
Math. Struct. in Comp. Science (2012), vol. 22, pp. 970–986. c© Cambridge University Press 2012

doi:10.1017/S0960129511000661

Properties of co-operations: diagrammatic proofs

P I E R R E R A N N O U

Institut de Mathématiques de Luminy, UMR 6206 du CNRS,
Université de la Méditerranée (Aix-Marseille 2), France
Email : rannou@iml.univ-mrs.fr

Received 9 March 2010 ; revised 10 June 2011

We propose an alternative approach, based on diagram rewriting, for computations in bialgebras. We
illustrate this graphical syntax by proving some properties of co-operations, including coassocia-
tivity and cocommutativity. This amounts to checking the confluence of some rewriting systems.

1. Introduction

Traditionally, terms taken together with Sweedler notation have been used to express compu-
tations in (generalised) bialgebras. Here, an algebra is a vector space equipped with an operation
μ : � ⊗�→ �, and a bialgebra is an algebra � equipped with a co-operation δ : �→ � ⊗�.
The operation μ must be (bi)linear and satisfy some properties, for instance, associativity and/or
commutativity. Similarly, the co-operation δ must be linear and satisfy some co-properties, for
instance, co-associativity and/or co-commutativity. Furthermore, a compatibility relation bet-
ween μ and δ, such as the Hopf identity, must be satisfied. For more details, see Loday (2008).

We shall consider an example from Loday (2008): the definition of a Liec-Lie-bialgebra star-
ting from an Assc-Ass-bialgebra (Section 4.4). To do this, we consider a vector space V , and we
write T (V) for the (non-unital associative) algebra of non-commutative polynomials on V , and
Lie(V) ⊆ T (V) for the algebra of Lie polynomials on V . We shall use the following equalities,
expressed in Sweedler notation, where X1 ⊗ X2 stands for comultiplication δ applied to X, as
well as in diagrammatic notation, where co-operations, as well as operations, are represented by
gates:

(1) Non-unitary infinitesimal compatibility relation, or the definition of deconcatenation (see
Loday (2008, Section 4.2.1)):
For X,Y ∈ T (V),

δ(XY) = X ⊗ Y + X1 ⊗ X2Y + XY1 ⊗ Y2

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

Properties of co-operations: diagrammatic proofs 971

(2) Definition of Lie bracket [,]: T (V) ⊗ T (V)→ T (V):
For X,Y ∈ T (V),

[X,Y]:= XY − YX

−=

(3) Definition of Lie cobracket δ[,]: T (V)→ T (V) ⊗ T (V):
For X ∈ T (V),

δ[,](X):= X1 ⊗ X2 − X2 ⊗ X1

−=

(4) Anti-cocommutativity of deconcatenation for Lie polynomials:
For X ∈ Lie(V),

X1 ⊗ X2 = −X2 ⊗ X1

= −

(5) Corollary of the previous two equalities:
For X ∈ Lie(V),

2X1 ⊗ X2 = X1 ⊗ X2 − X2 ⊗ X1 = δ[,](X)

== −2

Our example is a proof of the Lily compatibility relation:
For X,Y ∈ Lie(V),

δ[,][X,Y]=2(X ⊗ Y − Y ⊗ X)
+ 1

2 (X[1] ⊗ [X[2],Y] + [X,Y[1]] ⊗ Y[2] + Y[1] ⊗ [X,Y[2]] + [X[1],Y] ⊗ X[2])

1
2

2=

Here, X[1] ⊗ X[2] stands for δ[,] applied to X. This is Loday (2008, Proposition 4.4.4). In Figure 1,
we translate the original proof of Proposition 4.4.4 into diagrammatic notation.

It should be noted that diagrams do appear in Loday (2008) (see, for instance, pages 105–106),
but they are only used as convenient pictures. Here we consider diagrams as true mathematical
objects to compute with.

