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Non-modal analysis determines the potential for energy amplification in stable flows.
The latter is quantified in the frequency domain by the singular values of the resolvent
operator. The present work extends previous analysis on the effect of base-flow
modifications on flow stability by considering the sensitivity of the flow non-modal
behaviour. Using a variational technique, we derive an analytical expression for
the gradient of a singular value with respect to base-flow modifications and show
how it depends on the singular vectors of the resolvent operator, also denoted the
optimal forcing and optimal response of the flow. As an application, we examine
zero-pressure-gradient boundary layers where the different instability mechanisms of
wall-bounded shear flows are all at work. The effect of the component-type non-
normality of the linearized Navier–Stokes operator, which concentrates the optimal
forcing and response on different components, is first studied in the case of a parallel
boundary layer. The effect of the convective-type non-normality of the linearized
Navier–Stokes operator, which separates the spatial support of the structures of the
optimal forcing and response, is studied in the case of a spatially evolving boundary
layer. The results clearly indicate that base-flow modifications have a strong impact
on the Tollmien–Schlichting (TS) instability mechanism whereas the amplification of
streamwise streaks is a very robust process. This is explained by simply examining the
expression for the gradient of the resolvent norm. It is shown that the sensitive region
of the lift-up (LU) instability spreads out all over the flat plate and even upstream of it,
whereas it is reduced to the region between branch I and branch II for the TS waves.

Key words: boundary layer receptivity, control theory

1. Introduction
Unstable open flows can be classified into two distinct classes according to

the linear evolution of perturbations in space and time (e.g. Huerre & Rossi
1998): noise amplifiers and hydrodynamic oscillators. If the perturbations initially
amplified eventually decay in time or are convected away (usually downstream of
the disturbance source, so that the flow returns to its basic state), then the flow
behaves as a noise amplifier. These flows are sensitive to external perturbations and
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the characteristics of the latter determine the type of waves amplifying in the flow.
Spatially developing jets or attached boundary layers are prototypes of noise amplifiers.
Oscillator flows, on the other hand, display an intrinsic dynamics: they beat at a
well-defined frequency, the features of the amplifying perturbations are determined
solely by the control parameters and do not depend on external noise. The flow
past a cylinder is probably the most classic example of an oscillator. Oscillators
and amplifiers are related to different stability properties. In a local approach, an
absolutely unstable flow is a necessary condition for an oscillator-type behaviour while
an absolutely stable but convectively unstable flow relates to a noise amplifier. In a
global approach, unstable flows coincide with oscillators while globally stable flows
behave as noise amplifiers when governed by non-normal operators.

Analysis of normal-mode solutions is sufficient to investigate the stability of a given
flow configuration at large times. The least stable among the flow eigenvalues provides
this information. However even stable flows can undergo significant perturbation
energy growth owing to the non-normality of the linearized Navier–Stokes equations.
To assess the energy growth of stable flows, a non-modal or input–output approach is
therefore required (Schmid & Henningson 2001). This type of analysis can be carried
out in the time or frequency domain. In the first case, the aim is initial conditions
yielding the largest possible energy growth over a finite time horizon (Butler &
Farrell 1992; Reddy & Henningson 1993) whereas in the second case the aim is
the largest possible response to time-periodic external forcing (see also Farrell &
Ioannou 1996; Jovanovic & Bamieh 2005): both approaches reflect the non-normality
of the governing operator and yield a measure quantifying energy amplifications in the
flow, the singular values of the governing operator.

Besides the correct tools and concepts, when theoretically studying the stability of
fluid systems, a relevant definition of a base flow is the first important step. In the
review by Chomaz (2005), it is explained how small perturbations of non-normal
operators may displace the eigenvalues in a significant manner. These perturbations
will have a larger impact if they occur in the overlap region between the adjoint and
direct eigenmodes. Bottaro, Corbett & Luchini (2003) examined the worst case, i.e. the
change in base flow with the most destabilizing effect on the eigenvalues for the plane
Couette flow. Such base-flow variations were interpreted as differences between the
laboratory flow and its ideal, theoretical counterpart. Later studies considered transition
to turbulence initiated by base-flow defects (see e.g. Gavarini, Bottaro & Nieuwstadt
2004). The concept of sensitivity to base-flow modifications of a given eigenvalue,
introduced for parallel shear flows in Bottaro et al. (2003), was extended to the
global approach by Marquet, Sipp & Jacquin (2008) and Pralits, Brandt & Giannetti
(2010). In order to identify the ‘engine’ of the instability Giannetti & Luchini (2007)
determined the sensitivity of the eigenvalue to a spatially localized feedback. Global
instabilities are generated by a self-exciting mechanism and regions with a larger
sensitivity play the same role as the ‘wavemaker’ of the asymptotic theory in slowly
developing flows (Chomaz, Huerre & Redekopp 1991).

The objective of the present paper is to extend similar concepts to the case of
noise amplifiers. The starting point of the analysis is that the essential dynamics of
the flow cannot be captured by the eigenvalues of the governing operator, which
characterize well the behaviour of hydrodynamic oscillators. Therefore we analyse
the singular values of the system (Sipp et al. 2010), thus centring our investigation
on the non-modal behaviour of the flow. The central concept in this paper is the
sensitivity of the singular values with respect to base-flow modifications. This type of
analysis also includes modal stability, in some sense: if a mode becomes unstable, the
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singular value becomes infinite at the neutral point. Particular attention will be paid
to the different sources of non-normality of the linearized Navier–Stokes operator. As
introduced by Chomaz (2005) and Marquet et al. (2009) in the context of unstable
eigenvalues, this operator displays two sources of non-normality: the component-type
non-normality, which concentrates the direct and adjoint eigenmodes on different
components of the velocity field; and the convective-type non-normality which
separates the spatial support of the eigenmodes, typically upstream for the adjoint
eigenmode and downstream for the direct eigenmode. As shown by Monokrousos et al.
(2010), similar features are also observed for the singular vectors of the equations
governing the behaviour of linear perturbations in boundary layer flows. We will
analyse how the sensitivity of the singular value to base-flow modifications depends on
the type of non-normality.

As an application, we focus on the Blasius boundary layer, where the traditional
instability mechanisms observed in wall-bounded shear flows are present. In these
flows, the non-modal behaviour stems from the lift-up (LU) and Orr mechanisms
and from the convective dynamics of the Tollmien–Schlichting (TS) waves. The LU
mechanism (Landahl 1980) is associated with the component-wise transfer of energy
from the cross-stream velocity components (streamwise vorticity) to the streamwise
velocity, the component-wise non-normality. It is most effective for low-frequency
streamwise-elongated perturbations and is manifested in the appearance of high- and
low-speed streaks alternating in the spanwise direction. The Orr mechanism is also
related to component-wise transfer of energy and is most evident for two-dimensional
waves that can gain some energy by leaning against the mean shear (Farrell 1988).

The article proceeds as follows. First (§ 2), we introduce the resolvent, its singular-
value decomposition and the sensitivity of a singular value to base-flow modifications.
In § 3, we analyse the case of a parallel boundary layer, where only the component-
type non-normality is at play. First conclusions will be drawn concerning the
sensitivity of the LU and TS instabilities. The spatially evolving boundary layer,
where both the convective-type non-normality and the component-type non-normality
are present, is examined in § 4. The paper ends with a discussion of the main results
and some concluding remarks (§ 5).

