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Generalizations of Menchov–Rademacher
Theorem and Existence of Wave Operators
in Schrödinger Evolution

Sergey Denisov and Liban Mohamed

Abstract. We obtain generalizations of the classical Menchov–Rademacher theorem to the case of
continuous orthogonal systems. hese results are applied to show the existence of Moller wave
operators in Schrödinger evolution.

1 Introduction

he celebratedMenchov–Rademacher heorem (see, e.g., [10]) gives a general condi-
tion for a.e. convergence of the orthogonal series.

heorem 1.1 (Menchov–Rademacher) Suppose {ϕn(x)}, n ∈ N is an orthonormal

system in L2(0, 1), and the sequence {an} satisûes

l
def
=

∞

∑
n=1
a

2
n log2

(n + 1) < ∞.

hen the series∑
∞
n=1 anϕn(x) converges for a.e. x ∈ (0, 1). Moreover, if

m(x)
def
= sup

n∈N
∣

n

∑
j=1
a jϕ j(x)∣

deûnes a maximal function, then

∥m∥L2(0,1) ⩽ Cl
1/2

with some absolute constant C.

his result can be easily modiûed to cover orthonormal systems in L2
µ(0, 1) where

µ is a measure on (0, 1). In this paper, we prove an analog of this result for orthog-
onal systems with “continuous” parameters of orthogonality and apply it to show the
existence of wave operators for Schrödinger evolution.

We start with the following deûnitions.
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Deûnition We say that f ∈ L2
loc(R

+) if

∫

a

0
∣ f (r)∣

2
dr < ∞

for all a > 0.

Deûnition Let a pair (P, σ) consist of a function P(r, k)∶ R+ × R → C and a
measure σ on R. We say that (P, σ) is a continuous orthonormal system if
(i) for σ-a.e. k ∈ R, P(r, k) ∈ L2

loc(R
+);

(ii) for every f ∈ L2(R+) and every a > 0, we have

∫
R
∣∫

a

0
f (r)P(r, k)dr∣

2
dσ(k) = ∫

a

0
∣ f (r)∣

2
dr.

Our ûrst result is the following theorem.

heorem 1.2 Suppose (P, σ) is a continuous orthonormal system and

L
def
= ∫

R+
∣ f (r)∣

2 log2
(2 + r)dr.

hen the sequence {∫
n
0 f (r)P(r, k)dr} converges for σ-a.e. k ∈ R. Moreover, if

M(k)
def
= sup

n∈N
∣∫

n

0
f (r)P(r, k)dr∣,

then ∥M∥L2
σ(R) ≤ CL1/2 with some absolute constant C.

Deûnition We will call a continuous orthonormal system (P, σ) normalized if
there is a continuous positive function κ deûned on R such that

(1.1) κ
−1
∈ L

∞
(R), K

def
= sup

r⩾0
∫
R

∣P(r, k)∣2

κ(k)
dσ < ∞.

For normalized systems, the previous theorem can be improved in the following
way.

heorem 1.3 Consider a normalized, continuous, orthonormal system (P, σ , κ) and
suppose that f log(2 + r) ∈ L2(R+); then

(1.2) ∫
R
sup
t>0

∣∫

t

0
f (r)P(r, k)dr∣

2 dσ

κ(k)
≲

(∥κ
−1
∥L∞(R) + K)∫

∞

0
∣ f (r)∣

2 log2
(2 + r)dr.

Moreover, as R →∞,

(1.3) ∫

R

0
f (r)P(r, k)dr → ∫

∞

0
f (r)P(r, k)dr

for a.e. k with respect to measure σ.
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One example of continuous orthonormal system is given by solutions {P(r, k)}
to Krein systems [5, 12]. Krein systems are given by the following linear system of
diòerential equations:

(1.4)
⎧⎪⎪
⎨
⎪⎪⎩

P′(r, k) = ikP(r, k) − A(r)P∗(r, k), P(0, k) = 1
P′∗(r, k) = −A(r)P(r, k), P∗(0, k) = 1

, k ∈ C, r ⩾ 0.

In this paper, we will always assume that the coeõcient A ∈ L2
loc(R

+). he Cauchy
problem (1.4) has the unique solution (P(r, k), P∗(r, k)). In [12] (see also, e.g., [4]),
Krein showed that {P(r, k)}with r ⩾ 0 and k ∈ R can be viewed as continuous analogs
of polynomials, orthogonal on the unit circle. In particular, there is a measure σ on
R that satisûes

∫
R

dσ(k)

1 + k2 < ∞,

and the following property:

(1.5) ∫
R
∣∫

a

0
f (r)P(r, k)dr∣

2
dσ = ∫

a

0
∣ f (r)∣

2
dr

holds for every f ∈ L2(R+). In other words, any pair (P, σ) gives an example of a
continuous orthonormal system. Notice that (1.5) allows us to deûne the generalized
Fourier transform of f :

∫

∞

0
f (r)P(r, k)dr

as an element of L2
σ(R).

Under a mild extra assumption on coeõcient A, the system (P, σ) becomes nor-
malized, and the previous theorem can be applied. More precisely, the following
lemma holds.

Lemma 1.4 Suppose the coeõcient A in a Krein system belongs to the Stummel class,

i.e.,

∥A∥St
def
= sup

r⩾0
(∫

r+1

r
∣A(ρ)∣

2
dρ)

1/2
< ∞.

hen

(1.6) sup
r>0
∫
R

∣P(r, k)∣2

1 + k2 dσ ≲ 1 + ∥A∥
2
St .

Moreover, we have (1.2) and (1.3) with κ(k) = 1 + k2 and K ≲ 1 + ∥A∥2
St.

he proof of this Lemma is given in the Appendix.
Another application of our general results toKrein systems is given in the following

lemma.
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Lemma 1.5 Suppose the coeõcient in a Krein system satisûes A(r) log(2 + r) ∈

L2(R+); then

∫
R
( sup

ρ<r1<r2
∣∫

r2

r1
A(x)P(x , k)dx∣)

2
dσ

1 + k2

= ∫
R
( sup

ρ<r1<r2
∣P∗(r2 , k) − P∗(r1 , k)∣)

2 dσ

1 + k2

≲ (1 + ∥A∥
2
2)∫

∞

ρ
∣A(r)∣

2 log2
(2 + r)dr, ρ > 0.

Moreover, for Lebesgue a.e. k ∈ R, there is a limit Π(k) = limr→∞ P∗(r, k).

heorem 1.2, heorem 1.3, and Lemma 1.5 are proved in the second section. In
section 3, we apply Lemma 1.5 to show existence of wave operators for Schrödinger
evolution, which is our central result. Consider

H = −∂
2
xx + v

on R+ with Dirichlet boundary condition at zero and denote by H0 = −∂
2
xx the free

Schrödinger operator with the same Dirichlet condition at zero. he Moller wave
operators (see, e.g., [15]) are deûned by

W
±
(H,H0)

def
= lim

t→±∞
e
itH
e
−itH0 ,

where the limit is the strong limit in L2(R+). he main result of our paper is the
following theorem.

heorem 1.6 Suppose v = a′ + q where q ∈ L1(R+), a is absolutely continuous on

R+, and

a
′
∈ L

∞
(R+

), a log(2 + r) ∈ L
2
(R+

).

hen the wave operators W±(H,H0) exist.

he existence of wave and modiûed wave operators for Schrödinger and Dirac
equations was extensively studied in the scattering theory of wave propagation; see,
e.g., the classical papers by Agmon [1], Hörmander [9], and a book by T. Kato [11] on
the subject. he case v ∈ Lp(R+), 1 ⩽ p < 2 was considered in [3] where the exis-
tence of modiûed wave operators was proved. See [6] for later developments. In [4],
the presence of wave operators was established for Dirac equations with potential in
L2(R+). his result is optimal on Lp(R+) scale. For more general potentials in Dirac
equations and connection to the Szegő condition on measure σ , see [2]. Some related
recent results, including the multidimensional setting, can be found in, e.g., [7, 8, 13].

