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PROBLEMS AND SOLUTIONS

PROBLEMS

02.6.1. Oblique Projectorsproposed by Go6tz Trenkletet P be an idem-
potent matrix with possibly complex entriesssume thaP is not Hermitian
i.e., P differs from its conjugate transpasghow that the Moore—Penrose in-
verseP* is not idempotent

02.6.2. Autoregression and Redundant Instrumepteposed by Stanislav Ana-
tolyev. Consider a zero mean stationary autoregressive model of &ndith
independent and identically distributéd.d.) innovations having varianae?:

Ye = p1Yi-1 T P22t - T oYk T &t

It is well known that the efficient generalized method of mome@dM) es-
timator of p = (p41 p> ... p)’ based on the instrumental vectr= (y;_1 Vi_»
oo Yok Yi—k—1 --- Ye—¢)' consisting of the last > k lags ofy; effectively ex-
ploits information in the most recemt lags ofy, (see e.g., Kim, Qian and
Schmidt 1999. In other wordsthe instruments;_y_1,..., Y;_¢ are redundant
(see BreusghQian Schmidt and Wyhowski 1999 giveny; 4,..., Yi_k-.

Prove the following more general propositiomhen one uses the instrumen-
tal vectorz, = (Yi—p Yi—p-1 -+ Yi—p—k+1 Ye—p—k -+ Yi—p—¢+1)’ for p = 1, the
instrumentsy,_p_y, ..., Yi—p—¢+1 are redundant giveg_, ..., Yi—p—k+1.
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SOLUTIONS
01.6.1. Minimax Mediar—Solution® proposed by Geert Dhaene
(@) The cumulative distribution functiofc.d.f.) of 3 is
Fa(x) = Pr[m_in{max{xij}} = x]
j i
=1-[1-(F(X)™]%
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using well-known properties of order statistiddedian-unbiasedness ¢f re-
quiresFz(B) = 0.5, and therefore

(1—0.5™)% = 0.5. (2)
Clearly, this impliesr, — oo andc, — oo asn — oco. Hence we can write
(1-0.5™M)% = exp(—0.5"c,) + o(1) = 0.5.

Solving forr, yields

_log(c,)
= Togia) LT O @
Furthermore

log(c,) = log(n) — log(r,)
= log(n) — log(log(c,)) — log(log(2)) + o(1)

=log(n)(1+ o(2)), (3)
because
’ log(log(c,)) . log(log(c,))
im———=|lim —— =0.
- log(n) e log(c,)

Combining(2) and(3) yields

_ log(n)

ry = l0g(2) (14 0(2)) =log,(n)(1+ o(2)).

It will be shown thatr,(8 — B) converges in distributignprovided thatF is
differentiable in an open neighborhood @fand has a positive derivative gt
Start from

Priry(B—B) =x]=1—[1—[F(r, ™+ B)]"]*
= 1—exp—[F(ry % + B)]"c,] + o(1). 4)
Then for somea, in [ B, + 8] and sufficiently largen,
[F(ra ™+ B)]"c, = [F(B) + ry Xf(ay)]"c,
= 0.5"c,[1+ 2r; xf(a,)]™ (5)

From (1), c, = —log(2)/log(1 — 0.5™), wherefrom

z
lim 0.5c, = —log(2) lm ——
N0 " 9(2 z-0 log(1 — 2)

= log(2). (6)
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Moreover

lim [1+ 2r; 3xf(a,)]™ = exp(2xf(B)). @)

n—oo

Combining(4)—(7) gives the limiting cod.f. of ry(8 — B):

lim Prr,(8 — B) = x] = 1— 2~ =025,
n—oo

NOTE

1. An excellent solution has been independently proposed. BBo&noy and GN. Bassettthe
authors of the problemThey noted that the limit distribution belongs to the class of Gompertz
distributions or shifted and rescaled type Il extreme value distributiGh$haene also pointed
out a typo in the statement of the probleim part (b) of the problem the /” should be omitted
from the first sentence

01.6.2. Identification of Parameters in Two Competing Risk Models
Solution* proposed by X. Sapra

Model 1. The crude hazard ratém the presence of both riskand the in-
tegrated hazard rates corresponding to the joint survival functiofi)irare
respectively

hj (t) = —aIn S(ty, t2)/6tj ‘tl=t2=t = a; (AL + Az)t]ail, =12, )

t
HJ (t) = f h](u)du= )\J()\l + )\z)ailta, J = 1,2. (4)
0

Case (a). The likelihood function igKalbfleisch and Prenticel 98Q p. 181)

L= _:l_Il(hl(ti )% (hy(t)* % exp(—Hy(t) — Ha(t)), (5)
and thus

n

i=1
— (AL A2) (6)

Because the information matrik(a, A1,A5), is nonsingularall of the param-
etersa, A4, A, are locally identifiedRothenberg1971).

Case (b). For T = min(T,, T), the overall survival function is

Si(t) =P(My>t,T,>1)=S(t, 1) = exp(— (A, + A,) “t%). (7)
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The likelihood function based on alone is

n
L* = [T [a(A; + Ap)t* ] exp(— (A + A5)“t), (8)
i=1
and thus
n
INL* =Y Ina+aln(A 4+ A5) + (@ —DInt, — (A, + Ap)“te. 9)

i=1

Because the information matrik(a, A1 + A5), is nonsingulara and A, + A,
are locally identified However A, and A, are not identified because the infor-
mation matrix | («, A1,A»), is singular

Indeed the first-order conditions for maximization of Li yield only two
distinct equations for three parameters because the normal equationsaficd
A, are identical

dln L*/G)\l =0dIn L*/a/\z = na/(/\l + /\2) - E (/\l + /\Z)a—ltia =0. (10)
i=1

Model 2. The crude hazard rates corresponding to the joint survival func-
tion in equation(2) are

h(t) = —aInS(ty, t,)/0t [, —,— = (@ + DA /[(Ay + A )t + 1],
i=12, (11)
and the integrated hazard rates are
Hi(t) = [(a + D)A; /(A + A)]IN[(A; + At + 1], i=12 (12)
Case (a). The likelihood function(from (5), (11), and(12)) is

n
L=TIA3A5%(a + 1)/[(A; + At +1]%72 (13)
i=1
and thus

InL = zn: SiInA;+(1=68)InA,+In(a+1) — (a+ 2)In[(A; + X)L +1].
i=1

(14)

Because the information matrik(«, A1,A,), is nonsingularall of the param-
etersa, A4, A, are locally identified

Case (b). For T = min(T,, T,), the overall survival function is

Si(t) =P(T,>t,T,>1t) =S(t,t) =1/[(A, + Ayt + 1]*HL (15)
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Therefore the likelihood function based ofi alone is

L* = ﬁ (a +1)(Ap+ A)/[(Ag + At +1]+2 (16)

i=1

and the log likelihood function is

n
InL* = D In(a+1) +In(A; + Ap) — (@ + 2)In[(A; + Ayt + 1]. 17)
i=1
Because the information matrik(a, A; + A,), is nonsingulara andA; + A,
are locally identified However A, and A, are not identified because the infor-
mation matrix | (a, A1,A»), is singular
Indeed the first-order conditions for maximization of Lti yield only two
distinct equations for three parameters because the normal equationsafiod
A, are identical

aINL* oA, = aInLYaA, =n/(Ay + Ap) — (a + 2) D[4 /[(Ay + Ayt +1]]

i=1

=0. (18)
NOTE

1. The author thanks a referee for insightful comments
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