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Abstract
A family of vectors in [k]n is said to be intersecting if any two of its elements agree on at least one coordinate.
We prove, for fixed k≥ 3, that the size of any intersecting subfamily of [k]n invariant under a transitive
group of symmetries is o(kn), which is in stark contrast to the case of the Boolean hypercube (where k= 2).
Our main contribution addresses limitations of existing technology: while there are now methods, first
appearing in work of Ellis and the third author, for using spectral machinery to tackle problems in extremal
set theory involving symmetry, this machinery relies crucially on the interplay between up-sets, biased
product measures, and threshold behaviour in the Boolean hypercube, features that are notably absent in
the problem considered here. To circumvent these barriers, introducing ideas that seem of independent
interest, we develop a variant of the sharp threshold machinery that applies at the level of products of
posets.

2020 MSC Codes: Primary 05D05; Secondary 05E18

1. Introduction
We pursue a line of investigation initiated by Babai [2] and Frankl [10] about 40 years ago con-
cerning the role of symmetry in extremal set theory. Our starting point is the Erdős–Ko–Rado
theorem [9], which asserts that for n, k ∈N with k< n/2, the largest intersecting families of k-
subsets of [n] are precisely the trivial ones, namely those that consist of all k-sets containing some
fixed element of [n]= {1, 2, . . . , n}. Many variants and generalisations of this theorem (involving
different intersection conditions and different discrete structures such as permutations, vectors
and graphs) have since been established. A common theme in this line of enquiry is that the
extremal constructions are often highly asymmetric, depending only on a small number of ‘coor-
dinates’; see [17, 11, 1, 21], for example. It is therefore natural to ask what happens when one
further imposes a symmetry requirement on the family under consideration, the most natural
such requirement being that the family be invariant under some transitive subgroup of the sym-
metric group Sn. Indeed, this direction was proposed by Babai [2] a few decades back, and has
since been rather fruitful; see [10, 5] for some classical results, and [8, 7, 14] for more recent
developments.

Here, we study intersecting families of vectors. A family A⊂ [k]n is said to be intersecting if
any two of its elements agree on at least one coordinate. Consideration of the orbits of the natural
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Z/kZ action on [k]n, i.e., the orbits of the map that shifts each coordinate cyclically by one, shows
that any intersecting subfamily of [k]n has size at most kn−1; furthermore, this bound is tight for
the trivial family obtained by specifying the value of some fixed coordinate. These observations
go back to Berge [3] and Livingtson [18], and many (more substantial) generalisations are now
known; see [21, 12, 13, 24, 22] for a sample of the literature.

Here, again, as in our discussion of families of sets, the above extremal examples are highly
asymmetric (membership being determined by a single coordinate), though now with a small
caveat: in the Boolean hypercube [2]n with n odd, the family of vectors with more 1’s than 2’s
is intersecting, of the maximum possible size 2n−1, and invariant under all of Sn. However, this
has no counterpart for k≥ 3, where, even without symmetry, it is known that the only extremal
examples are the trivial ones (see [18]). In fact, a little thought suggests a more interesting possi-
bility: might it be true that (for k≥ 3) symmetric, intersecting families must be much smaller? It
turns out that this is indeed the case, as can be deduced from the results of Dinur, Friedgut and
Regev [6] on independent sets in graph powers (from which it follows that any intersecting family
in [k]n is ‘essentially contained’ in an intersecting ‘junta’). Our main purpose here is to give a short
new proof of this fact with better bounds, and perhaps more importantly, introduce some new
techniques that we believe to be of independent interest.

Before stating a precise result, we repeat, a little more formally the definition of symmetry. As
above, we use [n] for {1, 2, . . . , n}, and Sn for the symmetric group on [n], which acts on [k]n
in the natural way, namely (σ (x))i = xσ (i) for σ ∈ Sn and x ∈ [k]n. The automorphism group of
A⊂ [k]n is, as usual, Aut (A)= {σ ∈ Sn:σ (A)=A}, and we say A⊂ [k]n is symmetric if Aut (A)
is a transitive subgroup of Sn. Our main result is then as follows.

Theorem 1.1. There is a universal constant c> 0 such that the following holds: for each fixed k≥ 3,
ifA⊂ [k]n is symmetric and intersecting, then |A| =O(kn/nc/k).

Perhaps surprisingly, even the simple and natural statement that A as in the theorem must
have size o(kn) seems resistant to elementary proof, and it may be that the more important point
of this work is its contribution to methodology. As mentioned earlier, this fact (i.e., an ineffective
bound of o(kn)) may be deduced from prior work [6, 16], but these proofs rely on some rather
formidable machinery. We believe that the methodology we adopt — which we see as our main
contribution — is interesting in its own right, having the potential to be brought to bear on other
problems in extremal set theory. A secondary benefit of our technique is that it yields reasonable
(effective) bounds, though even these bounds are likely quite far from the truth.