In fact, a diagram represents a morphism in a PRO. Recall that a PRO is a strict monoidal
category, whose objects are natural numbers and where the monoidal product of two objects p, q

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

P. Rannou 972

δ[,][X,Y] = (δ − τδ)(XY − YX)

= δ(XY) − δ(YX) − τδ(XY) + τδ(YX)

= X ⊗ Y + X1 ⊗ X2Y + XY1 ⊗ Y2 − Y ⊗ X − Y1 ⊗ Y2X − YX1 ⊗ X2

−Y ⊗ X − X2Y ⊗ X1 − Y2 ⊗ XY1 + X ⊗ Y + Y2X ⊗ Y1 + X2 ⊗ YX1

= X ⊗ Y + X1 ⊗ X2Y + XY1 ⊗ Y2 − Y ⊗ X − Y1 ⊗ Y2X − YX1 ⊗ X2

−Y ⊗ X + X1Y ⊗ X2 + Y1 ⊗ XY2 + X ⊗ Y − Y1X ⊗ Y2 − X1 ⊗ YX2

= 2(X ⊗ Y − Y ⊗ X) + X1 ⊗ X2Y − X1 ⊗ YX2 + XY1 ⊗ Y2 − Y1X ⊗ Y2

+Y1 ⊗ XY2 − Y1 ⊗ Y2X + X1Y ⊗ X2 − YX1 ⊗ X2

= 2(X ⊗ Y − Y ⊗ X)

+X1 ⊗ [X2,Y] + [X,Y1] ⊗ Y2 + Y1 ⊗ [X,Y2] + [X1,Y] ⊗ X2

= 2(X ⊗ Y − Y ⊗ X)

+
1
2

(X[1] ⊗ [X[2], Y] + [X,Y[1]] ⊗ Y[2] + Y[1] ⊗ [X,Y[2]] + [X[1],Y] ⊗ X[2])

2=

=

=

1
2

2=

=

=

2=

(by 1)

(by 2 and 3)

(by 4)

(by 2)

(by 5)

Fig. 1. Proof of the Lily compatibility relation

is p+q. Such a PRO defines an operad, which is a monadic Schur functorP: Vect → Vect, where
Vect is the category of vector spaces over some field: see Loday (2008). Sum and coefficients
play a crucial role in Vect, so both should appear explicitly in diagrams.

Therefore, we use Σ-diagrams, which are formal sums of diagrams. These Σ-diagrams may
not be familiar to mathematicians or computer scientists working in proof theory or in category
theory, but they appear, for instance, in Ehrhard and Regnier (2006), where sum stands for non-
determinism.

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

Properties of co-operations: diagrammatic proofs 973

Organisation of the paper

In Section 2, we present basic algebraic notions, and define deconcatenation. In Section 3,
we give a precise definition of diagrams and Σ-diagrams. In Section 4, we prove a well-known
result, using the diagrammatic notation: coassociativity of deconcatenation for semi-groups. In
Section 5, we prove the same result for monoids, using the previous result, and in Section 6, we
study shuffle for monoids, and prove its coassociativity and its cocommutativity, using a similar
method. Finally, we present our conclusions in Section 7.

2. Deconcatenation for semi-groups

Recall that a semi-group is a set with an associative operation, and a monoid is a semi-group
with a unit. LetA be an alphabet. The elements ofA are called letters.

Definition 1. We write A+ for the free semi-group generated by A. Its elements are non-empty
lists of letters. They are called non-empty words.

For instance, if our alphabet is A = {a, b}, then aabba is a non-empty word in A+. Conca-
tenation is the operation · that, to each pair (u, v) ∈ (A+)2, associates the word uv ∈ A+. For
instance,

abba · bba = abbabba.

Remark 1. Concatenation is associative. For instance,

(ab · b) · a = abb · a = abba = ab · ba = ab · (b · a).

Definition 2. The free �-vector space generated by a set X is the vector space �X whose
elements are formal sums of elements of X, with coefficients in �.

For instance, if X = {x, y}, we have

x + y − x + y + y = y + y + y = 3y ∈ �X.

Remark 2. If X is a finite set, �X is isomorphic to �n, where n is the cardinality of X. For
instance, �X is isomorphic to �2 in the above example.

Definition 3. The non-unital algebra generated by a semi-group S is the free �-vector space
�S generated by the set S , equipped with the multiplication extending that of the semi-group S ,
and distributive over sum.

