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A B S T R A C T

At the very end of the 19th century, Gabriele Tarde wrote that all society was
a product of imitation and innovation. This view regarding the development of
society has, to a large extent, fallen out of favour, and especially so in those areas
where the rational actor model looms large. I argue that this is unfortunate, as
models of imitative learning, in some cases, agree better with what people actually
do than more sophisticated models of learning. In this paper, I contrast the
behaviour of imitative learning with two more sophisticated learning rules (one
based on Bayesian updating, the other based on the Nash-Brown-von Neumann
dynamics) in the context of social deliberation problems. I show for two social
deliberation problems, the Centipede game and a simple Lewis sender-receiver
game, that imitative learning provides better agreement with what people actually
do, thus partially vindicating Tarde.

By the end of the 19th century, hopes that we were getting close to a complete
scientific understanding of the world were running high in some quarters. Perhaps
the greatest indicator of such hopes was when Lord Kelvin declared in his address
to the British Association for the Advancement of Science, “There is nothing
new to be discovered in physics now. All that remains is more and more precise
measurement.” And these hopes regarding our ability to explain were not just
limited to the physical world, but extended to the social world, the world of human
behavior, as well. In 1890, just ten years prior to Lord Kelvin’s pronouncement
of the end of physics, Gabriele Tarde, a French sociologist, stated in similar
grandiloquent fashion that he had identified the fundamental forces governing
society: “What is society? I have answered: society is imitation.” (Tarde 1890/1903,
74) In a later expansion of the same idea, we find: “[a]ll resemblances of social
origin in society are the direct or indirect fruit of the various forms of imitation.”1

Of course, from a contemporary perspective, most declarations exhumed from
the dustbin of history appear ridiculous. (Everything is made of water?) But
whereas we might be willing to overlook the hubris of Lord Kelvin, given that
his remarks about the “end of physics” must be viewed alongside his prescient
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identification of the two outstanding issues which led to modern physics,2 there
seems less reason to exercise a similar degree of charity for M. Tarde. Society is
not just a product of imitation and innovation by individuals. How could anyone
think it was? Our social lives are shaped by a rich variety of factors that Tarde’s
theory omits, such as social norms, strategic reasoning, empathic concern for the
well-being of others, the requirements of duty, obligation, and so on. These factors
shape our behaviour and thought in ways that cannot be reduced to mere imitation.
Yet even though Tarde’s theory, as a complete account of society, is false, that

does not mean there are no insights worth preserving. Indeed, in recent years there
has been a small resurgence of interest3 in the writings of this French sociologist
who was, at the time of his death, considered one of the greats among Comte,
Darwin, and Spencer (Millet 1970). In what follows, I offer an attempt to partially
rehabilitate, and partially vindicate, the views of Tarde regarding the importance of
imitation for society. This partial vindication occurs in a very limited sense: I will
argue that imitation, when used as a heuristic by boundedly rational individuals,
selects the socially optimal outcome in several social deliberation problems much
more readily than two other types of deliberative procedures. (The two other types
of deliberative procedures being derived from the work of Nash and Bayes, hence
the title of this paper.)
What this means is that imitation can be seen as a method for generating

and supporting some socially beneficial practices, even if it is not the universal
social explanans that Tarde thought. That might not sound all that interesting or
important, but it becomes so once we factor in when people choose to imitate. In
the models I present, imitation occurs when individuals, who are purely motivated
by the desire to maximize their personal gain, believe they can do better by adopting
the behaviour of another. Contrast this with the well-known fact that other
decision rules which seek to maximize individual gain often fail to generate socially
optimal outcomes, as in the tragedy of the commons, the prisoner’s dilemma, and
the centipede game. Imitation, then, provides a way for individuals to strive to
maximize their own personal gain in a way that does not preclude arriving at socially
optimal outcomes. That, I think, is a claim worth noting.

1. S O C I A L D E L I B E R A T I O N P R O B L E M S

In what follows, I shall take a social deliberation problem to refer to problems of
the following form: a population of agents faces a multitude of interdependent,
noncooperative, two-person decision problems, with the special property that each
individual, when he chooses an action, has to use that action regardless of whom he
interacts with.4 It is a social deliberation problem in the sense that I cannot choose
to condition my behaviour on the identity of persons I am going to interact with.
(Think of it as my having to choose a single “face” that I present to all members of
society.) It is a social deliberation problem in the sense that each individual does not
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have a fixed idea in her mind as to what she is going to do, and so will modify her
beliefs in response to others.
Let us formulate this more precisely. Let P= {1,. . . ,N} denote the population

of agents and let M be the payoff matrix for the two-player decision problem as
follows:

M =




〈r11, c11〉 · · · 〈r1n, c1n〉
...

. . .
...

〈rn1, cn1〉 · · · 〈rnn, cnn〉


 .

