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Abstract We give necessary and sufficient conditions for the Lp-well-posedness of the second-order
degenerate differential equations with finite delay

(Mu)′′(t) + αu′(t) = Au(t) + Fut + f(t) (t ∈ [0, 2π])

with periodic boundary conditions (Mu)(0) = (Mu)(2π), (Mu)′(0) = (Mu)′(2π). Here A and M are
closed operators on a complex Banach space X satisfying D(A) ⊂ D(M), α ∈ C is fixed, F is a bounded
linear operator from Lp([−2π, 0], X) into X, and ut is given by ut(s) = u(t + s) when s ∈ [−2π, 0].

Keywords: degenerate differential equation with delay; Lp-well-posedness; Lebesgue–Bochner spaces;
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1. Introduction

Recently, the first-order degenerate differential equations

(Mu)′(t) = Au(t) + f(t) (0 � t � 2π) (1.1)

with periodic boundary condition have been studied by Lizama and Ponce, where A

and M are closed linear operators on a complex Banach space X and f is an X-valued
function. Under suitable assumptions on the modified resolvent operator determined by
(1.1), they gave necessary and sufficient conditions to ensure the well-posedness of (1.1)
in Lebesgue–Bochner spaces Lp(T, X), periodic Besov spaces Bs

p,q(T, X) and periodic
Triebel–Lizorkin spaces F s

p,q(T, X) [10], where T := [0, 2π]. The well-posedness of similar
second-order degenerate differential equations

(Mu′)′(t) = Au(t) + f(t) (0 � t � 2π) (1.2)
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with periodic boundary conditions have been studied in [4] by Bu, who gave necessary or
sufficient conditions for the well-posedness of (1.2) in Lp(T, X), Bs

p,q(T, X) and F s
p,q(T, X)

using operator-valued Fourier multiplier theorems of Arendt and Bu on Lp(T, X) and
Bs

p,q(T, X) [1,2] and of Bu and Kim on F s
p,q(T, X) [6].

On the other hand, Lizama studied the first-order equations with finite delay

u′(t) = Au(t) + Fut + f(t) (0 � t � 2π), (1.3)

where A is a closed linear operator on a complex Banach space X, ut(·) = u(t + ·)
is defined on [−2π, 0], f ∈ Lp(T, X), and the delay operator F : Lp([−2π, 0], X) → X

is a bounded linear operator [9]. He obtained necessary and sufficient conditions for
(1.3) to be Lp-well-posed using Fourier multiplier theorems on Lp(T, X). Bu and Fang
gave necessary and sufficient conditions for (1.3) to be well-posed in Bs

p,q(T, X) and
F s

p,q(T, X) under suitable assumptions on the Fourier transform of the delay operator
F [5]. We note that the problem of characterization of the well-posedness for evolution
equations with periodic conditions has been studied extensively in recent years: see, for
example, [2,4,5,7–9] and references therein.

The aim of this paper is to study the Lp-well-posedness of the second-order degenerate
differential equations with finite delay

(Mu)′′(t) + αu′(t) = Au(t) + Fut + f(t) (t ∈ [0, 2π]), (P2)

where A, M are closed operators on a complex Banach space X satisfying D(A) ⊂ D(M),
and where α ∈ C is fixed, the delay operator F : Lp([−2π, 0], X) → X is a bounded linear
operator, and ut is defined by ut(s) = u(t+s) for s ∈ [−2π, 0], where we identify a function
defined on [0, 2π] with its 2π-periodic extension on R.

Let 1 � p < ∞, let α �= 0 and let f ∈ Lp(T, X); u ∈ Lp(T, D(A)) is called a strong
Lp-solution of (P2) if u ∈ W 1,p

per(T, X), Mu, (Mu)′ ∈ W 1,p
per(T, X), and (P2) is satisfied

almost everywhere (a.e.) on T, where W 1,p
per(T, X) is the first periodic Sobolev space (see

the precise definition below). We say that (P2) is Lp-well-posed if, for each f ∈ Lp(T, X),
there exists a unique strong Lp-solution of (P2). Our main result gives a characterization
of the well-posedness of (P2) in Lp(T, X). Precisely, when α �= 0, 1 < p < ∞ and
the underlying Banach space is a UMD space, then (P2) is Lp-well-posed if and only
if ρα,M,F (A) = Z and the sets {k2MNk : k ∈ Z} and {kNk : k ∈ Z} are Rademacher
bounded, where Nk = (−k2M + iαk − A − Bk)−1 and Bk is the bounded linear operator
on X given by Bkx = F (ekx), ek is the scalar function on [0, 2π] given by ek(t) = eikt.
Here ρα,M,F (A) denotes the modified M -resolvent set of A (see the precise definition
below).

