
330

*Received January 2001; revised December 2002.

†To contact the authors, please write to: Meir Hemmo, Department of Philosophy,
University of Haifa, Haifa 31905, Israel; e-mail: meir@research.haifa.ac.il. Orly
Shenker, Department of Philosophy, Logic, and Scientific Method, London School of
Economics, London WC2A 2AE, United Kingdom; e-mail: o.shenker@lse.ac.uk

‡We thank David Albert, Guido Bacciagaluppi, Jeremy Butterfield, Itamar Pitowsky,
Professor Dieter Zeh, and two anonymous referees for very helpful comments.

Philosophy of Science, 70 (April 2003) pp. 330–358. 0031-8248/2003/7002-0007$10.00
Copyright 2003 by the Philosophy of Science Association. All rights reserved.

1. By expressions such as ‘thermodynamic phenomena’, ‘thermodynamic (law-like) reg-
ularities’, and similar ones we mean the results of measurements as predicted by the
zeroth and second laws of thermodynamics, stating the spontaneous and irreversible
approach to equilibrium and entropy increase.

Quantum Decoherence and the Approach
to Equilibrium*

Meir Hemmo and Orly Shenker†‡

We discuss a recent proposal by Albert (1994a; 1994b; 2000, ch. 7) to recover ther-
modynamics on a purely dynamical basis, using the quantum theory of the collapse of
the wave function by Ghirardi, Rimini, and Weber (1986). We propose an alternative
way to explain thermodynamics within no-collapse interpretations of quantum me-
chanics. Our approach relies on the standard quantum mechanical models of environ-
mental decoherence of open systems (e.g., Joos and Zeh 1985; Zurek and Paz 1994).
This paper presents the two approaches and discusses their advantages. The problems
faced by both approaches will be discussed in a sequel (Hemmo and Shenker 2003).

1. Introduction. Our experience tells us that macroscopic thermodynamic
systems invariably evolve towards high entropy states in an irreversible
way. In some programs in the foundations of statistical mechanics (both
classical and quantum) a central problem is to explain this experience by
appealing to the underlying dynamics alone. The aim here is twofold. First,
to explain the macroscopic thermodynamic phenomena1 on the basis of
the dynamical equations of motion that operate at the microscopic level,
possibly using some probabilistic hypotheses. Then, to justify those prob-
abilistic hypotheses by the same underlying dynamics. Hitherto neither of
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2. In this paper we only consider the extent to which the GRW theory can be successful
in the recovery of thermodynamics. This theory faces some serious problems, some of
which are mentioned in Section 3 below.

3. See DeWitt and Graham 1973 on many worlds; Healey and Hellman 1998 and Dieks
and Vermaas 1998 on modal theories; Cushing, Goldstein, and Fine 1996 and Bub 1997
on the pilot-wave theory.

the two aims has been satisfactorily accomplished (see overviews of this
problem by Sklar (1993) and Guttmann (1999)). Albert (1994a; 1994b;
2000, ch. 7) has proposed to solve these problems by appealing to the
theory of the collapse of the quantum state by Ghirardi, Rimini, and
Weber (GRW) (1986).2

In this paper we propose an alternative way of explaining the laws of
thermodynamics, in particular the approach to equilibrium and the in-
crease of entropy, using the quantum mechanical dynamics in no-collapse
theories. Our proposal is supported by results in decoherence theory which
strongly suggest that interactions with the environment are crucial for the
emergence of quasi-classical and thermodynamic behavior. We use the
standard models of so-called environmental decoherence of open systems
(Zurek 1982, 1993; Caldeira and Leggett 1983; Joos and Zeh 1985; Giulini
et al. 1996 and references therein) and recent results about the evolution
of the von Neumann entropy of open (decohering) systems by Zurek,
Habib and Paz (1993), Zurek and Paz (1994, 1995); see also (Paz and
Zurek 1999, ch. 6, 55–65; Monteoliva and Paz 2000). This paper, however,
while focusing on quantum mechanics without collapse, does not defend
any specific no-collapse interpretation of quantum mechanics (e.g., pilot-
wave, many-worlds or modal theories).3 The role of decoherence in the
recovery of classical mechanics and of thermodynamics in particular has
been investigated by many authors (e.g., Zeh 1992, ch. 4, sec. 4.2.2; Wal-
lace 2001 and references therein). The present paper follows a more con-
densed argument given by Hemmo and Shenker (2001).

The paper is structured as follows. In Section 2 we present the problem
of justifying the thermodynamic regularities in classical statistical me-
chanics. In Section 3 we turn to the quantum mechanical context and we
discuss Albert’s approach to the problem using the GRW theory of the
collapse of the quantum state. In Section 4 we give a brief description of
the standard model of environmental decoherence, and we describe recent
results by Zurek, Habib, and Paz concerning the connection between de-
coherence of open systems and the evolution of the von Neumann entropy.
In Section 5 we present our approach to the problem in which we make
use of both environmental decoherence and the induced dynamics of open
systems in no-collapse interpretations of quantum mechanics. In Section
6 we consider the role of probabilities and stochasticity in Albert’s GRW
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4. In this paper we use terms like ‘the second law’, ‘law of entropy increase’, ‘principle
of approach to equilibrium’, etc. interchangeably. The exact meaning of the second law
of thermodynamics is, however, not clear. See the detailed analysis by Uffink (2001)
on this particular topic. It is even an open question whether the second law entails or
assumes a time-asymmetric spontaneous evolution to equilibrium (see Brown and Uff-
ink 2001).

approach and in our no-collapse approach. In a sequel to this paper
(Hemmo and Shenker 2003) we address further problems faced by the two
approaches.

2. The Problem. Empirical evidence suggests that irreversibility and the
approach to equilibrium are universal (for systems that are isolated and
contained in a finite volume).4 Systems evolve to equilibrium invariably
and irrespective of their initial conditions. These ideas form the heart of
thermodynamics. Can the universal approach to equilibrium be explained
on the basis of the underlying dynamics?

To illustrate the problem consider the following example. A gas cloud is
confined to the left-hand side of a container by a partition, which is removed
at time t0. The principles of thermodynamics dictate that the gas will evolve
to equilibrium, that is, expand and fill out the container, and remain in the
expanded state indefinitely. The universal phenomenon of the approach to
equilibrium is classically understood as the macroscopic appearance of oc-
currences at the microscopic level. This general idea is applicable only in
the right circumstances, and these ought to be taken into account.

First, in systems characterized by a small number of degrees of freedom,
fluctuations (which disagree with the predictions of thermodynamics) are
dominant. The law-likeness of thermodynamics, in particular the ap-
proach to equilibrium, emerges only when we move to macroscopic sys-
tems with many degrees of freedom.

Second, where quantum mechanical phenomena like superpositions
dominate, thermodynamic magnitudes and their evolution are not always
well-defined. In fact, we take it that without solving the measurement
problem quantum mechanics has no empirical content at all, thermody-
namic or otherwise. For this reason, the explanation of thermodynamic
behavior within a quantum mechanical setting crucially depends on the
way the measurement problem is solved in quantum mechanics. Hence, if
one wishes to explain the thermodynamic regularities on the basis of quan-
tum mechanics, one has to consider an interpretation of quantum me-
chanics in which the measurement problem is solved. These are the cir-
cumstances on which both approaches discussed in this paper focus.