A few remarks about our strategy are in order. Giving us a starting point, Ellis and the third
author [8], in resolving a conjecture of Frankl [10] on symmetric 3-wise intersecting families,
introduced the use of spectral machinery for tackling problems in extremal set theory involving
symmetry; this framework has since been successfully adapted — see [7, 14] — to resolve other
old extremal problems in the Boolean hypercube involving symmetry constraints. Note, though,
that this approach depends crucially on the interplay between up-sets, biased product measures,
and ‘sharp threshold’ behaviour, all features absent from the problem under consideration here;
for example, all of [8, 7, 14] start with the elementary observation that the p-biased measure of
an up-set in [2]n is monotone increasing in p, but even this fact that has no useful analogue in
[k]n for k≥ 3. This situation is reminiscent of difficulties occasioned by a lack of useful notions of
monotonicity in some probabilistic contexts; see the ‘all blue’ problem of [19] for one particularly
egregious example.

Here, one could, for example, try working in [k]n with the natural product order, but one is then
confronted with the following obstacles: compressing an intersecting family ‘upwards’ preserves
the intersection condition but not the automorphism group, while replacing a family by its ‘up-
closure’ preserves symmetries but not the intersection condition; furthermore, there appears to
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be no natural analogue in [k]n of the biased product measures on [2]n that are at the heart of the
arguments of [8, 7, 14].

Our (at first unpromising-looking) way around these barriers is to embed [k]n in a larger ‘cov-
ering space’, a suitable product of posets, in which up-closure avoids the above difficulties, and on
which appropriate analogues of biased product measures may be constructed that still provide the
leverage we need. Having transferred our problem to this larger space, we deduce Theorem 1.1
using a suitable variant of the sharp threshold theorem of Friedgut and Kalai [15], based, like the
original, on the work of Bourgain, Kahn, Kalai, Katznelson, and Linial [4].

The paper is organised as follows. In Section 2, we prove our variant of the Friedgut–Kalai
sharp threshold theorem for products of posets; the proof of Theorem 1.1 follows in Section 3.
Finally, we conclude in Section 4 with a brief discussion of what might come next.

2. Biased measures on products of posets
We now present a general construction that is at the heart of our approach. In what follows, the
reader may find it helpful to keep p-biased product measures on the Boolean hypercube in mind.

Let (W,� ) be a finite poset. We say that A⊂W is an up-set if x ∈A and x� y imply y ∈A.
Recall, for probability measuresμ0 andμ1 onW, thatμ1 (stochastically) dominatesμ0 ifμ1(A)≥
μ0(A) for every up-setA⊂W. We extend this, saying that μ1 dominates μ0 with strength κ if

μ1(A)− μ0(A)≥ κ (1)

for every up-set A⊂W other than ∅ and W. Given probability measures μ0 and μ1 on W, we
consider the interpolation from μ0 to μ1 — our analogue of biased product measures — obtained
by takingμt = (1− t)μ0 + tμ1 to be themeasure at ‘time’ t ∈ [0, 1].We need the following variant
of the Friedgut–Kalai [15] theorem; in what follows, as usual, if μ is a probability measure onW,
then μn is the corresponding product measure onWn.

Theorem 2.1. Assume thatA⊂Wn is a symmetric up-set, μ0 and μ1 are probability measures on
W, and μ1 dominates μ0 with strength κ > 0. If 0≤ p< q≤ 1 and μn

p(A),μn
q(A) ∈ [ε, 1− ε], then

q− p≤ Cκ−1 log (1/2ε)/ log n,

where C > 0 is a universal constant.

Proof. We begin with a variant of the Margulis–Russo formula [20, 23], namely

d
dp

μn
p(A)=

n∑

i=1
(μi−1

p × (μ1 − μ0)× μn−i
p )(A).

Next, recall that the influence IA,p(i) of a coordinate i is the probability that, for x∼ μn
p ,

changing the value of xi can affect whether x ∈A, i.e., the probability that the ‘slice’

Ai(x)= {w ∈W : (x1, . . . , xi−1,w, xi+1, . . . , xn) ∈A}
is neitherW nor∅. By (1),

(μi−1
p × (μ1 − μ0)× μn−i

p )(A)≥ κIA,p(i),

implying

d
dp

μn
p(A)≥ κ

n∑

i=1
IA,p(i).
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On the other hand, as in [15], symmetry and [4] give
n∑

i=1
IA,p(i)= �( min (μn

p(A), 1− μn
p(A)) log n);

so, combining, we have
d
dp

μn
p(A)= �(κ min (μn

p(A), 1− μn
p(A)) log n).

