
Math. Struct. in Comp. Science (2016), vol. 26, pp. 1022–1053. c© Cambridge University Press 2014

doi:10.1017/S0960129514000334 First published online 21 November 2014

Models for CSP with availability information

GAVIN LOWE

Department of Computer Science, University of Oxford,

Wolfson Building, Parks Road, OX1 3QD, United Kingdom

Email gavin.lowe@cs.ox.ac.uk.

Received 12 March 2011; revised 1 March 2012

We consider models of CSP based on recording availability information, i.e. the models

record what events could have been performed instead of those that were actually

performed. We present many different varieties of such models. For each, we give a

compositional semantics, congruent to the operational semantics, and prove full abstraction

and no-junk results. We compare the expressiveness of the different models.

1. Introduction

In this paper, we consider a family of semantic models of CSP (Hoare 1985; Roscoe

1997, 2010) that record availability information; i.e. the models record what events could

have been performed instead of those events that were actually performed. For example,

the models will distinguish a → STOP � b → STOP and a → STOP � b → STOP : the

former offers its environment the choice between a and b, so can make a available before

performing b; however, the latter decides internally whether to offer a or b, so cannot

make a available before performing b.

A common way of motivating process algebras (dating back to Milner (1980)) is to

view a process as a black box with which the observer interacts. The models in this paper

correspond to that black box having a light for each event that turns on when the event

is available (as in van Glabbeek (1993, 2001)); the observer can record which lights turn

on in addition to which events are performed. The models have some similarity with the

ready trace model (Olderog and Hoare 1983), in that both record availability of events;

however, the latter records availability only in stable states, where no internal activity is

possible, whereas the models of this paper record availability in all states.

I initially became interested in such models by considering message-passing

concurrent programming languages that allow code to test whether a channel is ready

for communication without actually performing the communication. For example, in

JCSP (Welch et al. 2007), the input and output ends of channels have a method pending(),

to test whether there is data ready to be read, or whether there is a reader ready to receive

data, respectively. Similarly, Java InputStreams have a method available() that returns

the number of bytes that are available to be read. Andrews (2000) gives a number of

examples using such a construct.

In Lowe (2009), I considered the effect of extending CSP with a construct

‘if ready a then P else Q ’ that tests whether the event a is ready for communication

(i.e. whether this process’s environment is ready to perform a), acting like P or Q

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1023

appropriately. The model in Lowe (2009) recorded what events were made available

by a process, in addition to the events actually performed. That model seems rather

different from standard CSP models; its study raised a number of questions. We therefore

investigate models that record the availability of events more fully in this paper. We

show that – even without the above construct – there are many different variations, with

different expressive power.

By convention, a denotational semantic model of CSP is always compositional, i.e.

the semantics of a composite process is given in terms of the semantics of its components.

Further, there are several other desirable properties of semantic models:

Congruence to the operational semantics. The denotational semantics can either be

extracted from the operational semantics, or calculated compositionally, both

approaches giving the same result;
Full abstraction. The notion of semantic equivalence induced by the denotational

semantics corresponds to some natural equivalence, typically defined in terms of

testing;
No-junk. The denotational semantic domain corresponds precisely to the semantics

of processes: for each element S of the semantic domain, we can construct a

corresponding process whose semantics is S .

Each of the semantic models in this paper satisfies these properties.

In Section 2, we describe our basic model. We formalize the notion of availability

of events in terms of the standard operational semantics for CSP. We then formalize

the denotational semantic domain, and explain how to extract denotational information

from the operational semantics. We then give a congruent compositional denotational

semantics, and prove full abstraction and no-junk results.

In Section 3, we describe variations on the basic model, in two dimensions: one

dimension restricts the number of observations of availability between successive standard

events; the other dimension allows the simultaneous availability of multiple events to

be recorded. For each resulting model, we describe compositional semantics, and full

abstraction and no-junk results (we omit some of the details in the interests of brevity).

We then study the relative expressive power of the models.

In Section 4, we vary the models in a different way: we record events that were

available as alternatives to the events that were actually performed: i.e. those alternative

events were available from the same state as the events that were performed. We again

describe compositional semantics, full abstraction and no-junk results, and study the

relative expressive power of the models.

Finally, in Section 5, we discuss various aspects of our models, some additional

potential models, and some related work.