One problem in explaining macroscopic occurrences on the basis of the
classical microscopic dynamics is that the latter allows for micro-evolutions
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5. These definitions are in agreement with Albert (1994a, 1994b, 2000).

that (would) appear at the macroscopic level as anti-thermodynamic
(had they occurred), such as the gas remaining in the left hand side of
the container, say ten minutes from now. We call micro-evolutions, and
the microstates along them, thermodynamic normal if the regularities they
exhibit correspond to the laws of thermodynamics (in particular the sec-
ond law) for a suitable time interval T. (A time interval is suitable if it
is long enough in thermodynamic time scales but short enough so that
Poincarè recurrence is unlikely to occur). Micro-evolutions (and the mi-
crostates along them) which don’t satisfy this condition will be called
thermodynamic abnormal.5 The existence of thermodynamic abnormal
states, as predicted by the underlying classical dynamics, contradicts the
letter of the second law of thermodynamics. This situation has been
known for a long time: J. C. Maxwell had proposed his famous Demon
to illustrate it (Earman and Norton 1998).

In classical statistical mechanics there are two main grand schools to
solving this problem: following Boltzmann and following Gibbs. In the
Boltzmannian school the properties of a system (including its entropy) are
taken to be properties of the system’s microstate through its relation to the
system’s macrostate. Among the initial microstates there are abnormal ones,
namely states that lead to anti thermodynamic evolutions. The problem now
is to explain why, despite the possibility of such anti-thermodynamic evo-
lutions, the actual world obeys the laws of thermodynamics (see overviews
of this particular problem in the classical context by Sklar (1993), Guttmann
(1999), and Albert (2000)). One solution is to argue that, as a matter of fact,
the actual initial state and evolution are normal. This is a matter of fact,
not of law, and therefore it does not need to be explained beyond its mere
stipulation (e.g., Sklar 1993, 210). In order to derive the laws of thermo-
dynamics we must add this fact to the underlying dynamics (call this the
matter-of-fact approach).

A second approach (within the Boltzmannian school) seeks to give some
explanation for this fact by stipulating a probability distribution over the
possible initial states of the universe. This distribution entails that most
initial states evolve (with certainty) in accordance with the thermodynamic
laws, and the minority of initial states evolve (again, with certainty) anti-
thermodynamically. This approach goes on to assume that the actual initial
state of the universe belongs to the majority. It is typical. (Call this the
typicality approach.) Like the matter-of-fact approach, the typicality ap-
proach also needs to postulate something beyond the underlying dynamics
in order to recover or explain thermodynamics. The matter-of-fact ap-
proach postulates the actual initial state, and the typicality approach pos-
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6. A typicality approach is advocated by the Bohmian school in the interpretation of
quantum mechanics in the context of justifying the quantum mechanical probability
distribution ||W(x, t)�|2 over the positions in Bohm’s theory, e.g., Goldstein’s proposal
(in Bricmont et al. 2001).

7. In this school there are additional problems. One is explaining why phase averages
yield predictions regarding individual systems. Another is that, since entropy is a prop-
erty of the probability distribution, it does not change at all if that distribution does
not change in time (which is the kind of distribution Gibbs was looking for). To solve
this problem, Gibbs devised the idea of coarse graining, which is problematic (Ridder-
bos 2002).

tulates the initial probability distribution and the typicality of the actual
initial state.6

Albert (2000, ch. 4), recently proposed a third solution to this problem,
again in a Boltzmannian framework. Albert hypothesizes that all the phys-
ically possible initial states of the universe have been thermodynamic nor-
mal. This leads to a rejection of the standard understanding of a uniform
distribution over the microstates corresponding to the present macrostate.
In all three approaches the additional non-dynamical postulates are ex-
tremely hard to justify.

The Gibbsian school, by contrast, maintains that the properties of in-
dividual systems correspond to ensemble averages, and so the effect of the
relatively small number of thermodynamic abnormal trajectories is neg-
ligible. The average behaves like the majority, namely, in accordance with
the thermodynamic laws. Since the average is said to correspond to mea-
surable quantities pertaining to individual systems, this approach needs
to prove the uniqueness of the probability measure which is the basis for
calculating the averages. A satisfactory proof based on the underlying
dynamics has not yet been found (Sklar 1993; Guttmann 1999). It is
known that one can obtain this result whenever the system is ergodic, but
ergodicity may be neither sufficient nor necessary to explain thermody-
namics. Not sufficient, since it does not provide predictions for finite time
intervals. Not necessary, since some interesting and relevant systems may
not be ergodic, by KAM’s theorem (Walker and Ford 1969; for problems
in the ergodic approach see Earman and Redei 1996). And so also the
Gibbsian school relies on non-dynamical postulates.7

Until recently, no approach to the foundations of statistical mechanics
has been able to overcome these difficulties and to rely only on the dy-
namics in recovering thermodynamics. Albert’s (1994a; 1994b; 2000, ch.
7) recent proposal (on which we shall focus here) attempts to provide a
way to do precisely this, by taking seriously the fact that the underlying
dynamics is quantum mechanical, rather than classical. Albert’s proposal
belongs to the Boltzmannian school in that it takes entropy to be a prop-
erty of the microstates of individual systems, rather than a property of
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ensembles or probability distributions over microstates as in the Gibbsian
approach. Therefore he focuses on the dynamical evolution of individual
systems, rather than on the evolution of ensembles or probability distri-
butions. It seems to us possible to apply Albert’s ideas in a Gibbsian
framework as well; we do not undertake this here.

3. GRW Jumps and Thermodynamics. Albert (2000, ch. 7) proposes to
explain the thermodynamic regularities by relying solely on the stochastic
dynamics of the quantum state as prescribed by the quantum theory of
the collapse of the wave function proposed by Ghirardi, Rimini and Weber
(1986). On his approach it is an intrinsic feature of the GRW dynamics
of the quantum state that every single one of the possible initial microstates
of a thermodynamic system has a high probability to evolve to states which
are compatible with the predictions of thermodynamics, and therefore
there is no need to add any of the non-dynamic postulates used in the
classical case, as described above. As we shall see Albert’s approach relies
heavily on the fact that the GRW dynamics is genuinely stochastic.

We now turn to a detailed discussion of Albert’s approach. We start in
Section 3.1 by briefly presenting the GRW theory and how it solves the
measurement problem in quantum mechanics. Then, in Section 3.2 we
describe Albert’s approach as to how to recover the thermodynamic reg-
ularities using the GRW collapses. Finally, in Section 3.3 we consider in
more detail some features of Albert’s approach.

3.1. The GRW Theory. Albert’s approach makes an explicit linkage
between the GRW solution to the measurement problem in the quantum
theory of measurement and the implications of the GRW theory concern-
ing the time evolution of thermodynamic systems. The measurement prob-
lem arises in quantum mechanics as a straightforward consequence of
applying the Schrödinger linear and deterministc dynamics to the mea-
surement interaction. This dynamics results for a generic measurement
interaction in a superposition of the form

Ψ = ⊗∑ µ ψ ϕi i i
i

, (1)

where the kets |wi� represent some suitably defined pointer states of the
measuring apparatus (typically, the |wi� are eigenstates of the pointer po-
sition), and the |ui� are some states of the system. The problem is that in
states of the form (1) the measurement has no definite outcome (except in
the special case where all but one of the li are zero), since the final (re-
duced) state of the apparatus cannot in general be described in terms of
an ensemble of systems in a classical mixture (in which the |li|2 represent
the probabilities for each |wi� to actually be the case). The GRW theory
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8. For a more detailed discussion of the GRW theory, see GRW 1986; Bell 1987; Ghir-
ardi 2000, and references therein.

