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Abstract

Amodel of bubble regime electron acceleration by an intense laser pulse in non uniform plasma channel is developed. The
plasma electrons at the front of the pulse and slightly off the laser axis in the plasma channel, experience axial and radial
ponderomotive and space charge forces, creating an electron evacuated non uniform ion bubble. The expelled electrons
travel along the surface of the bubble and reach the stagnation point, forming an electron sphere of radius re. The
electrons of this sphere are pulled into the ion bubble and are accelerated to high energies. The Lorentz boosted frame
enabled us to calculate energy gain of a test electron inside the bubble.
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1. INTRODUCTION

Electron plasma wave is recognized as a suitable high gradi-
ent accelerating structure for electron acceleration (Tajima &
Dawson, 1979). An intense laser pulse (I≥ 1018 W/cm2) of
duration ωp

−1, propagating through a plasma of plasma fre-
quency ωp, can excite a large amplitude plasma wave in its
wake with phase velocity equal to the group velocity of the
laser. Energetic electrons that are trapped in the proper
phase of the plasma wave are accelerated to very high ener-
gies by the axial electric field of the wave (Faure et al.,
2004; Hogan et al., 2005; Chen et al., 2008; Glinec et al.,
2005; Sadighi-Bonabi et al., 2009). A large number of exper-
iments and particle-in-cell (PIC) simulations (Esarey et al.,
2009; Pukhov & Meyer-ter-vehn et al., 2002; Lu et al.,
2006) have confirmed the efficacy of this scheme of laser wa-
kefield acceleration (LWFA) (Amiranoff et al., 1998; Mak-
simchuk et al., 2008; Siders et al., 1996).
At relativistically high laser intensity and small spot size,

the character of plasma wave changes dramatically. The
laser pulse expels all the electrons from the axial region,
through axial and radial ponderomotive force, creating a co-
moving ion bubble. Reitsma and Jaroszynski (2004) have
studied the coupling of longitudinal and transverse motion
and electron acceleration in a laser wakefield accelerator. Ba-
lakirev et al. (2004) have reported via numerical simulation

charged particle acceleration by an intense wakefield relati-
vistic electron bunch. Dahiya et al. (2010) used 3D
VORPAL CODE to study the self injection of electrons by
exciting slow moving plasma wave in a ripple density
plasma. They showed that the accelerated trapped electrons
gained an average energy of about 40 MeV. Krishnagopal
et al. (2011) have studied the self-injection of electrons for
different intensity regimes and obtained good beam quality
with injection of on-axis electrons. Gorbunov et al. (2005),
used petawatt ultrashort laser pulses to study the evolution
of wakefield, laser pulse, and the acceleration of injected
electron bunches. PIC simulation have allowed to analyze
the complex behavior of the bubble scenario in a systematic
way, which led to the refinement of scaling laws valid under
relativistic (Lu et al., 2007) (a0≥ 1) and ultra-relativistic
(Geddes et al., 2004) (a0≫1) conditions.

Many of the studies on laser driven electron acceleration
employ preformed plasma channels. Verma and Sharma
(2011a, 2011b) have studied plasma channel formation by a
laser pre-pulse in a low Z gas and also examined the nonlinear
Eigen modes of a laser in a self created magnetized plasma
channel under the combined effects of ponderomotive and re-
lativistic mass nonlinearities. Singh and Singh (2011a,
2011b) have investigated the effect of relativistic nonlinearity
on the guiding of a laser beam in an axially non-uniform
plasma channel. Martins et al. (2010) have observed electron
beams with narrow energy spread in preformed plasma chan-
nels using 1.4 PW laser. Sprangle et al. (2001) used tapered
plasma channel for laser wakefield generation and electron
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acceleration. They found that in tapered plasma channel the
dephasing length is increased relative to the untapered chan-
nels, and larger energy gains are achieved. Rowlands-Rees
et al. (2008) generated quasimonoenergetic electron beams
with energies up to 200 meV in a partially ionized plasma
channel by laser plasma accelerator driven in a hydrogen-
filled capillary discharge waveguide. Singh (2009) have
studied the effect of the radial and temporal profile of laser
pulse on acceleration of electrons generated during the ioniz-
ation of krypton and have shown that the beam quality can be
improved by using a nearly flat radial profile.
In this paper, we develop a model of laser wakefield elec-