1.1. Overview of CSP

We give here a brief overview of the syntax and semantics of CSP; for simplicity and

brevity, we consider a fragment of the language in this paper. We also give a brief overview

of the traces and stable failures models of CSP. For more details, see Hoare (1985) and

Roscoe (1997, 2010).

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1024

CSP is a process algebra for describing programs or processes that interact with

their environment by communication. Processes communicate via atomic events, from

some set Σ. Events often involve passing values over channels; for example, the event c.3

represents the value 3 being passed on channel c.

The simplest process is STOP , which represents a deadlocked process that cannot

communicate with its environment. The process div represents a divergent process that

can only perform internal events.

The process a → P offers its environment the event a; if the event is performed, it

then acts like P . The process c?x → P is initially willing to input a value x on channel c,

i.e. it is willing to perform any event of the form c.x ; it then acts like P (which may use x).

Similarly, the process ?a : A → P is initially willing to perform any event a from A; it

then acts like P (which may use a).

The process P � Q can act like either P or Q , the choice being made by the

environment: the environment is offered the choice between the initial events of P and Q .

By contrast, P � Q can act like either P or Q , with the choice being made internally,

not under the control of the environment; �x :X
Px nondeterministically acts like any Px

for x in X . The process P � Q represents a sliding choice or timeout: it initially acts

like P , but if no visible event is performed then it can internally change state to act

like Q .

The process P A‖B Q runs P and Q in parallel; P is restricted to performing events

from the set A; Q is restricted to performing events from the set B ; the two processes

synchronize on events from A ∩ B . The process P ||| Q interleaves P and Q , i.e. runs them

in parallel with no synchronization.

The process P \ A acts like P , except the events from A are hidden, i.e. turned

into internal, invisible events, denoted τ, which do not need to synchronize with the

environment. The process P [[R]] represents P where events are renamed according to the

relation R, i.e. P [[R]] can perform an event b whenever P can perform an event a such

that a R b.

Recursive processes may be defined equationally, or using the notation μX • P ,

which represents a process that acts like P , where each occurrence of X represents a

recursive instantiation of μX • P .

Prefixing (→) binds tighter than each of the binary choice operators, which in turn

bind tighter than the parallel operators.

CSP can be given both an operational and denotational semantics. The operational

semantics is presented in Figure 1. For brevity, we omit symmetrically equivalent rules for

nondeterministic choice, external choice, parallel composition and interleaving.

The denotational semantics can either be extracted from the operational semantics, or

defined directly over the syntax of the language; see Roscoe (1997). It is more common to

use the denotational semantics when specifying or describing the behaviours of processes,

although most tools act on the operational semantics.

A trace of a process is a sequence of (visible) events that a process can perform. If

tr is a trace, then tr � A represents the restriction of tr to the events in A, whereas tr \ A

represents tr with the events from A removed; concatenation is written ‘� ’; A∗ represents

the set of traces with events from A.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1025

?a : A → P
b−→ P [b/a], for b ∈ A,

i∈I
Pi

τ−→ Pi , for i ∈ I ,
P Q

τ−→ P ,

P
a−→ P

P Q
a−→ P

P
τ−→ P

P Q
τ−→ P Q

P
a−→ P

P Q
a−→ P

P
τ−→ P

P Q
τ−→ P Q

P Q
τ−→ Q

P
α−→ P

α ∈ A − B ∪ {τ}
P A B Q

α−→ P A B Q

P
a−→ P

Q
a−→ Q

α ∈ A ∩ B
P A B Q

a−→ P A B Q

P
α−→ P

α ∈ Σ ∪ {τ}
P ||| Q α−→ P ||| Q

P
α−→ P

α ∈ Σ − A ∪ {τ}
P \ A

α−→ P \ A

P
α−→ P

α ∈ A
P \ A

τ−→ P \ A

P
a−→ P

a R b
P [[R]]

b−→ P [[R]]

P
τ−→ P

P [[R]]
τ−→ P [[R]]

μX • P
τ−→ P [μX • P/X].

Fig. 1. Operational semantics; symmetrically equivalent rules are omitted.

A stable failure of a process P is a pair (tr ,X), which represents that P can perform

the trace tr to reach a stable state (i.e. where no internal events are possible) where X

can be refused, i.e. where none of the events of X is available.

2. Availability information

In this section, we consider a model that records that particular events are available

during an execution. We begin by extending the operational semantics so as to formally

define this notion of availability. We then define our semantic domain – traces containing

both standard events and availability information – with suitable healthiness conditions.