(formulated for non-relativistic quantum mechanics) solves this problem
by modifying the Schrödinger linear dynamics. In particular, the Schrö-
dinger equation of motion is changed by adding to it a non-linear and
stochastic factor (so-called a jump factor). On occasion, this jump gener-
ates the collapse of the wave function in a way that depends on the mass
density of the system (roughly, the frequencies of the collapses are pro-
portional to the number of particles or to the mass density of the system,
depending on the model). For our purposes it is enough to present Bell’s
(1987) version of the elementary and non-relativistic theory. This goes
roughly as follows.8

Consider the quantum mechanical wave function of a composite N
particles system:

ψ ψ( , , , , ) , , , ( ) .t tN Nr r r r r r1 2 1 2… …= (2)

The time evolution of the wave function usually (at almost all times) sat-
isfies the deterministic Schrödinger equation. But sometimes at random
the wave function collapses (these collapses are known as the GRW jumps)
onto a wave function w� localized in position which has the (normalized)
form

ψ
ψ

�

…
=

−j t

R
n N

n

( ) ( , , , , )

( )
,

x r r r r

x
1 2 (3)

where rn in the jump factor j(x � rn) is randomly chosen from the argu-
ments r1, . . . , rn of the wave function immediately before the jump. Rn in
(3) is a renormalization factor:

R jn N( ) ,x r r
2 3

1
3 2= ∫ d d… ψ (4)

and the jump factor j is also normalized:

d3 2
1x xj( ) .=∫ (5)

For j GRW suggest the Gaussian:

j K( ) exp( ),x x= − 2 22/ ∆ (6)
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9. See Pearle, Ghirardi, and Grassi 1990; Ghirardi 2000, on the problem of generalizing
the GRW theory to the relativistic domain.

where the width D of the Gaussian is a new constant of nature: D � 10�5

cm. Its size is chosen so that the spontaneous collapses will not result in
an observable violation of energy conservation.

Probabilities enter the theory twice. First, the probability that the col-
lapsed wave function w� is centered around the point x is given by

d3 2
x xRn ( ) . (7)

This probability distribution, as can be seen, is proportional to the stan-
dard quantum mechanical probability given by the Born rule for a position
measurement on a system with a wave function Rn(x) just prior to the
jump. Second, the probability in for a GRW jump to take place in a unit
of time is

N

τ
, (8)

where N is the number of arguments in the wave function (in Bell’s model
it may be interpreted as the number of particles), and s is another new
constant of nature (s � 1015 sec.). Note that the expression (8) does not
depend on the quantum wave function, but only on N. This is essentially
the whole theory.

As it stands, it seems that this theory cannot be generalized to relativ-
istic and field theories, since the GRW jumps are applied to particles’
positions and not field variables, and the collapse rates are determined by
particle numbers.9 As part of an attempt to solve this problem more gen-
eral models are considered in which the collapse rates are defined such
that they are increased exponentially in correspondence with the mass
density of the system (Ghirardi 2000).

In both models it is a straightforward consequence of the standard
quantum mechanical treatment of composite systems (in particular, of
non-factorizable quantum states) that a single GRW jump of any one of
the subsystems in the composite is enough to bring about a collapse of the
global wave function. For microscopic systems, collapses have extremely
low probability to occur, so that the quantum mechanical Schrödinger
equation turns out to be almost literally true at all times just as no-collapse
quantum mechanics predicts (and experiment confirms). However, for
massive macroscopic systems (or for systems with 1023 particles) collapses
are highly probable at all times. In measurement situations the GRW
theory implies that superpositions of macroscopic pointer states of the
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form (1) collapse with extremely high probability onto the localized states
|wi� on time scales that are much faster than measurement times. In par-
ticular, the probability that the wave function of the composite of system
plus apparatus will stay in the superposition (1) for more than a fraction
of a second (i. e., by the time the measurement is complete) vanishes ex-
ponentially. Moreover, whenever the wave function in (1) has a spatial
spread which is larger than D, any GRW jump will result in a localization
of the wave function. That is, the jump will reduce the wave function onto
one of the terms |wi� � |ui�, in which the pointer is in the localized state
|wi�, where the probability for the i-th term (see equation (7)) is given as
usual by the squared amplitude |li�2. This means that in a sequence of
quantum mechanical measurements the GRW jumps result in definite out-
comes with frequencies that are (approximately) equal to the Born-rule
probabilities |li�2. The measurement problem is solved as long as mea-
surements involve a macroscopic recording of the result in position (e. g.,
a moving pointer of a measuring device, particles hitting on macroscopi-
cally separated regions of a computer screen, etc.).

The following properties of the GRW theory will be important later.
First, the dynamics is fundamentally chancy. The time of the collapse and
the center of the Gaussian into which the wave function collapses are
determined in a purely chancy way. Second, the time evolution resulting
from the GRW dynamics is non-invariant under time reversal. Past states
cannot be retrodicted by the GRW theory, not even approximately or in
a probabilistic way. Third the GRW jumps, by construction, occur only
in position, and in this sense the quantum mechanical ‘position basis’ is
given a physically preferred status.

3.2. Albert’s Approach to Thermodynamics. The key idea in Albert’s
approach is this. In the GRW theory the jumps mean that the system
actually undergoes stochastic transitions from one state to another. In the
context of the recovery of thermodynamics it is useful to think about the
GRW jumps as if they induce stochastic perturbations of the Schrödinger
trajectory of the system. This means that the GRW trajectory can be seen
as a patchwork of segments of different Schrödinger trajectories each of
which corresponds to a different initial state of the system. The system
jumps from one Schrödinger trajectory to another, such that the net result
is an effective stochastic trajectory. In other words, the system performs
a random walk in the space of all possible Schrödinger trajectories where
the probabilities are given by (7).

The connection to thermodynamics goes as follows (see Figure 1). We
want to determine whether the time evolution of a given system is ther-
modynamic normal or abnormal. Consider the spreading out of a gas in
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Figure 1. GRW dynamics

the box. When the partition is removed at t0 the composite wave function
of the gas is

Ψ Φ( ) ( ) ,0 0= ∑λi i
i

(9)

where the |Ui� are some wave functions in position representation and the
ki(0) are the corresponding quantum mechanical amplitudes. We assume
that the wave function of the gas evolves in time in accordance with the
GRW dynamics, and that the gas is macroscopic enough, so that there is
high probability for a GRW jump to occur during any dynamical time
interval Dt which is short in a thermodynamic scale. When a jump occurs
the wave function of the gas collapses into a state that is localized around
a certain position x � x1, x2, . . . , xN, that is, around some spatial distri-
bution of the gas molecules. For example, at t1 the wave function collapses
into some state |w1� which corresponds to a Gaussian centered around
x(t1). The collapsed state then evolves in accordance with the Schrödinger
equation. The high mass density of typical macroscopic systems implies
an overwhelmingly high probability for a collapse by t3 (where the time
interval (t3 � t1) is short in thermodynamic scales) onto a Gaussian cen-
tered around a position x(t3), where x(t3) � x(t1).

Since the GRW jumps presumably solve the measurement problem, a
sequence of such jumps results in a trajectory in the system’s state space
which can be described in terms of thermodynamic magnitudes. It is there-
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10. Albert (1994a, 1994b, 2000, ch. 7) provides only qualitative plausibility arguments
for his approach, and so the quantitative terms we use are vague.

fore possible, in this case, to determine whether or not the evolution of
the system obeys the laws of thermodynamics (e. g., of entropy increase).
Suppose now that we write down the GRW equation for a given ther-
modynamic system, and solve it for all possible initial states. Consider any
time interval (t1, t3) for which, according to the GRW prescription, a col-
lapse of the quantum state of the system occurs with high probability. For
every possible initial state at t1 there are in general many (possibly infinitely
many) possible final states at t3. For each such evolution, it is then possible
to determine whether the evolution is thermodynamic normal or abnor-
mal.

