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Abstract

This study provides an analytic method for the calculation of the cutoff frequencies and
waveguide modes of a partially filled eccentric coaxial cable. The method is based on the
expressions of the involved electromagnetic fields in bipolar coordinate systems and the
validity range of the solution is discussed. It is shown how the waveguide geometry and
dielectric parameters may be selected to engineer the lined waveguide’s spectral response.
Numerical results are included which show good agreement with the corresponding results
from full-wave simulations by commercial software.

Introduction

Without modifying the dimension of conductors, the characteristic impedance of a coaxial
cable is adjustable by laterally changing the offset of the inner conductor. This technique
can be used to realize a quarter-wave matching element that forms one of the sections in a
multisection quarter-wave transformer for broadband-matching applications [1]. Besides,
the analysis of cavities excited by thin probes can be simplified using eccentric circular metallic
waveguide structures with a small ratio of inner-to-outer conductor dimensions [2]. Despite of
these interesting applications, the shape of boundaries severely limits the possibility for ana-
lytical solutions of eccentric circular metallic waveguide configurations [3, 4]. The investiga-
tions of this type of waveguide have initiated interest of researchers for a long time [1–15].
Various techniques have been used to obtain numerical results: point-matching [5], conformal
transformation [6], related addition theorem [7], a combination of the conformal mapping of
the cross-section with the intermediate problems method to obtain the lower bounds for the
cutoff frequencies and the Rayleigh–Ritz method for the upper bounds [8], perturbation tech-
niques [2], transforming eccentric coaxial into coaxial configuration using bilinear transform-
ation [9], a combination of the polynomial approximation and quadratic functions with the
Rayleigh–Ritz [10], a combination of conformal mapping with the finite-element [11], a com-
bination of conformal mapping with the finite-difference [1, 12, 13], a combination of the fun-
damental solutions and particular solutions methods [14], a combination of the perturbation
method with the separation of variables’ technique followed by the well-known cosine and sine
laws [3], and the separation of variables’ technique in bipolar coordinate systems (BCSs) [15].
All these investigations have been concentrated on the evaluation of the higher-order modes
and their cutoff frequencies without any dielectric support between the inner and outer con-
ductors. In [16], eccentric circular metallic waveguide supported by dielectric slab between the
inner and outer conductors has been investigated using the finite element approach.
Propagation in composite cylindrical structures, composed of a bianisotropic cylinder embed-
ded in an unbounded bianisotropic space and enclosing an array of parallel bianisotropic rods,
has been studied in [17]. In [18], higher order modes of two wire waveguides have been inves-
tigated using BCS and separation of variable technique.

This paper presents an analytical solution of higher order modes in a dielectric-lined eccen-
tric circular metallic waveguide. In [15], the solution of the Helmholtz equation in BCS has
been obtained using the technique of separation of variables and the validity range of the solu-
tion has been discussed. In this study, this solution has been applied to analyze the higher
order modes of a dielectric-lined eccentric circular metallic waveguide. Rather than TE and
TM modes, this structure also supports hybrid electric (HE) and hybrid magnetic (EH)
modes which are similar to the transversal TE and TM modes of a homogeneously filled
eccentric coaxial cable, except that the longitudinal electric and magnetic fields do not gener-
ally vanish. The cutoff frequencies of the higher order modes (TE, TM, HE, and EH modes in
this case) have been determined by enforcing the boundary conditions and the continuity of
the tangential electric- and magnetic-field components at the boundaries of the structure and
an analytical expression is proposed for the electromagnetic fields. Moreover, it will be shown
that this approach significantly works better than the method presented in [15] in calculating
the cutoff frequencies of a homogeneously filled eccentric circular metallic waveguide. The
paper is organized as follows. Section “Problem formulation and solution” presents the

https://doi.org/10.1017/S1759078720000926 Published online by Cambridge University Press

https://www.cambridge.org/mrf
https://doi.org/10.1017/S1759078720000926
https://doi.org/10.1017/S1759078720000926
mailto:mehdi.gholizadeh1991127@gmail.com
mailto:mehdi.gholizadeh1991127@gmail.com
https://orcid.org/0000-0001-8246-9336
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1759078720000926&domain=pdf
https://doi.org/10.1017/S1759078720000926


formulation of the problem. The obtained results are discussed in
section “Results and discussion”. Finally, section “Conclusion”
concludes this research.

