and the sets $\{k^2MN_k : k \in \mathbb{Z}\}$ and $\{N_k : k \in \mathbb{Z}\}$ are R-bounded, where $N_k = [k^2M + A + B_k]^{-1}$ when $k \in \mathbb{Z}$.

Theorem 2.10. Let X be a UMD Banach space, let $1 and let A, M be closed linear operators on X satisfying <math>D(A) \subset D(M)$. Let $F: L^p([-2\pi, 0], X) \to X$ be a bounded linear operator. We assume that the set $\{k(B_{k+1} - B_k): k \in \mathbb{Z}\}$ is R-bounded. Then (P'_2) is L^p -well-posed if and only if $\rho_{M,F}(A) = \mathbb{Z}$ and the sets $\{k^2MN_k: k \in \mathbb{Z}\}$ and $\{N_k: k \in \mathbb{Z}\}$ are R-bounded, where $N_k = [k^2M + A + B_k]^{-1}$ when $k \in \mathbb{Z}$.

Example 2.11. Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$, let m be a bounded measurable function on Ω such that m(x) > 0 a.e. on Ω , and let f be a given function on $[0, 2\pi] \times \Omega$. We let X be the Hilbert space $H^{-1}(\Omega)$ and $\alpha \neq 0$, 1 . We consider the following second-order problem with periodic boundary conditions:

$$\frac{\partial^{2}(m(x)u)}{\partial t^{2}} + \alpha \frac{\partial u}{\partial t} = -\Delta u + Fu_{t} + f(t, x), \quad (t, x) \in [0, 2\pi] \times \Omega, \\
u(t, x) = 0, \quad (t, x) \in [0, 2\pi] \times \partial \Omega, \\
u(0, x) = u(2\pi, x), \quad x \in \Omega, \\
\frac{\partial}{\partial t}u(0, x) = \frac{\partial}{\partial t}u(2\pi, x), \quad x \in \Omega,$$
(2.10)

where $u_t(s, x) = u(t + s, x)$ when $t \in [0, 2\pi]$ and $s \in [-2\pi, 0]$, $\alpha \in \mathbb{C}$ is fixed, and the delay operator $F: L^p([-2\pi, 0], X) \to X$ is a bounded linear operator. We remark that the last two boundary conditions are equivalent to

$$m(x)u(0,x) = m(x)u(2\pi,x), \qquad \frac{\partial}{\partial t}(m(x)u(0,x)) = \frac{\partial}{\partial t}(m(x)u(2\pi,x))$$

when $x \in \Omega$.

If M is the multiplication operator by m on $H^{-1}(\Omega)$, then, by [7, § 3.7] (see also references therein), there exists a constant c > 0 such that

$$\left\|M(zM-\Delta)^{-1}\right\| \leqslant \frac{c}{1+|z|}$$

when $\operatorname{Re}(z) \ge -c(1 + |\operatorname{Im}(z)|)$. This implies in particular that

$$||M(k^2M - \Delta)^{-1}|| \leq \frac{c}{1 + |k|^2}$$

whenever $k \in \mathbb{Z}$. If we assume, furthermore, that m^{-1} is regular enough that the multiplication operator by the function m^{-1} is bounded on $H^{-1}(\Omega)$, then there exists a constant c' > 0 such that

$$\|(k^2 M - \Delta)^{-1}\| \leqslant \frac{c'}{1 + |k|^2} \tag{2.11}$$

when $k \in \mathbb{Z}$. We assume that $\alpha \neq 0$ and $\rho_{\alpha,M,F}(-\Delta) = \mathbb{Z}$. Now the identity

$$k^2M - \alpha ik - \Delta + B_k = [I + (k^2M - \Delta)^{-1}(B_k - \alpha ik)](k^2M - \Delta)$$

implies that

$$(k^{2}M - \alpha ik - \Delta + B_{k})^{-1} = (k^{2}M - \Delta)^{-1}[I + (k^{2}M - \Delta)^{-1}(B_{k} - \alpha ik)]^{-1}.$$