tron acceleration in the blow out regime in a pre-existing non-
uniform plasma channel. The picture of blow out regime
electron acceleration is as follows. An intense short pulse,
with pulse duration of the plasma period ωp

−1, spot size w0

on the order of c/ωp, (where c is the speed of light in free
space), and normalized amplitude a0, exerts axial, and
radial ponderomotive force on the plasma electrons creating
an ion bubble co-moving with the laser pulse. The bubble
radius has a correlation with the laser spot size and laser am-
plitude. In the moving bubble frame, the expelled electrons
on reaching the bubble boundary move backward and
return to the stagnation point at the rear of the bubble on
laser axis. The accumulated electron charge at the stagnation
point slows down the surging electrons, brings them to rest in
the bubble frame. These electrons are then pulled into the ion
bubble by the ion space charge field. We calculate the energy
gain of a test electron in aforementioned bubble regime with
radial density profile in a Lorentz boosted frame (Vay, 2007)
(bubble frame in which the quasi-static sphere acquires an el-
liptic shape (Thomas, 2010)).
In section 2, we consider the dynamics of an electron

initially near the channel axis, hit by a laser pulse with Gaus-
sian intensity distribution. We obtain the trajectories of the
laser expelled electrons by solving the equations of motion
and compared the results with PIC simulations. We estimate
the radial extent of the bubble equating ponderomotive and
space charge force at the bubble boundary. Also the radius
of the electron sphere is assessed by equating potential
energy of the electrons at the pile surface at the stagnation
point to their initial kinetic energy. In Section 3, we estimate
the energy gain of an electron as it moves from the stagnation
point to the center of the ion bubble. In section 4, we sum-
marize our conclusions and in Appendix A, we have
shown the calculation of the longitudinal space charge field
Ez

′ in the moving frame.

2. ION BUBBLE IN A PREFORMED PLASMA
CHANNEL: A DYNAMIC APPROACH

Consider a preformed plasma channel with ion (or electron)
density profile,

n0 = n00(1+ r2/r2ch), (1)

where rch is the radius of the channel and n0
0 is the density at

the channel axis. An intense short pulse laser propagates
through it,

EL = AL(r, z, t)e
−i(ωt−kz),

A2
L = A2

00e
−r2/w2

0e−ζ2/v2gτ
2
,

(2)

where k= ω/c(1−ωp
2/ω2)1/2 , vg= c(1−ωp

2/ω2)1/2 , ζ=
z−vg t, ωp = kpc =

�����������
4πn00e

2/m
√

, −e and m are the electron
charge and mass. It exerts a ponderomotive force on
electrons,

F = e∇fp =
ma2c2

2γ
r

w2
0

r̂ + ζ

v2gτ
2
ẑ

[ ]
, (3)

where fp=−(mc2/e) (γ−1),

γ =
��������
1+ 1

2a
2

√
, a2 = a20e

−r2/w2
0e−ζ2/v2gτ

2
, and a0= eA00/mωc.