Problem formulation and solution

Figure 1 depicts the geometry of the partially filled eccentric
coaxial line under consideration. A hollow infinite perfect electric
conductor (PEC) cylinder of radius R1 (the outer conductor) in
the z-direction eccentrically surrounds a dielectric cylinder (of
radius R2 with permittivity ε2 = εr2ε0 and permeability μ2 =
μr2μ0) which itself eccentrically encloses another PEC cylinder
of radius R3 (the inner conductor). The remaining space inside
the waveguide is filled by another dielectric material with permit-
tivity ε1 = εr1ε0 and permeability μ1 = μr1μ0. The offset of the
inner dielectric cylinder (region 2) and the PEC core are denoted
D1 and D2, respectively. This type of waveguide can be easily
described using BCS. In this paper, it has been supposed the
circles in Fig. 1 lie to the right of the y-axis (0 ≤ ζ < +∞). The
relations between the parameters of BCS and the dimensions of
the waveguide can be written as follows:

R1 = a
sinh (z1)

, R2 = a
sinh (z2)

, R3 = a
sinh (z3)

(1)

D1 = a( coth (z1)− coth (z2)),

D2 = a( coth (z1)− coth (z3))
(2)

where a is an arbitrary positive real number and 2a shows how far
apart the poles (P1(a, 0) and P2(−a, 0)) of the BCS lie. It is obvi-
ous that ζ = ζ1, ζ = ζ2, and ζ = ζ3 determine the boundaries of the
waveguide in BCS, where ζ1 < ζ2 < ζ3. The Helmholtz equation in
BCS can be written as:

∂2w(z ,h)

∂z2
+ ∂2w(z ,h)

∂h2
+ a2k2cw(z ,h)

(cosh (z)− cos (h))2
= 0. (3)

and its solution is as follows:

w(z, h) = wz(z)wh(h) = (A1 sin (nh)+ A2 cos (nh))

(B1Jn(2akce
−z)+ B2Yn(2akce

−z)), |z| ≥ 3
(4)

where w represents the scalar function that illustrates the longitu-
dinal component of the field, n is the azimuthal mode index, A1,
A2, B1, and B2 are the amplitude coefficients, Jn(x) and Yn(x) are
the Bessel functions of order n of first and second kinds, respect-
ively, k2c = k2 − g2, k = v

����
m1

√
, and γ is the axial propagation

constant [15]. For the structure shown in Fig. 1, |ζ|≥ 3 means
D1/R1 = 1 or D2/R1 = 1. In other words, (4) is valid for either
D1/R1 = 1 and every arbitrary value of D2/R1, or D2/R1 = 1 and
every arbitrary value of D1/R1. By suppressing the propagation
term (e−γz) and the time–harmonic nature of the fields (ejωt),
since the tangential electric-field components must vanish at
the outer PEC boundary (ζ = ζ1), the electric- and magnetic-field
components in the z-direction in region 1 (ζ1≤ ζ≤ ζ2) can be
written as:

E1z = C1F1n(2ak1ze
−z) cos (nh) (5)

H1z = C2G1n(2ak1ze
−z) sin (nh) (6)

where

F1n(2ak1ze
−z) =Yn(2ak1ze

−z1 )Jn(2ak1ze
−z)

− Jn(2ak1ze
−z1 )Yn(2ak1ze

−z)
(7)

G1n(2ak1ze
−z) =Y ′

n(2ak1ze
−z1 )Jn(2ak1ze

−z)

− J ′n(2ak1ze−z1 )Yn(2ak1ze
−z)

(8)

Here, C1 and C2 are the amplitude coefficients, k1z = k21 − g2 and
k1 = v

������
m111

√
. Similarly, the solution in region 2 (ζ2≤ ζ ≤ ζ3) has

the following form:

E2z = C3F2n(2ak2ze
−z) cos (nh) (9)

H2z = C4G2n(2ak2ze
−z) sin (nh) (10)

where

F2n(2ak2ze
−z) =Yn(2ak2ze

−z3 )Jn(2ak2ze
−z)

