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A multiplicative dual of nil-clean rings
Yiqiang Zhou

Abstract. The goal of this note is to completely determine the rings for which every nonunit is a
product of a nilpotent and an idempotent (in either order).

1 Introduction

Throughout, R is an associative ring with unity, and U(R), idem(R) and nil(R)
denote, respectively, the group of units, the set of idempotents and the set of nilpo-
tents in R. In the literature, an extensive knowledge has been developed for rings
R satisfying, respectively, R = idem(R) +U(R), R = idem(R) + nil(R) and R/(0) =
U(R) + nil(R). A ring R with R = idem(R) +U(R) is called a clean ring, a notion
first appeared in 1977 in the prominent paper [10] by Nicholson. A ring R with
R = idem(R) + nil(R) is called a nil-clean ring, introduced by Diesl [5] in 2013. A ring
R with R/(0) = U(R) + nil(R) is called a fine ring, introduced by Cǎlugǎreanu and
Lam more recently in [3]. These notions can be defined elementwise: an element a ∈ R
is called a clean element if a ∈ idem(R) +U(R), and one defines nil-clean elements
and fine elements in a similar manner.

All these notions have natural multiplicative duals. An element in a ring is unit-
regular if it is a product of a unit and an idempotent (in either order), and a ring is
unit-regular if each of its elements is unit-regular. Thus, unit-regular elements and
unit-regular rings are multiplicative duals of clean elements and clean rings. In other
words, clean elements and clean rings are additive duals of unit-regular elements and
unit-regular rings. An element in a ring is a UN-element if it is a product of a unit
and a nilpotent, and a ring is a UN-ring if every nonunit is a product of a unit and a
nilpotent. Thus, UN-elements and UN-rings are multiplicative duals of fine elements
and fine rings. Unit-regular rings have been well studied in the literature, and UN-
rings is a topic discussed recently by Cǎlugǎreanu in [2].

While nil-clean rings are widely investigated (for example, see [1, 5, 6, 7, 8, 9, 12]),
there has been no discussion of their multiplicative dual. Our interest is to fill up what
is missing. As a multiplicative dual of a nil-clean element, an element a ∈ R is called
dual nil-clean if a = be where b is a nilpotent and e is an idempotent. Because a unit
cannot be dual nil-clean, we define a ring R to be dual nil-clean if every nonunit of
R is dual nil-clean. We will see that the order of the factors in the product does not
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matter for a dual nil-clean ring, but matters for a single dual nil-clean element. Here,
we completely determine dual nil-clean rings, and our main result states that a ring is
dual nil-clean if and only if it is either a local ring with nil Jacobson radical or a 2 × 2
matrix ring over a division ring.

For a ring R, the Jacobson radical of R is denoted by J(R). We write Mn(R) for the
ring of n × n matrices over R. For an element a in a ring R, a⊥ (resp., ⊥a) denotes the
right (resp., left) annihilator of a in R. A ring is called abelian if each of its idempotents
is central.

2 The result

A ring R is called dual nil-clean if every nonunit a in R is dual nil-clean, i.e., a = be
where b ∈ nil(R) and e2 = e ∈ R.

Lemma 2.1 Let R be a dual nil-clean ring. If a⊥ = 0 or ⊥a = 0, then a ∈ U(R).

Proof Assume a⊥ = 0 and a ∉ U(R), and write a = be where b ∈ nil(R) and e2 =
e ∈ R. Then a(1 − e) = be(1 − e) = 0, so 1 − e ∈ a⊥, and hence e = 1. So a = b is nilpo-
tent. Choose n ≥ 1 such that an /= 0 but an+1 = 0. Then 0 /= an ∈ a⊥, a contradiction.

Assume ⊥a = 0 and a ∉ U(R), and write a = be where b ∈ nil(R) and e2 = e ∈ R.
Then b /= 0. Let us say bn+1 = 0 but bn /= 0. Then bn a = bn+1e = 0, so 0 /= bn ∈ ⊥a, a
contradiction. ∎

Lemma 2.2 [11] Let R be a ring and n ≥ 2. Then R is isomorphic to some n × n matrix
ring if and only if R contains elements a1 , . . . , an and f such that 1 = ∑n

i=1 f i−1a i f n−i and
f n = 0.