We then present compositional trace semantics, and, show that it is congruent to the

operational semantics. Finally, we prove full abstraction and no-junk results: that the

semantic notion of equivalence corresponds to a notion of testing equivalence, and

that each element of the semantic domain corresponds to a process expressible in the

syntax.

We write offer a to record that the event a is offered by a process, i.e. a is

available. We augment the operational semantics with actions to record such offers

(we term these actions, to distinguish them from standard events). Formally, we define

a new transition relation −−� from the standard transition relation −→ (as in Figure 1)

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1026

by:

P
α−−� Q ⇔ P

α−→ Q , for α ∈ Στ,

P
offer a
−−� P ⇔ P

a−→ .

Example 1.

a → STOP � b → STOP
offer a
−−� a → STOP � b → STOP

b−−� STOP .

By contrast

a → STOP � b → STOP
τ−−� b → STOP

offer a
−−� .

Note that the transitions corresponding to offer actions do not change the state of the

process.

Lemma 2. The −−� relation satisfies the rules given in Figure 2. For convenience, for

A ⊆ Σ, we define

offer A = {offer a | a ∈ A}, A† = A ∪ offer A, A†τ = A† ∪ {τ}.

We now consider an appropriate form for the denotational semantics, recording

availability information. One might wonder whether it is enough to record availability

information only at the end of a trace (by analogy to the stable failures model). However, a

bit of thought shows that such a model would be equivalent to the standard traces model:

a process can perform the trace tr�〈offer a〉 precisely if it can perform the standard

trace tr�〈a〉.
We therefore record availability information throughout the trace. We define an

availability trace to be a sequence tr in (Σ†)∗. We can extract the traces (of Σ† actions)

from the operational semantics (following the approach in Roscoe (1997, Chapter 7)):

Definition 3. We write P
s�−→ Q , for s = 〈α1, . . . , αn〉 ∈ (Σ†τ)∗, if there exist P0 = P ,P1, . . . ,

Pn = Q such that Pi

αi+1−−� Pi+1 for i = 0, . . . , n − 1. We write P
tr

=⇒ Q , for tr ∈ (Σ†)∗, if

there is some s such that P
s�−→ Q and tr = s \ τ.

Example 4. The process a → STOP � b → STOP has the availability trace 〈offer a , b〉;
see Example 1. However, the process a → STOP � b → STOP does not have this trace.

This model therefore distinguishes these two processes, unlike the standard traces model.

Note in particular that we may record the availability of events in unstable states

(where τ events are available), by contrast with models like the stable failures model that

record (un)availability information only in stable states. The following example contrasts

the two models.

Example 5. The processes a → STOP and a → STOP � STOP are distinguished in the

stable failures model, since the latter has stable failure (〈〉, {a}); however they have the

same availability traces.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1027

?a : A → P
offer b−− ?a : A → P ,

for b ∈ A,

P Q
τ−− P ,

?a : A → P
b−− P [b/a], for b ∈ A,

i∈I
Pi

τ−− Pi , for i ∈ I ,

P
a−− P

P Q
a−− P

P
α−− P

α ∈ offer Σ ∪ {τ}
P Q

α−− P Q

P
a−− P

P Q
a−− P

P
α−− P

α ∈ offer Σ ∪ {τ}
P Q

α−− P Q

P Q
τ−− Q

P
α−− P

α ∈ (A − B)†τ
P A B Q

α−− P A B Q

P
α−− P

Q
α−− Q

α ∈ (A ∩ B)†
P A B Q

α−− P A B Q

P
α−− P

α ∈ Σ†τ
P ||| Q α−− P ||| Q

P
α−− P

α ∈ (Σ − A)†τ
P \ A

α−− P \ A

P
α−− P

α ∈ A
P \ A

τ−− P \ A

P
a−− P

a R b
P [[R]]

b−− P [[R]]

P
τ−→ P

P [[R]]
τ−→ P [[R]]

P
offer a−− P

a R b
P [[R]]

offer b−− P [[R]]
μX • P

τ−− P [μX • P/X].

Fig. 2. Derived operational semantics; symmetrically equivalent rules are omitted.

The processes (a → STOP � b → STOP) � (b → STOP � a → STOP) and

a → STOP � b → STOP are distinguished in the availability traces model, since only the

former has the availability trace 〈offer a , b〉; however, they have the same stable failures.