Albert (2000, 148–162, and especially, 155–156) now observes the fol-
lowing. First, the GRW jumps can be understood as inducing stochastic
perturbations of the quantum state of the gas. We thus have an internal
perturbation mechanism, as opposed to the external mechanism used in
classical open system approaches. As we explained above, the wave func-
tion, say of our gas in (9), follows a genuinely stochastic trajectory in the
system’s state space. Second, and moreover, any GRW collapse induces a
set of probability distributions, that is, transition probabilities—given the
wave function just prior to the collapse—over the possible wave functions
of the system immediately after the collapse. So in order for a GRW col-
lapse to put (with high probability) our gas’s wave function on a segment
of a Schrödinger trajectory which is thermodynamic normal, what is
needed is that the thermodynamic normal states (throughout the set of
microstates to which the system can collapse) overwhelmingly outnum-
ber10 the thermodynamic abnormal ones. Moreover, we need this condi-
tion to hold in every microscopic region of the state space. If this turns
out to be correct it would mean that after a GRW jump the wave function
of the system will be (with high probability) thermodynamic normal,
regardless of the history of the system and, in particular, of the state of
the system immediately before the collapse. And so, each and every state
has an overwhelmingly high probability to evolve to a thermodynamic
normal state following a GRW jump. This implies that the property of
being thermodynamic normal is stable over time, whereas that of being
thermodynamic abnormal is highly unstable. In effect, what is needed is
that the GRW probabilities for the collapse transitions reproduce the
probabilities of the (ab)normal trajectories calculated from the standard
statistical-mechanical measure for any given macrostate of the system.
Albert puts forward the hypothesis that as a matter of fact the GRW
dynamics provides precisely this. Call this Albert’s dynamical hypothesis.

Note that Albert’s hypothesis need not invoke postulates regarding ini-

https://doi.org/10.1086/375471 Published online by Cambridge University Press

https://doi.org/10.1086/375471


    341

11. Of course, there are other respects in which Ockham’s razor cuts against the GRW
theory, e.g., since the theory postulates two new constants of nature.

tial states and probability distributions thereof. Rather, since the GRW
dynamics is genuinely stochastic, whether or not this hypothesis is true
depends on the set of transition probabilities generated by the GRW col-
lapses. In this sense, Albert’s approach aims at deriving the thermody-
namic regularities from the underlying GRW dynamics only, without re-
course to initial states or probability distributions thereof.

3.3. Some Advantages of Albert’s Approach. Let’s spell out in more
detail the main advantages of Albert’s approach.

One Solution for Two Problems. In Albert’s approach, the GRW so-
lution of the measurement problem is also the solution for the problem in
the foundations of statistical mechanics, namely, a dynamical justification
for the use of probability. Moreover, the systems with the same properties
required for the GRW solution of the measurement problem (large or
massive systems) are the systems in which statistical mechanics can best
recover thermodynamics. For typical thermodynamic systems the GRW
jumps are highly probable to occur at all times, either because such systems
are typically massive enough, or because they interact with some other
massive systems, such as the interactions of the gas’s molecules with the
box’s walls. In such cases the GRW theory gives high probability for a
collapse of the quantum wave function, and this means that the thermo-
dynamic system has high probability to be at all times in a localized state.
The measurement problem is solved and the thermodynamic magnitudes
are well defined. When we add Albert’s dynamical hypothesis (regarding
the solutions of the GRW equations) we get the probability distributions
that are needed for statistical mechanics to work. Recall that the dynam-
ical hypothesis still lacks proof. But should it be proved, Albert’s approach
will present a unified way in which the GRW razor, so to speak, cuts twice:
in the theory of quantum measurement and in the foundations of statistical
mechanics. Moreover, it will have two clear advantages, both of which are
related to the notion of probability as chance, as follows.

Single Origin of Chance in Physics. First, on the GRW dynamics the
collapse of a superposition such as (1) onto one of the terms |wi� � |ui� is
a purely chancy event. The jumps invariably induce transitions from pure
states to pure states, where no crucial role is played by ignorance proba-
bilities in mixtures. For example, in (1) the quantum mechanical proba-
bilities |li|2 describe irreducible and genuine chances for a transition from
the superposition (1) to the corresponding localized state |wi� � |ui�. This
means that Albert’s approach has a clear advantage of parsimony.11 The
epistemic probabilities in classical statistical mechanics are completely re-
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12. This means that problems in the interpretation of probabilities in the classical ap-
proaches, such as the connection between probability and relative frequency distribu-
tions over infinite ensembles, and the connection between such ensembles and the evo-
lution of single systems in finite times simply don’t arise.

duced to the GRW quantum mechanical chances. Thus, the classical ep-
istemic probabilities have no essential role in physics on this view.12

No Recourse to Probability Distributions over Initial Conditions. The sec-
ond advantage is this. The GRW collapse dynamics and the probabilities
for such collapses around any given spatial point at a given time depend
on the wave function of the (total) system only at that time and don’t depend
on initial conditions (or the initial wave function). In the context of ther-
modynamics this means that Albert’s approach need not rely on statistical
postulates regarding initial (micro) conditions or probability distributions
over them. Given the hypothesis about the preponderance of the thermo-
dynamic normal evolutions, the GRW jumps have high probability to result
at all times in thermodynamic normal trajectories for a typical (macro-
scopic) thermodynamic system irrespective of (micro) initial conditions.

4. Quantum Decoherence. We now consider an alternative approach to
Albert’s: namely, the recovery of the thermodynamic regularities on the
basis of quantum mechanics without collapse. We shall rely on results in
decoherence theory of open (quantum) systems. In this respect our ap-
proach belongs to the interventionist (or open systems) tradition in the
foundations of classical statistical mechanics. Let us start by briefly de-
scribing the standard models of decoherence through the interaction with
the environment in no-collapse quantum mechanics (Zurek 1982, 1993;
Caldeira and Leggett 1983; Joos and Zeh 1985; Giulini et al. 1996). This
is followed by a description of results by Zurek and Paz (1994) concerning
the role of environmental decoherence in accounting for the increase of
the von Neumann entropy of quantum chaotic systems.

In the standard quantum mechanical models of decoherence the total
initial state of a macroscopic system plus environment is usually assumed
to be a product state

ψ ( , ) ,x x t EN1… ⊗ (10)

where |w(x1 . . . xN, t)� is the quantum state of the system and |E� is some
state of the environment. This means, in particular, that the states of the
system and of the environment are separable (i.e., not quantum mechan-
ically entangled; here to simplify the models we assume that they are also
pure states, but this is not necessary). One of the key features in these
models is that the interaction between the system and the environment is
assumed to be governed by a Hamiltonian that commutes (approximately)
with some observable of the system. That is,
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13. More generally, this basis is fixed by the dynamically conserved quantities.

14. The relaxation times of the system are typically extremely long, in some models on
the order of 1040 sec. Also, the decoherence times of the system are much shorter than
the dynamical times even for very weakly dissipative systems.

[ , ] .Hint Π ≈ 0 (11)

where Hint is the interaction Hamiltonian, and the system observable P
(called the pointer variable) is usually taken to be position. In this sense,
the standard models of decoherence usually assume that (approximate)
position is a preferred basis in the Hilbert space of the system.13 In general,
the time evolved (Schrödinger) state can be written in the form

Ψ( ) ( ) ( ) ,t t E ti i i
i

= ⊗∑ µ ψ (12)

where the kets |wi� are assumed to be the eigenstates of P, and the |Ei(t)�
are the relative states of the environment. The set of states {|wi�} is called
the pointer basis. The result of the coupling is that the scalar products
between the environment states |Ei(t)� in (12) relative to different pointer
states |wi� decay exponentially satisfying

E t t E t ti j ij( ) ( )+ + ≈∆ ∆ δ (13)

after extremely short times Dt (called decoherence times) which are typi-
cally around 10�23, sec.14 The decay of the scalar products in (13) is known
as environmental decoherence.