Dual nil-clean rings can be completely determined.

Theorem 2.3 A ring R is dual nil-clean if and only if R is either a local ring with J(R)
nil or the 2 × 2 matrix ring over a division ring.

Proof (⇐). If R is a local ring with J(R) nil, then R is clearly dual nil-clean. Let D
be a division ring and let A ∈M2(D) be a nonunit. By Gaussian elimination, there is a

unit U ∈M2(D) such that UA = (a b
0 0). Thus, UAU−1 = (x y

0 0) for some x , y ∈ D.

If y /= 0, then (x y
0 0) = (

0 y
0 0)(

0 0
y−1x 1) is a product of a sqaure-zero matrix and

an idempotent. If y = 0, then (x y
0 0) = (

0 x
0 0)(

1 0
1 0) is a product of a square-zero

matrix and an idempotent. Therefore, in M2(D), UAU−1 is a product of a square-zero
matrix and an idempotent, and so is A. Hence, M2(D) is a dual nil-clean ring.
(⇒). First assume that R is an abelian ring. Let a ∈ R be a nonunit, and let x ∈ aR.

Since R is abelian, x is a nonunit. Write x = be where b ∈ nil(R) and e2 = e ∈ R. So
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xn = bn e for all n ≥ 1. As b is nilpotent, x is nilpotent. Thus, aR is nil and hence a ∈
J(R). It follows that R is local with J(R) nil.

Next assume that R is not abelian. Then R has a noncentral idempotent e. With
e′ = 1 − e, we show:
(1) There exist x0 ∈ eRe′ and y0 ∈ e′Re such that x0 y0 = e.
(2) Whenever x y = e, x ∈ eRe′ and y ∈ e′Re, we have yx = e′.

Proof of (1). The Peirce decomposition of R with respect to e gives R = ( eRe eRe′
e′Re e′Re′).

Let A ∶= (e 0
0 0)and write A = BE where B = (b i j) is a nilpotent and E = (e i j)

is an idempotent. Then A = AE and it follows that e11 = e and e12 = 0. From

A = BE it follows that b11 = e − b12e21, b21 = −b22e21. Thus, B = (e − b12e21 b12
−b22e21 b22

), so

1 − B = (b12e21 −b12
b22e21 e′ − b22

). Hence, C ∶= (1 − B)( e 0
e21 e′) = (

0 −b12
e21 e′ − b22

), which

is an invertible matrix with inverse, say Y ∶= (y i j). So, 1 = YC. That is,

(e 0
0 e′) = (

y12e21 −y11b12 + y12(e′ − b22)
y22e21 −y21b12 + y22(e′ − b22)

) .

Thus, x0 y0 = e where x0 = y12 ∈ eRe′ and y0 = e21 ∈ e′Re.

Proof of (2). Suppose that x y = e, x ∈ eRe′, and y ∈ e′Re. By (1), with e replaced

by e′ we have y′x′ = e′ where x′ ∈ eRe′ and y′ ∈ e′Re. Let U = (0 x′
y 0 ). If U X = 0

where X = (x i j) ∈ R, then 0 = (0 x′
y 0 )(

x11 x12
x21 x22

) = (x′x21 x′x22
yx11 yx12

), so

x′x21 = 0, x′x22 = 0, yx11 = 0, yx12 = 0.

Thus, x11 = ex11 = x yx11 = 0, x12 = ex12 = x yx12 = 0, x21 = e′x21 = y′x′x21 = 0, and
x22 = e′x22 = y′x′x22 = 0. So the right annihilator of U in R is zero. Hence, U ∈ R is a
unit by Lemma 2.1. Let V = (v i j) be the inverse of U. Then

UV = (0 x′
y 0 )(

v11 v12
v21 v22

) = (x′v21 x′v22
yv11 yv12

) ,

so e′ = yv12. But we have v12 = ev12 = x yv12 = xe′ = x, and hence yx = e′.
Next we show that R is a 2 × 2 matrix ring over a division ring. Consider the

nonunit A ∶= (e 0
0 0) ∈ R and write A = BE where B = (b i j) ∈ R is nilpotent and E =

(e i j) ∈ R is an idempotent. Then A = AE and it follows that E = ( e 0
e21 e22

). From
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A = BE it follows that B = (e − b12e21 b12
−b22e21 b22

), so 1 − B = (b12e21 −b12
b22e21 e′ − b22

). Hence,

C ∶= (1 − B)( e 0
e21 e′) = (

0 −b12
e21 e′ − b22

) ,

which is an invertible matrix with inverse, say Y ∶= (y i j). Thus, 1 = YC. That is,

(e 0
0 e′) = (

y12e21 −y11b12 + y12(e′ − b22)
y22e21 −y21b12 + y22(e′ − b22)

) .