Notation (a) If f is deûned on R, f̂ denotes its Fourier transform:

f̂ (k)
def
=

1
√

2π ∫R
f (x)e

−i kx
dx .

he inverse Fourier transform is deûned as
qf (k) = f

∨
(k)

def
=

1
√

2π ∫R
f (x)e

i kx
dx .
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(b) C∞(R) stands for inûnitely smooth functions deûned on the real line, and
C∞c (R) denotes the space of smooth functions with compact support.

(c) We will use the symbol C(a1 , . . . ,ak) to indicate a nonnegative function that de-
pends on parameters (a1 , . . . , ak). he actual value of C can change from one
formula to another.

(d) If E is a set on the real line, Ec denotes its complement.
(e) For two non-negative functions f1(2), we write f1 ≲ f2 if there is an absolute

constant C such that
f1 ⩽ C f2

for all values of the arguments of f1(2). We deûne ≳ similarly and say that f1 ∼ f2
if f1 ≲ f2 and f2 ≲ f1 simultaneously.

(f) If f2 is a non-negative function and ∣ f1∣ ≲ f2, we write f1 = O( f2).

2 Menchov–Rademacher Theorem for Continuous Orthogonal
Systems

We start by giving a proof of heorem 1.2. It is a direct adaptation of the proof of
the Menchov–Rademacher heorem in [10], but we present it here for the reader’s
convenience.

Proof of Theorem 1.2 For j ∈ N, let Pj(k) = ∫
2 j

2 j−1 f (r)P(r, k)dr and

S
′
j(k) =

j

∑
l=1

Pl(k) = ∫

2 j

1
f (r)P(r, k)dr.

Now,

∥Pj∥
2
L2

σ(R) = ∫R
∣∫

2 j

2 j−1
f (r)P(r, k)dr∣

2
dσ(k) = ∫

2 j

2 j−1
∣ f (r)∣

2
dr,

and so

(2.1) ∑
j∈N

j
2
∥Pj∥

2
L2

σ(R) ∼ ∫

∞

1
∣ f (r)∣

2 log2
(2 + r)dr.

For any a > 0, we have

∑
j∈N
∫

a

−a
∣Pj(k)∣dσ(k)

≤ ∑
j∈N

(∫

a

−a
∣Pj(k)∣

2
dσ(k))

1/2
(∫

a

−a
dσ(k))

1/2

⩽
√

σ([−a, a])∑
j∈N

∥Pj∥L2
σ(R) j j

−1

≤
√

σ([−a, a])(∑
j∈N

j
2
∥Pj∥

2
L2

σ(R))
1/2

(∑
j∈N

j
−2

)
1/2

≲
√

σ([−a, a])(∫
R+

∣ f (r)∣
2 log2

(2 + r)dr)
1/2

=
√

σ([−a, a])L1/2 .

Since a is arbitrary large, by the theorem of Beppo Levi, ∑ j∈N ∣Pj(k)∣ converges for
σ-a.e. k, as does {S′j(k)}.
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Let S′(k)
def
= sup j∈N ∣S′j(k)∣ be the maximal function over dyadic partial sums.

Since S′(k) ≤ ∑ j∈N ∣Pj(k)∣, we have

∥S
′
∥L2

σ(R) ≤ ∥∑
j∈N

∣Pj ∣∥
L2

σ(R)
≤ ∑

j∈N
∥Pj∥L2

σ(R) = ∑
j∈N

j
−1

j∥Pj∥L2
σ(R) ≲ L

1/2

a�er applying the Cauchy-Schwarz inequality and (2.1).
For n ∈ {0, 1, 2, . . . , 2N}, we can write n = ∑

N
m=0 єm(n)2N−m with єm(n) ∈ {0, 1}.

For j ∈ {0, 1, . . . ,N}, let n j = ∑
j
m=0 єm(n)2N−m .

Noting that ∣∑N
j=1 x j ∣

2 ⩽ N∑
N
j=1 ∣x j ∣

2, we have

∣∫

2N
+n

2N
f (r)P(r, k)dr∣

2
= ∣

N

∑
j=1
∫

2N
+n j

2N+n j−1

f (r)P(r, k)dr∣
2

⩽ N

N

∑
j=1

∣∫

2N
+n j

2N+n j−1

f (r)P(r, k)dr∣
2

≤ N

N

∑
j=1

2 j
−1

∑
p=0

∣∫

2N
+(p+1)2N− j

2N+p2N− j
f (r)P(r, k)dr∣

2
,

and the last expression does not depend on n. Let

S
′′
j (k)

def
= sup

0⩽n≤2 j
∣∫

2 j
+n

2 j
f (r)P(r, k)dr∣

denote the maximal function over dyadic interval [2 j , 2 j+1]. We apply the above esti-
mate to get

∥S
′′
N∥

2
L2

σ(R) = ∫R
sup

0≤n≤2N
∣∫

2N
+n

2N
f (r)P(r, k)dr∣

2
dσ(k)

⩽ ∫
R
N

N

∑
j=1

2 j
−1

∑
p=0

∣∫

2N
+(p+1)2N− j

2N+p2N− j
f (r)P(r, k)dr∣

2
dσ(k)

= N

N

∑
j=1

2 j
−1

∑
p=0
∫
R
∣∫

2N
+(p+1)2N− j

2N+p2N− j
f (r)P(r, k)dr∣

2
dσ(k)

= N

N

∑
j=1

2 j
−1

∑
p=0
∫

2N
+(p+1)2N− j

2N+p2N− j
∣ f (r)∣

2
dr = N

2
∫

2N+1

2N
∣ f (r)∣

2
dr.

Taking S′′ = sup j∈N S′′j , we note that S′′ ⩽ (∑ j∈N ∣S′′j ∣
2)1/2, so

∥S
′′
∥L2

σ(R) ≲ (∑
j∈N

j
2
∫

2 j+1

2 j
∣ f (r)∣

2
dr)

1/2
≲ L

1/2 .
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Finally, we have

∥M∥
2
L2

σ(R) ≲ ∫

1

0
∣ f (r)∣

2
dr + ∫

R
sup
j∈N

∣∫

2 j

1
f (r)P(r, k)dr∣

2
dσ(k)

+ ∫
R
sup
j∈N

sup
2 j≤n≤2 j+1

∣∫

n

2 j
f (r)P(r, k)dr∣

2
dσ(k)

= ∫

1

0
∣ f (r)∣

2
dr + ∥S

′
∥
2
+ ∥S

′′
∥
2
≲ L.