− Jn(2ak2ze
−z3 )Yn(2ak2ze

−z)
(11)

G2n(2ak2ze
−z) =Y ′

n(2ak2ze
−z3 )Jn(2ak2ze

−z)

− J ′n(2ak2ze−z3 )Yn(2ak2ze
−z)

(12)

Here, C3 and C4 are the amplitude coefficients, k2z = k22 − g2 and
k2 = v

������
m212

√
. The other field components in each region can be

Fig. 1. Transverse cross-section of the partially filled eccentric coaxial cable.
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extracted from the following equations:

Ez = −g

hk2z

∂Ez
∂z

+ jvm
g

∂Hz

∂h

( )
(13)

Eh = −g

hk2z

∂Ez
∂h

− jvm
g

∂Hz

∂z

( )
(14)

Hz = −g

hk2z

∂Hz

∂z
− jv1

g

∂Ez
∂h

( )
(15)

Hh = −g

hk2z

∂Hz

∂h
+ jv1

g

∂Ez
∂z

( )
(16)

where h = a/(coshζ− cosη) is the transversal scale factor.
Therefore, we can write the following relations for each region:

E1z = −g

hk21z
(−C12ak1ze

−zF′
1n(2ak1ze

−z)

+ C2
njvm1

g
G1n(2ak1ze

−z)) cos (nh)

(17)

E1h = −g

hk21z
(−C1nF1n(2ak1ze

−z)

+ C2
jvm1

g
2ak1ze

−zG′
1n(2ak1ze

−z)) sin (nh)

(18)

E2z = −g

hk22z
(−C32ak2ze

−zF′
2n(2ak2ze

−z)

+ C4
njvm2

g
G2n(2ak2ze

−z)) cos (nh)

(19)

E2h = −g

hk22z
(−C3nF2n(2ak2ze

−z)

+ C4
jvm2

g
2ak2ze

−zG′
2n(2ak2ze

−z)) sin (nh)

(20)

H1z = −g

hk21z
(−C22ak1ze

−zG′
1n(2ak1ze

−z)

+ C1
njv11
g

F1n(2ak1ze
−z)) sin (nh)

(21)

H1h = −g

hk21z
(C2nG1n(2ak1ze

−z)

− C1
jv11
g

2ak1ze
−zF′

1n(2ak1ze
−z)) cos (nh)

(22)

H2z = −g

hk22z
(−C42ak2ze

−zG′
2n(2ak2ze

−z)

+ C3
njv12
g

F2n(2ak2ze
−z)) sin (nh)

(23)

H2h = −g

hk22z
(C4nG2n(2ak2ze

−z)

− C3
jv12
g

2ak2ze
−zF′

2n(2ak2ze
−z)) cos (nh)

(24)

where

F′
1n(2ak1ze

−z) =Yn(2ak1ze
−z1 )J ′n(2ak1ze−z)

− Jn(2ak1ze
−z1 )Y ′

n(2ak1ze
−z)

(25)

G′
1n(2ak1ze

−z) =Y ′
n(2ak1ze

−z1 )J ′n(2ak1ze−z)

− J ′n(2ak1ze−z1 )Y ′
n(2ak1ze

−z)
(26)

F′
2n(2ak2ze

−z) =Yn(2ak2ze
−z3 )J ′n(2ak2ze−z)

− Jn(2ak2ze
−z3 )Y ′

n(2ak2ze
−z)

(27)

G′
2n(2ak2ze

−z) =Y ′
n(2ak2ze

−z3 )J ′n(2ak2ze−z)

− J ′n(2ak2ze−z3 )Y ′
n(2ak2ze

−z)
(28)

The continuity of the tangential electric- and magnetic-field
components at ζ = ζ2 relates the coefficients to one another as
follows:

C1 = C3
F2n(2ak2ze−z2 )
F1n(2ak1ze−z2 )

(29)

C2 = C4
G2n(2ak2ze−z2 )
G1n(2ak1ze−z2 )

(30)

C4

C3
= (gn/2jvae−z2 )(1/k22z)− (1/k21z)