For instance, if S = A+ withA = {a, b}, we get

(2abb − 3ba) · aa = 2abbaa − 3baaa ∈ �S .

Definition 4. If U and V are �-vector spaces, the tensor product U ⊗ V is the free �-vector
space generated by elements of the form u⊗ v with u ∈ U and v ∈ V , quotiented by the following

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

P. Rannou 974

equalities:

(u + u′) ⊗ v = u ⊗ v + u′ ⊗ v

u ⊗ (v + v′) = u ⊗ v + u ⊗ v′

(λu) ⊗ v = λ(u ⊗ v) = u ⊗ (λv) for all λ ∈ �.

We write U⊗n for the �-vector space U ⊗ · · · ⊗ U (n times).

Remark 3. By the universal property of tensor (a bilinear map from U×V to Z induces a unique
linear map from U ⊗ V to Z), we have (�X)⊗n = �Xn. Hence, we get u1 ⊗ · · · ⊗ un ∈ �Xn for
any u1, · · · , un ∈ �X

Definition 5. The right and left actions of �S on �S 2 are given as follows:

(u ⊗ v) · w = u ⊗ (v · w)

u · (v ⊗ w) = (u · v) ⊗ w

for any u, v,w ∈ S .

For instance,

(ab ⊗ a) · a = (ab ⊗ aa).

Definition 6. LetA be an alphabet and let S = A+. Deconcatenation is the co-operation

δ: �S → �S ⊗�S = �S 2

defined recursively by:

δ(a) := 0 for any a ∈ A
δ(u · v) := u · δ(v) + δ(u) · v + u ⊗ v for any u, v ∈ S .

Remark 4. In fact, δ(u) · v consists of all terms of δ(u · v) whose first component is a prefix of u
and, similarly, u · δ(v) consists of all terms of δ(u · v) whose second component is a suffix of v.

Remark 5. The co-operation δ is described by the equality

δ(w):=
∑

w=u·v

u ⊗ v for any w ∈ S .

For instance,

δ(abaa) = a ⊗ baa + ab ⊗ aa + aba ⊗ a.

Theorem 1. Deconcatenation is coassociative:

(id�S ⊗ δ) ◦ δ = (δ ⊗ id�S) ◦ δ,

or, in other words,

for all w ∈ S , if δ(w) =
∑

ui ⊗ vi, then
∑

ui ⊗ δ(vi) =
∑

δ(ui) ⊗ vi.

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

Properties of co-operations: diagrammatic proofs 975

A diagrammatic proof of this classical result is given in section 4.

3. Diagrams and Σ-diagrams

For any m, n ∈ �, a diagram φ: m→ n, with m inputs and n outputs is drawn as follows:

· · · m · · ·

· · · n · · ·

φ

It is interpreted as a map f : Xm → Xn, where X is some fixed set.
There are two operations on diagrams:

– The parallel composition of φ: m→ n and φ′: m′ → n′ is φ ∗ φ′: m + m′ → n + n′:
· · · m · · · · · · m · · ·

· · · n · · · · · · n · · ·

φ φ

– The sequential composition of φ: m→ n and ψ: n→ p is ψ ◦ φ: m→ p:

φ

ψ

· · · m · · ·

· · · n · · ·

· · · p · · ·

These operations are interpretated as follows:
– If f : Xm → Xn is the interpretation of φ: m → n and f ′: Xm′ → Xn′ is the interpretation of
φ′ : m′ → n′, then f × f ′ : Xm+m′ → Xn+n′ is the interpretation of the parallel composition
φ ∗ φ′: m + m′ → n + n′.

– If f : Xm → Xn is the interpretation of φ : m → n and g : Xn → Xp is the interpretation
of ψ : n → p, then g ◦ f : Xm → Xp is the interpretation of the sequential composition
ψ ◦ φ: m→ p.

The identity diagram Idn: n→ n is drawn as follows:

· · · n · · ·

Atomic diagrams are called gates (or generators).