Convergence of the sequence {∫
n
0 f (r)P(r, k)dr} for σ-a.e. k follows from the con-

vergence of {S′j(k)} established above and the estimate ∫R∑ j∈N ∣S′′j ∣
2dσ ≲ L, which

yields convergence of∑ j∈N ∣S′′j ∣
2 for σ-a.e. k. ∎

Proof of Theorem 1.3 We have

∫
R

sup
t∈R+

∣∫

t

0
f (r)P(r, k)dr∣

2 dσ(k)

κ(k)

= ∫
R

sup
t∈R+

∣∫

[t]

0
f (r)P(r, k)dr + ∫

t

[t]
f (r)P(r, k)dr∣

2 dσ(k)

κ(k)

≲ ∥κ
−1
∥L∞(R) ∫

R
sup
n∈N

∣∫

n

0
f (r)P(r, k)dr∣

2
dσ(k)

+ ∫
R

sup
t∈R+

∣∫

t

[t]
f (r)P(r, k)dr∣

2 dσ(k)

κ(k)
.

he ûrst integral was controlled in heorem 1.2. he second one can be estimated as
follows:

∫
R

sup
t∈R+

∣∫

t

[t]
f (r)P(r, k)dr∣

2 dσ(k)

κ(k)

≤ ∫
R

sup
n∈Z+

(∫

n+1

n
∣ f (r)P(r, k)∣dr)

2 dσ(k)

κ(k)

⩽ ∫
R

sup
n∈Z+

((∫

n+1

n
∣ f ∣

2
dr)(∫

n+1

n
∣P(r, k)∣2dr))

dσ(k)

κ(k)

⩽ ∫
R

∞

∑
n=0

((∫

n+1

n
∣ f ∣

2
dr)(∫

n+1

n
∣P(r, k)∣2dr))

dσ(k)

κ(k)

⩽
∞

∑
n=0

(∫

n+1

n
∣ f ∣

2
dr)(∫

n+1

n
(∫

R

∣P(r, k)∣2

κ(k)
dσ(k))dr)

(1.1)
⩽ K∥ f ∥

2
2 ,

which proves (1.2).
To establish (1.3), we notice that

∫

r

0
f (ρ)P(ρ, k)dρ = ∫

[r]

0
f (ρ)P(ρ, k)dρ + ∫

r

[r]
f (ρ)P(ρ, k)dρ.

he ûrst term has a limit as r → ∞ for σ-a.e. k as follows from heorem 1.2. For the
second one, we can write

∣∫

r

[r]
f (ρ)P(ρ, k)dρ∣ ⩽ ∫

[r]+1

[r]
∣ f (ρ)P(ρ, k)∣dρ,
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and the last expression goes to 0 for σ-a.e. k, since the series

∑
n∈N

(∫

n+1

n
∣ f (r)P(r, k)∣dr)

2

converges for σ-a.e. k. his convergence follows from the bound

∫
R
∑
n∈N

(∫

n+1

n
∣ f (r)P(r, k)∣dr)

2 dσ

κ

⩽ ∫
R
∑
n∈N

((∫

n+1

n
∣ f (r)∣

2
dr)(∫

n+1

n
∣P(r, k)∣2dr))

dσ

κ

⩽ (sup
r⩾0
∫
R

∣P(r, k)∣2

κ
dσ)∑

n∈N
∫

n+1

n
∣ f (r)∣

2
dr

(1.1)
< ∞. ∎

Before giving our proof of Lemma 1.5, we list some basic properties of Krein sys-
tems, which will be needed later in the text. We start by remarking that

(2.2) P(r, k) = e irkP∗(r, k),

provided that k ∈ R. his identity follows directly from (1.4) and can be found in,
e.g., [5].

Next, we consider an important case when A ∈ L2(R+). In [4] (see also orig-
inal Krein’s paper [12]), it was shown that the following properties hold under this
condition.
●here is a function Π(k), k ∈ C+ such that

(2.3) lim
r→∞

P∗(r, k) = Π(k)

uniformly over compact sets inC+. his Π is outer, and the orthogonality measure σ

can be written as follows:

(2.4) dσ =
dk

2π∣Π(k)∣2
+ dσs ,

where σs is its singular part.
● Integrating the second equation in (1.4), we have

(2.5) P∗(r, k) = 1 − ∫
r

0
A(ρ)P(ρ, k)dρ.

herefore,

1 − P∗(r, k) = ∫
r

0
A(ρ)P(ρ, k)dρ → Ã(k)

def
= ∫

∞

0
A(ρ)P(ρ, k)dρ,

when r → ∞ and convergence is in L2(R, σ) norm. On the other hand, the formula
[4, (12.37)] gives

Ã(k) = 1 −Π(k) ⋅ χE cs ,
where Ecs denotes the complement to Es , the support of σs . herefore,

(2.6) lim
r→∞

∥P∗(r, k) −Π(k) ⋅ χE cs ∥2,σ = 0.

● From (2.5) and orthogonality, we get

∫
R
∣P∗(r, k) − 1∣2dσ = ∫

r

0
∣A(ρ)∣

2
dρ.
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Proof of Lemma 1.5 he second equation in (1.4) gives

P∗(r2 , k) − P∗(r1 , k) = −∫
r2

r1
A(r)P(r, k)dr.

heorem 1.3 yields the necessary estimate on the maximal function and convergence
of P∗(r, k) σ-a.e. he limit is equal to Π from (2.3) due to (2.6). ∎

3 Wave Operators for Schrödinger Evolution: Proof of Theorem 1.6

We start this section by describing a connection betweenKrein systems andDirac and
Schrödinger operators onR+. Consider a Krein systemwith coeõcient A ∈ L2

loc(R
+).

It corresponds to a Dirac operator

(3.1) D = (
−b ∂x − a

−∂x − a b
)

deûned on the Hilbert space ( f1 , f2) ∈ L2(R+) × L2(R+), where a(x) = 2ReA(2x),
b(x) = 2 ImA(2x)with the boundary condition f2(0) = 0. Indeed, deûne real-valued
functions ϕ and ψ by writing ϕ(x , k) + iψ(x , k) def

= P(2x , k)e−i kx . It can be checked
[5, 12] that (ϕ,ψ) are generalized eigenfunctions for Dirac operator (3.1) and that 2σ
is its spectral measure. Deûne {E(x , k)}, x ⩾ 0 by

(3.2) E(x , k) def
= P(2x , k)e−ix k .

his is also a continuous orthonormal system with respect to σ , i.e.,

(3.3) ∫
R
∣∫

∞

0
f (x)E(x , k)dx∣

2
dσ = ∥ f ∥

2
2 ,

for every f ∈ L2(R+) (see [4, 12]). Making the extra assumption that A is real-valued,
i.e., that b = 0, and absolutely continuous on R+ and taking the square of D reveals
the connections between Dirac and Schrödinger operators. Indeed,

(3.4) D2
= (

H1 0
0 H2

) ,

where H1 f = −∂
2
xx f + q1 f , f ′(0) + a(0) f (0) = 0, H2 f = −∂

2
xx f + q2 f , f (0) = 0,

q1 = a
2
− a

′ , q2 = a
2
+ a

′ .