When α = 0, then (P2) has the following simpler form:

(Mu)′′(t) = Au(t) + Fut + f(t) (t ∈ [0, 2π]). (P ′
2)

In this case, for f ∈ Lp(T, X), the belonging of strong Lp-solutions of (P ′
2) to W 1,p

per(T, X)
is no longer needed. Precisely, u ∈ Lp(T, D(A)) is called a strong Lp-solution of (P ′

2), if
Mu, (Mu)′ ∈ W 1,p

per(T, X) and (P ′
2) is satisfied a.e. on T. We say that (P ′

2) is Lp-well-
posed, if for each f ∈ Lp(T, X), there exists a unique strong Lp-solution of (P2). We
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show that when 1 < p < ∞ and X is a UMD Banach space (where UMD stands for
unconditional martingale difference), if the set {k(Bk+1 − Bk) : k ∈ Z} is Rademacher
bounded (R-bounded, for short), then (P ′

2) is Lp-well-posed if and only if ρM,F (A) = Z

and the sets {k2MNk : k ∈ Z} and {Nk : k ∈ Z} are Rademacher bounded, where Nk =
(−k2M + iαk − A − Bk)−1. Here, ρM,F (A) is the modified M -resolvent set of A (see the
precise definition below). At the end of this paper we give an application of our results
to a concrete example.

Our results may be regarded as generalizations of the previous known results of Arendt
and Bu [1] about the Lp-well-posedness of (P2) when M = IX is the identity operator on
X and F = 0. The main tools we will use in the study of the Lp-well-posedness of (P2) are
operator-valued Fourier multiplier theorems obtained by Arendt and Bu on Lp(T, X) [1].
Indeed, we will transform the Lp-well-posedness of (P2) to an operator-valued Fourier
multiplier problem in Lp(T, X).

2. Main results

Let X and Y be complex Banach spaces and let T := [0, 2π]. We denote by L(X, Y ) the
space of all bounded linear operators from X to Y . If X = Y , we will simply denote it
by L(X). For 1 � p < ∞, we denote by Lp(T, X) the space of all equivalent classes of
X-valued measurable functions f defined on T satisfying

‖f‖Lp :=
( ∫ 2π

0
‖f(t)‖p dt

2π

)1/p

< ∞.

For f ∈ L1(T, X), we denote by

f̂(k) :=
1
2π

∫ 2π

0
e−k(t)f(t) dt

the kth Fourier coefficient of f , where k ∈ Z and ek(t) = eikt when t ∈ T.

Definition 2.1. If X and Y are complex Banach spaces and 1 � p < ∞, we say that
(Mk)k∈Z ⊂ L(X, Y ) is an Lp-Fourier multiplier if, for each f ∈ Lp(T, X), there exists
u ∈ Lp(T, Y ) such that û(k) = Mkf̂(k) for all k ∈ Z.

It follows easily from the closed graph theorem that when (Mk)k∈Z ⊂ L(X, Y ) is
an Lp-Fourier multiplier, then there exists a (unique) bounded linear operator T ∈
L(Lp(T, X), Lp(T, Y )) satisfying (Tf)∧(k) = Mkf̂(k) when f ∈ Lp(T, X) and k ∈ Z.
The operator-valued Fourier multiplier theorem on Lp(T, X) obtained in [1] involves
the Rademacher boundedness for sets of bounded linear operators. Let γj be the jth
Rademacher function on [0, 1] given by γj(t) = sgn(sin(2jt)) when j � 1. For x ∈ X, we
denote by γj ⊗ x the X-valued function t → rj(t)x on [0, 1].
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Definition 2.2. Let X and Y be complex Banach spaces. A set T ⊂ L(X, Y ) is said
to be R-bounded if there exists C > 0 such that∥∥∥∥

n∑
j=1

γj ⊗ Tjxj

∥∥∥∥
L1([0,1],Y )

� C

∥∥∥∥
n∑

j=1

γj ⊗ xj

∥∥∥∥
L1([0,1],X)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N.