(m2/k2z)(G
′
2n(2ak2ze−z2 )/F2n(2ak2ze−z2 ))− (m1/k1z)((G

′
1n

(2ak1ze−z2 )G2n(2ak2ze−z2 ))/(G1n(2ak1ze−z2 )F2n(2ak2ze−z2 )))

(31)

C3

C4
= (gn/2jvae−z2 ) (1/k22z)− (1/k21z)

(12/k2z)(F′
2n(2ak2ze

−z2 )/G2n(2ak2ze−z2 ))− (11/k1z)((F′
1n

(2ak1ze−z2 )F2n(2ak2ze−z2 ))/(F1n(2ak1ze−z2 )G2n(2ak2ze−z2 )))

(32)

where (31) is used for HE modes and (32) is used for EH modes.
Using (31) and (32), the coefficients C3 and C4 can be eliminated
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Table 1. Cutoff wave numbers (knm) of the homogeneously filled eccentric coaxial cable (by considering εr1 = εr2 = 1)

D2/R1 = 0.04, R3/R1 = 0.448998, ζ1 = 25.79, ζ2 = 26.30, ζ3 = 26.59 D2/R1 = 0.05, R3/R1 = 0.05, ζ1 = 25.91, ζ2 = 26.42, ζ3 = 28.90

Our method CST [15] [9] Our method CST [15] [9]

TE11 1.407452 1.406612 1.410028 1.403495 1.831567 1.828824 1.836132 1.821917

TE21 2.765603 2.760412 2.771100 2.759585 3.053154 3.049438 3.061847 3.053905

TE31 4.043847 4.041863 4.052665 4.038212 4.201182 4.195072 4.211770 4.201184

TE41 5.242341 5.241353 5.254597 5.238405 5.317553 5.311384 5.330947 5.317553

TE51 6.380165 6.371149 6.398096 6.380286 6.415616 6.413286 6.431776 6.415616

TM01 5.657074 5.662340 5.680839 5.696181 3.064407 3.051532 3.072796 3.171976

TM11 5.832915 5.843572 5.856573 5.869784 3.867325 3.876724 3.870190 3.888266

TM21 6.327979 6.335568 6.351492 6.359170 5.136070 5.136550 5.149012 5.137403

TM31 7.067177 7.059534 7.090828 7.091327 6.380166 6.380164 6.396237 6.380199

TM41 7.971350 7.957891 7.995631 7.988750 7.588342 7.588316 7.607456 7.588343

D2/R1 = 0.2, R3/R1 = 0.3, ζ1 = 26.60, ζ2 = 27.11, ζ3 = 27.80 D2/R1 = 0.3, R3/R1 = 0.2, ζ1 = 26.80, ζ2 = 27.31, ζ3 = 28.41

Our method CST [15] [9] Our method CST [15] [9]

TE11 1.582064 1.581393 1.645034 1.448657 1.705115 1.704489 1.863991 1.448657

TE21 2.968501 2.958471 3.105751 2.824888 3.034724 3.022132 3.356513 2.824888

TE31 4.180113 4.180977 4.388184 4.094783 4.199060 4.211983 4.656084 4.094783

TE41 5.312973 5.310040 5.583345 5.274652 5.317342 5.309122 5.898109 5.274652

TE51 6.414677 6.406139 6.742891 6.399644 6.415596 6.420103 7.116605 6.399644

TM01 4.412394 4.413130 4.737715 5.095572 3.815956 3.827671 4.359074 5.288001

TM11 4.705775 4.702137 5.031669 5.310905 4.235748 4.230319 4.790313 5.488033

TM21 5.470236 5.469812 5.805374 5.902924 5.221768 5.208912 5.831205 6.043230

TM31 6.493723 6.481075 6.854954 6.756020 6.394599 6.371992 7.104403 6.854501

TM41 7.622847 7.606661 8.025803 7.762377 7.590375 7.581112 8.422163 7.824947

Comparison with [9], [15] and simulation results (R2/R1 = 0.6, D1/R1 = 10
−24).
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to obtain the following dispersion relation:

QV = gn
2vae−z2

( )2 1
k22z

− 1
k21z

( )2

(33)

where

Q = m2

k2z

G′
2n(2ak2ze−z2 )