As the electron originated at ri (initial point) at time t= 0
moves to a distance r, it sees the space charge field due to the
ion space charge left behind. The net ion charge in a cylinder
of radius r and unit axial length is 2π∫0

r n0
0e(1+r2/rch

2 )rdr.
Therefore, the space charge field may be approximated as,

Er = n00e(r
2 − r2i )

2e0r
+ n00e(r

4 − r4i )

4e0r2chr
, (4)

while the longitudinal component of space charge field,
which is Lorentz invariant, is Ez= Ez

′ (where Ez
′ is the

field in moving frame, as calculated in Appendix A). In
addition, to these transverse fields an azimuthal magnetic
field Bf=−Er/c is also generated within the cavity
moving with relativistic velocities (Lu et al., 2006; Kostyu-
kov et al., 2010; Lotov, 2004). In the quasi-equilibrium, as
the laser bubble combine moves ahead, the plasma electrons
must remain outside the bubble, at the bubble boundary or bit
farther from it. Simulations reveal that the width of the region
of electron build up at the boundary is significantly smaller
than the radius of the bubble. Since the axial velocities of
electrons in this layer are less than vg (the velocity of the
bubble), these electrons surge toward the stagnation point
near the bubble. We may get a reasonable clue about the
shape of the bubble by studying the trajectory of a test elec-
tron that originates at an off axis point at the front of the laser
pulse. The equation of motion for the electron in the labora-
tory frame in component form can be written as,

d(γvr)
dt

= Fr

m
− e(Er − vzBf)

m
, (5)

d(γvz)
dt

= Fz

m
− e(Ez + vrBf)

m
. (6)

Writing d(γ�v)/dt = �vdγ/dt + γd�v/dt, where �v = vrr̂ + vzẑ
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and dγ/dt = −a2

2γ
r
w2
0

dr
dt + ζ

v2gτ
2(vz − vg)

[ ]
, one obtains,

d2r

dt2
= Fr

mγ
− e(Er − vzBf)

mγ

+ a2

2γ2
dr

dt

r

w2
0

dr

dt
+ ζ

v2gτ
2
(vz − vg)

[ ]
, (7)

d2z

dt2
= Fz

mγ
− e(Ez + vrBf)

mγ
+ a2

2γ2
dz

dt

r

w2
0

dr

dt
+ ζ

v2gτ
2
(vz − vg)

[ ]
, (8)

where Fr and Fz are the radial components of ponderomotive
force obtained from Eq. (3).
To estimate the efficacy of the dynamic approach, we

numerically solved the coupled Eqs. (7) and (8) for the par-
ameters used by Mora (2009), a0= 5, the spot size kp w0=
2.5 and the pulse length kpvgτ= 6, where vg =
c

������������
1− (1/γ2g)

√
≈ 0.995c for γg= 10. Mora used fully relati-

vistic time-averaged particle code WAKE to study the
radial wavebreaking of the density perturbation in the
highly nonlinear laser wakefield regime in a uniform
plasma. Figure 1a shows the contours of electron trajectories
of analytically obtained by us for electrons starting from
different radial positions kp ri= 0.3, 0.6, 0.8, and 1. One
may note that the electrons (in the moving bubble) are

streaming backward from right to left. All the trajectories
tend to converge at the rear (at kp(z−vg t)=−11) and acquire
a spherical shape. This is indicative of longitudinal wave-
breaking. For comparison, we have in Figure 1b the trajec-
tories obtained by Mora (2009) in their simulations. Their
trajectories run from left to right due to horizontal axis
being kp(ct−z). For the electron originating near the axis,
the trajectories diverge continuously away from the
axis. For the electrons originating between kpri∼ 1.3 and
3, the trajectories surge to a common radial point and then
bend toward the z axis. The ones between kpri= 1.3 and
1.8 reach the axis at kp(ct−z)≈ 10, which is comparable to
axial span of trajectories inour case (Fig. 1a). The radial
height of these trajectories (the radial breaking point) is
kpri∼ 3 that is close to the height of trajectories in our
case. The major difference is in the trajectories of electrons
for kpri< 1.