The main tool in our study of the Lp-well-posedness of (P2) is the operator-valued
Lp-Fourier multiplier theorem established in [1]. The following results will be fundamental
in the proof of our main result of this section. For the notion of UMD Banach spaces, we
refer readers to [1] and references therein.

Proposition 2.3 (Arendt and Bu [1, Proposition 1.11]). Let X, Y be complex
Banach spaces, let 1 � p < ∞ and let (Mk)k∈Z ⊂ L(X, Y ) be an Lp-Fourier multiplier.
The set {Mk : k ∈ Z} is then R-bounded.

Theorem 2.4 (Arendt and Bu [1, Theorem 1.3]). Let X, Y be UMD Banach
spaces and let (Mk)k∈Z ⊂ L(X, Y ). If the sets {Mk : k ∈ Z} and {k(Mk+1 −Mk) : k ∈ Z}
are R-bounded, then (Mk)k∈Z defines an Lp-Fourier multiplier whenever 1 < p < ∞.

For 1 � p < ∞, we define the first-order periodic Sobolev spaces [1] by

W 1,p
per(T, X) := {u ∈ Lp(T, X) : there exists v ∈ Lp(T, X),

such that v̂(k) = ikû(k) for all k ∈ Z}.

If u ∈ Lp(T, X), then u ∈ W 1,p
per(T, X) if and only if u is differentiable a.e. on T and

u′ ∈ Lp(T, X); in this case u is actually continuous and u(0) = u(2π) [1, Lemma 2.1].
We consider the following second-order degenerate differential equations with finite

delay:

(Mu)′′(t) + αu′(t) = Au(t) + Fut + f(t), t ∈ [0, 2π], (P2)

where A, M are closed operators on a complex Banach space X satisfying D(A) ⊂ D(M)
and α ∈ C, f ∈ Lp(T, X) is given, and the delay operator F : Lp([−2π, 0], X) → X is a
bounded linear operator. Here we identify a function defined on T with its 2π-periodic
extension on R. Moreover, for fixed t ∈ T, ut is an element of Lp([−2π, 0], X) given by
ut(s) = u(t + s) when s ∈ [−2π, 0].

Let 1 � p < ∞, α �= 0; we define the solution space of (P2) in the Lp-well-posedness
case by

Sp(A, M) := {u ∈ Lp(T, D(A)) : u, Mu, (Mu)′ ∈ W 1,p
per(T, X),

where we consider D(A) to be a Banach space equipped with its graph norm. We note
that when u ∈ Sp(A, M), then ‖Fut‖ � ‖F‖ ‖u‖p for all t ∈ T, which implies that
Fu· ∈ Lp(T, X). Sp(A, M) is a Banach space with the norm

‖u‖Sp(A,M) := ‖u‖Lp + ‖u′‖Lp + ‖Au‖Lp + ‖Mu‖Lp + ‖(Mu)′‖Lp + ‖(Mu)′′‖Lp .
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It follows from [1, Lemma 2.1] that when u ∈ Sp(A, M), then u, Mu and (Mu)′ are
X-valued continuous functions on T, u(0) = u(2π), (Mu)(0) = (Mu)(2π) and (Mu)′(0) =
(Mu)′(2π).

Definition 2.5. Let 1 � p < ∞, α �= 0 and f ∈ Lp(T, X); u ∈ Sp(A, M) is called a
strong Lp-solution of (P2) if (P2) is satisfied a.e. on T. We say that (P2) is Lp-well-posed
if, for each f ∈ Lp(T, X), there exists a unique strong Lp-solution of (P2).

If (P2) is Lp-well-posed, there exists a constant C > 0 such that for each f ∈ Lp(T, X),
if u ∈ Sp(A, M) is the unique strong Lp-solution of (P2), then

‖u‖Sp(A,M) � C‖f‖Lp . (2.1)

This can be easily obtained by the closedness of the operators A, M and the closed graph
theorem.

Let F ∈ L(Lp([−2π, 0], X), X) and k ∈ Z; we define the operator Bk on X by Bkx =
F (ekx) for all x ∈ X. It is clear that Bk is linear and ‖Bk‖ � ‖F‖ as ‖ek‖Lp � 1. A
simple calculation shows that (Fu·)∧(k) = Bkû(k). We define the modified M -resolvent
set of A associated with (P2) by

ρα,M,F (A) := {k ∈ Z : −k2M + αik − A − Bk : D(A) → X

is bijective and [−k2M + αik − A − Bk]−1 ∈ L(X)}. (2.2)

We first give a necessary condition for the Lp-well-posedness of (P2).