We do not consider the fact that the model fails to distinguish a → STOP and

a → STOP � STOP to be a problem: the two models are considering orthogonal issues,

availability and stable refusal. It is straightforward to combine the two models to record

the information from both; we discuss this further in the conclusions.

The availability-traces of process P are then {tr | P
tr

=⇒}. The following definition

captures the properties of this model.

Definition 6. The availability traces model A contains those sets T ⊆ (Σ†)∗ that satisfy

the following conditions:

1. T is non-empty and prefix-closed.

2. offer actions can always be remove from or duplicated within a trace:

tr�〈offer a〉�tr ′ ∈ T ⇒ tr�〈offer a , offer a〉�tr ′ ∈ T ∧ tr�tr ′ ∈ T .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1028

3. If a process can offer an event it can perform it:

tr�〈offer a〉 ∈ T ⇒ tr�〈a〉 ∈ T .

4. If a process can perform an event it can first offer it:

tr�〈a〉�tr ′ ∈ T ⇒ tr�〈offer a , a〉�tr ′ ∈ T .

Lemma 7. For all processes P , T = {tr | P
tr

=⇒} is an element of the availability traces

model.

Proof: (Sketch). It is enough to show that T satisfies the four healthiness conditions; each

follows directly from the definitions of −−� and =⇒. �

Compositional traces semantics

We now give compositional rules for the traces of a process. We write tracesA [[P]] for the

traces of P . (We include the subscript ‘A’ in tracesA [[P]] to distinguish this semantics from

the standard traces semantics, traces [[P]].) Below we will show that these are congruent,

to the operational definition above.

STOP and div are equivalent in this model: neither can perform or offer events.

tracesA [[STOP]] = tracesA [[div]] = {〈〉}.

The process a → P can initially signal that it is offering a; it can then perform a ,

and continue like P .

tracesA [[a → P]] = {offer a}∗ ∪ {tr�〈a〉�tr ′ | tr ∈ {offer a}∗ ∧ tr ′ ∈ tracesA [[P]]}.

The process P � Q can either perform a trace of P , or can perform a trace of P

with no standard events, and then (after the timeout) perform a trace of Q . The process

P � Q can perform traces of either of its components; the semantics of replicated

nondeterministic choice is the obvious generalization.

tracesA [[P � Q]] = tracesA [[P]] ∪
{trP

�trQ | trP ∈ tracesA [[P]] ∧ trP � Σ = 〈〉
∧ trQ ∈ tracesA [[Q]]},

tracesA [[P � Q]] = tracesA [[P]] ∪ tracesA [[Q]],

tracesA [[�i∈I
Pi]] =

⋃
i∈I

tracesA [[Pi]].

Before the first visible event, the process P � Q can perform an offer a action if

either P or Q can do so. Let tr ||| tr ′ be the set of ways of interleaving tr and tr ′ (as

in Roscoe (1997, page 67)):

〈〉 ||| tr ′ = {tr ′},
tr ||| 〈〉 = {tr},

〈a〉�tr ||| 〈b〉�tr ′ = {〈a〉�tr ′′ | tr ′′ ∈ tr ||| 〈b〉�tr ′} ∪
{〈b〉�tr ′′ | tr ′′ ∈ 〈a〉�tr ||| tr ′}.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1029

The three sets in the definition below correspond to the cases where (a) neither process

performs any visible events, (b) P performs at least one visible event (after which, Q is

turned off), and (c) the symmetric case where Q performs at least one visible event.

tracesA [[P � Q]] =

{tr | ∃ trP ∈ tracesA [[P]], trQ ∈ tracesA [[Q]] •

trP � Σ = trQ � Σ = 〈〉 ∧ tr ∈ trP ||| trQ} ∪
{tr�〈a〉�tr ′

P | ∃ trP
�〈a〉�tr ′

P ∈ tracesA [[P]], trQ ∈ tracesA [[Q]] •

trP � Σ = trQ � Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ||| trQ} ∪
{tr�〈a〉�tr ′

Q | ∃ trP ∈ tracesA [[P]], trQ
�〈a〉�tr ′

Q ∈ tracesA [[Q]] •

trP � Σ = trQ � Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ||| trQ}.