Note that the payoffs for the two players may not be equal, but it is required that
the same number of strategies be available for both, regardless of whether they play
as row or column.
One important feature about society is that it has structure. Social structure can be

modeled in a variety of ways, but the most important aspect of it is that it endures
and constrains individual choice and action. Adopting a model of social structure
that I have used elsewhere (Alexander 2007), let us model the structure of society
by a directed graph G = 〈P ,E〉, where the set of directed edges E represents a
binary relation of some particular social importance (such as X being a friend of Y,
X being an acquaintance of Y, and so on). Given a particular individual i, the set of
players with whom i shares an edge with are the neighbours of i. The neighbours of a
player are the individuals with whom he plays the game. If i and j are connected by
an edge pointing from i to j, that means when the two play a game, i plays as Row
and j plays as Column.
People deliberate when they are uncertain about what to do. The state of

uncertainty of each player is represented as a probability distribution over the
possible actions available to him. (I shall treat “action” as synonymous with
“strategy”, given that we are working in a game theoretic context.) We can think of
the state of uncertainty of player i at time t as a vector �pi(t ) = 〈pi1 (t ), . . . ,pin (t )〉,
where pij (t ) denotes the probability that i assigns to action j at time t. This
probability may be interpreted as a measure of how “desirable” that action appears
to i at the time.
How do people deliberate, and how do people end up revising their state of

uncertainty as a consequence of their deliberations? It is easy to imagine a variety of
ways this might happen. It turns out that there is a natural way to extend the two-
person deliberative dynamics of Skyrms (1990) to the socially structured setting
envisioned here.5 Let us assume that people’s deliberation over how to revise their
state of uncertainty occurs in two stages: first, a player deliberates about how she
would revise her state of uncertainty for each pairwise interaction with a neighbour,
given what she knows about him or her. Second, once the player has determined
what each of these pairwise revisions would be, she then proceeds to aggregate, or
pool, these multiple revisions into a single state of belief.
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Again, let us state this more precisely. Suppose that �i = {i1, . . . , ij } denotes
the set of neighbours of player i. If �pi(t ) denotes the state of uncertainty of player
i at time t , let �pi,ik (t + 1) denote the state of uncertainty that player i would have at
time t + 1 if she revised her current state of uncertainty given just what she knows
about ik . Hence �pi,ik (t + 1) also denotes what i’s future state of uncertainty would
be if she had only one neighbour, namely ik .
Once player i has calculated the pairwise refinements �pi,ik (t + 1) for all of her

neighbours ik ∈ �i , she then aggregates these possible refinements into a single
probability distribution over actions. The aggregation rule I assume players use is
the following:6

�pi(t + 1) = 1
j

j∑
k=1

�pi,ik (t + 1).

This is a linear pooling method for aggregating probabilities; it also assigns
equal weights to each of the possible pairwise refinements of i’s current state of
uncertainty. Using equal weights makes sense if all of i’s neighbours are equally
important to her. One could easily generalize this by attaching weights to edges to
indicate how important player k is to player i.
Assuming that players use a linear pooling method for aggregating their possible

future states of uncertainty makes sense because such methods are the only ones
which satisfy the following requirements (Lehrer and Wagner, 1981):

1. The aggregate probability player i assigns to strategy �k in his state of
uncertainty at time t + 1 depends only upon the probability i assigns to �k

in each pairwise refinement to his state of uncertainty.
2. If a player assigns probability zero to a strategy in each pairwise refinement
to his state of uncertainty, then that player assigns probability zero to that
strategy in his aggregate state of uncertainty.

These are reasonable requirements to impose.
What deliberative rule do people use when calculating the pairwise refinements

of their state of uncertainty? I shall consider two: the first employs what is known
as the Nash-Brown-von Neumann dynamics, as it derives from the function Nash
used in his proof of his fixed point theorem. (I shall refer to this as just the “Nash
dynamics” for simplicity.) The second rule is a variant of Bayesian updating.7 Both
dynamical rules provide an approximation of how rational agents would deliberate
over what to do. And both of these dynamical rules are in keeping with what a view
of human agents as sophisticated deliberative agents would endorse.
On the other hand, Gabriele Tarde thought that the deliberative dynamics

underlying society were rather different from the above. He thought that society
existed as a consequence of imitation. We can easily formulate a social network
model of imitative learning. As before, assume that there is a social network that
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determines who interacts with whom. Let us assume that each person plays the
game with every one of his neighbours, receiving a score equalling the sum of
the individual payoffs from each pairwise interaction. At the end of each round of
deliberation, each player i looks at his set of neighbours and adopts the strategy
used by his neighbour who did the best (assuming, of course, that this payoff
exceeds the payoff of player i). This dynamic is known as “Imitate the Best” and
has been suggested as a useful heuristic for boundedly rational individuals (see
Gigerenzer and Selten 2001).
These two different models of social deliberation impose substantially different

requirements on what people know.8 The Nash dynamics and Bayesian dynamics
assume that when i and j are connected by an edge, each player’s full state of
uncertainty is common knowledge. They also assume that the deliberative rule
used by i and j is common knowledge. On the other hand, Imitate-the-Best
makes no such assumptions. Imitate-the-Best does not assume that each player’s
state of uncertainty is known by anyone else in the population. Moreover, when
a person adopts a new strategy through imitation, the new strategy is, in this
model, necessarily a pure strategy rather than a probability distribution. Why? If i

imitates j, player i adopts the last move made by player j in the game. But the last
move of player j is a pure strategy.9