2. Gradient of the resolvent operator
2.1. Optimal forcing and eigenvalue problem

We consider the evolution of small-amplitude perturbations about a steady base flow
in the presence of a divergence-free forcing term f ′. Let x, y and z be the streamwise,
cross-stream and spanwise coordinates with U = (U,V,W) and u′ = (u′, v′,w′) the
streamwise, cross-stream and spanwise components of the base flow and perturbation
respectively. The linearized equations describing the evolution of perturbations are

∂tu′ + (U ·∇)u′ + (u′ ·∇)U =−∇p′ + Re−1∇2u′ + f ′, (2.1)
∇ ·u′ = 0, (2.2)

where p denotes pressure and Re Reynolds number.
To investigate the linear stability of a stable flow, e.g. a spatial boundary layer that

acts as an amplifier of external noise, we assume the forcing term to be harmonic
in time with a real forcing frequency ω = 2π/T and a complex spatial structure
f = (f , g, h)T, f ′ = f eiωt. A similar decomposition is used for the flow perturbation,
where (u, p) is the spatial distribution of the perturbation sustained by the forcing f . In
a compact form, the relation between the forcing and the velocity perturbation can be
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formally written

u=R(ω,U)f , R =PTS (ω,U)−1 P, S = iωM +L (U). (2.3)

Here M =PPT with P as the prolongation operator, R is the resolvent operator,
and S and L define the linearized Navier–Stokes operator. The prolongation operator
P acts on a velocity vector u = (u, v,w)T to give the velocity–pressure vector
Pu = (u, v,w, 0)T, while the extraction operator PT acts on a velocity–pressure
vector q = (u, v,w, p)T to give the velocity vector PTq = u. The stability operator L
is defined as follow:

L =


C −D + ∂xU ∂yU ∂zU ∂x

∂xV C −D + ∂yV ∂zV ∂y

∂xW ∂yW C −D + ∂zW ∂z

∂x ∂y ∂z 0

 , (2.4)

where C = U∂x + V∂y +W∂z is the convection operator and D = Re−1(∂2
x + ∂2

y + ∂2
z ) is

the diffusion operator.
To measure the growth of the perturbation we choose the kinetic energy in the flow

domain Ω , E(u) = ∫
Ω
uHu dΩ = (u,u). The symbol H indicates the trans-conjugate

and (a, b) denotes the inner product of two fields a and b. The gain between the
forcing f and the perturbation u is given by

G= (u,u)
(f , f )

= (Rf ,Rf )
(f , f )

= (R
†Rf , f )
(f , f )

, (2.5)

where the last equality is obtained by introducing the operator R†, the adjoint operator
of the resolvent operator R with respect to the inner product introduced above. It
is given by R† =PT (S †)

−1
P , where S † is the adjoint linearized Navier–Stokes

operator defined by S † = iωM +L †. Here

L † =


−C −D + ∂xU ∂xV ∂xW −∂x

∂yU −C −D + ∂yV ∂yW −∂y

∂zU ∂zV −C −D + ∂zW −∂z

−∂x −∂y −∂z 0

 . (2.6)

Let us now consider the eigenvalue problem

R†Rfi = σ 2
i fi. (2.7)

Since the operator R†R is symmetric, the eigenvalues are real and positive and the
eigenvectors fi are orthogonal with respect to the energy inner product. The set of
eigenvectors {fi}i>1 (right singular vector of R) thus forms an orthonormal basis of
the forcing space if normalized so that (fi, fi) = 1. The perturbation ui, left singular
vector of R, induced by the forcing fi is given by ui =Rfi. The optimal forcing f1

corresponds to the largest eigenvalue σ 2
1 of (2.7) and it maximizes the gain G(f ). The

resolvent norm corresponds to the square-root of the largest eigenvalue σ 2
1 of (2.7),

equivalent to the largest singular value of R. In the following, we will use this
quantity to measure the non-modal behaviour. It depends on the frequency ω, on
the Reynolds number Re and on the base flow U : σ 2(ω,Re,U). The optimal energy
gains σ 2

i , optimal forcings fi and optimal responses ui will form the basis of the
optimization procedure introduced here. Using Krylov-subspace methods, it is now
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possible to compute the largest eigenvalues of system (2.7) (Monokrousos et al. 2010;
Sipp et al. 2010), as well as of its counterpart in the time domain (Barkley, Blackburn
& Sherwin 2008; Blackburn, Barkley & Sherwin 2008) for flows in more complex
geometries.

2.2. Sensitivity to generic base-flow modifications

In this section we are interested in determining the sensitivity of any eigenvalue σ 2

to any base-flow modification δU = (δU, δV, δW). For a small-amplitude base-flow
variation, the eigenvalue variation δσ 2 can be written as

δσ 2 = (∇Uσ
2, δU), (2.8)

where (·, ·) is the inner product defined above and ∇Uσ
2 designates the sensitivity

function to a modification of the base flow.
To obtain an analytical expression of this function we use a Lagrangian technique

where the objective of the optimization is the eigenvalue σ 2 and the constraints are
given by the eigenvalue problem (2.7) yielding the optimal non-modal behaviour. To
do this, we first rewrite the eigen-problem (2.7) as

S (U)q=Pf , S †(U)a=M q, σ 2f =PTa (2.9)

where U is the control variable and a is introduced to split the eigenvalue problem.
This is necessary since we need to differentiate the resolvent with respect to the base
flow and an explicit expression for the inverse of the system matrix, appearing in the
resolvent operator, is not available. We introduce the Lagrange multiplier or adjoint
variables {f †, q†, a†} and define a Lagrangian function K ({σ, f , q, a}, {f †, q†, a†},U)

K = σ 2 − (q†,S (U)q−Pf )− (a†,S †(U)a−M q)− (f †, σ 2f −PTa). (2.10)

In the expression above, the second and third terms on the right-hand side respectively
define q as the response to the optimal forcing f and a as the solution of the adjoint
problem with forcing q. The last term ensures that f is an eigenfunction of R† R with
gain σ 2.

The gradient of the gain σ 2 with respect to base-flow modifications is derived
by considering variations of the Lagrangian K . Imposing the stationarity of the
Lagrangian with respect to the adjoint variables yields the state equations, while the
stationarity of the Lagrangian with respect to the state variables yields the equations to
be satisfied by the adjoint variables. Since the operator R†R is Hermitian, and thus
self-adjoint, these equations are exactly the ‘direct’ equations if the adjoint variables
are chosen so that {q†, a†, f †} = {a, q, f } and if (f †, f ) = 1. Therefore, the adjoint
variables do not need to be computed since they are directly known from the state
variables. The derivative of the Lagrangian with respect to the control variable gives
the sensitivity function

∇Uσ
2 = 2σ 2Re{(∇f )u∗ − (∇uH)f }. (2.11)

In expanded format, this gradient is

∇Uσ
2 = 2σ 2Re(u∗∂xf + v∗∂yf + w∗∂zf − f ∂xu

∗ − g∂xv
∗ − h∂xw

∗), (2.12)

∇Vσ
2 = 2σ 2Re(u∗∂xg+ v∗∂yg+ w∗∂zg− f ∂yu

∗ − g∂yv
∗ − h∂yw

∗), (2.13)

∇Wσ
2 = 2σ 2Re(u∗∂xh+ v∗∂yh+ w∗∂zh− f ∂zu

∗ − g∂zv
∗ − h∂zw

∗). (2.14)
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Here ∗ indicates the complex conjugate of a scalar quantity. We recall that the
optimal forcing is normalized so that (f , f ) = 1 and the optimal response satisfies
(u,u)= σ 2.