Similarly, Kim et al. (2003) used a two-dimensional PIC
simulation to study the electron trapping and acceleration
of electrons in the bubble (wakefield) with parabolic density
profile. The parameters used were: a0= 2.27, the laser wave-
length λ= 0.8 μm, the minimum density at the axis n0

0=
2.1 × 1018 cm−3, corresponding plasma wavelength λp=
23.21 μm, the pulse duration τ= 50 fs and the pulse length
kpvgτ= 4, where vg≈ 0.998c for γg= λp/λ≈ 30. The spot
size at the centre of the channel is w0= 10 μm (kpw0= 2.7)
and the channel radius is rch= 160 μm (kprch= 43.3). The
wake has taken the form of a bubble with longitudinal dimen-
sion Δz= 25 μm, where as the radius is≈ 8 μm at z=
100 μm and the accelerated electron bunch gains energy in
the ranges of 5 and 20 MeV.

Now we compare our result by solving the same coupled
equations Eqs. (7) and (8) in the lab frame for the parameters
mentioned above. Figure 2 shows the contour of electron tra-
jectory for kpri= 0.1. One may note that the radiusof the
bubble is approximately equal to 9 μm and the longitudinal
extent is ≈30 μm that are not too different from the value
of 8 μm and 25 μm obtained in PIC simulations. A detailed
analysis of energy gain of a test electron will be discussed
later.

Fig. 1. Contour of kpr with kp(z−vgt) for a0= 5, kpw0= 2.5, kpvgτ= 6 and
kpri= 0.3, 0.6, 0.8 and where vg= 0.995c. Figure 1b is printed with per-
mission from Patrick Mora (Eur. Phys. J. Special Topics 175, 97–104
(2009).

Fig. 2. Contour of kpr with kp(z−vgt) for a0= 2.27, kpw0= 2.7, kprch=
43.2, kpvgτ= 4 and kpri= 0.1, where vg= 0.998c.
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The trajectory of the laser expelled electrons is entirely
different in a frame moving parallel to the bubble. One
may use the Lorentz transformation, z′ = γg(z−vgt) and t=
γg(t′+vgz′/c

2) (primed variables representing the moving
frame) to transform the equations Eqs. (7) and (8) from lab
frame to Lorentz boosted frame. Therefore,

d2z′

dt′2
= a2

2γ2
γ2g

z′

L2p
1+ vgv′z

c2

( )3

+ vg
c

( )2
1+ v′z

vg

( )[

×
r

R2
0

v′r
vg

+ z′

γ2g L
2
p

v′z
vg

( )]
− γ3g 1+ vgv′z

c2

( )3

×
eE′

z

mγωpc
− v′r

c

(r2 − r2in)
2γr

+ (r4 − r4in)

4γR2
chr

( )( )
,

(9)

d2r

dt′2
= a2

2γ2
r

R2
0

1+ vgv′z
c2

( )2

+ v′2r
c2

( )
+ z′

γ2g L
2
p

v′rv
′
z

c2

( )

+ v′rvg
c2

v′z
(1+ vgv′z

c2 )
− γ2g 1+ vgv′z

c2

( )2 (r2 − r2in)
2γr

(

+ (r4 − r4in)

4γR2
chr

)
1+ v′z

c

( )
,

(10)

where r→ kpr, rin→ kpri, R0→ kpw0, Rch→ kprch, z′ →
kpz′, t′ → ωpt′, vr′ = dr/dt′, vz′ = dz′/dt′, Lp= kpvgτ, γg=
(1−vg

2/c2)−1/2, and vg→ vg/c (vg is the velocity of the
frame moving parallel to the ion bubble). The coupled Eqs. (9)
and (10) are numerically solved to obtain the trajectory of
the electrons in the Lorentz boosted frame. Figure 3 rep-
resents the contour of the electron trajectory in the moving
frame plotted for the parameters used by Kim et al. (2003)
From Figure 3 one may note that the longitudinal distance
is approximately stretched to γg (≈30) times the transverse
dimension of the bubble with maximum radius at the
centre. Hence the ion bubble acquires an elliptic shape in
the Lorentz boosted frame moving parallel to the bubble.
Previous studies (Esarey et al., 2009; Lu et al., 2006; Kos-

tyukov et al., 2010) have given an estimate of the radius of
ion bubble by equating the laser ponderomotive force on a
single electron and ion channel force for a uniform plasma.
Following the same analysis, one may estimate the maximum
radius of the non uniform ion bubble by balancing the two
forces at the bubble boundary in the lab frame.