F2n(2ak2ze−z2 )

− m1

k1z

G′
1n(2ak1ze−z2 )G2n(2ak2ze−z2 )

G1n(2ak1ze−z2 )F2n(2ak2ze−z2 )
(34)

V = 12
k2z

F′
2n(2ak2ze−z2 )

G2n(2ak2ze−z2 )
− 11

k1z

F′
1n(2ak1ze−z2 )F2n(2ak2ze−z2 )

F1n(2ak1ze−z2 )G2n(2ak2ze−z2 )
(35)

The characteristic equations of TE0m and TM0m modes can be
obtained by setting n = 0 in (33) as follows:

F20(2ak2ze
−z2 )(m2k1zG

′
20(2ak2ze

−z2 )G10(2ak1ze
−z2 )

− m1k2zG
′
10(2ak1ze

−z2 )G20(2ak2ze
−z2 )) = 0

(36)

G20(2ak2ze
−z2 )(12k1zF

′
20(2ak2ze

−z2 )F10(2ak1ze
−z2 )

− 11k2zF
′
10(2ak1ze

−z2 )F20(2ak2ze
−z2 )) = 0

(37)

where the roots of (36) and (37) represent the cutoff frequencies
of the TE0m and TM0m modes, respectively.

For hybrid modes (n≠ 0 and at cutoff (γ = 0)), the right-hand
side of the dispersion relation (33) becomes zero and the HE and

Table 2. Cutoff frequencies (GHz) of the dielectric-lined eccentric coaxial cable