Definition 7. An elementary diagram is a formal composition

Idp ⊗ α ⊗ Idq: p + m + q→ p + n + q

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

P. Rannou 976

where α: m→ n is a gate:

α
· · ·

· · ·

n

m

· · ·
p

· · ·
q

Definition 8. A diagram is a sequential composition

φ1 ◦ · · · ◦ φn

of elementary diagrams φ1, · · · , φn.

In fact, diagrams are defined modulo interchange:

φ

· · ·

· · ·
· · ·

φ

· · ·

· · ·

· · ·

φ
· · ·

φ

· · ·

· · ·

φ

· · ·

· · ·

· · ·

φ

For more information about diagrams, see Lafont (2003 ; 2010).

Remark 6. Diagrams are the morphisms of a free PRO. Moreover, any PRO is the quotient of a
free PRO by some relations. Hence, diagrams are the syntax of PROs.

Definition 9. A Σ-diagram Φ: m→ n is a (finite) formal sum Σλiφi where the coefficients λi are
in � and the φi: m → n are diagrams with the same number m of inputs and the same number n
of outputs.

Parallel and sequential composition are extended to Σ-diagrams by distributivity over sum:

(Σλiφi) ∗ Ψ = Σλi(φi ∗ Ψ)

Φ ∗ (Σλiψi) = Σλi(Φ ∗ ψi)

(Σλiφi) ◦ Ψ = Σλi(φi ◦ Ψ)

Φ ◦ (Σλiψi) = Σλi(Φ ◦ ψi).

Remark 7. The field � can be replaced by any field of characteristic 0, such as � or �.

Note that we use uppercase greek letters Φ,Ψ for Σ-diagrams.
There is a binary sum on Σ-diagrams, which is drawn as follows:

+

· · · m · · · · · · m · · ·

· · · n · · · · · · n · · ·

� �

Note that the Σ-diagrams Φ and Ψ have the same numbers of inputs m and the same number of
outputs n. Similarly, we define the Σ-diagram λΦ: m→ n for any scalar λ, and the null Σ-diagram
0: m→ n.

A Σ-diagram Φ: m → n is interpreted as a �-linear map f : �Xm → �Xn. The interpretation
of the operations is similar to the case of diagrams, except for parallel composition, which is
interpreted by ⊗ instead of ×. The interpretation of + is straightforward.

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

Properties of co-operations: diagrammatic proofs 977

Definition 10. A rewrite rule is of the form φ→ Ψ where φ: m→ n is a diagram and Ψ: m→ n
is a Σ-diagram.

Note that the left-hand member φ must be a diagram, not a Σ-diagram.
Elementary reduction, written →, is defined as usual by applying a rule φ → Ψ in a context

given by two diagrams ξ: r → p + m + q and ω: p + n + q→ s:

· · · φ · · · �

ωω

· · ·
r r

· · ·

q · · ·
m m

· · ·

· · ·
s

· · ·
s

· · ·
nn

· · ·

ξ ξ

· · ·
qp

· · ·
p

Reduction is the linear reflexive transitive closure of elementary reduction, that is, the smallest
relation→∗ containing→ such that:

Φ→∗ Φ for any Σ-diagram Φ

Φ→∗ Φ′′ whenever Φ→∗ Φ′ and Φ′ →∗ Φ′′

ΣλiΦi →∗ ΣλiΨi whenever Φi →∗ Ψi for all i.

4. Diagrammatic proof of Theorem 1

We assume that X is the free semi-groupA+. The gates are

concatenation · deconcatenation δ

Hence, we consider Σ-diagrams built on those gates. In other words, these gates are the
generators of our free PRO. From Definition 6 (of deconcatenation), we deduce the following
interaction rule:

δ(u · v) = u · δ(v) + δ(u) · v + u ⊗ v

Recall that u · δ(v) and δ(u) · v are given by Definition 5. Similar kinds of rules are introduced in
Lafont (1997) and Ehrhard and Regnier (2006).

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

P. Rannou 978

We will prove the coassociativity of deconcatenation, which corresponds to the following
rewrite rule:

The key argument of our proof is described by a confluence diagram:

?
φ

φ�

�

where φ = and φ =

Note that there are two kinds of arrow:
– broken arrows for coassociativity;
– solid arrows for interaction.