We note that the analysis presented here can be equivalently performed in the time
domain. An outline of the derivation of the gradient of the norm of the evolution
operator with respect to base-flow modifications is reported in the Appendix.

The sensitivity as given in (2.11) assumes arbitrary variations of the base flow.
Such information is of interest because it gives the base-flow modifications leading
to the largest variation of the energy gain. In other words it gives an upper bound
on the energy variation that can be achieved by any base-flow modification. Yet,
such variations should be interpreted with caution since they do not satisfy the
Navier–Stokes equations. To gain further physical insight, it may be useful to enforce
additional constraints on the type of variations allowed.

2.3. Sensitivity to divergence-free base-flow modifications
We focus here on the derivation of a divergence-free sensitivity field, denoted by
∇Uσ 2, such that for any divergence-free base-flow variation δU the following equality
holds:

δσ 2 = (∇Uσ 2, δU)= (∇Uσ
2, δU). (2.15)

The divergence-free sensitivity vector field can be written as the derivative of the
scalar ψ : ∇Uσ 2 = ∂yψ , ∇Vσ 2 = −∂xψ . It is straightforward to show that the function
ψ satisfies

−∆ψ = ∂x(∇Vσ
2)− ∂y(∇Uσ

2), (2.16)

with ∇ψ · n = ny∇Uσ
2 − nx∇Vσ

2 imposed on all boundaries of the computational
domain except on the lower boundary (see figure 5) where a symmetry boundary
condition ψ = 0 is applied. Note that the definition of this sensitivity field is only of
interest in a non-parallel context, since the divergence-free constraint is automatically
satisfied in the parallel framework.

2.4. Sensitivity to steady forcing and blowing/suction
We focus here on the derivation of a sensitivity field for base-flow deviations
satisfying the Navier–Stokes equations. They are produced either by introducing
a two-dimensional forcing F in the base-flow momentum equations or by a non-
homogeneous boundary condition at the wall, Uw. Marquet et al. (2008) investigated
the same problem for globally unstable flows. The sensitivity of the singular value
is determined here in a similar way by first solving the following adjoint base-flow
equations:

−(U ·∇)U† − (U† ·∇)U† =−∇P† + Re−1∇2U† +∇Uσ
2, (2.17)

∇ ·U† = 0, (2.18)

where (U†,P†) are the adjoint base-flow fields whose boundary conditions are detailed
in Marquet et al. (2008). The sensitivity to steady forcing is then determined by

∇Fσ
2 = U†, (2.19)

while the sensitivity to wall blowing/suction is

∇Uwσ
2 =−P†n+ 1

Re
(∇U†) ·n, (2.20)
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where n is a vector normal to the wall and pointing in the outward direction.

2.5. Sensitivity and non-normality of the linearized Navier–Stokes operator for
wall-bounded shear flows

All terms involved in the gradient (2.11) are equal to the product of a component
of the optimal forcing (f , g or h) with a component of the optimal response
(u, v or w). Following Chomaz (2005) and Marquet et al. (2009), it is observed
that the non-normality of the linearized Navier–Stokes operator (here the resolvent
operator R) makes the optimal forcing and optimal response orthogonal. Two types
of non-normalities can be distinguished: the component-wise non-normality, which
concentrates the optimal forcing and response on different components, and the
streamwise non-normality, which separates the spatial supports of the structures,
upstream for the optimal forcing and downstream for the optimal response. As
shown by Monokrousos et al. (2010), the LU instability is characterized by an
optimal forcing concentrated on the cross-stream g and spanwise h components
while the optimal response is only on the streamwise component u. Inspection of
the streamwise component of the sensitivity (2.12) immediately indicates that the LU
perturbation is only weakly sensitive to streamwise base-flow modifications. This result
is in agreement with the observations in Cathalifaud & Luchini (2000) and Zuccher,
Luchini & Bottaro (2004) and can be deduced a priori. Streaks are ubiquitous in shear
flows. On the other hand, the sensitivity should be much stronger for TS waves, since
the streamwise and cross-stream components of both the optimal forcing and response
structures have large magnitudes (e.g. Monokrousos et al. 2010). In addition, owing
to the convective-type non-normality, the optimal forcing is located upstream while
the optimal response is downstream. This means that the gradient is non-zero only in
the region where the optimal forcing and response overlap. Hence, the stronger the
convective non-normality, the weaker the gradient. This mechanism should act both on
the LU instability and the TS instability, rendering the picture quite complex in open
flows. For this reason, we first (§ 3) analyse the gradients in a parallel approach where
we can focus on the effect of the component-type non-normality on the gradients of
the LU and TS instabilities. Then in § 4, we consider a spatially developing boundary
layer where both the component-wise non-normality and the convective non-normality
are present.

It is worth mentioning that the gradient provided in (2.11) is formally identical
to the sensitivity of an eigenvalue of the linearized Navier–Stokes problem to a
modification of the base flow given in Marquet et al. (2008), once the adjoint and
direct modes are replaced by the optimal forcing and response.

2.6. Numerical method
The equations defining the forced problem for a parallel base flow are discretized
using Chebyshev collocation method in the y-direction (Weideman & Reddy 2000).
For most of the computations presented we used ny = 121, with ny the number of
collocations points. Tests were performed with ny = 201 to validate the accuracy of
the results. Homogeneous boundary conditions are applied to the forcing and velocity,
f̂ and û, at the wall (y= 0) and in the free stream (y= 30δ∗, where δ∗ is the boundary
layer displacement thickness).

The results for a spatially evolving boundary layer discussed in § 4 are obtained by a
finite element approach. The spatial derivatives are discretized with Taylor–Hood finite
elements (P2 elements for the velocity field and P1 elements for the pressure). The
mesh consists of 3.82 × 106 triangles and their size in the boundary layer region
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FIGURE 1. (a) Maximum optimal response σ 2
α versus the spanwise wavenumber β for

forcing frequency ω = 0, Blasius flow at Reδ∗ = 400. (b) The streamwise wavenumber α
pertaining to the largest response for each value of β and ω = 0. (c) Maximum optimal
response σ 2

α versus forcing frequency ω for two-dimensional forcing β = 0. (d) The
wavenumber α pertaining to the largest response.

(−0.5 6 x 6 1.25,−1/600 6 y 6 0.02) is 1x = 1/6000 except near the ellipitcal
leading edge where 1x = 1/108 000. This results in a maximal number of degrees
of freedom equal to ∼25 million. The base flow is obtained with the Newton
method while the computation of the largest singular values takes advantage of Krylov
methods (ARPACK package, see www.caam.rice.edu/software/ARPACK/). All matrix
inversions are performed by a direct LU multifrontal solver (MUMPS package, see
http://graal.ens-lyon.fr/MUMPS/).