R2/R1 = 0.9, R3/R1 = 0.4, D1/R1 = 0.0001,
D2/R1 = 0.1, εr1 = 3.6, εr2 = 1

R2/R1 = 0.9, R3/R1 = 0.4, D1/R1 = 0.0001,
D2/R1 = 0.2, εr1 = 3.6, εr2 = 1

R2/R1 = 0.9, R3/R1 = 0.4, D1/R1 = 0.0001,
D2/R1 = 0.3, εr1 = 3.6, εr2 = 1

Our method CST Our method CST Our method CST

TE01 248.198675 248.197915 247.096590 247.095211 246.732155 246.733176

TE02 299.730863 299.729967 298.657998 298.656734 298.303595 298.301603

TE03 434.862931 434.856042 432.694971 432.693411 431.978574 431.962311

TM01 176.006973 176.005897 175.434797 175.429566 175.245768 175.241153

TM02 239.144539 239.143188 238.047570 238.042201 237.684862 237.670322

TM03 430.499821 430.497565 428.327311 428.315003 427.609382 427.621331

HE11 66.667619 66.666960 66.525358 66.524134 66.478223 66.476388

HE21 127.054575 127.053312 126.728092 126.717440 126.619862 126.610121

HE31 177.804806 177.798117 177.255854 177.240131 177.073878 177.061550

EH11 197.439355 197.425745 196.881589 196.867514 196.697326 196.714411

EH21 250.052293 250.043810 249.492465 249.463892 249.307472 249.313655

EH31 307.431157 307.421777 306.218550 306.205032 305.817175 305.802249

R2/R1 = 0.45, R3/R1 = 0.3, D1/R1 = 0.1,
D2/R1 = 0.0001, εr1 = 1, εr2 = 3.6

R2/R1 = 0.55, R3/R1 = 0.3, D1/R1 = 0.2,
D2/R1 = 0.0001, εr1 = 1, εr2 = 3.6

R2/R1 = 0.65, R3/R1 = 0.3, D1/R1 = 0.3,
D2/R1 = 0.0001, εr1 = 1, εr2 = 3.6

Our method CST Our method CST Our method CST

TE01 205.857315 205.856670 169.308884 169.306771 143.447910 143.445932

TE02 347.503081 347.502899 314.886285 314.871440 224.286718 224.275340

TE03 526.208343 526.206323 331.878215 331.863113 313.314054 313.305433

TM01 192.411708 192.409111 158.202830 158.217551 130.841839 130.830243

TM02 285.569962 285.552203 177.833569 177.827604 134.043939 134.027562

TM03 341.349842 341.329440 325.977151 325.957339 307.795175 307.779605

HE11 67.241616 67.242353 61.879409 61.878145 56.811218 56.801424

HE21 132.316790 132.301211 123.161193 123.153979 113.230701 113.228084

HE31 193.598966 193.582232 183.286062 183.274211 169.037847 169.023211

EH11 205.857315 205.846735 169.308884 169.319486 143.447910 143.431398

EH21 241.510679 241.522107 198.808248 198.791109 168.418962 168.399511

EH31 290.727796 290.719899 239.691188 239.671290 203.010208 203.029704

Comparison with simulation results.
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Fig. 2. HE11-mode cutoff frequency versus the different physical and geomet-
rical parameters of the problem. (a) εr1 (D2/R1 = 0.2, D1/R1 = 0.0001, R2/R1 = 0.9,
R3/R1 = 0.3, εr2 = 1), (b) D2 (D1/R1 = 0.0001, R2/R1 = 0.9, R3/R1 = 0.3, εr1 = 3.6, εr2 = 1),
(c) D1 (D2/R1 = 0.0001, R2/R1 = 0.55, R3/R1 = 0.1, εr1 = 3.6, εr2 = 1), (d) R2 (D1/R1 =
0.0001, D2/R1 = 0.1, R3/R1 = 0.1, εr1 = 3.6, εr2 = 1), (e) R3 (D1/R1 = 0.0001, D2/R1 =
0.1, R2/R1 = 0.9, εr1 = 3.6, εr2 = 1), (f) εr2(D2/R1 = 0.01, D1/R1 = 0.0001, R2/R1 = 0.45,
R3/R1 = 0.3, εr1 = 1), (g) D2 (D1/R1 = 0.0001, R2/R1 = 0.8, R3/R1 = 0.3, εr1 = 1, εr2 =
3.6), (h) D1 (D2/R1 = 0.0001, R2/R1 = 0.55, R3/R1 = 0.1, εr1 = 1, εr2 = 3.6),
(i) R2 (D1/R1 = 0.0001, D2/R1 = 0.1, R3/R1 = 0.1, εr1 = 1, εr2 = 3.6), ( j) R3 (D1/R1 =
0.0001, D2/R1 = 0.1, R2/R1 = 0.9, εr1 = 1, εr2 = 3.6).
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EH modes are decoupled. This results in the following character-
istic equations for hybrid modes:

F2n(2ak2ze
−z2 )(m2k1zG

′
2n(2ak2ze

−z2 )G1n(2ak1ze
−z2 )

− m1k2zG
′
1n(2ak1ze

−z2 )G2n(2ak2ze
−z2 )) = 0, n = 0

(38)

G2n(2ak2ze
−z2 )(12k1zF

′
2n(2ak2ze

−z2 )F1n(2ak1ze
−z2 )

− 11k2zF
′
1n(2ak1ze

−z2 )F2n(2ak2ze
−z2 )) = 0, n = 0

(39)

where the roots of (38) and (39) represent the cutoff frequencies
of the HE and EH modes, respectively.