In a parallel composition of the form P A‖B Q , P is restricted to actions from A†,

and Q is restricted to actions from B†. Further, P and Q must synchronize upon both

standard events from A ∩ B and offers of events from A ∩ B . We write trP ‖
X
trQ for the set

of ways of synchronizing trP and trQ on actions from X ; this relation can be defined (as

in Roscoe (1997, page 70)) by the following equations and symmetrically equivalent ones:

〈〉 ‖ 〈〉 = {〈〉},
〈α〉�tr ‖

X
〈〉 = {〈α〉�tr ′ | tr ′ ∈ tr ‖

X
〈〉}, if α
∈ X

{} if α ∈ X ,

〈α〉�tr ‖
X

〈β〉�tr ′ = {〈α〉�tr ′′ | tr ′′ ∈ tr ‖
X

tr ′}, if α = β ∈ X ,

{}, if α, β ∈ X , α
= β,

{〈α〉�tr ′′ | tr ′′ ∈ tr ‖
X

〈β〉�tr ′}, if α
∈ X , β ∈ X ,

{〈α〉�tr ′′ | tr ′′ ∈ tr ‖
X

〈β〉�tr ′} ∪

{〈β〉�tr ′′ | tr ′′ ∈ 〈α〉�tr ‖
X

tr ′}, if α, β
∈ X .

The semantics of parallel composition is then:

tracesA [[P A‖B Q]] = {tr | ∃ trP ∈ tracesA [[P]] ∩ (A†)∗, trQ ∈ tracesA [[Q]] ∩ (B†)∗ •

tr ∈ trP ‖
(A∩B)†

trQ}.

The semantics of interleaving is similar:

tracesA [[P ||| Q]] = {tr | ∃ trP ∈ tracesA [[P]], trQ ∈ tracesA [[Q]] • tr ∈ trP ||| trQ}.

The semantic equation for hiding of A captures that offer A actions are blocked, and

A events are internalized.

tracesA [[P \ A]] = {trP \ A | trP ∈ tracesA [[P]] ∧ trP � offer A = 〈〉}.

For relational renaming, we lift the renaming to apply to offer actions, i.e.

(offer a) R (offer b) iff a R b.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1030

We then lift the relation to traces by pointwise application. The semantic equation is then

a further lift of R:

tracesA [[P [[R]]]] = {tr | ∃ trP ∈ tracesA [[P]] • trP R tr}.

We now consider the semantics of recursion. Our approach follows the standard

method using complete partial orders; see, for example, (Roscoe 1997, Appendix A.1).

Lemma 8. The availability traces model forms a complete partial order under the subset

ordering ⊆, with tracesA [[div]] = {〈〉} as the bottom element.

Proof: It is clear that {〈〉} is least under the subset ordering. It is straightforward to see

that the model is closed under arbitrary unions, and hence is a complete partial order.

�

The following lemma can be proved using precisely the same techniques as for the

standard models (see Roscoe (1997, Section 8.2)).

Lemma 9. Each of the operators is continuous with respect to the ⊆ ordering.

Hence from Tarski’s fixed point theorem for complete partial orders (see, e.g. (Roscoe

1997, Theorem A.1.3)), each mapping F definable using the operators of the language has

a least fixed point given by
⋃

n�0 Fn ({〈〉}). This justifies the following definition.

tracesA [[μX • F (X)]] = the ⊆-least fixed point of the semantic

mapping corresponding to F .

The following theorem shows that the two ways of capturing the traces are congruent.

Theorem 10. For all traces tr ∈ (Σ†)∗:

tr ∈ tracesA [[P]] iff P
tr

=⇒ .

Proof: This is a straightforward structural induction over the non-recursive operator,

together with standard techniques for dealing with recursion (as in Roscoe (2009b,

Section 5)). �

Theorem 11. For all processes, tracesA [[P]] is a member of the availability traces model

(i.e. it satisfies the conditions of Definition 6).

Proof: This follows directly from Lemma 7 and Theorem 10. �

2.1. Full abstraction

We can show that this model is fully abstract with respect to a form of testing in the

style of (de Nicola and Hennessy 1984). We consider tests that may detect the availability

of events. Following Lowe (2009), we write ready a & T for a test that tests whether a is

available, and if so acts like the test T . We also allow a test SUCCESS that represents a

successful test, and a simple form of prefixing. Formally, tests are defined by the grammar:

T ::= SUCCESS | a → T | ready a & T .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1031

We consider testing systems comprising a test T and a process P , denoted T ‖ P . We

define the semantics of testing systems by the rules below; ω indicates that the test has

succeeded, and Ω represents a terminated testing system.