The set $\{B_k : k \in \mathbb{Z}\}$ is R-bounded [9, Proposition 3.2], and therefore norm bounded, and this together with (2.11) shows that

$$\lim_{|k| \to +\infty} \| (k^2 M - \Delta)^{-1} (B_k - \alpha i k) \| = 0.$$

Therefore, by (2.11),

$$\sup_{k\in\mathbb{Z}} \|k(k^2M - \alpha ik - \Delta + B_k)^{-1}\| < \infty$$

and

$$\sup_{k\in\mathbb{Z}} \|k^2 M (k^2 M - \alpha i k - \Delta + B_k)^{-1}\| < \infty.$$

We deduce from Theorem 2.8 that the above periodic problem is L^p -well-posed when taking $X = H^{-1}(\Omega)$. Here we have used the fact that when H is a Hilbert space, every norm bounded subset of $\mathcal{L}(H)$ is actually R-bounded [1].

https://doi.org/10.1017/S0013091516000262 Published online by Cambridge University Press

A similar argument shows that when $\alpha = 0$, $\rho_{M,F}(-\Delta) = \mathbb{Z}$ and $\{k(B_{k+1} - B_k): k \in \mathbb{Z}\}$ is bounded, the above periodic problem is L^p -well-posed whenever 1 by Theorem 2.10.

Example 2.12. Let H be a complex Hilbert space, let $\alpha \neq 0$, let 1 , let <math>A, M be closed linear operators on H satisfying $D(A) \subset D(M)$, and let $F \in \mathcal{L}(L^p([-2\pi, 0], H), H)$ be a delay operator. Let P be a densely defined positive self-adjoint operator on H with $P \geq \delta > 0$. Let $M = P - \varepsilon$ with $\varepsilon < \delta$, and let $A = \sum_{i=0}^{k} a_i P^i$ with $a_i \geq 0, a_k > 0$. Then there exists a constant c > 0 such that

$$\|M(zM+A)^{-1}\| \leqslant \frac{c}{1+|z|}$$
(2.12)

whenever $\operatorname{Re} z \ge -c(1 + |\operatorname{Im} z|)$ by [7, p. 73]. This implies in particular that

$$\sup_{k \in \mathbb{Z}} \|k^2 M (k^2 M + A)^{-1}\| < \infty$$

If we assume that $\rho_{\alpha,M,F} = \mathbb{Z}$ and $0 \in \rho(M)$. Then the argument used in Example 2.11 shows that (P_2) is L^p -well-posed by Theorem 2.8.

A similar argument shows that when $\alpha = 0$, $\rho_{M,F}(A) = \mathbb{Z}$, $0 \in \rho(M)$ and

$$\{k(B_{k+1} - B_k) \colon k \in \mathbb{Z}\}\$$

is bounded, then (P'_2) is L^p -well-posed by Theorem 2.10.

Example 2.13. We consider the following problem:

$$\begin{split} \frac{\partial^2}{\partial t^2} \left(1 - \frac{\partial^2}{\partial x^2}\right) u(t, x) + \alpha u'(t, x) &= \frac{\partial^4}{\partial x^4} u(t, x) + F u_t(\cdot, x) + f(t, x), \quad (t, x) \in (0, 2\pi) \times \Omega, \\ u(t, 0) &= u(t, 1) = \frac{\partial^2}{\partial x^2} u(t, 0) = \frac{\partial^2}{\partial x^2} u(t, 1) = 0, \quad t \in [0, 2\pi], \\ u(0, x) &= u(2\pi, x), \quad \left(1 - \frac{\partial^2}{\partial x^2}\right) u(0, x) = \left(1 - \frac{\partial^2}{\partial x^2}\right) u(2\pi, x), \quad x \in \Omega, \\ \frac{\partial}{\partial t} \left(1 - \frac{\partial^2}{\partial x^2}\right) u(0, x) &= \frac{\partial}{\partial t} \left(1 - \frac{\partial^2}{\partial x^2}\right) u(2\pi, x), \quad x \in \Omega, \end{split}$$

where $\Omega = (0, 1), \alpha \neq 0, F \in \mathcal{L}(L^p([-2\pi, 0]; L^2(\Omega)), L^2(\Omega))$ and $u_t(s, x) := u(t + s, x)$ when $t \in [0, 2\pi]$ and $s \in [-2\pi, 0]$. Let $X = L^2(\Omega)$ and let $P = -\partial^2/\partial x^2$ with domain $D(P) = H^2(\Omega) \cap H^1_0(\Omega)$, i.e. P is the Laplacian on $L^2(\Omega)$ with Dirichlet boundary conditions. Then P is positive self-adjoint on X. Let $M = P + I_X$ and $A = P^2$. It is clear that -P generates a contraction semigroup on $L^2(\Omega)$ [3, Example 3.4.7], and hence $1 \in \rho(-P)$, or equivalently $M = I_X + P$ has a bounded inverse, i.e. $0 \in \rho(M)$. The abstract results obtained in Example 2.12 can then be applied: if $\rho_{\alpha,M,F}(P^2) = \mathbb{Z}$, then the above problem is L^p -well-posed for all 1 .