We have, then, two different kinds of models of social deliberation. One
model treats individuals as highly rational, with considerable amounts of common
knowledge about their neighbours, willing to use sophisticated aggregation
techniques to try to find the optimal outcome. The other model treats individuals as
boundedly rational, with very little knowledge about their neighbours, who simply
imitate the best. In the next two sections I show that imitative learning, rather than
the more sophisticated models of social deliberation, is better suited for producing
socially optimal outcomes in the Centipede game and in a sender-receiver game.

2. T H E C E N T I P E D E G A M E

The Centipede game (see Rosenthal 1981) is a well-known example of an
interpersonal decision problem in which the traditional game theoretic analysis
conflicts with what our intuitions suggest as the way to play. Figure 1 illustrates a
six-stage Centipede game.10 Player I begins at the root node, located at the far left,
and has two choices: either take the amount available or pass to the other player. If
player I chooses to pass, player II faces the exact same choice: take what is available
or pass control back to player I. Inspection of the payoffs shows that the socially
optimal outcome (here, a collective payoff of 14) occurs when both players always
choose Pass. However, if one solves the game using backwards induction, it turns
out that what player I should do is choose Take on the very first move, giving
himself a payoff of 2 and player II a payoff of zero.11

Although backwards induction recommends that player I take on the first move,
this conflicts with the intuitions of some that even rational players should move to
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Figure 1. A six-stage Centipede Game

the right in the beginning, at least for a while, before choosing to move down.
These intuitions are borne out by experiment. McKelvey and Palfrey (1992) report
that in a six-stage centipede game, only 1% of the players choose Take on the
first move. When the game reaches the final stage, 15% of the time the last player
chooses Pass, thereby playing a dominated strategy but, at the same time, producing
the socially optimal outcome.12

Experimental results such as these have been viewed as showing that there is an
important mismatch between the outcomes of the traditional analysis and what
people both do and think they ought to do. Martin Hollis offers the following
trenchant critique:

The Centipede seems to me to force the basic issue neatly. One could still shrug one’s
shoulders and comment that, since the logic clearly tells the first player to open by
playing down, there is no more to be said. But, whereas a similar shrugging off of a
mutually inferior outcome in the Prisoner’s Dilemma might be a fair comment on a
dismal fact of real life, the Centipede is a scandal for Game Theory. (1994, 189)

What’s his proposed solution to the scandal? Hollis thinks that it requires
replacing the underlying model of human agent, swapping homo economicus for
the more socially sensitive, norm-based, rule-concerned, other-focused homo

sociologicus.
Saying that the Centipede game is a scandal for game theory strikes me as a

bit hyperbolic, but it does raise the question of to what extent we can reconcile
observed behavior with the maximizing assumptions underlying game theory.
Perhaps moving to an evolutionary game theoretic perspective may help. Let us
now compare the outcomes of the various models of social deliberation introduced
so far.
Figure 2 illustrates the outcome of a process of social deliberation for a group of

13 agents who play a ten-stage Centipede game. The social structure used is a ring
with the direction of edges selected so as to ensure each agent plays the game once
in the role of player I and once in the role of player II. The state of uncertainty of an
agent is represented using a pie chart, with the size of the ith wedge reflecting the
probability assigned to action i by the agent. In the simulation shown, everyone in
the population initially is disposed to put probability 1 on choosing Take on stage
10.13 Under the Nash dynamics, social deliberators immediately begin adjusting
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(a) Initial conditions. (b) After 150 revisions.

(c) After 300 revisions. (d) After 450 revisions.

Choose Take at 1

Choose Take at 2

Choose Take at 3

Choose Take at 4

Choose Take at 5

Choose Take at 6

Choose Take at 7

Choose Take at 8

Choose Take at 9

Choose Take at 10

Figure 2. The evolution of the traditional game-theoretic outcome for the Centipede
Game under The Nash dynamics (with an index of caution of 10).

their beliefs so as to move away from the socially optimal strategy, converging to
the traditional game-theoretic outcome.
Figure 3 illustrates the process by which this happens from the point of view

of one of the agents. (To make the following discussion more clear, let us denote
the action Choose Take at Stage n by Sn.) Suppose that I and my neighbours initially
begin by assigning probability one to S 10. When I revise my beliefs under the Nash
dynamics, the first thing I need to do is calculate the covetability of each possible
action available to me. When my neighbours assign probability one to S 10, the only
action with positive covetability is S 9. (By symmetry, my neighbours will conclude
the same thing.) This means that the new state adopted by both my neighbours and
me will be one that puts some small probability ε on the action S 9 and probability
1−ε to the action S 10.
The next time I revise my beliefs, I compute that both S 8 and S 9 have positive

covetability, and so I adopt a new state that assigns positive probability to the
actions S 8, S 9, and S 10. Again, by symmetry my neighbours will do the same
thing. As figure 3 illustrates, these three actions will be the only ones to which I
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Figure 3. A time-series plot illustrating the evolution of the probability distribution for one
of the Nash deliberators in figure 2. The x-axis labels indicate which stage in the deliberative
process the bar represents, and each bar represents the probability distribution held by the
individual at a given time. The colour-coding is the same as in figure 2.