3. Sensitivity of perturbations in a parallel boundary layer flow
The zero-pressure-gradient boundary layer flow is a spatially developing flow.

However, owing to the weak downstream growth of the shear layer, its stability has
been traditionally studied under the assumption of parallel flow. Studying the evolution
of perturbations of a parallel base flow U = U(y) is a computationally easier task that
enables a complete parameter study to be conducted. Despite the approximation made,
such analysis has been shown to provide useful indications for the fully non-parallel
flow. Thus the sensitivity results are first detailed for the parallel boundary layer with
focus on the component-wise non-normality. The spatially evolving flow is examined
in the next section in the global framework, where focus is on the analysis of the
streamwise non-normality.

We present results for a parallel Blasius boundary layer at Reynolds number lower
than Reδ∗ = 500. Above this critical value the Blasius velocity profile is locally
convectively unstable and the analysis detailed in the previous section cannot be
performed. The reader should then refer to the formalism developed by Bottaro et al.
(2003). The Reynolds number is defined here using the free-stream velocity U∞,
the boundary layer displacement thickness δ∗ and the kinematic viscosity ν, Reδ∗ =
U∞δ∗/ν.

The maximum over all streamwise wavenumbers α of the energy amplification,
σ 2
α (ω, β;Reδ∗) = maxα σ 2(ω, α, β;Reδ∗), is reported in figure 1 for the Reynolds

number Reδ∗ = 400. The analysis focuses on the LU and TS mechanisms separately
and considers an optimization over the streamwise scale of the disturbance to
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more easily compare with the global analysis presented next. The results for time-
independent modes (LU) are displayed in figure 1(a,b), whereas two-dimensional
modes are illustrated in figure 1(c,d). Similar results can be found in Corbett
& Bottaro (2000) and Schmid & Henningson (2001) for the analysis of the
optimal transient growth. The largest amplification for LU is obtained for spanwise
wavenumber of the forcing β = 0.12, while the TS waves are more receptive to
forcing at frequency ω = 0.13 for the Reynolds number considered. The real values
of α associated with the maximum responses shown in figure 1(a,c) are displayed
in figure 1(b,d). Not surprisingly, the steady LU mechanism is associated with
streamwise-independent perturbations while the streamwise wavenumber of the optimal
TS-waves increases with the forcing frequency.

The profiles of the optimal forcing and response for the two growth mechanisms
under investigation are shown in figure 2. The largest amplification is due to the
LU mechanism and indeed the optimal forcing displayed in figure 2(a) has the form
of streamwise-independent vortices and induces an optimal flow response organized
as streamwise velocity streaks, seen in figure 2(b). For the TS-modes the optimal
excitation is mainly of streamwise momentum and located close to the critical layer,
where the base-flow velocity is equal to the phase speed of the TS wave. The flow
response has the typical shape of these modes (see figures 2c and 2d).

The sensitivity of the optimal harmonic excitation to variations of the base flow
∇Uσ

2(y;ω, α, β), i.e. the gradient of the largest singular value of the resolvent
operator with respect to base-flow modifications, is shown in figure 3. As a
measure of the sensitivity, function of the wall-normal coordinate y, we choose
the cross-stream maximum and normalize it with the corresponding energy gain,
i.e. maxy |σ−2∇Uσ

2(y)|. This quantity is displayed in figure 3(a,b) for streaks and
TS-waves and the wavenumber α maximizing the amplification σ 2

α shown in figure 1.
The results indicate that the sensitivity is stronger for the case of time-dependent
disturbances and exhibit a peak where the flow response is also largest. The sensitivity
is much weaker for time-independent streaky forcing. The variation of the sensitivity
with the Reynolds number is explored in figure 3(c). Here the sensitivity ∇Uσ

2 is
reported to document also the absolute values of the gradient. The sensitivity for
streaky disturbances, depicted by filled symbols, is only slightly increasing with Reδ∗ ,
while the energy gain σ 2 scales as Re2

δ∗ (Schmid & Henningson 2001). The sensitivity
of the TS disturbances, initially weaker, becomes clearly dominant, about three orders
of magnitude larger, on approaching the critical Reynolds number (branch I). The data
suggest that at higher Reynolds numbers weak modifications of the base flow can have
a significant impact on the excitation of TS-like disturbances while streamwise streaks
are more difficult to alter. In a parallel flow, small defects can easily make the flow
linearly unstable as shown by Bottaro et al. (2003) for Couette flow.

The wall-normal profiles of the sensitivity to base-flow modifications ∇Uσ
2(y)

for the two dominant instabilities in Blasius flow are reported in figure 4. Results
are shown for ω = 0, β = 0.1 and ω = 0.13, β = 0. Further, the shape of the
sensitivity profiles does not show significant variation with the Reynolds number;
the profiles displayed correspond to modifications that would induce an increase of
the flow response. To affect the LU mechanism, base-flow modifications are required
throughout the flow, see figure 4(a). Reduction of the mean velocity at the boundary
layer edge and increase in the free stream both contribute to an increase of the
boundary layer thickness, as in the case of adverse pressure gradient which is known
to promote streak amplification. In figure 4(b), it is seen that a decrease of the
base flow velocity at the height of the critical layer, followed by an increase at the
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FIGURE 2. (a) Optimal forcing for ω = 0, β = 0.1 and Reδ∗ = 400 in the cross-stream
y–z plane and (b) corresponding wall-normal profile of optimal response. (c) Wall-normal
profile of the optimal forcing for ω = 0.13 and β = 0 with optimal response in (d).The
dashed–dotted line in (c) indicates the location of the critical layer. Solid line: streamwise
velocity u; dashed line: wall-normal velocity v; dashed-dotted line: spanwise velocity w,
when β 6= 0.

sides, would induce a stronger time-periodic response in the flow. Such a base-flow
modification may be induced by a small object placed at the distance from the wall
where the local velocity is the phase speed of the least-stable wave. The results are
in qualitative agreement with the findings in Pralits et al. (2000) who considered
sensitivity of TS waves to an external disturbance source within the framework of the
parabolized stability equations. Note, finally, that the region of highest sensitivity is
located closer to the wall for time-dependent forcing than for steady excitations. This
strongly suggests that the amplification of streaks is much less sensitive to base-flow
modifications that can be created from the wall.
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FIGURE 3. (a,b) Normalized sensitivity σ−2∇Uσ
2 of the optimal forcing with respect to base-

flow modification for Blasius flow at Reδ∗ = 400: (a) wall-normal maximum of the sensitivity
versus ω for TS-instabilities, β = 0; (b) wall-normal maximum of the sensitivity versus β
for LU-instabilities, ω = 0. (c) Reynolds-number behaviour of the sensitivity for forcing with
ω = 0.13, β = 0 (open symbols), and ω = 0, β = 0.1 (filled symbols).
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FIGURE 4. Wall-normal profile of the gradient of the optimal response to base-flow
modification ∇Uσ

2 for parallel Blasius flow, Reδ∗ = 400: (a) ω = 0 and β = 0.1; (b) ω =
0.13, β = 0 and α = 0.315. The thin dashed line depicts the Blasius profile, while the
dashed–dotted in line in (b) indicates the location of the critical layer.