Later in the proof, wewill use the spectral decomposition forDiracD and the formula
(3.4) to write a suitable expression for e itH2 .

he following result implies heorem 1.6 thanks to Lemma 1.5.

heorem 3.1 Suppose the coeõcient A in a Krein system is real and absolutely con-

tinuous, A ∈ L2(R+),A′ ∈ L∞(R+), and

(3.5) lim
ρ→∞∫R

( sup
ρ<r1<r2

∣∫

r2

r1
A(r)P(r, k)dr∣)

2
dσ

1 + k2 = 0.

Let a(x) = 2A(2x) and let q be a real-valued function on R+ satisfying q ∈ L1(R+).
hen, taking two operators H = −∂2

xx + a
′ + q and H0 = −∂2

xx both with Dirichlet

boundary condition at zero, we get the existence of wave operators W±(H,H0).
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his theorem is the central technical result of our paper. Before giving its proof,
we state the following lemma.

Lemma 3.2 Suppose t ⩾ 0, µ is a measure on R, and p(k), pt(k) ∈ L2
µ(R). Let

∥p∥2,µ = 1 and

(3.6) lim
t→∞

∥pt∥2,µ = 1, lim
t→∞∫∆

∣p − pt ∣
2
dµ = 0

for every interval ∆ ⊂ R. hen lim
t→∞

∥p − pt∥2,µ = 0.

Proof he proof is based on a standard exhaustion principle. For every є ∈ (0, 1),
we can choose L > 0 such that ∫∆c ∣p∣

2dµ ⩽ є where ∆ def
= [−L, L]. By (3.6), there is a

T so that
∣1 − ∥pt∥

2
2,µ ∣ < є, ∫

∆
∣p − pt ∣

2
dµ < є

for t > T . hus, for t > T , we also have

∫
∆c

∣pt ∣
2
dµ = ∥pt∥

2
2,µ − ∫

∆
∣pt ∣

2
dµ

= ∥pt∥
2
2,µ − (1 − ∫

∆c
∣p∣

2
dµ − ∫

∆
(∣p∣

2
− ∣pt ∣

2
)dµ)

⩽ ∣∥pt∥
2
2,µ − 1∣ + ∫

∆c
∣p∣

2
dµ + ∣∫

∆
(∣p∣

2
− ∣pt ∣

2
)dµ∣

≲ є +
√
є,

where we used the triangle inequality to estimate

∣∫
∆
(∣p∣

2
− ∣pt ∣

2
)dµ∣ = ∣∥p∥

2
L2

µ(∆)
− ∥pt∥

2
L2

µ(∆)
∣

= (∥p∥L2
µ(∆) + ∥pt∥L2

µ(∆)) ⋅ ∣∥p∥L2
µ(∆) − ∥pt∥L2

µ(∆)∣

≲ ∥p − pt∥L2
µ(∆) ⩽

√
є.

hus,

∫
R
∣p − pt ∣

2
dµ = ∫

∆
∣p − pt ∣

2
dµ + ∫

∆c
∣p − pt ∣

2
dµ

⩽ є + 2∫
∆c

∣p∣
2
dµ + 2∫

∆c
∣pt ∣

2
dµ ≲

√
є

for t > T , and the proof is ûnished. ∎

Proof of Theorem 3.1 Since a2 , q ∈ L1(R+) and relative trace class perturbations do
not change the existence of wave operators (Birman–Kurodaheorem, [14, p. 27]), it
is enough to consider H = H2 = a′ + a2. Take f ∈ L2(R+). We need to prove the
existence of

(3.7) lim
t→±∞

e
itH
e
−itH0 f ,

where the limit is understood in L2(R+) topology. Notice that, since both groups
e itH and e−itH0 preserve L2(R+) norm, it is enough to prove the existence of the limit
for every f ∈ T where T is any dense subset in L2(R+). We deûne T as follows:
T

def
= { f ∶ f̂o ∈ C

∞
c (R), 0 ∉ supp f̂o}, where fo denotes the odd extension of f to R.
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From now on, we assume that f ∈ T, ∥ f ∥2 = 1 and that t → +∞ in (3.7) (the case
t → −∞ can be handled similarly). Denote f+

def
= ( f̂o ⋅ χξ>0)

∨, f−
def
= ( f̂o ⋅ χξ<0)

∨.
Working on the Fourier side, we get

e
−itH0 f =

1
π
∫
R
e
−i t ξ2

(∫
R+
f (u) sin(ξu)du) sin(ξx)dξ

=
1
2π ∫R

e
−i t ξ2

(∫
R
fo(u)e

−i ξu
du)e

i ξx
dξ.

he last expression is equal to the restriction of e i t∂
2
xx fo toR+, where ∂2

xx is considered
on all ofR. he large time asymptotic behavior of e i t∂

2
xx h for h ∈ L2(R) is known and

given in Lemma A.1. Since f̂o(ξ) = f̂+(ξ) for ξ > 0, it is enough to show that

(3.8) I
def
=
e i tk

2

1 + i
∫

∞

0

e ix
2
/(4t)

√
t

f̂+(x/(2t))ψ(x , k)dx

has a limit in L2(R, 2σ) when t → +∞. Indeed, the spectral measure for Dirac oper-
ator D is equal to 2σ ; the generalized eigenfunctions are (ϕ,ψ), and the Schrödinger
operator is related to the Dirac operator by (3.4), so we can use spectral decomposi-
tion for the Dirac operator to compute e itH where H = H2. To this end, we will use
the following generalized Fourier transform:

(
f1
f2
) Ð→ F = ∫

∞

0
f1(x)ϕ(x , k)dx + ∫

∞

0
f2(x)ψ(x , k)dx

and the analog of Plancherel’s heorem

∥ f1∥
2
2 + ∥ f2∥

2
2 = ∥F∥

2
2,2σ ,

which holds, since f ∈ T, f̂+ is supported on some interval [a, b] and a > 0. Use (2.2)
and substitute

ψ(x , k) =
P∗(2x , k)e i kx − P∗(2x , k)e−i kx

2i
into (3.8) to get

I = I1 − I2 ,

where

I1 =
e i tk

2

2i(1 + i)
∫

2bt

2at

e ix
2
/(4t)

√
t

f̂+(x/(2t))P∗(2x , k)e i kxdx ,

I2 =
e i tk

2

2i(1 + i)
∫

2bt

2at

e ix
2
/(4t)

√
t

f̂+(x/(2t))P∗(2x , k)e−i kx
dx .

Consider I2; the analysis of I1 is similar. Integrating by parts, we get

∫

2bt

2at
P∗(2x , k)(∫

x

2at

e iu
2
/(4t)

√
t

f̂+(u/(2t))e−i ku
du)

′

dx =

P∗(4bt, k)∫
2bt

2at

e iu
2
/(4t)

√
t

f̂+(u/(2t))e−i ku
du − J2 ,
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where, thanks to the second equation in (1.4),

J2 = ∫

2bt

2at
2A(2x)P(2x , k)(∫

x

2at

e iu
2
/(4t)

√
t

f̂+(u/(2t))e−i ku
du)dx .