Results and discussion

To check the accuracy of the calculations, two special cases have
been investigated. The first corresponds to partially filled coaxial
cable. To achieve this, D1, D2→ 0 must be considered. The cutoff
frequencies can be calculated for different values of R1, R2, and R3.
For these calculations, we can put D1/R1 = 10−10 and D2/R1 =
10−15. Comparison with the exact results reported in [19] gives
agreement to seven significant digits. The second case is related
to a homogeneously filled eccentric coaxial cable, where the fields
inside the region are either TE or TM. Such a case can be achieved
by considering ε1 = ε2 = ε. In [15], it was mentioned that the solu-
tion is valid for D2/R1≤ 0.05. However, in this study, we can
obtain the results for any arbitrary values of D2/R1 in homoge-
neously filled eccentric coaxial cable (by considering ε1 = ε2 =
ε). Because, there are more parameters in the analysis of a par-
tially filled eccentric coaxial cable than a homogeneously filled
eccentric coaxial cable which can satisfy the main limiting condi-
tion in BCS (cosh (ζ)≫ 1 or |ζ|≥ 3), without limiting the values
for D2/R1. In other words, we can keep D1/R1 negligible instead of
D2/R1 so that the values of ζ remain larger than 3. To show this, in
Table 1, the cutoff wavenumbers (knm) of the homogeneously
filled eccentric coaxial cable are calculated for several different
values of D2/R1 and R3/R1 using our method, and the results
are compared with those given in [9] and [15], and also their
simulation values. For these calculation we put D1/R1 = 10−24.
Full-wave frequency-domain simulations (using CST Microwave
Studio) have been used for the calculations, where 6 743 881 ele-
ments in the mesh were used. As it can be found from Table 1,
one of the substantial features of our method is that it remains
valid even for larger values of D2/R1, where the methods used
in [9] and [15] have shown a significant weakness. It is note-
worthy to mention again that the limiting condition for the
method used in [15] is D2/R1 = 1. Moreover, the method used
in [9] is based on transforming eccentric coaxial into coaxial con-
figuration using bilinear transformation expressed in terms of
mutually inverse points and gives acceptable results as long as
the values of r′1 /R3 and r′2 /R3 are negligible, where r′1 and r′2 are
the radius of the inner and outer cylinders of the transformed
coaxial configuration, respectively. However, as D2/R1 increases
the values of r′1 and r′2 become comparable with R3, which brings
about large errors in the final results for large values of D2/R1.

In Table 2, the cutoff frequencies of a dielectric-lined eccentric
coaxial cable are calculated for a number of the higher order
modes (TE, TM, HE, and EH) using our method, and the results
are compared with their simulation values. The good agreement
between the data justifies the validity of the analysis. Figure 2

illustrates the variations of the cutoff frequencies of HE11-mode
versus the different physical and geometrical parameters of the
problem, where in Figs 2(a)–(e), the liner is considered to be
on the outer conductor (εr2 = 1), and in Figs 2(f)–2( j) it is put
on the inner conductor (εr1 = 1). As one can see, for the both
cases, even though the dielectric liner only occupies a small por-
tion of the total cross-section of the waveguide, it is to be expected
that a thin epsilon-positive liner with permittivity larger than
unity slightly lowers the natural cutoff frequency, and reversely,
that an epsilon-positive liner with permittivity smaller than
unity will increase it. In other words, the cutoff frequency is to
a low extent dependent on large positive permittivity values
whereas it increases significantly for small ones, suggesting that
the waveguide is thrust more deeply into cutoff as the liner per-
mittivity is positive and tending to zero (Figs 2(a) and 2(f)).
Besides, the cutoff frequency is to a high extent dependent on
small eccentricities (D1/R1, D2/R1 < 0.05) while it almost remains
stable for larger ones (Figs 2(b), 2(c), 2(g) and 2(h)). It is note-
worthy to mention that the variation of eccentricity has its max-
imum effect on the cutoff frequency when the liner is on the outer
conductor and D2/R1 is changing (Fig. 2(b)). Moreover, the cutoff
frequency can be decreased by considering either thicker liner
(Figs 2(d) and 2(i)) or the inner conductor with larger radius
(Figs 2(e) and 2( j)). It should be mentioned that in Fig. 2( j),
we see gradual decline in cutoff frequency, because as R3/R1

increases, the liner thickness decreases accordingly. Figure 2
may be employed in choosing the value of permittivity and
dimensions required to achieve a desired cutoff frequency of
HE11 mode in a partially filled eccentric coaxial cable.

Conclusion

The problem has been investigated in a fully analytical manner and
the analytical expressions have been obtained for the electric and
magnetic field functions and the cutoff frequencies. The presented
method gives accurate results for either D1/R1 = 1 and every arbi-
trary value of D2/R1, or D2/R1 = 1 and every arbitrary value of
D1/R1. An excellent agreement has been observed between the
calculated cutoff frequencieswith those obtained by full-wave simu-
lations. The combination of accuracy, analyticity and ease of imple-
mentation makes this method an appropriate candidate for the
analysis of eccentric coaxial line structures. Moreover, it has been
shown this method significantly works better than the method pre-
sented in [15] in calculating the cut off frequencies of a homoge-
neously filled eccentric circular metallic waveguide.
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