The stated inequality now follows by elementary calculus. �

3. Proof of the main result
As in Theorem 1.1, we assume A⊂ [k]n is symmetric and intersecting, and wish to show that
|A| = o(kn). In outline, the proof of this fact goes as follows.

(1) Enlarge [k]n to a spaceWn, whereW is a suitably chosen ‘covering poset’, equipped with an
appropriate μ0 and μ1.

(2) Use the fact that A is intersecting to conclude that its up-closure inWn has μt-measure at
most 1/2 for a suitable time t (in the interpolation from μ0 to μ1).

(3) Deduce from Theorem 2.1 that A must have been vanishingly small in the original space
[k]n.

Proof of Theorem 1.1. Write [k](r) for the collection of r-subsets of [k], and let (W,� ) be the
poset

W = [k](1) ∪ [k](k−1),

with � defined by inclusion. We embed [k] inW by identifying [k] with [k](1) in the obvious way.
Let μ0 and μ1 be, respectively, the uniform (probability) measures on [k](1) and [k](k−1), and,

as in Section 2, set μt = (1− t)μ0 + tμ1, noting that μ1/2 is the uniform measure onW.

Claim 3.1. μ1 dominates μ0 with strength 1/k.

Proof. Let A⊂W be a proper, nontrivial up-set. If A⊂ [k](k−1) or A⊃ [k](k−1), then it is clear
that

(μ1 − μ0)(A)≥ 1/k.
The only other possibilities are the ‘stars’

A= {{i}} ∪ ([k](k−1) \ {[k] \ {i}}),
for which we have

(μ1 − μ0)(A)= 1− 2/k≥ 1/k. �

Wenow extend the notion of an intersecting family toWn by saying thatA⊂Wn is intersecting
if for any x, y ∈A, there is some i ∈ [n] such that xi ∩ yi �=∅.

Claim 3.2. IfA⊂Wn is intersecting, then μ1/2(A)≤ 1/2.

Proof. Note that if x∼ μ1/2, then we also have xc ∼ μ1/2, where xc = (x̄1, x̄2, . . . , x̄n) is the point-
wise complement of x. Since at most one of x and xc can belong toA, we have

2μ1/2(A)=E[|A∩ {x, xc}|]≤ 1. �
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We may now finish as follows. Given A⊂ [k]n symmetric and intersecting as in Theorem 1.1,
let B be its up-closure in Wn and notice that B is again symmetric and intersecting. Claim 3.2
thus gives μ1/2(B)≤ 1/2, so, applying Theorem 2.1 with p= 0, q= 1/2, ε = μ0(B) and κ = 1/k,
we have

1/2≤ Cκ−1 log (1/2ε)/ log n,
or, rearranging,

|A|
kn

= μ0(B)≤ n−κ/2C

2
= o(1).

4. Conclusion
The most obvious question raised by the present work is that of estimating more accurately how
large a symmetric, intersecting subfamily of [k]n can really be (for k≥ 3). The best examples A
that we know are set-intersecting, in the sense that there is a symmetric, intersecting family B of
subsets of [n] and an � ∈ [k] such that x ∈ [k]n belongs to A if and only if there is some B ∈ B
such that xi = � for all i ∈ B; in other words, the vectors in A are precisely those that take a fixed
value on all the coordinates specified by a member of B. For instance, if n= q2 + q+ 1 with q a
prime power, then we may take B to be the set of lines of the classical projective plane PG(2, q)
(which is a well-known example [25] of a symmetric, intersecting family of sets), yielding an A
of size roughly kn−

√
n. Note that the family consisting of all strings with 1’s in more than half the

coordinates, the counterpart of the exceptional example for [2]n mentioned in the introduction,
does much worse.

It seems possible (but maybe impossible to prove) that the largest symmetric intersecting fami-
lies in [k]n are set-intersecting. Failing that, it would be very interesting to at least show that there
are constants c, δ > 0 (possibly depending on k) such that for any symmetric intersectingA⊂ [k]n,
we have

logk |A| ≤ n− cnδ .
Finally, we expect that the main technical contribution of this paper — dealing with inter-

section problems by situating them in a suitable covering space — will be applicable to further
questions in extremal set theory; we hope to return to this circle of ideas in future work.
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[21] A. Moon, (1982) An analogue of the Erdős-Ko-Rado theorem for the Hamming schemes H(n, q), J. Combin. Theory Ser.

A 32 386–390.
[22] J. Pach and G. Tardos, (2015) Cross-intersecting families of vectors, Graphs Combin. 31 477–495.
[23] L. Russo, (1982) An approximate zero-one law, Z. Wahrsch. Verw. Gebiete 61 129–139.
[24] N. Tokushige, (2013) Cross t-intersecting integer sequences from weighted Erdős-Ko-Rado, Combin. Probab. Comput. 22
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