Joos and Zeh (1985) derive a master equation for the reduced state of
the system assuming recoil-free scattering (e.g., large mass ratio of the
decohered system over the scattered particles) and isotropy in the distri-
bution of the incoming particles (photons and molecules). Under these
assumptions, the solutions of the equation exhibit exponential decay of
the off-diagonal elements. The localization rate is proportional to
e�K(x�y)2t, depending in general on various factors, such as the strength of
the coupling, temperature, and mass ratios. For our purposes the follow-
ing results are crucial.

First, in the standard models of decoherence, in particular, models in
which there is a pointer basis, (13) and (12) imply that the reduced state
of the decohering system approaches the diagonal form:

ρ ψ µ ψs i
i

i it t( ) ( ) ,≈ ∑ 2

(14)
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15. We think that von Neumann’s original argument to the effect that the quantum
mechanical entropy is equivalent to the thermodynamic entropy is wrong and does not
establish its claim. We address this question in a forthcoming paper.

within times comparable to Dt. Second, in these models the diagonal form
(14) of the reduced state is stable over time (i.e., the scalar products (13)
remain vanishingly small). Third, Zurek, Habib, and Paz (1993) consider
the decoherence interaction of a harmonic oscillator with an environment
in thermal equilibrium. They show explicitly in the weak coupling limit
that the pointer states |wi� correspond to so-called coherent states, i.e.,
narrowly peaked Gaussians in both position and momentum. In their
model, coherent states are the most stable states for the system in the sense
that they produce the least von Neumann and linear entropy, so that qs(t)
becomes maximally mixed when diagonalized by coherent states. In this
sense one can say that in the standard models decohering systems follow
quasi-classical trajectories. In order to explain this last sentence a few more
details are needed.

4.1. Decoherence and the von Neumann Entropy. It turns out that de-
coherence plays an essential role in accounting for the emergence of clas-
sical behavior in quantum mechanics as well as in the recovery of ther-
modynamic behavior. In the case of chaotic systems Zurek and Paz (1994)
have shown how to recover the classical dynamics from the underlying
quantum dynamics. In their models they show why the classical evolution
cannot be recovered for closed systems, whereas open decohering systems
invariably exhibit an evolution which is approximately classical. As we
shall see in Section 5 their results may be taken to support our proposal
for recovering thermodynamics from quantum mechanics, since it implies
that the von Neumann entropy of decohering systems increases in the
course of time. Note, however, that it is questionable whether or not the
von Neumann entropy is the exact quantum mechanical counterpart of
the thermodynamic entropy (Shenker 1999; Henderson 2002).15

Before explaining this point in detail, let us describe qualitatively how
Zurek and Paz derive their results. In the case of classical chaotic systems
there are essentially two constraints on the dynamical evolution: (i) tra-
jectories with initially close segments diverge exponentially, and (ii) the
flow of the probability distribution is volume preserving, by Liouville’s
theorem. These two constraints together have the consequence that the
accessible phase space region (containing the states which are the time
evolutions of the initial states) assumes a structure which is highly striated
on increasingly finer length scales, at exponential rates.

In the case of quantum systems the dynamics of quantum chaotic sys-
tems on phase space is usually taken to be described by the so-called Wig-
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16. The equation of motion for the Wigner function is given by the Moyal bracket:

{ , } sin { , } ,H W i i H W
mb pb

= − ( )� �/

where {H, W}pb is the Poisson bracket describing the classical evolution of the Wigner
function W, and H is the Hamiltonian. This yields the evolution equation
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where the first term gives the classical Liouville flow, the second (higher derivatives
term) describes the quantum mechanical corrections for the evolution of a closed sys-
tem, and the last two terms result from the interaction with the environment field. These
last terms describe, respectively, the relaxation of the system (where c is the relaxation
rate) and diffusion (where d � 2cmkBT; m is the mass of the system, kB is the Boltzmann
constant, and T is the temperature of the field). The last diffusive term induces the
suppression of quantum interference (represented by the off-diagonal elements in the
reduced state qs(t) of the system) in the reduced dynamics (Zurek and Paz 1994; Joos
1996, ch. 3, sec. 3.2.3) and references therein.

17. This is because in the case of closed systems the last two terms in the evolution
equation of the Wigner function are equal to zero.

ner function which yields the probability distribution over position and
momentum.16 In general, the Wigner function cannot be straightforwardly
interpreted as a probability distribution since it sometimes takes negative
values. But for approximate measurements of position and momentum on
scales of jn it does yield (formally) a probability-like distribution (and so
a proper interpretation of quantum mechanics may take advantage of this
feature). In their detailed quantitative analysis Zurek and Paz (1994) arrive
at two extreme results.

(1) Closed Systems. If the system is completely closed (e.g., there are
no decoherence interactions), the chaotic dynamics results in exponential
divergence of neighboring trajectories.17 But this is compensated by an
exponential contraction in the opposite directions, so that the total volume
of regions in the phase space over which the Wigner function is nonzero
remains constant throughout this evolution, in agreement with Liouville’s
theorem. However, on finer length scales the contraction generates inter-
ference fringes which the Wigner function cannot follow, since if it were
to do so, then it could not be positive throughout jn-sized regions of phase
space. This means that the dynamics deviates from the classical evolution.
In particular, the system doesn’t follow (not even approximately) classical
trajectories (even in the context of a proper interpretation of quantum
mechanics).
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18. Note that this means that the diffusion in the evolution of the Wigner function
reduces the quantum coherence on decoherence time scales.

(2) Open Systems. When the system undergoes a decoherence interac-
tion with the environment there is an initial (relatively short) time interval
in which the dynamical evolution is approximately reversible, volume pre-
serving, and follows the classical Liouville flow. But for times larger than
the decoherence time of the system the Wigner function delocalizes in
position and decoherence ensues. This means that there is an effective
collapse of the total state (12) onto the corresponding mixture much before
the evolution deviates from the classical evolution.18 As a result the Wigner
function evolves towards a mixture of localized Gaussian states on a time
scale that is given approximately by

t Ic ln( ),/� (15)

where tc is the divergence rate of the chaotic trajectories of the system (i.e.,
the time scale at which the classical dynamics develops fine structure below
jn-sized regions of phase space), and I is the action. This is in fact the
crossover time at which the quantum corrections in the dynamical evo-
lution of the system become effective. For times larger than (15) the Gaus-
sain states in the Wigner function evolve independently of each other fol-
lowing approximately the classical evolution. But since interference terms
in the reduced dynamics are washed out (in correspondence with (14)), the
total phase space volume over which the Wigner function spreads increases
monotonically. This process goes on approximately on time scales at
which equilibrium is reached.

Thus, according to Zurek and Paz (1994), closed quantum systems can-
not exhibit a chaotic behavior, and in this sense they violate the predictions
of classical mechanics. But for open systems, as a result of decoherence
classical behavior is recovered (of course, only under a proper interpre-
tation of quantum mechanics; see the next section). In this case (and only
in this case) the system may be said (in no-collapse interpretations of quan-
tum mechanics) to follow quasi-classical trajectories (as it were, it doesn’t
have enough time to deviate from the classical evolution). In particular,
if quantum mechanics is correct and we also take into account the effects
of decoherence, there is only a small delay in the actual divergence rate of
the trajectories of the system relative to the rates given by classical me-
chanics. Note in this context that the crossover time (15) at which the
dynamics of the system becomes effectively classical depends on the clas-
sical divergence rate of the trajectories and not on decoherence rates (see
more details in Zurek and Paz 1994; Monteoliva and Paz 2000).

The effect of this dynamics on the quantum mechanical (von Neumann)
entropy �kTr qlnq is this. In case (1) of isolated systems the von Neumann
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19. The rate of increase in von Neumann entropy in the case of chaotic systems is
independent of the diffusion coefficient appearing in the evolution of the Wigner func-
tion. In the nonchaotic case the entropy production depends only on the value of the
diffusion coefficient. See further details in Zurek and Paz (1994, 1995); Monteoliva and
Paz (2000).

entropy remains approximately constant (and identically zero if the system
starts out in a pure state). And so in this case classical thermodynamics
cannot be recovered.