The weak sensitivity of streaks to base-flow modifications demonstrated above can
also be inferred by considering the linearized stability equations for parallel base flow
and streamwise independent disturbances (α = 0). In this limit the Orr–Sommerfeld
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equation becomes independent of the base flow. The latter appears only on the
right-hand side of the Squire equation (in particular its wall-normal derivative). This
implies that a small variation of the base flow can only have a small effect on the
eigenfunctions of the Squire problem. The non-modal behaviour can be explained
by the forcing of Squire modes from eigenfuncions of the Orr–Sommerfeld equation
and therefore the effect of any variation of the base flow can be expected to be
small. In addition, the most involved modes are those least stable, i.e. those with
lower variations in the wall-normal distribution, which are less affected by localized
modifications.

Streak non-modal amplification in boundary layers is triggered by disturbances in
the free stream in an unbounded domain. It is possible to show how streaks can be
induced by free-stream modes associated with the continuous spectrum of the stability
equations (Grosch & Salwen 1978; Brandt, Schlatter & Henningson 2004; Zaki &
Durbin 2005). These are modes oscillating periodically in the free stream and decaying
to zero inside the shear layer. The continuous spectrum is formed at infinity and
therefore its eigenvalues cannot be affected by base-flow modification that can be
created in practice by actuation at the wall. Although the eigenfunctions are dependent
on the specific base-flow profile, their decay rate is determined in the free stream
and therefore one cannot diminish the modes’ capability to act as forcing term for
streamwise-velocity perturbation. Note however that optimal disturbances in spatially
evolving boundary layers over finite-length domains are located closer to the shear
layer as discussed in § 4 and in Monokrousos et al. (2010).

4. Sensitivity of perturbations in a spatially evolving boundary layer
In this section, we investigate the stability and sensitivity of a spatially evolving

boundary layer. Unlike the previous global stability analysis dedicated to the
development of perturbations in boundary layers, we consider a flow configuration
where the leading edge of the flat plate is included in the computational domain.
Single frequency–wavenumber vortical modes impinging on an elliptic leading edge
have been recently analysed by Schrader et al. (2010). The computational domain is
shown in figure 5: the flat plate is located at y = 0 and extends from x = 0 to 1.25
with an elliptical leading edge of aspect ratio 3 as depicted in the inset of the figure.
The inlet boundary is located upstream of the leading edge at x = −0.5 whereas the
outflow boundary is at the end of the flat plate where x = 1.25. An upper boundary is
placed at y = 0.25 and a lower boundary connects the inlet to the leading edge. All
lengths have been made non-dimensional with a reference length l shorter than the
flat-plate length. This choice will be explained later.

To compute the base flow a uniform velocity profile, u = u∞ = 1, v = 0, is
imposed at the inlet, the free-stream velocity u∞ being used as the reference velocity.
Symmetric boundary conditions are applied on the upper and lower boundaries, no-
slip boundary conditions are applied on the wall and an outflow boundary condition,
commonly used in finite-element computation, is enforced on the outlet boundary:
(p − (1/Re)∂xu = 0, ∂xv = 0). The Reynolds number based on the reference length
and velocity is fixed to Re = 6 × 105. Figure 6 displays the characteristics of the
base flow. The pressure coefficient shown in figure 6(a) exhibits strong variations
around the leading edge. On the flat plate (x > 0) the presence of the leading edge
induces a favourable pressure gradient until x ≈ 0.1. Further downstream we observe
a slight adverse pressure gradient indicating that the boundary layer is not strictly a
zero-pressure-gradient boundary layer. The local displacement thickness δ∗ is depicted
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FIGURE 5. Computational domain used for the spatially developing boundary layer.
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FIGURE 6. Characteristics of the base-flow computed at Re= 6×105. (a) Pressure coefficient
and (b) displacement thickness as a function of the streamwise coordinate x. For comparison,
the dashed line indicates the Blasius boundary layer solution.

in figure 6(b) and is compared to the analytic expression 1.72Re−1/2√x obtained
for the asymptotic Blasius similarity solution. At the beginning of the flat plate the
displacement thickness is equal to 1.7× 10−4 which corresponds to a Reynolds number
based on the displacement thickness of Reδ∗ = 106. At x = 1, δ∗ is equal to 1317
and reaches 1465 at the outlet x = 1.25. Despite the slight adverse pressure gradient
observed on the flat plate, the development of the boundary layer is very close to the
Blasius solution. In the following the displacement thickness at the station x = 1 will
be denoted δ = δ∗(x = 1) for convenience and the frequency F = 106 × ω/Re will be
used to present the results.

4.1. Optimal forcing and response
The stability of the boundary layer is not investigated in the whole computational
domain but in a restricted domain extending up to x = l = 1, the reference length.
Thus we define the optimal energy gain σ 2 as the ratio of the energy of the optimal
response in the restricted domain x 6 1 to the energy of the optimal forcing in
the whole domain. This choice ensures that the following results are free from any
numerical effects due to the outflow boundary condition. Indeed numerical tests have
been carried out to check that the base-flow pressure coefficient, the spatial distribution
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FIGURE 7. Spatially developing boundary layer: optimal gains σ 2 for (a) the steady
three-dimensional (LU) perturbations (β 6= 0) and (b) the harmonic two-dimensional (TS)
perturbations (F 6= 0).

of the optimal forcing and response, as well as the optimal gain, vary by less than 1 %
when limiting the domain to x= 1.125.

The optimal gains σ 2 have been computed for two types of perturbations:
steady three-dimensional perturbations (F = 0, β 6= 0) and harmonic two-dimensional
perturbations (F 6= 0, β = 0). Oblique perturbations (F 6= 0, β 6= 0) have not been
investigated in the present study. Figure 7(a,b) shows the optimal gains obtained for
both types of perturbation, as a function of the spanwise wavenumber βδ and of
the frequency F respectively. The largest amplification for steady three-dimensional
perturbations σ 2 ∼ 900 is obtained for the spanwise wavenumber βδ = 0.94 while
two-dimensional harmonic perturbations display a maximum gain of σ 2 ∼ 222 for the
frequency F = 88. In the present study the three-dimensional steady perturbations are
thus more amplified than the two-dimensional harmonic perturbations. This is not a
general feature and for larger Reynolds number we would expect different results.
Indeed Åkervik et al. (2008) and Monokrousos et al. (2010) have given similar
curves σ 2(F) but for a boundary layer flow configuration where the leading edge
was not included in the computational domain. In the latter study where the inlet
and outlet Reynolds numbers were equal to Reδ∗ = 1000 and 1834 respectively, it
was found that the two-dimensional harmonic perturbations were more amplified than
the three-dimensional steady perturbations. Therefore we can expect that for larger
Reynolds number the two-dimensional harmonic perturbations would have larger gains.
Before turning to the description of the forcing and response structures, it is worth
mentioning that these large gains correspond to a pseudo-resonance of the linearized
Navier–Stokes operator: they cannot be explained solely by the presence of a particular
eigenvalue in the spectrum of this operator near the forcing frequencies F = 0 or 88 as
shown in Åkervik et al. (2008) and Alizard, Cherubini & Robinet (2009).