assign positive probability for some time; each successive iteration of the social
deliberation process will result in me reducing the probability I assign to S 10 and
increasing the probability I assign to S 8 and S 9. Around the fiftieth revision, though,
I find the action S 9 ceases to have a positive covetability, and at this point I will start
transferring probability away from both S 9 and S 10 to S 8. Eventually it will be the
case that the action S 7 will have positive covetability for the first time, and at this
point I start increasing the probability of both S 7 and S 8 at the expense of S 9 and
S 10. (Inspection of figure 3 reveals that this occurs around the 70th iteration of the
social deliberation process.) In this fashion, I eventually work my way to putting
probability one on S 1.14

Simulations suggest that the general tendency for Nash deliberators to move
towards the game-theoretic solution is not affected by variations in social structure.
Figure 4 illustrates the outcome of a social deliberation process on a randomly
structured social network. Notice that the variability of the number of neighbours
does influence the particular probability distribution agents adopt as they revise
their beliefs, but it does not affect the long-term result of moving towards the
action Choose Take at Stage 1. The overall moral of the story is clear: the deliberative
outcomes generated by the Nash dynamics do not correspond with what people
actually do when faced with the Centipede game.
What happens if people are Bayesian deliberators, rather thanNash deliberators?

It turns out that the overall qualitative result is basically the same: Bayesian
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(a) Initial conditions. (b) After 150 revisions.

(c) After 300 revisions. (d) After 450 revisions.

Choose Take at 1

Choose Take at 2

Choose Take at 3

Choose Take at 4

Choose Take at 5

Choose Take at 6

Choose Take at 7

Choose Take at 8

Choose Take at 9

Choose Take at 10

Figure 4. The evolution of the traditional game-theoretic outcome under the Nash
dynamics (with an index of caution of 10) on a random network.

deliberation leads the population towards the traditional game-theoretic outcome
in the Centipede game.15 Both models of deliberation prove to be equally poor
predictors of what people actually do.
When the social deliberation process takes place using imitative learning, the

story is radically different. Figure 5 illustrates the outcome of one simulation
using imitative learning where the underlying social network is a lattice.16 Whereas
the previous two deliberative methods proved so hostile to the socially optimal
outcome that a population that started in the socially optimal state would quickly
leave it, here the situation is entirely the reverse. If the population begins in the state
where everyone follows the strategy Choose Take at Stage 1 and people experiment
with new strategies, the population will quickly leave the socially inefficient state and
move towards the socially optimal one. In the simulation of figure 5, new strategies
are introduced with a probability of 2.5% and within 75 iterations virtually everyone
in the population has adopted Choose Take at Stage 10.17

How likely is it that imitative learners will adopt the socially optimal outcome in
the Centipede game? One way of answering this question is through simulation.
Because imitative learning is sensitive to the shape of the social network, we
will need to sample a variety of different network topologies to control for this
dependence.18 Figure 6 lists the results from 1,000 simulations on randomly
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(a) Initial conditions (b) After 25 iterations.

(c) After 50 iterations. (d) After 75 iterations.

Choose Take at 1
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Choose Take at 4

Choose Take at 5

Choose Take at 6

Choose Take at 7

Choose Take at 8

Choose Take at 9

Choose Take at 10

Figure 5. Imitative learning leads to the adoption of the socially optimal outcome in the
Centipede Game.
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Stage at which to begin opting out

Figure 6. Aggregate results for imitative learning over 1,000 simulations.

connected networks of 150 agents.19 Each simulation was run for 300 iterations
until convergence (or near-convergence) occurred and the surviving strategies
counted. The height of each bar in figure 6 indicates how many agents, out of
all 1,000 simulations, followed that strategy after 300 iterations. There are several
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points worth noting. First, virtually no agent chose Take before stage 4. Second,
although the strategy that produces the socially optimal outcome appears quite
often among the surviving strategies, it is by no means the only such strategy.
While the vast majority of agents would choose Pass for the first five stages of the
Centipede game, once the game entered the sixth stage, agents become increasingly
likely to choose Take.
The true test of any model is how well it accounts for the experimental data.