In case (2) Zurek, Habib, and Paz 1993 and Zurek and Paz 1994 show,
in the simple model of a decoherence interaction of a harmonic oscillator
with an environment in thermal equilibrium, that decoherence yields an
increase in the von Neumann entropy as a monotonic function of the
volume in phase space (see also Joos and Zeh 1985, 235–236.) The rate of
increase of the von Neumann entropy is proportional to the degree of
mixing of qs(t) (depending logarithmically on the number of eigenstates
of qs(t)). Assuming, for instance, that the diagonal elements of qs(t) in (14)
are approximately equal, the von Neumann entropy is lnN. In the case of
chaotic systems the von Neumann entropy increases (before equilibrium
is reached) at a rate that is approximately equal to the divergence rate of
the chaotic trajectories (Zurek and Paz 1994, 1995; Paz and Zurek 1999,
ch. 5; Monteoliva and Paz 2000), approaching (asymptotically) the clas-
sical Kolmogorov-Sinai rate for entropy production (Zurek and Paz
1995). This means that the rate at which the von Neumann entropy in-
creases is approximately the classical one. In the case of decohering sys-
tems which are not chaotic, the von Neumann entropy also increases but
at a much slower rate.19

To sum up: In case (1) of isolated systems classical thermodynamics and
classical mechanics lead to predictions that disagree with the predictions of
standard quantum mechanics. This holds as long as the system is truly
isolated from its environment so that there are no decoherence interactions.
This is correct of course only if the von Neumann entropy does correspond
to the usual notion of entropy as it is defined in thermodynamics and clas-
sical statistical mechanics (as we noted above, this is questionable). In case
(2) of open decohering systems the classical predictions are recovered. The
Wigner function breaks down (due to the effective collapse of the quantum
wave function) to Gaussian states each of which follows approximately
quasi-classical trajectories (as given by the Poisson bracket). Because of the
persistent (effective) reduction of interference terms (in correspondence with
the diagonal form of the reduced state qs(t) in (14)) the total volume of
phase space over which the Wigner function is nonzero increases monoton-
ically (so that Liouville’s theorem no longer describes it). In these cases we
obtain a monotonic (and effectively irreversible) increase in the von Neu-
mann entropy at approximately the classical rates.
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5. Thermodynamics without Collapse. Our project is similar to Albert’s,
namely, to justify the use of probability as it is used in classical statistical
mechanics, but using quantum mechanics as the underlying dynamics.
This project is different from the one undertaken by Zurek and Paz (1994).
Their project was to show that environmental decoherence brings about
an increase in the von Neumann entropy. We (and Albert), on the other
hand, argue that decoherence brings about an approach to equilibrium in
the classical sense of, for example, an evolution towards the most probable
macrostate. The concepts of entropy, equilibrium, etc. that we use are
those appearing in classical statistical mechanics, in either its Boltzman-
nian version or the Gibbsian one. We shall be willing to use the von Neu-
mann entropy only to the extent that it corresponds to those classical
notions, and this correspondence is yet to be established (as we have al-
ready remarked).

What, then, is the role of the above results concerning the von Neu-
mann entropy in our argument? These results will serve as a significant
support for a hypothesis that we shall make, but the hypothesis is reason-
able on other grounds as well, and so our proposal does not depend on
the above results. But before proceeding to undertake this project, let us
make some further remarks on the extent to which the von Neumann
entropy corresponds to any classical notion of entropy based on phase
probabilities. Some problems arise in this context.

First, decoherence by itself does not solve the measurement problem in
quantum mechanics. The interference terms in the superposition (12) are
not eliminated, but rather diffused into the degrees of freedom of the
environment. It is true that the effects of interference between the different
terms in (12) are effectively undetectable for times longer than the decoh-
erence time Dt of the system, and in the pointer basis the reduced state
qs(t) has the form of a classical statistical mixture. But qs(t) in (14) is an
improper mixture. We still lack an explanation for why our experience
singles out only one of the |wi� as actually occurring on each occasion.
This means that qs(t) cannot be taken to represent a probability distribu-
tion, and the diagonal elements |li(t)|2 cannot be interpreted as probabil-
ities of the corresponding states |wi�.

Second, in the context of thermodynamics, the measurement problem
translates into a problem about the meaning of the phase space functions
and of the thermodynamic properties of the system. Take first the Wigner
function. Due to decoherence it behaves formally like a probability dis-
tribution whenever there exists a stable pointer basis (of coherent states).
But even in these cases (where the Wigner function takes only positive
values, and its evolution is effectively irreversible) the reduced state qs(t)
still doesn’t correspond to a probability distribution. And thus the reduced
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20. The interpretation of the reduced state as describing the probability distribution
over the |wi� at a single time is the same in the pilot-wave, modal, and many-worlds
theories. However, these theories differ in their account of the multitime (joint and
transition) probabilities.

21. Note that the pointer basis which is taken here as preferred in decomposing qs(t) is
fixed by the condition in (11).

dynamics as described by the Wigner function (or by the evolution of the
reduced state qs(t)) cannot be said to follow quasi-classical trajectories.

Moreover, since qs(t) is not a probability distribution, the von Neu-
mann entropy too cannot be given a Gibbsian interpretation in terms of
a probability distribution. Similarly, a Boltzmannian notion of entropy
based on dividing the diagonal elements in qs(t) into sets corresponding to
macrostates makes no sense. In a Boltzmannian approach entropy is a
physical relation between a given microstate of an individual system and
a given macrostate. In classical statistical mechanics a macrostate is as-
sociated with volume in phase space, and the entropy of the microstate of
the system at a given time is the logarithm of the standard measure of the
volume which includes this microstate at this time. Thus, it is part and
parcel of the Boltzmannian notion of entropy that the system actually be
in a given microstate (and a fortiori in a given macrostate). This means
that the von Neumann entropy (and the Wigner function) cannot be prop-
erly understood in a Gibbsian approach, nor in a Boltzmannian approach.
In quantum mechanics the application of such approaches requires a so-
lution to the measurement problem.

Some of the above problems can be solved by appealing to no-collapse
interpretations of quantum mechanics (modal, many-worlds, and pilot-
wave theories). In such interpretations there are extra dynamical laws
(over and above the Schrödinger equation) according to which qs(t) in (14)
represents a genuine probability distribution over the |wi�. The state of the
system at each time is associated with one of the states |wi� (call them
effective states) corresponding to the diagonal elements of qs(t). And there
are transition probabilities between any two such effective states at dif-
ferent times.20 In such interpretations decoherence is usually used in order
to explain (on the basis of the dynamics of the quantum state) why the
different terms in the time-evolved superposition (12) effectively cease to
interfere.21 And then the diagonal form of qs(t) (as in (14)) together with
the interpretation of qs(t) as describing probabilities is taken to explain in
such interpretations the so-called effective collapse of the state. As is well
known, any one of the above interpretations of quantum mechanics faces
its own problems (e. g., in the context of measurement theory and relativ-
istic generalizations), and so whether or not it may be taken as a foun-
dation of classical statistical mechanics will depend on how these problems
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Figure 2. Environmental decoherence

22. More pathological cases in which decoherence does not lead to a pointer basis (of
localized states) are discussed in Hemmo and Shenker 2003, sec. 5.

will be solved. In this paper we do not address these issues and do not
advocate choosing one of the above interpretations.