For the ûrst term, we can write

P∗(4bt, k)∫
2bt

2at

e iu
2
/(4t)

√
t

f̂+(u/(2t))e−i ku
du

= (P∗(4bt, k) −Π(k) ⋅ χE cs )∫

2bt

2at

e iu
2
/(4t)

√
t

f̂+(u/(2t))e−i ku
du

+Π(k) ⋅ χE cs ∫

2bt

2at

e iu
2
/(4t)

√
t

f̂+(u/(2t))e−i ku
du.

From (A.9), we get

sup
t>1

∥∫

2bt

2at

e iu
2
/(4t)

√
t

f̂+(u/(2t))e−i ku
du∥

L∞(R)
< C( f ) ,

and (2.6) implies

lim
t→+∞

∥(P∗(4bt, k) −Π(k) ⋅ χE cs )∫

2bt

2at

e iu
2
/(4t)

√
t

f̂+(u/(2t))e−i ku
du∥

2,σ
= 0.

From (2.4) and (A.8), we obtain

lim
t→∞

∥
e i tk

2
Π(k)

2i(1 + i)
⋅ χE cs ⋅ ∫

2bt

2at

e iu
2
/(4t)

√
t

f̂+(u/(2t))e−i ku
du

−

√
2πΠ(k)

2i
⋅ χE cs f̂+(k)∥2,σ

= 0.

he analysis for I1 is analogous, and it also gives a main term converging to
√

2π ⋅Π(k)

2i
⋅ χE cs f̂+(−k)

and a correction that we call J1. Consider J1 and J2. We claim that if we show that

(3.9) lim
t→∞∫∆

∣J1∣
2
dσ = 0, lim

t→∞∫∆
∣J2∣

2
dσ = 0

for every interval ∆ ⊂ R, then the proof of heorem 3.1 will be ûnished a�er appli-
cation of Lemma 3.2. Indeed, in this lemma, we set µ = 2σ , pt = I, and the limiting
function p is

p = χE cs ⋅
√

2π
Π(k) f̂+(−k) −Π(k) f̂+(k)

2i
.

To apply Lemma 3.2, we notice that ∥I∥2,2σ → 1 by Lemma A.1. Moreover, (2.4) gives
∥p∥2,2σ = ∥ f ∥2 = 1.

We will prove the second identity in (3.9); the ûrst one can be obtained similarly.
For J2, we have

J2 = 2∫
2bt

2at
A(2x)P(2x , k)(∫

x

2at

e i(u
2
/(4t)−ku)
√

t
f̂+(u/(2t))du)dx .
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One can write

∫

x

2at

e i(u
2
/(4t)−ku)
√

t
f̂+(u/(2t))du = ∫

0

2at

e i(u
2
/(4t)−ku)
√

t
f̂+(u/(2t))du

+ ∫

x

0

e i(u
2
/(4t)−ku)
√

t
f̂+(u/(2t))du.

he ûrst term does not depend on x, and we can use (A.9) and (1.5) to write

(3.10) ∥∫

2bt

2at
A(2x)P(2x , k)(∫

0

2at

e i(u
2
/(4t)−ku)
√

t
f̂+(u/(2t))du)dx∥

2,σ
⩽

C( f ) ∫

bt

at
∣A(x)∣

2
dx ,

where the last expression converges to zero as t →∞. For the other term, we have

∫

x

0

e i(u
2
/(4t)−ku)
√

t
f̂+(u/(2t))du = e

−i tk2

∫

x

0

e i(u/(2
√

t)−k
√

t)2

√
t

f̂+(u/(2t))du.

he integral can be rewritten as

∫

x

0

e i(u/(2
√

t)−k
√

t)2

√
t

f̂+(u/(2t))du =

∫

x

−∞

e i(u/(2
√

t)−k
√

t)2

√
t

f̂+(u/(2t))du − ∫
0

−∞

e i(u/(2
√

t)−k
√

t)2

√
t

f̂+(u/(2t))du.

he second term is x-independent, so its contribution is negligible by an argument
identical to (3.10). For the ûrst one, we change variables and write, using the same
variable u,

∫

x

−∞

e i(u/(2
√

t)−k
√

t)2

√
t

f̂+(u/(2t))du(3.11)

= 2∫
(x−2kt)/2

√
t

−∞
e
iu2
f̂+(k + u/

√
t)du

= 2∫
(x−2kt)/2

√
t

−∞
e
iu2

( f̂+(k + u/
√

t) − f̂+(k))du

+ 2 f̂+(k)∫
(x−2kt)/2

√
t

−∞
e
iu2
du.

We can continue as follows:

∫

(x−2kt)/2
√

t

−∞
e
iu2

( f̂+(k + u/
√

t) − f̂+(k))du

= ∫

0

−∞
e
iu2

( f̂+(k + u/
√

t) − f̂+(k))du

+ ∫

(x−2kt)/2
√

t

0
e
iu2

( f̂+(k + u/
√

t) − f̂+(k))du.
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heûrst termon the right-hand side does not dependon x, and it is uniformly bounded
in k ∈ R and t ⩾ 1, as can be seen by integrating by parts. hus, its contribution to
∥J2∥L2

σ(∆) is also negligible.
We want to apply Lemma A.2 to the second term. Since we are interested in k ∈ ∆

and x ∈ [at, bt], ∣(x − 2kt)/2t∣ < C(a ,b ,∆). Hence, the lemma is applicable with
є = 1/

√
t, g(u) = f̂+(k + u) − f̂+(k), which gives

∣∫

(x−2kt)/2
√

t

0
e
iu2

( f̂+(k + u/
√

t) − f̂+(k))du∣ ⩽ Ca ,b ,∆, f /
√

t.

he proof of Lemma A.2 shows that this bound is uniform in k ∈ ∆. We substitute it
and apply (1.6) along with the generalized Minkowski inequality to get

(∫
∆
∣

1
√

t
∫

2bt

2at
∣A(2x)P(2x , k)∣∣

2
dσ)

1/2

≲
1

√
t
∫

2bt

2at
∣A(2x)∣ ⋅ (∫

∆
∣P(2x , k)∣2dσ)

1/2
dx

(1.6)
≲
C(∆,∥A∥St)

√
t
∫

2bt

2at
∣A(2x)∣dx ⩽ C(∆,a ,b ,∥A∥St)(∫

bt

at
∣A(x)∣

2
dx)

1/2
,

and the last expression converges to zero when t → +∞. We are only le� with con-
trolling the contribution from the last term in (3.11), i.e.,

f̂+(k)∫

2bt

2at
A(2x)P(2x , k)(∫

(x−2kt)/(2
√

t)

0
e
iu2
du)dx .

Let us write a partition of unity

(3.12) 1 = µ− + µ0 + µ+ ,

where µ0 is even, smooth, supported in (−2, 2), and

0 ⩽ µ0 ⩽ 1, µ0 = 1 if ∣x∣ < 1.

he function µ+ is supported on (1,∞) and is non-decreasing, µ−(x)
def
= µ+(−x).

hen

∫

(x−2kt)/(2
√

t)

0
e
iu2
du =

(∫

(x−2kt)/(2
√

t)

0
e
iu2
du)(µ−((x − 2kt)/(2

√
t)) + µ0( ⋅ ) + µ+( ⋅ )).