Proof. Formally, Theorem 1 is proved by induction on the length of the input word:
–Coassociativity obviously holds for letters since δ(a) = 0 for any a ∈ A. In fact, this equality
is expressed by the following rule (using an extra gate for each letter a):

0

a

Using this rule, we get:

0

aa

–Let u and v be words in A+ for which deconcatenation is coassociative. We will prove that
deconcatenation is coassociative for w = u · v. In other words, the following reduction holds:

u uv v

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

Properties of co-operations: diagrammatic proofs 979

Applying interaction to both sides of the reduction, we get

The two results differ in only two terms:

u uv v u uv v

But, by the induction hypothesis, we can apply coassociativity to the Σ-diagram on the left,
and get the one on the right.

Remark 8. This proof expresses the confluence of the conflict between coassociativity and inter-
action. In fact, to get a complete rewrite system for (non-commutative and non-cocommutative)
bialgebras, we need an associativity rule for concatenation:

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

P. Rannou 980

The resulting system has two critical peaks:
– the conflict between coassociativity and interaction;
– the conflict between associativity and interaction.

We have checked the confluence of the first one. For the second one, we simply reverse the
diagrams. Hence, we get a confluent rewrite system. Termination is straightforward. Note that
the latter argument is diagrammatic, and we do not need to consider the inputs of the diagrams.

5. Concatenation and deconcatenation for monoids

LetA be an alphabet.

Definition 11. We write A∗ for the free monoid generated by A. Its elements are those of A+
and the empty word ε.

Remark 9. The unit for concatenation is ε .

We write M forA∗, and S forA+.

Definition 12. The (unital) �-algebra �M, is the free �-vector space generated by the set M,
which is equipped with a multiplication · extending that of the monoid M and distributive over
sum.

Definition 13. Full deconcatenation Δ: �M → �M2 is defined as follows:

Δ(w):=
∑

w=u·v

u ⊗ v.

Remark 10. In particular, we get Δ(ε) = ε ⊗ ε.

Definition 14. Primitive deconcatenation δ: �M → �M2 extending δ: �S → �S 2 is defined
as follows:

δ(w) =
∑

w=u·v
u,v�ε

u ⊗ v, for w � ε

δ(ε) = −ε ⊗ ε

Remark 11. The relation between the two deconcatenations is:

Δ(u) = δ(u) + u ⊗ ε + ε ⊗ u.

This explains why we defined δ(ε):= −ε ⊗ ε:

Δ(ε) = δ(ε) + ε ⊗ ε + ε ⊗ ε = −ε ⊗ ε + 2ε ⊗ ε = ε ⊗ ε.

Theorem 2. Full deconcatenation is coassociative.

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

Properties of co-operations: diagrammatic proofs 981

Proof. We introduce two new gates:

full deconcatenation Δ unit ε

We also introduce two new rules:

Δ(u) = δ(u) + u ⊗ ε + ε ⊗ u δ(ε) = −ε ⊗ ε

Coassociativity of full deconcatenation is drawn as follows:

Reducing these diagrams using the new rules gives

Hence, it just remains to show the following equality for u ∈ A∗:
u u

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

P. Rannou 982

There are two cases:
–If u = ε, we get ε ⊗ ε ⊗ ε in both cases.
–If u ∈ A+, we apply Theorem 1.

Remark 12. From

Δ(u) = δ(u) + u ⊗ ε + ε ⊗ u

δ(u · v) = u · δ(v) + δ(u) · v + u ⊗ v

we can deduce

Δ(u · v) = u · Δ(v) + Δ(u) · v − u ⊗ v.

This equality corresponds to the following interaction rule:

Using this rule, we can get an alternative proof of Theorem 2, which is very similar to the proof
of Theorem 1.

6. Concatenation and shuffle for monoids

In this section, we also consider the monoid M = A∗. Here, the syntax is also interpreted in
�-vector spaces, but we only need diagrams (not Σ-diagrams).