5.1. The Proposal. Consider systems which conform to the standard
models of decoherence (Caldeira and Leggett 1983; Joos and Zeh 1985;
Zurek, Habib, and Paz 1993) in which there is a stable pointer basis, and
in which decoherence yields localization of the effective states of the sys-
tem.22 In the standard models the total state of system plus environment
has the form (12), that is

Ψ( ) ( ) ( ) ,t t E ti i i
i

= ⊗∑ µ ψ (16)

where the effective states |wi� diagonalizing the reduced state of the system
are coherent states. The coherent states in these models are the maximally
stable states under the time evolution (including the decoherence inter-
action).

Figure 2 illustrates the evolution of a state during a time interval longer
than the decoherence time of the system. The total state above evolves in
accordance with the Schrödinger equation. The different terms in the su-
perposition (16) which are approximately product states of the form
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23. For a detailed discussion of the modal interpretation of quantum mechanics, and
in particular the extra stochastic dynamics, see Bacciagaluppi 1998; Bacciagaluppi and
Dickson 1999. In the pilot-wave theory the velocity equation is deterministic, and so
the trajectory of the system is fixed by the initial conditions and the dynamics. In this
theory there are no genuinely stochastic transitions between different trajectories along
which the system can evolve. In the many worlds theory the question of whether or not
there are stochastic transitions when a state of the form (16) branches is under dispute.

ψ i iE t⊗ ( )1 (17)

evolve approximately in accordance with the Schrödinger free evolution,
independently of each other, because the |Ei(t1)� don’t reinterfere. In this
sense we obtain an effective collapse of the state (16). In general, we can
assume that the independent time evolution of each of the branches in-
duces some spread in position (t2 in Figure 2). When this spread becomes
larger than the coherence length, decoherence will operate again (t3 in
Figure 2), and as a result the reduced state qs(t) of the system will become
mixed in each of the time evolved terms (17). But decoherence insures that
qs(t) will be diagonalized, again, by coherent states. And so in all branches
of the total state the new effective states of the system at t3 are coherent
states coupled to (approximately) orthogonal |Ei(t3)�. The states |wi� at t3

are now centered around some spatial points xi(t3) that are, in general,
different from xi(t1).

We may now assume that a single effective state at t1 (i. e., one of the
|wi� at t1) does not uniquely determine a single effective state at t3. That is,
we assume that the transitions between the effective states are genuinely
stochastic (the two-time correlations are not one-to-one). This depends on
the details of the extra dynamics of the no-collapse theory in question: in
some modal and many-worlds interpretations the dynamics is indeed gen-
uinely stochastic.23 On this assumption the result is that the effective state
of the thermodynamic system changes in a stochastic way in the course of
decoherence. It may be convenient to think about these transitions as if
they induce random perturbations on the system’s trajectory. The crucial
point is that these transitions don’t in fact depend on initial conditions
(over and above those needed to secure decoherence). In this sense they
play exactly the same role played by the GRW jumps in Albert’s approach.

Suppose now that we write down the Schrödinger equation for a given
thermodynamic system, and solve it for all possible initial states. Take the
time interval (t1, t3). For every possible initial state at t1 (which for sim-
plicity we assume is approximately pure) there are many possible evolu-
tions that branch out from it, corresponding to different relative states of
the environment (many possible final states at t3). Compare all the pairs
of states, one of which is a possible initial state at t1 and the other is one
branching-out evolution of it at t3. It is then possible to determine, for
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24. Although they are conceptually very different, and differ in results as well, as already
emphasized by Jaynes (1965).

25. We discuss the role of initial conditions in Section 6 and in Hemmo and Shenker
2003.

each such pair, whether the transition from the state at t1 to the state at
t3 is thermodynamic or antithermodynamic.

We now argue that the thermodynamic evolutions overwhelmingly out-
number the antithermodynamic ones. The reason is this. The effective
evolution is made of segments, each of which is of the t1-to-t3 type (Figure
2). Due to the genuinely stochastic nature of the selection of segments
which make up the evolution, if most transitions between effective states
are thermodynamic normal, then the overall evolution will be thermody-
namic, regardless of whether or not any of the segments which make it up
happens to be thermodynamic abnormal. Recall that we have defined a
trajectory to be thermodynamic normal (abnormal) if the succession of
states obeys (violates) the laws of thermodynamics. A prerequisite is, of
course, that the thermodynamic magnitudes be well defined, and in the
context of quantum mechanics this means, in particular, that the mea-
surement problem be solved.

In order to prove the above if clause, we proceed in two stages. First,
we put forward a dynamical hypothesis that the overwhelming majority of
the above t1-to-t3 transitions are thermodynamic normal. More precisely,
our hypothesis says that the stochastic transitions of the extra variables
reproduce during decoherence processes the standard measure as used in
classical statistical mechanics. If this is correct it would mean that the
decoherence interaction induces perturbations (i. e., stochastic transitions
between effective states) that are enough to put the effective wave function
of the system with high probability and with high enough rates on ther-
modynamic normal trajectories. This hypothesis is a counterpart of Al-
bert’s dynamical hypothesis (spelled out in Section 3.3), and it needs of
course to be proved within a given no-collapse theory.

Second, to support our hypothesis in the framework of quantum me-
chanics without collapse we turn to the results in decoherence theory by
Zurek and Paz described in the previous section. These results demonstrate
that the process of decoherence brings about an increase of the von Neu-
mann entropy. This entropy is of a Gibbsian type. But given the proximity
between the results of applying the Gibbsian and Boltzmannian ap-
proaches in the right circumstances,24 it seems highly reasonable that en-
tropy in a Boltzmannian approach increases as well due to decoherence.
Consequently, it is highly reasonable that in the course of decoherence
most of the t1-to-t3 type of evolutions are thermodynamic normal for all
possible initial states of the system which lead to decoherence.25 Note that
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26. In Bohm’s theory the position of both open and closed systems follows always
deterministic trajectories. In modal interpretations the evolution of the set of the extra
variables associated with the (global) properties of both open and closed systems follows
the Schrödinger evolution (i.e., it is deterministic). In the case of closed systems there
are typically no stochastic transitions also in the values of those properties. But for
open systems the dynamics of the extra variables is generally stochastic (Bacciagaluppi

Zurek and Paz’s results support our dynamical hypothesis only insofar as
the von Neumann entropy is equivalent to or is a counterpart of the ther-
modynamic entropy. As we mentioned before, however, this idea is under
dispute. According to our proposal it may be possible to recover the ther-
modynamic regularities without recourse to the von Neumann entropy by
relying directly on our dynamical hypothesis.

6. Probabilities and the Role of Stochasticity. As we saw in Albert’s ap-
proach the stochastic jumps of the GRW theory (given his dynamical
hypothesis) have two important consequences: (i) the trajectory of a sys-
tem will be (with high probability) thermodynamic normal independently
of whether or not the initial state of the system was thermodynamic nor-
mal or abnormal (thus thermodynamics is obtained as a pure result of the
GRW dynamics); and (ii) the probabilities in classical statistical mechanics
are entirely reduced to the quantum mechanical probabilities, as the latter
are construed by the GRW theory. This second point means that all prob-
abilities in physics may be construed as objective probabilities (pure
chances), and in particular it means that ignorance probabilities need play
no fundamental role in physics.

By contrast, Albert (2000, 152–153) further argues that the stochastic
dynamics in no-collapse interpretations of quantum mechanics (e. g., many-
worlds or many minds interpretations, or the stochastic evolution of the
extra variables in modal interpretations) will not in general induce the right
transitions required for thermodynamic evolutions. This is because in these
interpretations the evolution of the quantum state is given by the determin-
istic Schrödinger equation, and this evolution also determines completely
both the evolution of the probabilities and the evolution of the set of all
physical properties of the system. One may say that in these interpretations
the set of probabilities and the set of properties of the system provide, as it
were, an envelope of possibilities which evolves in time in a completely
deterministic fashion. Therefore, Albert concludes that in no-collapse quan-
tum mechanics one cannot establish results analogous to points (i) and (ii)
above, and so this is a clear advantage of his approach.