From the Poisson’s equation ∇2f= e(ne−n0)/e0, on
using f=−fp and ne= 0 (complete evacuation of electrons
inside the ion bubble) one obtains the bubble boundary r≡ R
versus Z1= ζ, ζ= z−vgt,

1+ R2

r2ch
− a2/2

(1+ a2/2)3/2

2(1− R2/w2
0)+ (a2/2)

(2− R2/w2
0)

k2pw
2
0

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠−

⎡
⎢⎢⎢⎣

(1− 2Z2
1/(v

2
gτ

2)+ (a2/2)

(1− Z2
1/(v

2
gτ

2))

k2p(v
2
gτ

2)

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ = 0,

(11)

where a2 = a20e
−R2/w2

0e−Z2
1/(vgτ)

2
, R is the radius, and f is the

space charge potential of the ion bubble.
Inside the bubble f≠−fp and imbalance of the pondero-

motive and space charge forces does not matter as there are no
electrons to feel the forces. The bubble surface in the moving
frame is an ellipsoid with axial length Lz= γgζ(=z−vgt)
(at R= 0) and transverse length Lr= R (at Z1= 0). Substitut-
ing Z1= 0 and r= Lr in Eq. (11) we obtain,

1+ L2r
r2ch

( )
(2+ a′2)1/2 =

��
2

√ a′2

k2pw
2
0

1+ w2
0

2v2gτ
2

[

− L2r
2w2

0

4+ a′2

2+ a′2

]
,

(12)

where a
′2 = a20e

−L2r /w
2
0 .

The transverse dimension Lr (maximum radius) of the ion
bubble is a function of laser amplitude a0, spot size w0, chan-
nel dimension rch, and pulse width τ. For a long laser pulse
w0/vgτ≪ 1, i.e., pulse length larger than the spot size, Lr
is independent of τ. However, for a short pulse Lr has depen-
dence on τ. Eq. (12) is transcendental equation and is numeri-
cally solved for Lr. Figure 4 shows the variation of transverse

Fig. 3. Contour of kpr with kp(z−vgt) in the Lorentz boosted frame for a0=
2.27, kpw0= 2.7, kprch= 43.2, kpvgτ= 4 and kpri= 0.1, where vg= 0.998c.

Fig. 4. Variation of Lr/w0 with a0 for w0/rch= 0.7 (dot), 0.8 (dash) and 0.9
(solid), where kprch= 3 and w0/vgτ= 0.32.
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length Lr/w0 with a0 for kprch= 3 and w0/vgτ= 0.32. The
transverse size of the bubble initially rises almost linearly
with a0 and then tends to saturate at a value comparable to
laser spot size. For a0= 3, kpw0= 2.1, and kprch= 3 the
radius Lr turns out to be Lr= 1.5c/ωp. For a constant value
of Lr, i.e., to achieve a bubble of a given radius, the laser
spot size kpw0 varies linearly with a0.
It is also possible to estimate the critical size kpre of the

electron sphere at the stagnation point by equating the poten-
tial energy (potential= neere

2/3e0) of the electrons at the sur-
face of the electron sphere to their initial kinetic energy at the
bubble boundary (after emerging from the laser) (Liu & Tri-
pathi, 2010). So one obtains,

ner
2
e e

2/3e0 = mc2(γin − 1)

⇒ kpre ∼
��������������
3(γin − 1)/n

√
,

(13)

where γ2in = (1− v2in/c
2)−1, vin/c is the initial velocity of the

electron just after emerging from the laser and n= ne/n0
0. The

critical size of electron sphere thus depends upon the initial
energy and ratio of densities n. For vin/c= 0.99, n= 100,
one obtains kpre= 0.5.