To describe the spatial structures of the optimal forcing and response we will use
the energy density of the perturbation. For a scalar field f , the energy density is
defined by df (x) =

∫ 1
0 (|f |2) dy while for a vector field f = (f , g, h) it is defined by

df (x) =
∫ 1

0 (|f |2+|g |2+|h |2) dy. Figure 8 shows the energy density of the optimal
forcing and response as a function of the streamwise coordinate x. The case of
three-dimensional steady perturbations is depicted in figure 8(a) for the wavenumber
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FIGURE 8. Density functions of (a) the three-dimensional steady (LU) optimal perturbation
at βδ = 0.94 and (b) the two-dimensional harmonic (TS) perturbation at F = 100 as a
function of the streamwise coordinate. The red and black lines depict the optimal forcing
and response respectively. For each case, the solid lines indicate the density energy while
the dashed, dashed–dotted and dotted lines are used for the streamwise, cross-stream and
spanwise components. The vertical lines in (b) delimit the convectively unstable region.

βδ = 0.94 while the case of two-dimensional harmonic perturbations is shown in
figure 8(b) for the frequency F = 100.

For the three-dimensional steady perturbation the spatial distribution of the optimal
forcing and response associated with the dominant singular value is depicted in
figure 9. For clarity the vertical coordinate has been non-dimensionalized by δ. The
evolution of the local displacement thickness δ∗ and boundary layer thickness δ0.99 is
indicated in the figure by the dashed and solid lines respectively. The optimal forcing
is represented in figure 9(a) by iso-contours of its spanwise component while the
optimal response is shown in figure 9(b) by isocontours of the streamwise velocity.
First we note that the structures are weakly varying in the streamwise direction,
which relates to the α = 0 perturbations described in § 3. On the flat plate (x > 0)
the optimal forcing is dominated by the cross-stream velocity components while
the response is concentrated in the streamwise component. This is a footprint of
the component-type non-normality of the linearized Navier–Stokes operator which
can be explained in the present case by the LU instability mechanism: streamwise
vortical structures induce streamwise velocity streaks. In addition, the optimal forcing,
strongest near x= 0.25, tends to be located on the upstream part of the flat-plate while
the response is largest downstream of the flat plate. This stems from the convective-
type non-normality, separating the spatial supports of the optimal forcing and response.
Interestingly, the optimal forcing remains at significant amplitudes even upstream of
the flat plate (x < 0). In this region the optimal forcing and response are dominated
by their cross-stream components, indicating that the LU instability mechanism is not
yet at play. Instead, the optimal forcing creates streamwise vorticity by stretching and
tilting upstream disturbances through the shear induced by the leading edge (see also
Schrader et al. 2010). This vorticity would trigger streaks only when impinging on the
plate.

For the two-dimensional harmonic waves the spatial distribution of the optimal
forcing and response pertaining the dominant singular value are depicted in figure 10
for F = 100. Here we focus our attention on this frequency even if it is not exactly
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FIGURE 9. Optimal three-dimensional steady (LU) perturbation for βδ = 0.94. (a) Spanwise
component h of optimal forcing. (b) Stream-wise component u of optimal response.

–0.50 –0.25 0 0.25 0.50 0.75 1.00 1.25

–0.50 –0.25 0 0.25 0.50
x

0.75 1.00 1.25

58

–58
0

–463

463
0

0

1

2

3

4

0

1

2

3

4

(a)

(b)

FIGURE 10. Optimal two-dimensional harmonic (TS) perturbation for F = 100. (a) Stream-
wise component f of optimal forcing. (b) Stream-wise component u of optimal response. The
vertical thin solid lines denote the location of branch I and branch II, as defined by local
stability theory.

the optimal frequency because branches I and II, as determined by local stability
theory, are both within the optimization domain. We note that the disturbance consists
of a series of waves of characteristic streamwise scale related to the wavenumber α
considered in the analysis of a parallel boundary layer (§ 3). The flow response is
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clearly localized downstream of the flat plate and reaches a maximum around x= 0.90.
This station is very close to the location of branch II, x = 0.88 for F = 100, where
the nature of the local stability changes from convectively unstable to stable. On the
other hand the optimal forcing is localized upstream and reaches a maximum around
x = 0.25, slightly upstream of the location of branch I, x = 0.29 for F = 100, where
the local stability of the flow changes from stable to convectively unstable. This shows
that the strong convective non-normality of the underlying global operator is here
closely related to the local stability of the flow. We also emphasise that the optimal
forcing drops off very quickly upstream of branch I, and therefore harmonic forcing
located upstream of the flat plate is very inefficient at triggering TS waves. Similarly,
the optimal response weakens downstream of branch II. These features markedly differ
from those described for the LU instability. Finally the footprint of the component-
type non-normality is seen on the structure of the optimal forcing, which is dominated
by its streamwise component, while the optimal response is equally distributed on its
streamwise and cross-stream components. The streamwise forcing is dominant because
the forcing is leaning against the shear of the base flow. Thus the well-known Orr
mechanism is also at play to efficiently initiate the TS instability as explained in
Åkervik et al. (2008).

4.2. Sensitivity to base-flow variations
Before presenting the sensitivity field in the global framework, we note that instead
of depicting the field ∇Uσ

2, we have chosen to show the quantity δ2σ−2∇Uσ
2. If we

consider a base-flow variation of small amplitude ε, localized on a area δ2 around the
location (x0, y0), (2.8) shows that the variation of the singular value is approximated
by δσ 2 = εδ2∇Uσ

2(x0, y0). The chosen quantity is thus the rate of variation of the
energetic gain divided by the amplitude of a base-flow variation localized on a
surface δ2.

The sensitivity to base-flow variation of the TS perturbation previously described
is first investigated. Figure 11 displays the density of sensitivity fields as a function
of the streamwise coordinate x. First we focus on the sensitivity to generic base-
flow variations which is depicted in figure 11(a). This sensitivity field is largest in
the region of the flow located between branch I and branch II, indicating that TS
perturbations are only sensitive to base-flow variations in the convectively unstable
region. This result is reminiscent of the streamwise distribution of the optimal forcings
and responses shown in figures 8(b). Roughly speaking the sensitivity is defined as the
product of the optimal forcing and response so that it can only be strong in the region
where these overlap. For TS perturbations, the sensitive region corresponds to the
convectively unstable region. Moreover we observe that TS perturbations are slightly
more sensitive to cross-steam variations than to streamwise variations. This result
should be interpreted with caution. Indeed although generic base-flow variations are
allowed they may be not physical since they do not satisfy the governing equations.