We will apply the following trick several times. Notice that the function F(x) def
=

(∫
x
0 e

iu2
du)µ0(x) ∈ C

∞
c (R); thus, F̂ ∈ L1(R), and we can write

F((x − 2kt)/(2
√

t)) =
1

√
2π ∫R

F̂(ξ) exp(iξ(x − 2kt)/(2
√

t))dξ.
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hen

f̂+(k)∫

2bt

2at
A(2x)P(2x , k)(µ0((x − 2kt)/(2

√
t))∫

(x−2kt)/(2
√

t)

0
e
iu2
du)dx

= f̂+(k)∫

2bt

2at
A(2x)P(2x , k)F((x − 2kt)/(2

√
t))dx

=
1

√
2π ∫R

F̂(ξ)( f̂+(k)e
−i ξk

√
t
∫

2bt

2at
A(2x)P(2x , k) exp(iξx/(2

√
t))dx)dξ.

We use the generalized Minkowski inequality and (1.5) to estimate the last quantity
as follows:

∥
1

√
2π ∫R

F̂(ξ)( f̂+(k)e
−i ξk

√
t
∫

2bt

2at
A(2x)P(2x , k) exp(iξx/(2

√
t))dx)dξ∥

2,σ
≲

(∫
R
∣F̂(ξ)∣dξ)∥ f̂+∥∞(∫

bt

at
∣A(x)∣

2
dx)

1/2
,

and the last quantity converges to zero when t → ∞. We apply a similar strategy to
other terms:

(∫

(x−2kt)/(2
√

t)

0
e
iu2
du)µ+((x − 2kt)/(2

√
t)) = Cµ+((x − 2kt)/(2

√
t))

− (∫

∞

(x−2kt)/(2
√

t)
e
iu2
du)µ+((x − 2kt)/(2

√
t)),

where C def
= ∫

∞

0 e iu
2
du. Consider

∫

2bt

2at
A(2x)P(2x , k)µ+((x − 2kt)/(2

√
t))dx

= ∫

2bt

2at
(∫

x

2at
A(2u)P(2u, k)du)

′

µ+((x − 2kt)/(2
√

t))dx

= (∫

2bt

2at
A(2u)P(2u, k)du)µ+((b − k)

√
t)

− ∫

2bt

2at
(∫

x

2at
A(2u)P(2u, k)du)

µ′+((x − 2kt)/(2
√

t))

2
√

t
dx .

he ûrst term gives the contribution

∫
R
∣ f̂+(k)(∫

2bt

2at
A(2u)P(2u, k)du)µ+((b− k)

√
t)∣

2
dσ ≲ ∥ f̂+∥

2
∞ ∫

2bt

2at
∣A(2u)∣2du,

and the last quantity converges to zero when t →∞. For the second one, we can write
an estimate

(3.13) ∣∫

2bt

2at
(∫

x

2at
A(2u)P(2u, k)du)

µ′+((x − 2kt)/(2
√

t))

2
√

t
dx∣ ⩽

( sup
2at<r1<r2

∣∫

r2

r1
A(2u)P(2u, k)du∣) ⋅ ∫

2bt

2at
∣
µ′+((x − 2kt)/(2

√
t))

2
√

t
∣dx .
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Since µ+ was chosen to be non-decreasing, one obtains

∫

2bt

2at
∣
µ′+((x − 2kt)/(2

√
t))

2
√

t
∣dx ≲ 1.

Under the assumptions of the theorem, we get

∥∣ f̂+∣ ⋅ sup
2at<r1<r2

∣∫

r2

r1
A(2u)P(2u, k)∣∥

L2
σ(∆)

→ 0

when t →∞. Consider the expression

(∫

∞

(x−2kt)/(2
√

t)
e
iu2
du)µ+((x − 2kt)/(2

√
t))

and apply Lemma A.3 to write it as

(∫

∞

(x−2kt)/(2
√

t)
e
iu2
du)µ+((x − 2kt)/(2

√
t)) =

(2π)−1/2
e
ix2/(4t)

e
−ix k

e
i k2 t
∫
R
e
i ξ(x−2kt)/(2

√
t)Ψ(ξ)dξ,

where Ψ ∈ L1(R). hen

∫

2bt

2at
A(2x)P(2x , k)e ix

2
/(4t)

e
−ix k

e
i k2 t

(∫
R
e
i ξ(x−2kt)/(2

√
t)Ψ(ξ)dξ) =

e
i k2 t
∫
R
Ψ(ξ)e

−i ξk
√

t
(∫

2bt

2at
A(2x)e ix

2
/(4t)

e
i ξx/(2

√
t)E(x , k)dx)dξ,

where E(x , k) = P(2x , k)e−i kx was introduced in (3.2). Using the generalized
Minkowski inequality and (3.3), we get

∥ f̂+(k) ⋅ e
i k2 t
∫
R
Ψ(ξ)e

−i ξk
√

t
(∫

2bt

2at
A(2x)e ix

2
/(4t)

e
i ξx/(2

√
t)E(x , k)dx)dξ∥

2,σ
≲

∥ f̂+∥∞ ⋅ (∫
R
∣Ψ(ξ)∣dξ) ⋅ (∫

2bt

2at
∣A(2x)∣2dx)

1/2
,

and the last quantity converges to zero when t →∞.
he contribution from the term

(∫

(x−2kt)/(2
√

t)

0
e
iu2
du)µ−((x − 2kt)/(2

√
t))

can be handled in the same way. hus,

lim
t→∞∫∆

∣J2∣
2
dσ = 0

and our theorem is proved. ∎

Remark Notice that we had to use our additional assumption about the maximal
function (3.5) only when handling (3.13). It is an intriguing question whether this
extra hypothesis can be dropped.
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A Appendix

In this Appendix, we collect results that are used in the main text. Although some of
them are standard, we provide their proofs for completeness.

Proof of Lemma 1.4 In [5, Section 13], the following formula for the Green’s func-
tion of an operator D (i.e., the integral kernel of Rz = (D − z)−1) was obtained:

G(x , y, z) = (
G11(x , y, z) G12(x , y, z)
G21(x , y, z) G22(x , y, z)

)(A.1)

=
⎛

⎝

∫R
ϕ(x ,k)ϕ(y ,k)

k−z dσd(k) ∫R
ϕ(x ,k)ψ(y ,k)

k−z dσd(k)

∫R
ψ(x ,k)ϕ(y ,k)

k−z dσd(k) ∫R
ψ(x ,k)ψ(y ,k)

k−z dσd(k)

⎞

⎠

and σd = 2σ . We now introduce an auxiliary parameter ρ ∈ [1,∞) to be chosen
later, as ρ ∼ 1 + ∥A∥2

St. Since ∣P(2x , k)∣
2 = ϕ2(x , k) + ψ2(x , k) and supk∈R(k

2 + ρ2)/

(k2 + 1) ≲ ρ2,

sup
x⩾0
∫
R

∣P(x , k)∣2

k2 + 1
dσ = sup

x⩾0
∫
R

(k2 + ρ2)∣P(x , k)∣2

(k2 + ρ2)(k2 + 1)
dσ(A.2)

≲ ρ sup
x⩾0
∫
R

ρ∣P(x , k)∣2

k2 + ρ2 dσ .

Hence, we only need to prove that

sup
x⩾0

Im(G11(x , x , iρ) +G22(x , x , iρ)) ≲ 1.