3. ENERGY GAIN

Now we calculate the energy gained by a test electron under
the influence of the longitudinal field Ez

′
of the ion bubble in

the Lorentz boosted frame. The longitudinal electric field Ez
′

(see Appendix A) depends on radius R(a0, vgτ, w0, rch) and
zm. Figure 5 shows the variation of Ez

′ with zm/γgR for differ-
ent values of a0, where zm is the distance (from the shifted
origin) on the longitudinal axis of the ion bubble. The long-
itudinalfield is almost linear and symmetric about the center
of the cavity. For a0= 3.27, kpw0= 6.28, kpvgτ= 4.2, where
vg= 0.996c and γg= 16.3, the acceleration gradient is Ez

′ ∼
6 GV/cm for uniform density 6.5×1018 cm−3 (parameters
from Kalmykov et al. (2011). Therefore, the bubble provides
a huge space charge potential, which pulls the electrons from
the stagnation point with a huge force eEz

′. Hence a test elec-
tron in the spherical electron cloud at the stagnation point can
gain tremendous amount of energy.

Using energy gain equation, one may write

dγ′

dt′
= − eE′

zvz
m0c2

, (14)

where γ′, vz= dzm/dt′ (longitudinal velocity of electron
inside the ion bubble) and t′ are measured in boosted
frame. Transforming from moving frame to lab frame,
using Lorentz transformations, we get

γlab = γg γ′ + (vg/c)
��������
γ′2 − 1

√( )
, (15)

dt/dt′ = γg. (16)

Eq. (14) is numerically solved using fourth order Runga
Kutta method and transformed to lab frame using Eqs. (15)
and (16). Variation of electron energy (MeV) with zm/γgR
is plotted in Figure 6 for the parameters used by (2003)
(red) and Chen et al. (2010) (blue). Chen et al. (2010) per-
formed 2D PIC simulation to obtain the dependence of the
maximum energy of the electron beam on laser amplitude
a0 and plasma density. Their simulation shows that the maxi-
mum energy of the electron beam varies from 90–200 MeV
in the density range 3–4 × 1019 cm−3 for the initial laser am-
plitude a0= 4, initial spot size w0= 4 μm, pulse length cτ=
13.5 μm and laser wavelength λ= 0.8 μm. For a comparison
we have in Figure 6 the energy gain of the test electron in the
density regime of Chen’s et al. (2010) simulation. Figure 6
shows the variation of energy gain of a test electron with
zm/γgR for uniform and nonuniform plasma density. One
may note that the test electron gains a maximum energy of
about 35 (dash) and ≈100 (Solid) MeV before entering the
dephasing region of the ion bubble. Since the longitudinal
field of the bubbleis approximately linear about the center
of the bubble (shown in Fig. 5), the electron that crosses
the center of the ion bubble are decelerated due to the reversal
of sign of the longitudinal field. Hence the interaction must
terminate there. The energygains obtained for the both
cases are in reasonable agreement with the previous studies.

Fig. 5. Variation of longitudinal field eEz
′/mωpc inside the uniform bubble

with zm/γgR for a0= 3.27, kpw0= 6.28 and kpvgτ= 4.2, where vg= 0.996c.

Fig. 6. Variation of electron energy with zm/γgR for uniform and non uniform
plasma. The parameters for non uniform plasma (dash): a0= 2.27, kp w0= 2.7,
kprch= 43.2, kpvgτ= 4, vg= 0.998c and laser wavelength λ= 0.8 μm. And for
uniform plasma (solid): a0= 4, kpw0= 4.48, kpvgτ= 15.45, vg= 0.99c and
laser wavelength λ= 0.8 μm.
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Though the model which we use did not include the effects
of laser pulse evolution nor self-focusing and electron
beam loading on the plasma bubble, it gives an estimate of
energy gain of electrons within a factor of 1.5 or 2 from simu-
lation results.