It follows that y12e21 = e. By (2), e21 y12 = e′. Therefore, 1 = e + e′ = y12e21 + e21 y12
with e2

21 = 0. So, by Lemma 2.2, R is a 2 × 2 matrix ring. Write R =M2(S) for some ring

S. We verify that S is a division ring. If x ∈ S is not a unit, then A ∶= (1 0
0 x) ∈M2(S)

is not a unit, so it is dual nil-clean in R. Write A = BE, where B = (b i j) ∈M2(S) is

nilpotent and E = (e i j) ∈M2(S) is an idempotent. We have A = AE = ( e11 e12
xe21 xe22

),
so

e11 = 1, e12 = 0, xe21 = 0 and x = xe22 .(2.1)

Thus, E = ( 1 0
e21 e22

). From A = BE, we have (1 0
0 x) = (

b11 + b12e21 b12e22
b21 + b22e21 b22e22

), so

b11 = 1 − b12e21 and b21 = −b22e21. Thus, B = (1 − b12e21 b12
−b22e21 b22

). As B is nilpotent, I2 −

B is invertible. So (I2 − B)( 1 0
e21 1) = (

0 −b12
e21 1 − b22

)is invertible. It follows that e21 ∈

U(R). So, by (2.1), x = 0. Therefore, S is a division ring. ∎

Corollary 2.4 Let n ≥ 2 be a fixed integer. The following are equivalent for a ring R:
(1) For each nonunit a ∈ R, a = be where bn = 0 and e2 = e.
(2) R is either a local ring with jn = 0 for all j ∈ J(R) or the 2 × 2 matrix ring over a

division ring.

Proof (1) ⇒ (2). Assume that R is not the 2 × 2 matrix ring over a division ring.
Then, by Theorem 2.3, R is a local ring. For j ∈ J(R), j = be where bn = 0 and e2 = e.
As R is local, e = 0 or e = 1. It follows that jn = 0.
(2) ⇒ (1). We may assume that R =M2(D) where D is a division ring. Let A ∈

M2(R) be a nonunit. Then, by Gaussian elimination, there is a unit U ∈M2(R)

such that UA = (a b
0 0). Thus, UAU−1 = (x y

0 0) for some x , y ∈ R. If y /= 0, then

(x y
0 0) = (

0 y
0 0)(

0 0
y−1x 1) is a product of a sqaure-zero matrix and an idempo-

tent. If y = 0, then (x y
0 0) = (

0 x
0 0)(

1 0
1 0) is a product of a square-zero matrix and
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an idempotent. Therefore, in M2(R), UAU−1 is a product of a square-zero matrix and
an idempotent, and so is A. ∎

By Theorem 2.3, for a ring R, every element of R is a product of a nilpotent and
an idempotent if and only if every element of R is a product of an idempotent and a
nilpotent. We end with an example of an element a in a ring R such that a = be where
b is nilpotent and e2 = e, but a /= f c for any nilpotent c and any idempotent f in R.

Example 2.5 Let R = ( Z Z

4Z Z
) and A = (−4 −2

0 0 ). We see that A =

(1 0
0 0)(

−4 −2
8 4 ), a product of an idempotent and a nilpotent. Assume that

A = BE where B ∈ R is nilpotent and E2 = E ∈ R. It is clear that E can not be

trivial, so E = (a b
c 1 − a) where bc = a − a2 (see [4, Lemma 1.5]). Thus, A = AE =

(−4a − 2c −2 + 2a − 4b
0 0 ), and it follows that −4a − 2c = −4 and −2 + 2a − 4b = −2.

That is, a = 2b and c = 2 − 4b. As c ∈ 4Z, we deduce that 2 = 4b + c is divided by 4.
This is a contradiction.
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