SUCCESS ‖ P
ω−→ Ω

P
τ−−� Q

T ‖ P
τ−→ T ‖ Q

P
a−−� Q

a → T ‖ P
τ−→ T ‖ Q

P
offer a
−−� P

ready a & T ‖ P
τ−→ T ‖ P

We say that P may pass the test T , denoted P may T , if T ‖ P can perform ω (after

zero or more τs).

We now show that if two processes are denotationally different, we can produce a

test to distinguish them, i.e. such that one process passes the test, and the other fails it.

Let tr ∈ (Σ†)∗. We can construct a test Ttr that detects the trace tr .

T〈〉 = SUCCESS ,

T〈a〉�tr = a → Ttr ,

T〈offer a〉�tr = ready a & Ttr .

The following lemma can be proved by a straightforward induction on the length of tr:

Lemma 12. For all processes P , P may Ttr if and only if tr ∈ tracesA [[P]].

Theorem 13. tracesA [[P]] = tracesA [[Q]] if and only if P and Q may pass the same tests.

Proof: The left-to-right direction is trivial. If tracesA [[P]]
= tracesA [[Q]] then without loss

of generality suppose tr ∈ tracesA [[P]] − tracesA [[Q]]; then P may Ttr but not Q may Ttr .

�

We now show that the model contains no junk: each element of the model corresponds

to a process.

Theorem 14. Let T be a member of the availability traces model. Then there is a process P

such that tracesA [[P]] = T .

Proof: Let tr be a trace. We can construct a process Ptr as follows:

P〈〉 = STOP ,

P〈a〉�tr = a → Ptr ,

P〈offer a〉�tr = a → div � Ptr .

Then the traces of Ptr are just tr and those traces implied from tr by the healthiness

conditions of Definition 6. Formally, we can prove this by induction on tr . For example:

— The traces of P〈a〉�tr are prefixes of traces of the form† (offer a)k�〈a〉�tr ′, where

k � 0 and tr ′ is a trace of Ptr . Hence (by the inductive hypothesis) tr ′ is implied

† We write (offer a)k to denote a trace containing k copies of offer a .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1032

from tr by the healthiness conditions. Thus 〈a〉�tr ′ is implied from 〈a〉�tr . Finally

(offer a)k�〈a〉�tr ′ is implied from 〈a〉�tr by k applications of healthiness condition 4.

— The traces of P〈offer a〉�tr are of two forms:

– Prefixes of traces of the form (offer a)k�〈a〉, which is implied from 〈offer a〉 by

healthiness conditions 2 and 3.

– Traces of the form (offer a)k�tr ′ where tr ′ is a trace of Ptr . Hence (by the

inductive hypothesis) tr ′ is implied from tr by the healthiness conditions. And so

(offer a)k�tr ′ is implied from 〈offer a〉�tr by healthiness condition 2.

Then, given T , a member of the availability traces model, we can define P = �tr∈T
Ptr

such that tracesA [[P]] = T . �

The above proof makes critical use of the timeout operator (�). This operator could

have been replaced with hiding, since hiding can be used to simulate timeout:

P � Q = (P � trig → Q) \ {trig}, where trig is a fresh event.

However, without these two operators, the above result does not hold. We will need the

following lemma, which can be proved by a straightforward structural induction.

Lemma 15. If P does not use the timeout or hiding operators, P
tr�−→ P ′ offer a

−−� and

P ′ τ−−� P ′′ then P ′′ offer a
−−� , i.e. τ-transitions do not cause offers to be withdrawn.

Proposition 16. There are elements of the availability traces model that cannot be

expressed without timeout or hiding.

Proof: Consider the element T of the availability traces model containing all traces of the

form

(offer a)j�〈a〉 and (offer a)j�(offer b)k�〈b〉
and all prefixes. (In the full language, T corresponds to the process a → STOP �

b → STOP .) Note that T does not contain the trace 〈offer a , offer b, offer a〉, so the offer

of a must be withdrawn. However, offer-transitions do not change the state of the process,

so this withdrawal must be due to a τ-transition. The above lemma then shows that T is

not expressible without the timeout or hiding operators. �

3. Variations

In this section, we consider variations on the model of the previous section, extending the

models along essentially two different dimensions. In Section 3.1, we consider models that

place a limit on the number of offer actions between consecutive standard events. Then in

Section 3.2, we consider models that record the availability of sets of events. In Section 3.3,

we restrict these models to place a bound on the size of the availability sets. Finally in

Section 3.4, we combine these two variations, to produce a hierarchy of different models

with different expressive power (illustrated in Figure 5). For each variant, we sketch how

to adapt the semantic model, and the full abstraction and no-junk results from Section 2.