Theorem 2.6. Let X be a complex Banach space, let 1 � p < ∞, let A, M

be closed linear operators on X satisfying D(A) ⊂ D(M), let α �= 0 and let F ∈
L(Lp([−2π, 0], X), X) be a delay operator. Assume that (P2) is Lp-well-posed. Then
ρα,M,F (A) = Z and the sets {k2MNk : k ∈ Z} and {kNk : k ∈ Z} are R-bounded, where
Nk = [−k2M + αik − A − Bk]−1 when k ∈ Z.

Proof. Let k ∈ Z and y ∈ X be fixed. We define f(t) = eikty (t ∈ T). Then f ∈
Lp(T, X), f̂(k) = y and f̂(n) = 0 for n �= k. Since (P2) is Lp-well-posed, there exists a
unique u ∈ Sp(A, M) satisfying

(Mu)′′(t) + αu′(t) = Au(t) + Fut + f(t)

a.e. on T. We have û(n) ∈ D(A) ⊂ D(M) when n ∈ Z by [1, Lemma 3.1]. Taking Fourier
transforms on both sides, we obtain

[−n2M + αin − A − Bn]û(n) =

{
0, n �= k,

y, n = k.
(2.3)

We have shown that −k2M+αik−A−Bk is surjective. To show that −k2M+αik−A−Bk

is also injective, we take x ∈ D(A) such that [−k2M + αik − A − Bk]x = 0. Let u(t) =
eiktx when t ∈ T, then clearly u ∈ Sp(A, M) and (P2) holds a.e. on T when f = 0.
Thus u is a strong Lp-solution of (P2) when f = 0. This implies that x = 0 by the
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uniqueness assumption. We have shown that −k2M +αik−A−Bk is injective. Therefore,
−k2M + αik − A − Bk is bijective from D(A) onto X.

Next we show that [−k2M + αik − A − Bk]−1 ∈ L(X). For f(t) = eikty, we let
u ∈ Sp(A, M) be the unique strong Lp-solution of (P2). Then

û(n) =

{
0, n �= k,

[−k2M + αik − A − Bk]−1y, n = k,

by (2.3). Consequently, u(t) = eikt[−k2M + αik − A − Bk]−1y. By (2.1), there exists a
constant C > 0 independent from y and k such that

‖u‖Lp + ‖u′‖Lp + ‖Au‖Lp + ‖Mu‖Lp + ‖(Mu)′‖Lp + ‖(Mu)′′‖Lp � C‖f‖Lp .

This implies that ‖Nky‖ � C‖y‖ for all y ∈ X. Therefore, ‖Nk‖ � C. Thus
ρα,M,F (A) = Z.

Now we are going to show that if Mk = −k2M [−k2M + αik − A − Bk]−1, Sk = kNk

when k ∈ Z, then (Mk)k∈Z and (Sk)k∈Z define Lp-Fourier multipliers. Let f ∈ Lp(T, X),
then there exists a u ∈ Sp(A, M) that is a strong Lp-solution of (P2) by assumption.
Taking Fourier transforms on both sides of (P2), we get that û(k) ∈ D(A) and

[−k2M + αik − A − Bk]û(k) = f̂(k)

when k ∈ Z. Since −k2M + αik − A − Bk is invertible, this implies that û(k) = Nkf̂(k)
when k ∈ Z. It follows from u ∈ Sp(A, M) that u, Mu, (Mu)′ ∈ W 1,p

per(T, X). We have
[(Mu)′′]∧(k) = −k2Mû(k) when k ∈ Z, and thus

[(Mu)′′]∧(k) = −k2Mû(k) = Mkf̂(k)

and

(u′)∧(k) = ikû(k) = ikNkf̂(k) = iSkf̂(k)

when k ∈ Z. We conclude that (Mk)k∈Z and (Sk)k∈Z define Lp-Fourier multipliers as
(Mu)′′, u′ ∈ Lp(T, X). It follows from Proposition 2.3 that the sets {Mk : k ∈ Z} and
{Sk : k ∈ Z} are R-bounded. This finishes the proof. �

In the proof of our main result of this section, we will use the following result.