To gain more physical insight, we therefore focus our attention on divergence-
free base-flow variations and compute an appropriate sensitivity field as explained
in § 2.3. Results are displayed in figure 11(b). We see that the sensitivity to cross-
stream variations has vanished while the sensitivity to streamwise variations is almost
unaltered. This result is interesting in terms of flow control since only divergence-free
base-flow variations may be produced. Consequently, even if the sensitivity to generic
base flow variation is strong in the cross-stream direction, this cannot be exploited
for flow control. Figure 12 depicts the streamwise component of the divergence-free
sensitivity field. The spatial distribution is shown in figure 12(a) while a wall-normal
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FIGURE 11. Sensitivity of the TS perturbation to (a) generic and (b) divergence-free base-
flow variations. The dashed (dash-dotted) line depicts the density of the streamwise (cross-
stream) component of the sensitivity fields (a) δ2σ−2∇Uσ

2 and (b) δ2σ−2∇Uσ 2. F = 100.
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FIGURE 12. Sensitivity of TS perturbations to divergence-free base-flow variations.
(a) Spatial distribution of the streamwise component of the field δ2σ−2∇Uσ 2. (b) Wall-normal
profile of the sensitivity at the station x = 0.7. The y coordinate is here normalized with the
local displacement thickness δ∗(x= 0.7). F = 100.

profile is represented in figure 12(b) for comparison with the parallel results shown in
figure 4(b). This field is weakly varying in the streamwise direction but exhibits strong
variations in the cross-stream direction. These variations are quite similar to those
found in the parallel case. The sensitivity profile in figure 12(b) strongly resembles the
wake defect that would be observed behind an object placed at y= 0.6δ∗.

The sensitivity of the LU perturbation is presented in figures 13(a) and 13(b),
where we display the density functions for generic and divergence-free base-flow
variations. First we emphasise that LU perturbations are much less sensitive to base-
flow variations than TS perturbations. For instance, the sensitivity of the LU instability
to divergence-free variations is three orders of magnitude lower than the sensitivity of
the TS instability, as for the parallel boundary layer. Secondly we observe that the
cross-stream component is largely dominant when generic variations are considered
but this is again no longer valid when allowing only divergence-free modifications.
Therefore, in the following discussion we focus on the results displayed in figure 13(b).
The LU sensitivity exhibits a very sharp peak on the leading edge of the flat plate,
the amplitude being two orders of magnitude larger than everywhere else in the
flow. As seen in the inset of figure 13(b) and in figure 14, the location of this
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FIGURE 13. Sensitivity of LU perturbations to (a) generic and (b) divergence-free base-flow
variations. The solid lines depict the density of the magnitude of the sensitivity while the
dashed and dash-dotted lines indicate the streamwise and cross-stream components.
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FIGURE 14. (Colour online available at journals.cambridge.org/flm) Sensitivity of LU
perturbations to divergence-free base-flow variations. Spatial distribution of δ2σ−2∇Uσ 2 close
to the leading edge of the flat plate. The colours indicate the magnitude of the field and the
lines show the directions. Note that here the x and y coordinates are normalized with the
displacement thickness δ. βδ = 0.94.

peak exactly corresponds to the position of the elliptic leading edge. Interestingly the
sensitivities upstream of the flat plate (x < 0) and on the flat plate (x > 0) are of
comparable magnitude. Upstream of the flat plate the LU perturbation is only sensitive
to streamwise base-flow variations while modifications of the cross-stream component
can affect the disturbance amplification above the flat plate.

As in § 3, these findings may be explained by inspection of the expression of
the gradient given in (2.11). Note that the sensitivity with respect to the spanwise
component of the base flow W is zero for both TS and LU disturbances. This can be
seen directly from the expression of the gradient for two-dimensional perturbations and
for disturbances of zero frequency. In the latter case, the optimal forcing and response
can be written in the form (f , g, ih) and (u, v, iw) and hence the gradient with respect
to W is zero since it is given by the real part of a purely imaginary term (see (2.11)).
In both cases, for symmetry reasons, positive and negative distortions should be
equivalent since the flow is homogeneous in the spanwise direction. However, ∇Wσ

2

should be considered for oblique waves when both F and β are non-zero.
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FIGURE 15. Wall-normal profiles of the optimal forcing (a) and response (b) extracted
at the downstream position Reδ∗ = 400 for the LU perturbation βδ = 0.94. The spanwise
wavenumber non-dimensionalized by the local displacement thickness is equal to βδ∗ =
0.283. The solid, dashed, dashed–dotted lines refer to the streamwise, cross-stream and
spanwise components. These figures may qualitatively be compared to the local results of
figure 2(a,b).

4.3. Comparison of local and global analysis
In this section, we compare the results from the local and global analysis. For this, we
have extracted from the global results the wall-normal profiles of the optimal forcing,
optimal response, and gradient at the streamwise station corresponding to Reδ∗ = 400.
The data for the LU case (F = 0, βδ = 0.94), are represented in figure 15, while those
for the TS case (F = 100, β = 0) are reported in figure 16. The spanwise wavenumber
of the LU instability, non-dimensionalized with the local displacement thickness, is
βδ∗ = 0.283, while the frequency of the TS instability is ωδ∗/U∞ = 0.133. The results
in figures 15 and 16 may therefore be compared to those of figure 2. It is seen that in
the LU case the optimal forcing and response in the spatially evolving boundary layer
are located closer to the wall than in the case of the parallel boundary layer. In the
global approach, the perturbation evolution is monitored over a finite-length domain
and although a forcing located further outside the boundary layer would certainly be
more effective, it would also require longer distances to interact with the shear layer
close to the wall. This would imply a larger growth but further downstream, outside
our optimization domain. In a parallel flow, conversely, there is no limitation on the
distance travelled by the disturbances before reaching the largest energy amplification.
In the case of TS waves, the local and global results qualitatively agree. Similar
trends may be observed for the sensitivity displayed in figure 17: while the profiles
qualitatively agree with those for a parallel flow for the TS waves, the gradient
is closer to the wall in the global approach. This result is directly related to the
differences in the wall-normal location of the optimal forcing and response mentioned
above.

4.4. Towards flow control: sensitivity to steady forcing and blowing/suction
As a first step towards feasible passive control of perturbations in boundary layers we
investigate two different ways to produce base-flow modifications: a two-dimensional
steady momentum forcing and blowing/suction on the plate.
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FIGURE 16. Same as figure 15 but for the TS perturbation F = 100. The frequency non-
dimensionalized by the local displacement thickness is equal to ωδ∗/U∞ = 0.133. These
figures may qualitatively be compared to the local results of figure 2(c,d).
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FIGURE 17. Wall-normal profiles of the streamwise component of the sensitivity σ−2∇Uσ
2

for (a) the LU instability, (b) the TS instability shown in the previous figures. These figures
may be qualitatively compared to the local results of figures 4(a,b).