How does modelling people as boundedly rational imitative learners fare? Recall
that McKelvey and Palfrey (1992) found that approximately 15% of subjects in
the experiment would choose the socially optimal outcome in the Centipede game.
The socially optimal outcome in these models occurs when agents choose Take

in stage 10.20 According to figure 6, approximately 20,000 individuals over the
1,000 simulations followed this strategy at the end of the simulation. Since the total
number of strategies counted was 150,000, the socially optimal outcome occurred
20,000
150,000 = 13.3% of the time. Perhaps we do not need to replace homo economicus with
homo sociologicus in order to account for what people do in the Centipede game. It
may be that we just need to find the right model of how people try to maximise.21

3. L E W I S S E N D E R - R E C E I V E R G A M E S

Another interesting family of social deliberation problems to consider are the two-
player sender-receiver games introduced by David Lewis in Convention as a model
for the emergence of language.22 In a sender-receiver game, Nature chooses a
state of the world and reveals it to one player, known as the Sender, who then
sends a signal to a second player, known as the Receiver. Upon receipt of the
signal, the Receiver performs an action. If the action is appropriate given the state
of the world, both the Sender and Receiver get a payoff of one; if the action is
inappropriate, the payoff is zero. Figure 7 shows the extensive-form for a sender-
receiver game with two states of the world, two signals, and two actions.
If agents can play the sender-receiver game as both Sender or Receiver, then

the strategy they use must specify how they will act in either role. A sender-receiver
game with two states of the world, two signals, and two actions has sixteen possible
strategies.23 Of these, only two have the property that they are signalling systems

according to Lewis’s definition.24 The two Lewis signalling systems are:

1. Send �1 in state S 1 and �2 in S 2; do A1 upon receipt of �1 and A2 upon
receipt of �2.

2. Send �2 in state S 1 and �1 in S 2; do A1 upon receipt of �2 and A2 upon
receipt of �1.

There are a number of ways one could implement the sender-receiver game in
a model of social deliberation. Nature could select one randomly chosen state of
the world for all the pairwise interactions in a given round. Alternatively, it could
be the case that, for each pairwise interaction, Nature selects a randomly chosen
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Figure 7. A Lewis sender-receiver game with two states of the world, two signals, and two
actions.

state of the world. Or we could even consider how individuals would revise their
beliefs using the expected outcomes of their interactions with their neighbour. In the
following, I assume that people revise their beliefs using the expected value of their
interaction with their neighbour.
What happens when a population of Nash (or Bayesian) deliberators plays

the sender-receiver game? Let us consider, as before, the simplest possible social
network: k Nash (or Bayesian) deliberators situated on a ring, with the direction
of the edges such that each person plays the game once as Sender and once as
Receiver.25 As one might expect, quite often the population converges to one of
the two Lewisian signalling systems. But this does not always happen. If the ring
happens to have an even number of players (say six, for sake of argument), it can
happen that players 1, 3, and 5 may converge to one strategy in the signalling game
with players 2, 4, and 6 adopting another. How can this be rational?
In an environment where interactions are constrained by a social network,

the Lewis signalling systems are not the only signalling systems which allow
communication. Consider, for example, the following pair of strategies:

Me. When Sender, use: (S1, S2) �→ (�1,�2)
When Receiver, use: (�1,�2) �→ (A2,A1)

You. When Sender, use: (S1, S2) �→ (�2,�1)
When Receiver, use: (�1,�2) �→ (A1,A2)

Suppose that I am the Sender. In state S 1 I send signal �1, and you respond to that
signal by performing A1. Likewise, in state S 2 I send signal �2, and you perform
action A2. The first component of my strategy allows me to signal successfully
with the second component of yours. Now suppose that you are the Sender.
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In state S 1 you send signal �2, and I respond to that signal by performing A1.
Likewise, in state S 2 you send signal �1, and I respond by performing action A2.
The first component of your strategy allows you to signal successfully with the
second component of mine. Yet the convention used when I am the Sender is the
opposite of the convention used when you are the Sender! This is the signalling
analogue of you speaking to me in German (and I listen in German), but I speak in
Russian (and you listen in Russian). When interactions are constrained via a social
network, additional signalling systems exist besides those identified by Lewis.
There are three odd properties about these new signalling systems, though. First,

they require that the strategies be very carefully distributed across the population.
Second, not every social network allows these new signalling systems to be used if
the socially optimal state of affairs is to be achieved. (There is no way that the above
mentioned strategies could be used on a ring containing seven players, for example,
while at the same time allowing agents to always communicate successfully.) Third,
these new signalling systems cannot communicate with members of their own kind.
The Lewis signalling systems, on the other hand, can.
Other odd deliberational outcomes exist with both the Nash and Bayesian

dynamics. Figure 8 illustrates one such outcome for the Nash dynamics after
the players have been deliberating for 20,000 iterations. Here, players 1, 2, and 3
have effectively converged to one of the nonstandard signalling systems discussed
earlier.26 Players 6 through 11 have adopted one of the Lewisian signalling systems.
Consider, though, the probability distributions adopted by players 4 and 5, and
12 and 13. These four individuals exist between two regions of players who can
communicate perfectly with each other. However, their probability distributions
include strategies that fail to differentiate between states of the world and hence are
ineffective for communicating.
Consider agent 4, for example. His state of belief allocates probabilities over

strategies as follows:27

Strategy
Probability Sender Receiver

0.576843 {S1 → �1, S2 → �2} {�1 → A2,�2 → A1}
0.293552 {S1 → �1, S2 → �2} {�1 → A1,�2 → A2}
0.0648024 {S1 → �1, S2 → �2} {�1 → A1,�2 → A1}
0.0648024 {S1 → �1, S2 → �2} {�1 → A2,�2 → A2}