4. CONCLUSIONS

The bubble regime wakefield acceleration depends on the
bubble radius R and bubble charge density n0

0. The transverse
size of the bubble rises almost linearly with a0 in the range of
a0= 1–3.5, and then tends to saturate at a value comparable
to laser spot size. The contour of the laser expelled electrons
and the energy gain obtained analytically are found to be in
reasonable agreement with PIC simulations. The radius of the
electron pile at the stagnation point obtained by equating the
potential energy of the electrons at the pile surface to their
kinetic energy at the bubble boundary is small. Electric
field profile of ion bubble is found to be linear and symmetric
about the center of the cavity. Therefore electrons will be ac-
celerated in the first half phase before entering the decelerat-
ing phase. The Lorentz boosted frame enabled us to calculate
energy gain of a test electron inside the bubble.
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APPENDIX
A. AXIAL SPACE CHARGE FIELD OF AN
ELLIPSOIDAL ION BUBBLE

In this appendix, we will derive the expression for the longi-
tudinal space charge field (Ez

′) in the moving frame follow-
ing the analysis (Thomas, 2010), supported by PIC

simulation (Martins et al., 2010). Therefore, we choose the
ion bubble as an ellipsoid with transverse dimension Lr=
2R and longitudinal Lz≅ 2Rγg in a frame moving with vel-
ocity vg parallel to the bubble. The ion bubble has a radial
density profile with minimum on the axis. Shifting the
origin of the ion bubble by a distance −Lz/2 to the bubble
rear (see Fig. 7), the longitudinal field Ez

′ inside the cavity
is obtained by dividing the ellipsoid into many plates of
thickness dl and radius rl = (Lr/Lz)

�����������������������
(Lz/2)2 − (Lz/2− l)2

√
.

Therefore, the electric field inside the bubble at a distance
zm (from the shifted origin) on the longitudinal axis of ellip-
soid is,

E′
z =

mω2
p

2eγg
∫
Lz
0 ∫

rl
0
(1+ r2/r2ch)(zm − l)rdrdl

(r2 + (zm − l)2)3/2
. (17)

Avoiding the intermediate steps one may finally write,

eE′
z

mωpc
= −R(1− y)− R3γ2g

6r2ch
(3+ y)((2− y)3 − y3), (18)

where y= zm/Rγg and R→ Rωp/c. The radius of the ion
bubble R is obtained by solving Eq. (12) for the parameters
a0, w0, rch and vgτ.

Similarly one may obtain the radial field Er , but its value
is zero at the axis by symmetry. The radial field focusses the
electron bunch accelerated by the space charge thus reducing
the transverse spread. So the axial and off axis electrons gain
energy only because of the longitudinal force (eEz

′).

B. MAGNETIC VECTOR POTENTIAL OF THE ION
BUBBLE

In the laser group velocity frame the ion bubble has current
density,

Jz = −nevg. (19)

Fig. 7. Schematic of Ellipsoid.
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Let in the moving frame the center of the spherical bubble be
at the origin. On the axial point (0,0,z) one writes,

Az(z) = μ0
4π

∫
R
−R∫

������
R2−z′2

√

z′
Jz
R′ 2πr

′dr′dz′, (20)

where R is the radius of the sphere, R′ = |zẑ− ���������
r′2 − z′2

√
x̂−

z′ẑ| = ((z− z′)2 + r′2 − z′2)1/2 and r′ and z′ represents the
position coordinates of the source point measured from the

center. Substituting the values of Jz and R′, the above
equation becomes,

Az(z) = − μ0nevg
2

∫
R
−R∫

������
R2−z′2

√

z′
2πr′dr′dz′

(z2 + r′2 − 2zz′)1/2
. (21)

Thus on the axis (r= 0) the magnetic field B = ∇ × �A is
zero. The same would hold for an ellipsoidal bubble.
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