The sensitivity fields to steady forcing introduced in § 2.4 have been computed
for the TS and LU perturbations and in both cases the streamwise component is
dominant. Figure 18(a) thus displays the density of this component as a function
of the streamwise coordinate. As noted previously, the TS perturbation is much
more sensitive than the LU perturbation. In particular, the TS perturbation is mainly
sensitive to forcing located between branch I and branch II while the LU perturbation
is also sensitive to forcing located upstream of the flat plate. As opposed to the
divergence-free sensitivity field, we do not observe any sharp peak around the leading
edge in the case of LU perturbations. Figure 19 shows the spatial distribution of
the streamwise component of the sensitivity for both LU and TS perturbations. To
interpret these figures let us consider a force acting in the direction of the base flow
and localized on a area δ2 centred around (x, y) = (0.7, 0.4). If the amplitude ε of
this force is small, the energy of the TS perturbations is expected to decrease as
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FIGURE 18. (a) Density of the streamwise component of the sensitivity to steady forcing
δ2σ−2∇Fσ

2 and (b) sensitivity to wall-normal blowing/suction δ2σ−2∇Uwσ
2 as a function of

the streamwise coordinate. The solid and dashed lines depict the results for TS (F = 100)
and LU (βδ = 0.94) perturbations respectively. Note that the values on the left axis pertain to
the sensitivity of the TS disturbance and the values on the right to the sensitivity of the LU
disturbance, the latter being significantly smaller.
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FIGURE 19. Sensitivity to steady forcing. Stream-wise component of the field δ2/σ 2∇Fσ
2

for the (a) LU and (b) TS perturbations.

δσ 2 ∼ 1.5σ 2ε showing that a small steady forcing may have a dramatic effect on the
development of TS perturbations. At the same time, the energy of the LU perturbations
would decrease as δσ 2 ∼ 0.01σ 2ε.

Finally, the sensitivity fields to wall-normal blowing/suction is depicted in
figure 18(b). The tangential components are not shown since their effect is negligible.
At a first look this may seem inconsistent with the results obtained for the sensitivity
to steady forcing where modification of the streamwise components is dominant.
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However, in boundary layer flows, wall-normal blowing and suction induce efficiently
mainly variations of the streamwise component of the base flow. The result for
the TS perturbation is displayed by the solid line in figure 18(b). It indicates that
suction around x = 0.5 should be applied to reduce the perturbation energy. For the
LU perturbation the localization of the blowing is less pronounced. Since the LU
perturbation is also much less sensitive, suction distributed on the whole flat plate
should be chosen to achieve a significant reduction of the perturbation energy growth.
Finally we note that a peak is reached around x= 0.3, i.e. further upstream than in the
case of steady forcing (compare with figure 18a).

5. Concluding remarks
A theoretical formulation to study the base-flow sensitivity of fluid problems

characterized by significant non-modal amplification of linear perturbations is
proposed. These base-flow variations can be seen as defects from ideal configurations
as well as the result of passive manipulation of the flow. Using a variational technique,
we have derived the analytical expression for the gradient of the resolvent norm
of the system with respect to the base-flow modifications. We have shown that
this gradient depends on the combination of the optimal forcing and the optimal
response, in analogy to the sensitivity of the eigenvalue that is largest in the overlap
region between direct and adjoint eigenmodes (Chomaz 2005). Therefore, in parallel
with the concept of wavemaker introduced for globally unstable flows (hydrodynamic
oscillators), we consider the region in space where the largest amplification of external
noise of given frequency is occurring in globally stable systems. This is located within
the region of largest sensitivity to base-flow modifications.

Results are presented for the Blasius boundary layer, a classic example of a noise
amplifier where the different instability mechanisms of shear flows are at work. We
investigate how the sensitivity of the resolvent norm varies for the two sources of
non-normality present, component-wise (LU) and convective (TS). The results show
that very weak modifications of the base flow can have a significant impact on
the TS waves, easily leading to more unstable flows. Conversely, the sensitivity of
elongated perturbations exploiting the LU mechanism is weaker, almost independent
of the Reynolds number and larger further up in the boundary layer and upstream
of it. When imposing divergence-free distortions we observe that modification of
the streamwise component of the base flow is dominant, whereas variations of the
wall-normal velocity component has little impact on either instability. The findings
presented can be explained just by examining the gradient of the resolvent norm
with respect to base-flow modifications in the limit of small spanwise wavenumbers
and low frequencies. Finally, we considered also the effect of steady forcing and
wall blowing/suction on the instability (both acting via a base-flow modification) to
demonstrate the potential of the current approach for the design of passive control
strategies.

For the case of boundary layer flows, where two distinct instability mechanisms are
at work, it is relevant to examine how variations of the base flow that are optimal
for one type of disturbances can affect the other. To this end, we have considered
modifications of the base-flow which are optimal to enhance/reduce the LU or the
TS mechanism and studied the resulting flow behaviour in the wavenumber plane.
Our results, not shown here, show that variation of the base flow reducing the LU
amplification can easily lead to increased amplification of TS waves. Conversely, weak
variations of the shear layer close to the wall can greatly affect the TS amplification
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while having no effect on the LU (as deduced by the largest magnitude of the
sensitivity to TS). Note indeed that it is necessary to scan the entire parameter space
to be sure that a distortion-stabilizing perturbation at some (ω0, β0) did not produce an
amplification increase in a different region in wavenumber space.

We examined the analytical expression of the sensitivity to gain physical
understanding on the instability mechanisms and the potential that variations of the
base flow may have. The sensitivity gradient alone provides information on the effect
of small-amplitude base-flow modifications on the non-modal behaviour. However, it is
important to note that the gradient can also be used to determine the change in the
base-flow velocity profile of specified finite magnitude that has the largest effect on the
singular values of the system, see Bottaro et al. (2003) for the corresponding modal
analysis.

In conclusion, the analysis presented here is relevant for all open flows which are
globally stable, such as spatially evolving incompressible boundary layers forming on
aerofoils. The present paper introduces, therefore, sensitivity analysis tools for noise
amplifiers. Note finally that in our approach we target directly the non-modal flow
behaviour and the formulation can be extended to design active control strategies
aimed at the flow non-modal disturbance growth. This could be a viable alternative in
the case of non-parallel flows with large streamwise non-normality.

The authors wish to thank A. Monokrousos and D. Henningson for fruitful
discussions.

Appendix. Sensitivity analysis in the time domain
The derivation reported above for the forced problem can be extended to consider

the largest transient growth in time of an optimal initial condition. In this case, the
largest singular value of the linear evolution operator is the target of the sensitivity
analysis. The main steps and the final result are briefly outlined here.

The relation between the optimal initial condition uin(t = 0) and the response uout(tf )

at given time t = tf can be formally written

uout =T (tf ,U)uin, T =PTE (tf ,U)P, E = exp(tf L (U)). (A 1)

The evolution operator T is defined as the matrix exponential of the stability
operator L . The optimal initial condition is defined as the eigenfunction associated
with the largest eigenvalue of the symmetric operator

T †T uin = λ2uin, (A 2)

and it maximizes the gain G(uin) = ((uout,uout)/(uin,uin)). Defining a Lagrangian in
the same way as described above, targeting modification of the largest singular value
of the evolution operator,

Kτ = λ2 − (q†
τ ,uout −T uin)− (a†

τ , aτ −T †uout)− (f †
τ , λ

2uin − aτ ), (A 3)

the sensitivity function ∇Uλ
2 is, in analogy to the case of the resolvent norm,

∇Uλ
2 = 2λ2Re{(∇uin)u∗out − (∇uout)

Huin}, (A 4)

where the optimal initial condition is normalized so that (uin,uin)= 1 and the response
at final time is (uout,uout)= λ2.
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