To control G(x , y, iρ), i.e., the integral kernel of the resolvent R i ρ , we will use the
standard perturbation series. If R0

i ρ denotes the resolvent of free Dirac operator, we
write the second resolvent identity:

R i ρ = R
0
i ρ − R i ρVR

0
i ρ , V

def
= (

−b −a

−a b
)

and iterate it to get the series

(A.3) R i ρ = R
0
i ρ − R

0
i ρVR

0
i ρ + R

0
i ρVR

0
i ρVR

0
i ρ + . . . .

In the series (A.3), each term starting from the second one takes the form
(−1) j+1(R0

i ρV) j(R0
i ρVR0

i ρ) and j = 0, 1, 2, . . . . If we denote its kernel by k j(x , y),
then

(A.4) G(x , y, iρ) = G
0
(x , y, iρ) − k0(x , y) + k1(x , y) + ⋅ ⋅ ⋅ ,

and G0(x , y, z) stands for Green’s function of the free Dirac operator. Next, we will
show convergence of this series for suitable choice of parameter ρ and will provide an
estimate for it.
First, we claim that for every j = 0, 1, . . . , we have

(A.5) ∥k j(x , y)∥ ⩽ C j+1 e
−ρ∣x−y∣/2∥A∥

j+1
St

ρ( j+1)/2 ,
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where C is an absolute constant to be speciûed below. We will prove (A.5) by induc-
tion. To this end, we use formula (A.1) and residue calculus to obtain the bound

∥G
0
(x , y, iρ)∥ ≲ e−ρ∣x−y∣

+ e
−ρ(x+y)

≲ e
−ρ∣x−y∣ .

hus, for k0(x , y), we have

∥k0(x , y)∥ ≲ ∫
∞

0
e
−ρ∣x−ξ∣

∣α(ξ)∣e
−ρ∣y−ξ∣

dξ, α
def
= ∣a∣ + ∣b∣.

Continue α(ξ) to negative ξ by zero. We write

∥k0(x , 0)∥ ≲ ∫
∞

0
e
−ρ∣x−ξ∣

α(ξ)e
−ρξ
dξ ⩽ e

−ρx
∫

x

0
α(ξ)dξ + e

ρx
∫

∞

x
α(ξ)e

−2ρξ
dξ.

hen, using the Cauchy-Schwarz inequality, one has ∫
x
0 α(ξ)dξ ≲ (x+x 1/2)∥A∥St. By

a change of variable,

e
ρx
∫

∞

x
α(ξ)e

−2ρξ
dξ = e

−ρx
∫

∞

0
e
−2ρη

α(x + η)dη.

We have

∫

∞

0
e
−2ρη

α(x + η)dη

= ∫

1

0
e
−2ρη

α(x + η)dη +
∞

∑
j=1
∫

j+1

j
e
−2ρη

α(x + η)dη

⩽ (∫

1

0
e
−4ρη

dη)
1/2

(∫

1

0
α

2
(x + η)dη)

1/2

+
∞

∑
j=1
e
−2ρ j

(∫

j+1

j
α

2
(x + η)dη)

1/2

≲
∥A∥St

ρ1/2

by virtue of the Cauchy-Schwarz inequality. Summing up, we get

∥k0(x , 0)∥ ≲ (x + x
1/2
+ ρ

−1/2
)e

−ρx
∥A∥St ≲

e−ρx/2∥A∥St

ρ1/2 .

he Stummel condition is translation-invariant on the line, which implies (A.5) for
j = 0:

∥k0(x , y)∥ ⩽ C
e−ρ∣x−y∣/2

ρ1/2 ∥A∥St .

We can write k j+1(x , y) = ∫R+ G0(x , ξ, iρ)V(ξ)k j(ξ, y)dξ and use the inductive as-
sumption to conclude that

∥k j+1(x , y)∥ ⩽ C1 ∫
R+
e
−ρ∣x−ξ∣

α(ξ) ⋅ ∥k j(ξ, y)∥dξ

⩽
C1C

j+1∥A∥
j+1
St

ρ( j+1)/2 ∫
R+
e
−ρ∣x−ξ∣

α(ξ)e
−ρ∣ξ−y∣/2

dξ.
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For y = 0, we get

(A.6) ∫
R+
e
−ρ∣x−ξ∣

α(ξ)e
−ρξ/2

dξ = e
−ρx/2

⋅ e
−ρx/2

∫

x

0
e
ρξ/2

α(ξ)dξ

+ e
ρx
∫

∞

x
α(ξ)e

−3ρξ/2
dξ.

hen we write

e
−ρx/2

∫

x

0
e
ρξ/2

α(ξ)dξ

= ∫

x

0
e
−ρη/2

α(x − η)dη

⩽ ∫

1

0
e
−ρη/2

α(x − η)dη +
∞

∑
j=1
∫

j+1

j
e
−ρη/2

α(x − η)dη

⩽ (∫

1

0
e
−ρη
dη)

1/2
(∫

1

0
α

2
(x − η)dη)

1/2

+
∞

∑
j=1
e
−ρ j/2

(∫

j+1

j
α

2
(x − η)dη)

1/2
≲

∥A∥St

ρ1/2 .

Estimating the second integral in (A.6) in a similar way, we have

∫
R+
e
−ρ∣x−ξ∣

α(ξ)e
−ρξ/2

dξ ⩽ C2
e−ρx/2∥A∥St

ρ1/2

and, using the translation invariance of the Stummel condition,

∫
R+
e
−ρ∣x−ξ∣

α(ξ)e
−ρ∣ξ−y∣/2

dξ ⩽ C2
e−ρ∣x−y∣/2∥A∥St

ρ1/2 .

hus,

∥k j+1(x , y)∥ ⩽
C1C2C

j+1e−ρ∣x−y∣/2∥A∥
j+2
St

ρ( j+2)/2 .

Choosing C suõciently large, e.g., larger than C1C2, we show (A.5) for j + 1.
his proves the claim. Now, (A.4) implies ∥G(x , y, iρ)∥ ≲ e−ρ∣x−y∣/2 provided that
ρ = 2C(1 + ∥A∥2

St). hus, (A.2) ûnishes the proof. ∎

Lemma A.1 Let h ∈ L2(R). hen

(A.7) lim
t→+∞

∥e
i t∂2xx h −

1
1 + i

e ix
2
/(4t)

√
t

ĥ(x/(2t))∥
L2(R)

= 0,

and, taking the inverse Fourier transform,

(A.8) lim
t→+∞

∥
1

1 + i
(
e ix

2
/(4t)

√
t

ĥ(x/(2t)))
∨

− e
−i t ξ2

qh(ξ)∥
L2(R)

= 0.

Suppose ĥ ∈ C∞c (R); then

(A.9) sup
t>1,α ,β∈R

∥∫

βt

αt

e ix
2
/(4t)

√
t

ĥ(x/(2t))e ix kdx∥
L∞(R)

< C(h) .
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Proof Formula (A.7) can be found in [15] (see formulas (4.10) and (4.12) there).
hen (A.8) is a direct corollary. Proof of (A.9) follows from a direct calculation:

∫

βt

αt

e ix
2
/(4t)

√
t

ĥ(x/(2t))e ix kdx

=
e−i tk2

√
t
∫

βt

αt
exp (i(

x

2
√

t
+ k

√
t)

2
)ĥ(x/(2t))dx

= 2e−i tk2

∫

√
t(0.5β+k)

√
t(0.5α+k)

exp(iξ2)ĥ(−k + ξ/
√

t)dξ.