The strategy receiving the greatest weight is one of the nonstandard signalling
systems and is the one compatible with player 3. The strategy receiving the second
greatest amount of weight is one of the Lewisian signalling systems and is the
same Lewis signalling system as used by players 6 through 11. (Incidentally, it is
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Figure 8. The Nash dynamics may generate socially suboptimal outcomes in the sender-
receiver game (state after 20,000 iterations, index of caution of 25).

also the strategy assigned the greatest amount of probability by player 5.) The two
remaining strategies are ineffective ones for the sender-receiver game because they
fail to distinguish between signals when in the role of Receiver. Similarly unusual
outcomes (although with different probabilities) exist for the Bayesian dynamics
as well. Neither dynamics provides a good model for how a population of agents
might arrive at a socially optimal signalling system.
How does imitative learning fare at guiding the population to adopt one of

the Lewis signalling systems? Figure 9 illustrates the outcome of one simulation
using imitative learning on the lattice, where people interact with and learn from
their eight nearest neighbours. Within a very short period of time – six iterations,
in fact – the vast majority of the population has adopted one of the two Lewis
signalling systems. This always happens on the lattice provided that the initial
distribution of strategies contains sufficiently many of one of the two signalling
systems.
“Sufficiently many” need not be that large of a number. What matters most is

that a cluster of people following the same signalling system coincide. Once a block
of agents has settled upon a signalling system, imitative learning will cause other
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(a) Initial conditions (b) After 2 iterations.

(c) After 4 iterations. (d) After 6 iterations.
Figure 9. Imitation in the sender-receiver game leads to the evolution of regions where
players coordinate upon one of the two Lewisian signalling systems.

agents to adopt that signalling system, causing it to spread, until the expanding
region either spreads to the entire lattice or it encounters a competing region
following the other signalling system. If no agents use either of the two signalling
systems in the original state, the population can still manage to coordinate on a
signalling system if innovation introduces new strategies into the population. The
emergence of signalling systems on the lattice under imitative learning thus has
dynamics similar to that of the emergence of fairness in the game of divide the
dollar (Alexander and Skyrms 1999).
On irregularly shaped networks, imitative learning can help move the population

towards adopting a signalling system, but it really needs the help of spontaneous
innovation as well to succeed. The reason why is that irregular social networks
allow some agents to have more neighbours than others, and agents with a lot of
neighbours can earn high payoffs even if they use strategies which aren’t signalling
systems. The high payoffs received by an agent with a lot of neighbours means
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(a) (b) (c)

(d) (e) (f)
Figure 10. Imitation on a random graph, with mutation.

that imitative learning will lead his neighbours to adopt his strategy, even though it
really isn’t very good for the sender-receiver game.
When spontaneous innovation occurs, these groups of poor communicators

who are supported by a single well-connected individual can be replaced bymutants
who employ a signalling system. The process is more heavily dependent upon the
appearance of innovative strategies at the right place at the right time than on
the lattice,28 but even so, random networks can converge to signalling systems in
rather short order. Figure 10 illustrates the first six iterations of imitative learning
on a random graph containing 25 agents. (The mutation rate was chosen so as
to introduce approximately two innovative strategies into the population each
iteration.) As can be seen, after six iterations the population does not seem to be
converging to a signalling system. Nevertheless, the population of that simulation
converged to one of the Lewis signalling systems within 50 iterations.

4. C O N C L U S I O N

There are many methods individuals might use to engage in social deliberation. In
this paper, we have considered three: a variant of the Nash-Brown-von Neumann
dynamics, a variant of Bayesian updating, and a form of imitative learning known
as “Imitate the Best”. When the results of these three methods are compared in the
Centipede game and Lewis sender-receiver games, the one that agrees best with
what actual people do is imitative learning. In the Centipede game, only imitative
learning converges to a distribution of actions in the Centipede game that tends
toward the socially optimal outcome. (Both the Nash and Bayesian dynamics tend
towards the traditional game-theoretic solution.) In sender-receiver games, only
imitative learning, with innovation, is generally compatible with the population
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arriving at socially optimal signalling systems. (Both the Nash and Bayesian
dynamics can cause some individuals to get stuck using inefficient strategies.)
Although imitation is not the sole method used by people to engage in social

deliberation, and it may not work for all problems, it does provide a reasonably
effective way of balancing the competing aims of individual maximization with
social optimality. Aside from what we have seen here with the Centipede game
and a simple sender-receiver game, imitative learning can also support cooperative
behavior in the Prisoner’s Dilemma, trusting behavior in the Stag Hunt, and fair
division in divide-the-dollar (Alexander 2007). If Gabriele Tarde was incorrect in
asserting that society is imitation, it nevertheless is true that imitation supports
many behaviours which are central to our social existence.