Proposition 2.7. Let A and M be closed linear operators on a UMD Banach space
X satisfying D(A) ⊂ D(M), 1 < p < ∞ and α �= 0. Let F : Lp([−2π, 0], X) → X be a
bounded linear operator. Suppose that ρα,M,F (A) = Z and the sets {k2MNk : k ∈ Z} and
{kNk : k ∈ Z} are R-bounded, where Nk = (−k2M+αik−A−Bk)−1. Then (k2MNk)k∈Z,
(kNk)k∈Z and (BkNk)k∈Z are Lp-Fourier multipliers.
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Proof. Let Mk = k2MNk, Sk = kNk, Hk = BkNk. Then the sets {Mk : k ∈ Z} and
{Sk : k ∈ Z} are R-bounded by assumption. It follows from [9, Proposition 3.2] that
{Bk : k ∈ Z} is R-bounded. It is sufficient to show that the sets {k(Mk+1 −Mk) : k ∈ Z},
{k(Sk+1 − Sk) : k ∈ Z} and {k(Hk+1 − Hk) : k ∈ Z} are R-bounded by Theorem 2.4. We
observe that

Nk+1 − Nk = Nk+1(N−1
k − N−1

k+1)Nk

= Nk+1[(2k + 1)M − αi + Bk+1 − Bk]Nk

= (2k + 1)Nk+1MNk + Nk+1(Bk+1 − Bk − αi)Nk. (2.4)

It follows that

k(Mk+1 − Mk)

= k[(k + 1)2MNk+1 − k2MNk]

= k3M(Nk+1 − Nk) + k(2k + 1)MNk+1

= k3(2k + 1)MNk+1MNk + k3MNk+1(Bk+1 − Bk − αi)Nk + k(2k + 1)MNk+1

=
k(2k + 1)
(k + 1)2

Mk+1Mk +
k2

(k + 1)2
Mk+1(Bk+1 − Bk − αi)Sk +

k(2k + 1)
(k + 1)2

Mk+1,

(2.5)

k(Sk+1 − Sk)

= k[(k + 1)Nk+1 − kNk]

= k2(Nk+1 − Nk) + kNk+1

= k2(2k + 1)Nk+1MNk + k2Nk+1(Bk+1 − Bk − αi)Nk + kNk+1

=
2k + 1
k + 1

Sk+1Mk +
k

k + 1
Sk+1(Bk+1 − Bk − αi)Sk +

k

k + 1
Sk+1 (2.6)

and

k(Hk+1 − Hk) = k(Bk+1Nk+1 − BkNk) =
k

k + 1
Bk+1Sk+1 − BkSk (2.7)

when k �= −1. It follows from (2.5)–(2.7) that the sets {k(Mk+1−Mk) : k ∈ Z}, {k(Sk+1−
Sk) : k ∈ Z} and {k(Hk+1 − Hk) : k ∈ Z} are R-bounded since the product of two
R-bounded sets is still R-bounded. This completes the proof. �

Next we give a necessary and sufficient condition for the Lp-well-posedness of (P2) that
is the main result of this section.

Theorem 2.8. Let X be a UMD Banach space, let 1 < p < ∞ and let A, M be closed
linear operators on X satisfying D(A) ⊂ D(M) and α �= 0. Let F : Lp([−2π, 0], X) → X

be a bounded linear operator. Then (P2) is Lp-well-posed if and only if ρα,M,F (A) = Z

and the sets {k2MNk : k ∈ Z} and {kNk : k ∈ Z} are R-bounded, where Nk = [−k2M +
αik − A − Bk]−1 when k ∈ Z.
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Proof. If (P2) is Lp-well-posed, then ρα,M,F (A) = Z and the sets {k2MNk : k ∈ Z}
and {kNk : k ∈ Z} are R-bounded by Theorem 2.6. Conversely, we assume that
ρα,M,F (A) = Z and the sets {k2MNk : k ∈ Z} and {kNk : k ∈ Z} are R-bounded.
Let Mk = k2MNk, Sk = kNk and Hk = BkNk when k ∈ Z. It follows from Propo-
sition 2.7 that (Mk)k∈Z, (Sk)k∈Z and (Hk)k∈Z are Lp-Fourier multipliers. Then, for all
f ∈ Lp(T, X), there exists u ∈ Lp(T, X) satisfying

û(k) = −Mkf̂(k) (2.8)

when k ∈ Z. Since ((1/k)IX)k∈Z is an Lp-Fourier multiplier by Theorem 2.4, it follows
that (Nk)k∈Z is also an Lp-Fourier multiplier as the product of two Lp-Fourier multipliers
is still an Lp-Fourier multiplier. There exists v ∈ Lp(T, X) such that v̂(k) = Nkf̂(k) for
all k ∈ Z. This implies that v̂(k) ∈ D(A) ⊂ D(M) and