Now, consider the integral

∫

l

0
exp(iξ2)ĥ(−k + ξ/

√
t)dξ

for arbitrary l ∈ R, k ∈ R, t ⩾ 1 and let µ0 be a bump function introduced in (3.12).
We have

∫

l

0
exp(iξ2)ĥ(−k + ξ/

√
t)dξ = ∫

l

0
exp(iξ2)ĥ(−k + ξ/

√
t)µ0dξ

+ ∫

l

0
exp(iξ2)ĥ(−k + ξ/

√
t)(1 − µ0)dξ.

he ûrst integral is bounded uniformly in all parameters since ĥ ∈ C∞c (R). For the
second one, we can write

∫

l

0
exp(iξ2)ĥ(−k + ξ/

√
t)(1 − µ0)dξ

= ∫

l

0
(exp(iξ2))

′ ĥ(−k + ξ/
√

t)(1 − µ0)

2iξ
dξ

= exp(i l 2)
ĥ(−k + l/

√
t)(1 − µ0(l))

2i l

− ∫

l

0
exp(iξ2)(

ĥ(−k + ξ/
√

t)(1 − µ0(ξ))

2iξ
)
′

dξ.

he ûrst term is uniformly bounded because 1 − µ0(0) = 0. For the second one, we
can show that each resulting integral is uniformly bounded, e.g.,

∣
1

√
t
∫

l

0
exp(iξ2)

ĥ′(−k + ξ/
√

t)(1 − µ0)

2iξ
dξ∣ ≲

1
√

t
∫

l

0
∣ĥ
′
(−k + ξ/

√
t)∣dξ ⩽ ∥ĥ

′
∥1 ,

∣∫

l

0
exp(iξ2)

ĥ(−k + ξ/
√

t)(1 − µ0(ξ))

ξ2
dξ∣ ⩽ ∥ĥ∥∞ ∫

l

0

∣1 − µ0(ξ)∣

ξ2
dξ ≲ ∥ĥ∥∞ ,

∣∫

l

0
exp(iξ2)

ĥ(−k + ξ/
√

t)µ′0(ξ)

2iξ
dξ∣ ≲ ∥ĥ∥∞ ,

and (A.9) is proved. ∎
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Lemma A.2 Let є ∈ (0, 1), ν > 0, a > 0, and ∣aє∣ ⩽ ν. We have

∣∫

a

0
e
iu2

g(uє)du∣ ⩽ C(g ,ν)є

provided that g ∈ C∞(R) and g(0) = 0.

Proof We have

(A.10) ∫

a

0
(e

iu2
)
′
g(uє)u

−1
du = e

i a2
є(

g(aє)

aє
)

− єg
′
(0) − є∫

a

0
e
iu2

(
g(uє)

єu
)
′

du.

We can write ∣g(ξ)∣ ⩽ C(g ,ν)∣ξ∣ for ξ ∈ [−ν, ν], and the ûrst term is controlled by

C(g ,ν)є, since ∣aє∣ ⩽ ν. For the third one, we introduce G(u)
def
= (g(u)/u)′ ∈ C∞(R)

and write

G1(u)
def
= G(u) −G(0), G(u) = G(0) +G1(u)

so that

∫

a

0
e
iu2

G(uє)du = G(0)∫
a

0
e
iu2
du + ∫

a

0
e
iu2

G1(єu)du.

he absolute value of the ûrst term is bounded by C(g) uniformly in a. For the second
one, we can iterate the argument, since G1 ∈ C

∞(R) and G1(0) = 0. We get

∫

a

0
e
iu2

G1(єu)du(A.11)

= −0.5iє∫
a

0
(e

iu2
)
′G1(єu)

єu
du

= −0.5iє(e i a
2 G1(єa)

єa
−G

′
1(0) − ∫

a

0
e
iu2

(
G1(єu)

єu
)
′

du).

Writing a rough estimate

∣∫

a

0
e
iu2

(
G1(єu)

єu
)
′

du∣ ⩽ C(g)∣a∣,

and substituting it into (A.11) gives

∣∫

a

0
e
iu2

G1(єu)du∣ ⩽ C(g)(є + є∣a∣) = C(g)(є + ν).

We bring it to (A.10) to ûnish the proof of the lemma. ∎

Consider H deûned as

H(x) = ∫

∞

x
e
i t2
dt.

his integral can be related to the so-called erf-function whose properties are
well known. However, our purpose is to obtain a speciûc representation for H
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for x ∈ [1,∞), and we proceed directly as follows. We change variables and iteratively
integrate by parts n times to get

H(x) = i
e ix

2

2x
−

i

2 ∫
∞

x2

e iu

u3/2 du = e
ix2

(
n−1

∑
j=0

c j

x 1+2 j + c
′
ne

−ix2
∫

∞

x2

e iu

un+1/2 du)

def
= e

ix2
(H1,n +H2,n),

where {c j} and c′n are some constants. Let µ+ be a cutoò function that satisûes the
following conditions: µ+ is supported on (1,∞), µ+(x) = 1 for x > 2, µ+ ∈ C∞(R).
Deûne

H
(m)

1,n
def
= H1,nµ+ , H

(m)

2,n
def
= H2,nµ+ .

Lemma A.3 Let n > 1. We have ̂
H

(m)

1,n ∈ L1(R),
̂
H

(m)

2,n ∈ L1(R).

Proof Consider H
(m)

2,n ûrst. We have

∣H
(m)

2,n ∣ ⩽ Cn(1 + ∣x∣)
−(2n+1) , ∣∂xH

(m)

2,n ∣ ⩽ Cn(1 + ∣x∣)
−(2n) ,

∣∂
2
xxH

(m)

2,n ∣ ⩽ Cn(1 + ∣x∣)
−(2n−1) .

herefore,
∣
̂
H

(m)

2,n (ξ)∣ < Cn(1 + ∣ξ∣)
−2 ,

and hence ̂
H

(m)

2,n ∈ L1(R). For H
(m)

1,n , consider the ûrst term, x−1µ+. Other terms can
be handled similarly. We have x−1µ+ ∈ C

∞(R)∩L2(R) and all of its derivatives are in
L2(R). hus, ξ j ̂(x−1µ+) ∈ L2(R) for all j ∈ Z+. herefore, ̂(x−1µ+)(ξ) ∈ L1(∣ξ∣ > 1).
For ∣ξ∣ < 1, we can write an estimate

∣x̂−1µ+∣ < C∣ log ξ∣,

which can be veriûed directly:

∫

∞

1

µ+(x)

x
e
−i ξx

dx = ∫

∞

2

e−i ξx

x
dx + O(1).

For ξ ∈ (0, 1),

∫

∞

2

e−i ξx

x
dx = ∫

∞

2ξ

e−iu

u
du = ∫

1

2ξ

e−iu

u
du + ∫

∞

1

e−iu

u
du = O(∣ log ξ∣ + 1).

For ξ ∈ (−1, 0), the argument is analogous and we get the statement of the lemma. ∎
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