A. D E F I N I T I O N S O F T H E N A S H A N D B A Y E S I A N D Y N A M I C S

Suppose that, as in section 1, we have a two-person noncooperative game. Let
�pRow(t ) = 〈p1, . . . ,pn〉 denote the state of uncertainty of Row, and �qCol(t ) =
〈q1, . . . , qn〉 denote the state of uncertainty for Column. Let EU

Row
(i, t ) denote the

expected utility of action i for Row at time t. The expected utility of the status quo
for Row at time t is defined as follows:

ESQ
Row
(t ) =

n∑
i=1

pi EU
Row
(i, t ).

Given these definitions, we may define the covetability of action j for Row at time t

is:

Cov
Row
(j , t ) = max

(
0, EU
Row
(i, t )− ESQ

Row
(t )

)
.

Similar definitions can be made for Column. In the following, I shall omit the
explicit reference to either Row or Column.
The Nash dynamics states that an individual will modify his state of uncertainty

according to the rule

pi(t + 1) = k · pi(t )+ Cov(i, t )
k + ∑n

j=1 Cov(j , t )

where k > 0 is an “index of caution” that measures how quickly individuals will
adjust their probability distributions in a single revision.
The Bayesian dynamics takes the slightly different form:

pi(t + 1) = pi(t )+ 1
k

· pi(t ) · EU(i, t )− ESQ(t )ESQ(t )
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where, again, k > 0 provides an index of caution reflecting how rapidly the
distribution changes in a single revision. Skyrms (1990, 36–8) explains the
connection between the above formula and Bayes’ theorem. Before applying the
Bayesian dynamics, one must first transform the payoff matrix so that the lowest
payoff is 0 and the greatest payoff is 1; without the transformation, the result will
not necessarily be a probability distribution.
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NOTES

1 In these passages, Tarde speaks as if imitation were the only social force in operation,
but that is obviously insufficient: imitation requires something to imitate, and so there
must be a second force at work which generates innovative behaviours. Tarde was well
aware of this, even if he omitted the role of invention at times. He does state rather
earlier that “[s]ocially, everything is either invention or imitation” (3). I suspect his
tendency to emphasize imitation over invention was due to his belief that imitative
behavior was subject to law, whereas invention was not. See, for example, The Laws of

Imitation, p. 142.
2 In a lecture entitled “Nineteenth-Century Clouds over the Dynamical Theory of Heat
and Light,” Lord Kelvin noted that the current physics of the time could not provide
a satisfactory account of black body radiation and the Michelson-Morley experiment.
These two outstanding problems eventually led to the development of quantum
mechanics and relativity theory.

3 Latour (2002) for example, argues that Tarde can be viewed as a intellectual precursor
to his “actor-network” theory.

4 One might wonder whether the requirement that the decision problem be
noncooperative unduly restricts the kinds of problems that can be treated as social
deliberation problems. In principle I don’t see why it needs to, if one is willing to
adopt the approach of the Nash program to embed cooperative game theory within
noncooperative game theory. Another concern may be with why I restrict attention to
two-player games. Essentially, it makes the formal models simpler; the requirement that
players use a single strategy with everyone they interact with effectively transforms the
“real” game from a two-player game to one where people “play the field” (in a certain
sense).

5 Another version of this deliberative model can be found in Alexander (2009). However,
the primary aim of that paper concerned the outcomes of social deliberation in simple
coordination games like the Driving game, Battle of the Sexes, and Chicken.

6 Note that the value of j depends on the number of neighbours player i has. I have
suppressed this dependence to make the notation more clear.

7 Definitions of these two rules can be found in appendix A.
8 There are only two different models because the knowledge assumptions for the Nash
dynamics and the Bayesian dynamics are the same.

9 Think of it this way: if an agent only sees a finite sequence of actual actions you have
made, that agent cannot reconstruct what your underlying probability distribution is. If
the agent were to try to track the frequency with which you have chosen certain actions,
we do not have a model of imitation but rather inductive learning.

10 The game takes its name from the fact that in the original formulation there were a
hundred such segments.

11 Consider the last choice node for player II. If she chooses Pass, she receives a payoff
of 6 but if she chooses Take, she receives a payoff of 7. A rational agent interested in
maximising her personal gain will choose Take (thus giving player I a payoff of 5). Player
I knows this, and so at his last choice node will prefer to preempt player II’s decision
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by choosing Take, since that gives him a payoff of 6, which is greater than 5. Continuing
this reasoning leads to the outcome that player I will choose Take at the very start of the
game.