(−k2M + αik − A − Bk)v̂(k) = f̂(k) (2.9)

when k ∈ Z. On the other hand, since ((i/k)IX)k∈Z and (Mk)k∈Z are Lp-Fourier mul-
tipliers, we deduce that (ikMNk)k∈Z is also an Lp-Fourier multiplier. Thus there exists
h ∈ Lp(T, X) such that

ĥ(k) = ikMNkf̂(k) = ikMv̂(k).

Thus v(t) ∈ D(M) for almost all t ∈ T and Mv ∈ W 1,p
per(T, X) by [1, Lemmas 2.1 and 3.1].

In view of (2.8), we obtain

û(k) = −k2MNkf̂(k) = −k2Mv̂(k) = ik[(Mv)′]∧(k)

when k ∈ Z, which implies that (Mv)′ ∈ W 1,p
per(T, X) by [1, Lemmas 2.1 and 3.1]. We note

that (Fv.)∧(k) = Bkv̂(k) = BkNkf̂(k) = Hkf̂(k). Hence Fv. ∈ Lp(T, X) since (Hk)k∈Z

is an Lp-Fourier multiplier. On the other hand, ikv̂(k) = ikNkf̂(k) = iSkf̂(k) when k ∈ Z.
It follows from the fact that (Sk)k∈Z defines an Lp-Fourier multiplier that v ∈ W 1,p

per(T, X)
by [1, Lemma 2.1]. We have v̂(k) ∈ D(A) and Av̂(k) = û(k)+αikv̂(k)−Bkv̂(k)− f̂(k) =
[u + αv′ − Fv· − f ]∧(k) by (2.9). By [1, Lemma 3.1], we conclude that v ∈ Lp(T, D(A))
as u + αv′ − Fv· − f ∈ Lp(T, X). We have shown that v ∈ Sp(A, M) and thus

(Mv)′′(t) + αv′(t) = Av(t) + Fvt + f(t)

a.e. on [0, 2π] by the uniqueness of Fourier coefficients [1, p. 314]. Therefore, v is a strong
Lp-solution of (P2). This shows the existence.

To show the uniqueness, we let v ∈ Sp(A, M) satisfy

(Mv)′′(t) + αv′(t) = Av(t) + Fvt

a.e. on T. Taking Fourier transforms on both sides, we have v̂(k) ∈ D(A) and −k2Mv̂(k)+
αikv̂(k) = Av̂(k) + Bkv̂(k) when k ∈ Z. It follows that

[−k2M + αik − A − Bk]v̂(k) = 0

for all k ∈ Z. Since ρα,M,F (A) = Z, this implies that v̂(k) = 0 for all k ∈ Z and thus
v = 0. Therefore, (P2) is Lp-well-posed. The proof is complete. �

https://doi.org/10.1017/S0013091516000262 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000262


Well-posedness of second-order differential equations 357

When α = 0, the problem (P2) has the simpler form

(Mu)′′(t) = Au(t) + Fut + f(t), t ∈ [0, 2π], (P ′
2)

without the term αu′. In this case, it is more natural to consider the solution space as

S′
p(A, M) = {u ∈ Lp(T, D(A)) : Mu, (Mu)′ ∈ W 1,p

per(T, X)}.

Here again we consider D(A) to be a Banach space equipped with its graph norm. It
follows from [1, Lemma 2.1] that when u ∈ S′

p(A, M), then Mu and (Mu)′ are X-valued
continuous functions on T, (Mu)(0) = (Mu)(2π) and (Mu)′(0) = (Mu)′(2π).

For f ∈ Lp(T, X), u ∈ S′
p(A, M) is called a strong Lp-solution of (P ′

2) if (P ′
2) is

satisfied a.e. on T. We say that (P ′
2) is Lp-well-posed if, for each f ∈ Lp(T, X), there

exists a unique strong Lp-solution of (P ′
2).

We define the modified M -resolvent set of A associated with (P ′
2) by

ρM,F (A) := {k ∈ Z : k2M + A + Bk : D(A) → X

is bijective and [k2M + A + Bk]−1 ∈ L(X)}.