However, the foregoing reasoning applies only to isolated quantum
systems. That is, as long as the thermodynamic system is isolated, its be-
havior is fixed entirely by the evolution of its quantum state alone. More-
over, if by the Schrödinger equation the quantum state of an isolated
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and Dickson 1999). In many worlds theories the evolution of closed systems is always
deterministic and there is no corresponding splitting of worlds. Splitting (and in some
versions stochastic evolution) occurs only due to interactions (typically measurement-
like interactions).

27. But note that statistical postulates are needed in order to make sure that the system
will evolve along decohering trajectories in the first place. These statistical postulates
need not have anything to do with the quantum mechanical probabilities. We discuss
this issue as well as other postulates about initial conditions in decoherence theory in
Hemmo and Shenker 2003; see also Arntzenius’ (1998) analysis of this topic in the
context of modal interpretations.

system evolves along a thermodynamic abnormal trajectory, then the sys-
tem will violate the predictions of thermodynamics, independently of
whether or not other (so-called ‘hidden’) variables of the system undergo
stochastic or deterministic transitions.26 But, as argued above, in no-collapse
interpretations the effects of decoherence in the case of open systems are
crucial for the explanation of thermodynamic evolutions. In particular,
since decoherence results in stochastic transitions between the system’s
effective states (at different times), the latter states (as we explained above)
evolve along trajectories which will be in general different from the tra-
jectory along which the total quantum state evolves. It is correct that the
trajectory along which the total state evolves is fixed deterministically by
the initial state of the system. But in the case of interacting systems (i. e.,
as in decoherence) the trajectories along which the effective states of the
system evolve are not fixed deterministically by the initial quantum state
of the system (except in deterministic theories like Bohm’s), and they may
be completely independent of it.

Let us see how these ideas can be understood in, for example, modal
interpretations. Recall our schema in Figure 2. In modal interpretations
the extra variables evolve between t1 and t3 in a genuinely stochastic fash-
ion, such that at t3 one of the Gaussians is chosen by the stochastic hidden
variable. The chosen Gaussian is referred to in modal interpretations as
the actual (or effective) state of the system. In our schema this means that
the effective transitions from one Gaussian state to the next are chancy or
stochastic. As explained in the previous section this brings about the ther-
modynamic behavior. In this way we can see how our approach yields the
consequences (i) and (ii) of Albert’s approach.

Because of the stochastic nature of the dynamics in modal interpreta-
tions, for example, whether or not the actual trajectory of a system is ther-
modynamic normal (or abnormal) on those interpretations will not depend
on the initial quantum state of the system. And so the thermodynamic
regularities can be explained along the lines sketched above on a purely
dynamical basis, just as in the GRW theory. Furthermore, when the system
evolves along decohering trajectories the probabilities in classical statistical
mechanics are entirely reduced to the quantum mechanical probabilities.27
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28. The Schrödinger equation is time reversible in the usual sense that it is invariant
under temporal reflection and complex conjugation.

The role of stochasticity in our approach, however, is different in one
important respect from its analogue in the Albert-GRW approach. De-
spite the fact that due to the interaction with the environment the transi-
tions between the effective states of the system are stochastic (Figure 2),
the evolution of the total wave function is time reversible, since it is gov-
erned by the Schrödinger equation.28 For example, the total wave function
may recohere in the future, and this will (or will not) happen regardless
of whether or not the evolution of the extra variables is stochastic. And
since the Schrödinger equation is deterministic, the evolution of the total
wave function depends entirely on initial conditions. For this reason the
stochasticity in our approach (although it may correspond to a genuine
chancy evolution of the extra variables) does not entail genuine thermo-
dynamic irreversibility. This is unlike the Albert-GRW approach. In quan-
tum mechanics thermodynamic (ir)reversibility is thus an outcome of the
evolution of the total wave function and does not depend on the behavior
of extra variables. Here too these variables remain hidden.

Note that in Bohm’s theory there can be no stochastic transitions or
stochastic perturbations of the trajectory of an open system which don’t
completely depend on the initial conditions. Of course, our analysis using
decoherence is perfectly applicable also in this theory. But since the theory
is completely deterministic and time reversible (both the Schrödinger
dynamics and Bohm’s velocity equation are deterministic and time re-
versible), initial conditions in the recovery of thermodynamics (such as
the initial distribution postulate ||W�|2) play essentially the same role as
in the classical approaches in statistical mechanics. We discuss in more
detail the role of initial conditions in both Albert’s approach and in our
approach in a sequel of this paper (Hemmo and Shenker 2003).

7. Summary and Open Questions. Albert proposes to solve some problems
in the foundations of statistical mechanics using the GRW approach to
quantum mechanics. Had this been the only way to solve these problems,
the GRW approach would have gained a significant advantage over al-
ternative interpretations of quantum mechanics. For this reason it is im-
portant to learn that no-collapse approaches to quantum mechanics can
yield similar results. In particular, the recovery of the thermodynamic reg-
ularities in Albert’s approach relies on a dynamical hypothesis to the effect
that the GRW dynamics produces the standard (classical) probability
measure over the microstates. In our no-collapse approach a similar dy-
namical hypothesis is also required with respect to effective transitions in
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decoherence processes. Moreover, in both Albert’s and our approach these
hypotheses are equally justified given the properties of, respectively, the
GRW dynamics and decoherence. It is significant to note that in a no-
collapse approach, unlike Albert’s approach, our hypothesis appears to
be supported by the results of Zurek and Paz (1994)—assuming, once
again, that the von Neumann entropy corresponds to the thermodynamic
entropy. A deeper understanding of these results requires further investi-
gation of precisely what is the notion of entropy in quantum mechanics,
and its relation to, say, quantum mechanical mixing and entanglement,
and the von Neumann entropy in particular.

As noted above, Albert’s proposal has significant points of strength. It
proposes a single origin for chance in physics, in both quantum mechanics
and statistical mechanics, namely the GRW stochastic equations of mo-
tion. And it entails that there is no need to postulate special initial micro-
conditions when accounting for the low entropy in the past and in the
future. Yet, it is still necessary in Albert’s approach to assume a past
macrostate of low entropy, Albert’s past hypothesis, in order to get the
right (thermodynamic) retrodictions about the past; this is discussed in
some detail in Hemmo and Shenker 2003. In this context a deeper under-
standing of the status and role of Albert’s past hypothesis requires further
investigation.

Also our no-collapse proposal explains both quantum mechanical
probability and statistical mechanical probability in a unified way. But
this seems to hold only for dynamical situations in which decoherence
endures. It is of prime imprortance in this context to investigate the kind
and role of the statistical postulates concerning initial conditions in the
standard models of decoherence. As to the past hypothesis, our approach
requires that we assume not only a low entropy initial state, but also initial
microconditions which gurantee that decoherence but not recoherence
takes place in our past and future (see Hemmo and Shenker 2003 for a
detailed discussion of the past hypothesis).

It now remains to be seen how the two approaches account for some
seemingly problematic cases. For example, in the case of small and light
gases the GRW-predicted rates for collapses may be extremely low. In
these cases it seems that the thermodynamic behavior of the gases cannot
be explained by a GRW-based approach. Another example is the spin
echo experiments in which the effective isolation of the system may be
problematic for a decoherence-based approach. Some of these problems
in the context of the GRW theory are addressed by Albert (2000, ch. 7).
In the sequal of this paper (Hemmo and Shenker 2003) we describe these
difficulties in detail, and propose ways to solve them in Albert’s collapse
approach as well as in our no-collapse approach.
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