12 Somewhat curiously, people continue to deviate from the game theoretic prediction
even in constant-sum centipede games. (A constant-sum centipede game is one where the
pot, instead of growing with each Pass as in figure 1, remains constant over time; in these
games, choosing Pass repeatedly has the effect of increasing the amount given to player
II.) In a later paper, Fey et al. (1996) report on a number of constant-sum experiments
they conducted at Caltech, Pasadena City College, and the University of Iowa. In these
experiments, people chose Take as their first move approximately 59% of the time. This
is not that surprising, given that the resulting payoffs when player I chose Take led to
a equal share of the pot (payoffs of 1.60 each). But notice what this implies: 41% of
the time, player I elected to Pass, apparently favouring an unequal allocation of payoffs
giving more to player II than himself.

13 There is good reason for choosing this as the initial state of the population. The Nash
dynamics have the property that a player who initially assigns zero probability to an
actionmay, after revision, assign positive probability to that action. (This is an important
point of difference between the Nash dynamics and Bayesian updating.) If a population
of agents who initially assign probability 1 to moving to the far right of the Centipede
game evolve to another outcome, this shows that the socially optimal outcome will
never evolve.

14 Convergence to putting probability 1 on S1 only occurs in the limit.
15 With the proviso that the initial belief state of every agent assigns some positive
probability to every possible action. Whereas the Nash dynamics can cause an agent to
assign nonzero probability to an action that was initially assigned zero probability, any
action assigned zero probability will, under the Bayesian dynamics, always be assigned
zero probability in the future. The qualitative result holds in the following sense:
suppose that the population starts out with every agent assigning probability 1− � to
S10 and probability 19� to S1, . . . , S9. Bayesian deliberators will modify their beliefs so
as to move towards the game-theoretic solution.

16 Individuals interact with their eight nearest neighbours and learn from the same group
via imitation.

17 That is, each individual in the population has a 2.5% chance of replacing his current
strategy with a randomly chosen one. With a population of 10,000, approximately
250 individuals will experiment with a new strategy every iteration. Less frequent
experimentation rates will still lead to convergence to the socially optimal state
(provided that the social network is a lattice); the only substantive difference will be
how long it takes convergence to occur.

18 To see why imitative learning depends on the shape of the network, recall the definition
of Imitate-the-Best: a player P adopts the strategy of the person in their neighbourhood
who received the highest payoff (provided this payoff was greater than P ’s payoff). In
an irregular social network, some agents will have more neighbours than others. Agents
with more neighbours are more likely to have their strategy adopted by others simply
because they engage in more interactions.

19 The random networks were generated with a 3% edge probability with the direction
determined by a coin flip. That is, each possible edge had a 3% probability of being
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selected for inclusion; if it was selected, a coin flip determined whether the edge went
from A to B or from B to A. Since there are 150× 149 = 22, 350 possible edges on
a graph containing 150 nodes, each graph contained approximately 671 edges. Once a
graph was randomly generated, it was tested to ensure it was connected. If it was not
connected, that graph was thrown away and another random graph generated. Initial
strategies were randomly assigned to players from a randomly chosen distribution.

20 Choosing Pass at stage 10 was not a option.
21 It may even be the case that we need not worry about the specific method people use
to maximise. Smead (2008) uses a Moran process to model behaviour in the Centipede
game and finds that it too gives rise to populations in which people choose Pass in the
first few stages of the game.

22 N -player versions of sender-receiver games exist as well. See Skyrms (2009) for a nice
introduction to these games, along with a discussion of some of the peculiarities that
arise.

23 There are four possible strategies to use as Sender: (S1, S2) �→ (�1,�1), (S1, S2) �→
(�1,�2), (S1, S2) �→ (�2,�1), or (S1, S2) �→ (�2,�2). Likewise, there are four possible
strategies to use as Receiver: (�1,�2) �→ (A1,A1), (�1,�2) �→ (A1,A2), (�1,�2) �→
(A2,A1), or (�1,�2) �→ (A2,A2). Any Sender strategy may be paired with any Receiver
strategy, giving sixteen possible strategies for the game.

24 Lewis’s definition of a signalling system is somewhat restrictive in that it
excludes combinations of strategies that may nevertheless be perfectly successful at
communicating. We shall see that both the Nash and Bayesian dynamics may converge
to these nonstandard signalling systems.

25 As before, I only consider the case where the entire population is composed of either
Nash deliberators or Bayesian deliberators; I do not consider heterogenous populations.

26 By “effectively converged,” I mean that they have all assigned more than 99.5%
probability to one strategy. In response to those who are inclined to object that these
results are uninformative since it may be the case that all individuals in the population
converge to a pure Lewis signalling system in the limit, I offer two simple remarks.
First, in the long run we are all dead. Results establishing that a certain outcome holds
in the limit are only of practical interest if significant progress towards the limiting
outcome can occur within a reasonable amount of time. (A similar point was argued
for in Vanderschraaf and Alexander 2005.) Second, given this, the fact that socially
inefficient states can persist for 20,000 iterations of the Nash dynamics surely counts as
a blow against the Nash dynamics as a mechanism for belief revision.

27 The probabilities listed do not sum to one simply because the remaining residual
probability is distributed over the other twelve strategies.

28 The regularity of lattices means that signalling systems can spread rapidly once they get
established in a local cluster.
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