The abstract results obtained in Example 2.12 can be also applied to the following problem:

$$\begin{split} \frac{\partial^2}{\partial t^2} \bigg(1 - \frac{\partial^2}{\partial x^2} \bigg) u(t,x) &= \frac{\partial^4}{\partial x^4} u(t,x) + F u_t(\cdot,x) + f(t,x), \quad (t,x) \in (0,2\pi) \times \Omega, \\ u(t,0) &= u(t,1) = \frac{\partial^2}{\partial x^2} u(t,0) = \frac{\partial^2}{\partial x^2} u(t,1) = 0, \quad t \in [0,2\pi], \\ u(0,x) &= u(2\pi,x), \quad \left(1 - \frac{\partial^2}{\partial x^2} \right) u(0,x) = \left(1 - \frac{\partial^2}{\partial x^2} \right) u(2\pi,x), \quad x \in \Omega, \\ \frac{\partial}{\partial t} \bigg(1 - \frac{\partial^2}{\partial x^2} \bigg) u(0,x) &= \frac{\partial}{\partial t} \bigg(1 - \frac{\partial^2}{\partial x^2} \bigg) u(2\pi,x), \quad x \in \Omega, \end{split}$$

where $\Omega = (0, 1), F \in \mathcal{L}(L^p([-2\pi, 0]; L^2(\Omega)), L^2(\Omega))$ and $u_t(s, x) := u(t + s, x)$ when $t \in [0, 2\pi]$ and $s \in [-2\pi, 0]$. If $\rho_{M,F}(P^2) = \mathbb{Z}$ and $\{k(B_{k+1} - B_k) : k \in \mathbb{Z}\}$ is bounded, then the above problem is L^p -well-posed for all 1 , where <math>-P is the Laplacian with Dirichlet boundary conditions on $L^2(\Omega)$.

Acknowledgements. This work was supported by the NSF of China (Grants 11571194 and 11401063), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant 20120002110044), the Both-Side Tsinghua University Fund, the Natural Science Foundation of Chongqing (Grant cstc2014jcyjA00016) and the Science and Technology Project of Chongqing Education Committee (Grant KJ1500314).

References

- 1. W. ARENDT AND S. BU, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, *Math. Z.* **240** (2002), 311–343.
- W. ARENDT AND S. BU, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proc. Edinb. Math. Soc. 47 (2004), 15–33.
- 3. W. ARENDT, C. BATTY, M. HIEBER AND F. NEUBRANDER, Vector-valued Laplace transforms and Cauchy problems (Birkhäuser, 2001).
- 4. S. BU, Well-posedness of second order degenerate differential equations in vector-valued function spaces, *Studia Math.* **214**(1) (2013), 1–16.
- 5. S. BU AND Y. FANG, Periodic solutions of delay equations in Besov spaces and Triebel– Lizorkin spaces, *Taiwanese J. Math.* **13**(3) (2009), 1063–1076.
- S. BU AND J. KIM, Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Math. Sinica 17 (2004), 15–25.
- 7. A. FAVINI AND A. YAGI, Degenerate differential equations in Banach spaces, Pure and Applied Mathematics, Volume 215 (Marcel Dekker, New York, 1999).
- 8. V. KEYANTUO AND C. LIZAMA, Fourier multipliers and integro-differential equations in Banach spaces, *J. Lond. Math. Soc.* **69**(3) (2004), 737–750.
- C. LIZAMA, Fourier multipliers and periodic solutions of delay equations in Banach spaces, J. Math. Analysis Applic. 324 (2006), 921–933.
- C. LIZAMA AND R. PONCE, Periodic solutions of degenerate differential equations in vector-valued function spaces, *Studia Math.* 202(1) (2011), 49–63.