A similar argument to that used in the proofs of Theorems 2.6 and 2.8 gives the
following results. We notice that in our characterization of the Lp-well-posedness of (P ′

2),
an extra condition on the delay operator F is needed.

Theorem 2.9. Let X be a complex Banach space, let 1 � p < ∞, let A, M be closed
linear operators on X satisfying D(A) ⊂ D(M), and let F ∈ L(Lp([−2π, 0], X), X) be
a delay operator. Assume that (P ′

2) is Lp-well-posed. Then ρM,F (A) = Z and the sets
{k2MNk : k ∈ Z} and {Nk : k ∈ Z} are R-bounded, where Nk = [k2M +A+Bk]−1 when
k ∈ Z.

Theorem 2.10. Let X be a UMD Banach space, let 1 < p < ∞ and let A, M be
closed linear operators on X satisfying D(A) ⊂ D(M). Let F : Lp([−2π, 0], X) → X be a
bounded linear operator. We assume that the set {k(Bk+1 − Bk) : k ∈ Z} is R-bounded.
Then (P ′

2) is Lp-well-posed if and only if ρM,F (A) = Z and the sets {k2MNk : k ∈ Z}
and {Nk : k ∈ Z} are R-bounded, where Nk = [k2M + A + Bk]−1 when k ∈ Z.

Example 2.11. Let Ω be a bounded domain in R
n with smooth boundary ∂Ω, let

m be a bounded measurable function on Ω such that m(x) > 0 a.e. on Ω, and let f

be a given function on [0, 2π] × Ω. We let X be the Hilbert space H−1(Ω) and α �= 0,
1 < p < ∞. We consider the following second-order problem with periodic boundary
conditions:

∂2(m(x)u)
∂t2

+ α
∂u

∂t
= −Δu + Fut + f(t, x), (t, x) ∈ [0, 2π] × Ω,

u(t, x) = 0, (t, x) ∈ [0, 2π] × ∂Ω,

u(0, x) = u(2π, x), x ∈ Ω,

∂

∂t
u(0, x) =

∂

∂t
u(2π, x), x ∈ Ω,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)
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where ut(s, x) = u(t + s, x) when t ∈ [0, 2π] and s ∈ [−2π, 0], α ∈ C is fixed, and the
delay operator F : Lp([−2π, 0], X) → X is a bounded linear operator. We remark that
the last two boundary conditions are equivalent to

m(x)u(0, x) = m(x)u(2π, x),
∂

∂t
(m(x)u(0, x)) =

∂

∂t
(m(x)u(2π, x))

when x ∈ Ω.
If M is the multiplication operator by m on H−1(Ω), then, by [7, § 3.7] (see also

references therein), there exists a constant c > 0 such that

∥∥M(zM − Δ)−1
∥∥ � c

1 + |z|

when Re(z) � −c(1 + |Im(z)|). This implies in particular that

‖M(k2M − Δ)−1‖ � c

1 + |k|2

whenever k ∈ Z. If we assume, furthermore, that m−1 is regular enough that the mul-
tiplication operator by the function m−1 is bounded on H−1(Ω), then there exists a
constant c′ > 0 such that

‖(k2M − Δ)−1‖ � c′

1 + |k|2 (2.11)

when k ∈ Z. We assume that α �= 0 and ρα,M,F (−Δ) = Z. Now the identity

k2M − αik − Δ + Bk = [I + (k2M − Δ)−1(Bk − αik)](k2M − Δ)

implies that

(k2M − αik − Δ + Bk)−1 = (k2M − Δ)−1[I + (k2M − Δ)−1(Bk − αik)]−1.

The set {Bk : k ∈ Z} is R-bounded [9, Proposition 3.2], and therefore norm bounded,
and this together with (2.11) shows that

lim
|k|→+∞

‖(k2M − Δ)−1(Bk − αik)‖ = 0.

Therefore, by (2.11),

sup
k∈Z

‖k(k2M − αik − Δ + Bk)−1‖ < ∞

and
sup
k∈Z

‖k2M(k2M − αik − Δ + Bk)−1‖ < ∞.

We deduce from Theorem 2.8 that the above periodic problem is Lp-well-posed when
taking X = H−1(Ω). Here we have used the fact that when H is a Hilbert space, every
norm bounded subset of L(H) is actually R-bounded [1].
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A similar argument shows that when α = 0, ρM,F (−Δ) = Z and {k(Bk+1 − Bk) : k ∈
Z} is bounded, the above periodic problem is Lp-well-posed whenever 1 < p < ∞ by
Theorem 2.10.