Definition 15. Shuffle σ: �M → �M2 is defined as follows on a word w = a1 · · · an of length n:

σ(w):=
∑

(u,v)∈Iw

u ⊗ v,

where Iw is the set of pairs (u, v) of words of the form:
– u = ai1 · · · aip with 1 � i1 < i2 < · · · < ip � n,
– v = a j1 · · · a jq with 1 � j1 < j2 < · · · < jq � n,

where {i1, · · · , ip} ∪ { j1, · · · , jq} = {1, · · · , n} and {i1, · · · , ip} ∩ { j1, · · · , jq} =�.

For instance,

σ(abaa) = ab ⊗ aa + 2aba ⊗ a + abaa ⊗ ε + 2aa ⊗ ba + aaa ⊗ b

+aa ⊗ ab + 2a ⊗ aba + ε ⊗ abaa + 2ba ⊗ aa + aaa ⊗ b

Shuffle is drawn as follows:

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

Properties of co-operations: diagrammatic proofs 983

Remark 13. We have

σ(ε) = ε ⊗ ε
σ(a) = ε ⊗ a + a ⊗ ε

for all a ∈ A. Furthermore, we have

σ(w · w′) =
∑

(u,v)∈Iw
(u′,v′)∈Iw′

u · u′ ⊗ v · v′ for all w,w′ ∈ A.

The latter equality is expressed by the following Hopf interaction rule:

Theorem 3. Shuffle is coassociative.

Proof. Coassociativity of shuffle corresponds to the following rule:

We prove this by induction on the length of the input word:

–For the empty word, we have

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

P. Rannou 984

–For any a ∈ A, we introduce a new gate and get
a

a a a a a

a
a a a a a

–Let u and v be two words in M for which shuffle is coassociative. We want to show that
shuffle is also coassociative for w = u · v. In other words, the following reduction holds:

u v u v

We apply interaction to each side of the reduction:

*

*

By the induction hypothesis, we can apply coassociativity to the upper diagram, and get the
lower one.

Theorem 4. Shuffle is cocommutative:

σ(w) =
∑

(u,v)∈Iw

v ⊗ u for all w ∈ M.

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

Properties of co-operations: diagrammatic proofs 985

Proof. Cocommutativity of shuffle corresponds to the following rule:

–For the empty word, we have

–For any letters a ∈ A, we get
a a a a a a

–Let u and v be two words in M for which shuffle is cocommutative. We want to show that
shuffle is also cocommutative for w = u · v. In other words, the following reduction holds:

u v
u v

We apply interaction to each side of the reduction:

*

By the induction hypothesis, we can apply cocommutativity to the upper diagram, and get the
lower one.

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

P. Rannou 986

Note that we have, in fact, used a new gate in this section:

crossing

And we should introduce the following new rules:

Crossing satisfies an extra equation (Yang–Baxter), but it is not needed here. For more details
on this kind of rewriting, see Lafont (2003).

7. Conclusion

Σ-diagrams are used by mathematicians working on bialgebras to give a precise description of
the relations between operations and co-operations. But the diagrammatic syntax is not usually
formally defined, and is not used in computations or proofs.

In this paper, we have given a precise definition of these Σ-diagrams and some examples of
computations using them. Note that:

– Computation with Σ-diagrams is well handled by rewriting: see Lafont (2003) for the case
of diagrams.

– Σ-diagrams are very similar to differential interaction nets: see Ehrhard and Regnier (2006).
In future work, we shall develop a general theory of rewriting for Σ-diagrams as well as

programs implementing these rewriting techniques.

Références

Ehrhard, T. and L. Regnier (2006) Differential interaction nets. Theorical Computer Science 364 166–195.

Lafont, Y. (1997) Interaction combinators. Information and Computation 137 69–101.

Lafont, Y. (2003) Towards an algebraic theory of boolean circuits. Journal of Pure and Applied Algebra
184 257–310.

Lafont, Y. (2010) Diagram rewriting and operads. In: Loday, J. L. and Vallette, B. (ed.) Operads 2009.
Séminaires et Congrès 26, SMF 163–179.

Loday, J. L. (2008) Generalized bialgebras and triples of operads. Astérisque 320.

https://doi.org/10.1017/S0960129511000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000661