Example 2.12. Let H be a complex Hilbert space, let α �= 0, let 1 < p < ∞,
let A, M be closed linear operators on H satisfying D(A) ⊂ D(M), and let F ∈
L(Lp([−2π, 0], H), H) be a delay operator. Let P be a densely defined positive self-adjoint
operator on H with P � δ > 0. Let M = P − ε with ε < δ, and let A =

∑k
i=0 aiP

i with
ai � 0, ak > 0. Then there exists a constant c > 0 such that

‖M(zM + A)−1‖ � c

1 + |z| (2.12)

whenever Re z � −c(1 + |Im z|) by [7, p. 73]. This implies in particular that

sup
k∈Z

‖k2M(k2M + A)−1‖ < ∞.

If we assume that ρα,M,F = Z and 0 ∈ ρ(M). Then the argument used in Example 2.11
shows that (P2) is Lp-well-posed by Theorem 2.8.

A similar argument shows that when α = 0, ρM,F (A) = Z, 0 ∈ ρ(M) and

{k(Bk+1 − Bk) : k ∈ Z}

is bounded, then (P ′
2) is Lp-well-posed by Theorem 2.10.

Example 2.13. We consider the following problem:

∂2

∂t2

(
1 − ∂2

∂x2

)
u(t, x) + αu′(t, x) =

∂4

∂x4 u(t, x) + Fut(·, x) + f(t, x), (t, x) ∈ (0, 2π) × Ω,

u(t, 0) = u(t, 1) =
∂2

∂x2 u(t, 0) =
∂2

∂x2 u(t, 1) = 0, t ∈ [0, 2π],

u(0, x) = u(2π, x),
(

1 − ∂2

∂x2

)
u(0, x) =

(
1 − ∂2

∂x2

)
u(2π, x), x ∈ Ω,

∂

∂t

(
1 − ∂2

∂x2

)
u(0, x) =

∂

∂t

(
1 − ∂2

∂x2

)
u(2π, x), x ∈ Ω,

where Ω = (0, 1), α �= 0, F ∈ L(Lp([−2π, 0];L2(Ω)), L2(Ω)) and ut(s, x) := u(t + s, x)
when t ∈ [0, 2π] and s ∈ [−2π, 0]. Let X = L2(Ω) and let P = −∂2/∂x2 with domain
D(P ) = H2(Ω) ∩ H1

0 (Ω), i.e. P is the Laplacian on L2(Ω) with Dirichlet boundary
conditions. Then P is positive self-adjoint on X. Let M = P + IX and A = P 2. It is
clear that −P generates a contraction semigroup on L2(Ω) [3, Example 3.4.7], and hence
1 ∈ ρ(−P ), or equivalently M = IX + P has a bounded inverse, i.e. 0 ∈ ρ(M). The
abstract results obtained in Example 2.12 can then be applied: if ρα,M,F (P 2) = Z, then
the above problem is Lp-well-posed for all 1 < p < ∞.

https://doi.org/10.1017/S0013091516000262 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000262


360 S. Bu and G. Cai

The abstract results obtained in Example 2.12 can be also applied to the following
problem:

∂2

∂t2

(
1 − ∂2

∂x2

)
u(t, x) =

∂4

∂x4 u(t, x) + Fut(·, x) + f(t, x), (t, x) ∈ (0, 2π) × Ω,

u(t, 0) = u(t, 1) =
∂2

∂x2 u(t, 0) =
∂2

∂x2 u(t, 1) = 0, t ∈ [0, 2π],

u(0, x) = u(2π, x),
(

1 − ∂2

∂x2

)
u(0, x) =

(
1 − ∂2

∂x2

)
u(2π, x), x ∈ Ω,

∂

∂t

(
1 − ∂2

∂x2

)
u(0, x) =

∂

∂t

(
1 − ∂2

∂x2

)
u(2π, x), x ∈ Ω,

where Ω = (0, 1), F ∈ L(Lp([−2π, 0];L2(Ω)), L2(Ω)) and ut(s, x) := u(t + s, x) when
t ∈ [0, 2π] and s ∈ [−2π, 0]. If ρM,F (P 2) = Z and {k(Bk+1 − Bk) : k ∈ Z} is bounded,
then the above problem is Lp-well-posed for all 1 < p < ∞, where −P is the Laplacian
with Dirichlet boundary conditions on L2(Ω).
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