We concentrate on discussing the relationship between the different models.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1033

3.1. Bounded availability actions

Up to now, we have allowed arbitrarily many offer actions between consecutive standard

events. It turns out that we can restrict this. For example, we could allow at most one

offer action between consecutive standard events (or before the first event, or after the

last event). This model is more abstract than the previous; for example, it identifies the

processes

(a → STOP � b → STOP) � (a → STOP � c → STOP) � (b → STOP � c → STOP)

and

(a → STOP � b → STOP � c → STOP),

whereas the previous model distinguished them by the trace 〈offer a , offer b, c〉.
More generally, we define the model that allows at most n offer actions between

consecutive standard events. Let Obsn be the set of availability traces with this property.

Then the model An is the restriction of A to Obsn , i.e. writing tracesA,n for the

semantic function for An , we have tracesA,n [[P]] = tracesA [[P]] ∩ Obsn . In particular,

A0 is equivalent to the standard traces model.

The following example shows that the models become strictly more refined as

n increases; further, the full availability traces model A is finer than each of the

approximations An .

Example 17. Pick a set A = {a0, . . . , an} of size n + 1. The processes

�b∈A
?a : A − {b} → STOP and ?a : A → STOP

are equivalent in model An−1: each can perform any trace of at most n − 1 actions of

the form offer ai followed by an event aj (and prefixes of such traces). However, they are

distinguished in model An and model A by the trace 〈offer a0, offer a1, . . . , offer an−1, an〉.

The following alternative example uses a bounded alphabet.

Example 18. Consider the processes:

P0 = STOP ,

Pn+1 = (a → STOP � b → STOP) � Pn .

Suppose n is non-zero and even (the case of odd n is similar). Processes Pn and Pn+1

can be distinguished in model An and model A, since only Pn+1 has the trace 〈offer a ,

offer b, offer a , offer b, . . . , offer a , offer b, a〉 with n offer actions. However, these processes

are equal in model An−1.

Following Roscoe (2009b), we write M � M ′ if model M ′ is finer (i.e. distinguishes

more processes) than model M , and ≺ for the corresponding strict relation. The above

examples show

A0 ≡ T ≺ A1 ≺ A2 ≺ · · · ≺ A.

It is easy to see that these models are all compositional: in all the semantic equations,

the presence of a trace from Obsn in a composite process is always implied by the

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1034

presence of traces from Obsn in the subcomponents. It is important, here, that the number

of consecutive offers is downwards-closed: the same result would not hold if we considered

a model that includes exactly n offer actions between successive standard events, for in

an interleaving P ||| Q , a sequence of n consecutive offers may be formed from k offers

of P and n − k offers of Q .

In some cases, the semantic equations have to be adapted slightly to ensure the traces

produced are indeed from Obsn , for example:

tracesA,n [[P A‖B Q]] =

{tr | ∃ trP ∈ tracesA,n [[P]] ∩ (A†)∗, trQ ∈ tracesA,n [[Q]] ∩ (B†)∗ •

tr ∈ (trP ‖
(A∩B)†

trQ) ∩ Obsn},

tracesA,n [[P \ A]] =

{trP \ A | trP ∈ tracesA,n [[P]] ∧ trP � offer A = 〈〉 ∧ trP \ A ∈ Obsn}.

The healthiness conditions need to be adapted slightly to reflect that only traces from

Obsn are included. For example, condition 4 becomes

4′. tr�〈a〉�tr ′ ∈ T ∧ tr�〈offer a , a〉�tr ′ ∈ Obsn ⇒ tr�〈offer a , a〉�tr ′ ∈ T .

Finally, the full abstraction result still holds, but the tests need to be restricted to

include at most n successive ready tests. And the no-junk result still holds.

3.2. Availability sets

The models we have considered so far have considered the availability of a single event

at a time. If we consider the availability of a set of events, can we distinguish more

processes? The answer turns out to be yes, but only with processes that can either diverge

or exhibit unbounded nondeterminism (a result which was surprising to me).

We will consider actions of the form offer A, where A is a set of events, representing

that all the events in A are simultaneously available. We can adapt the derived operational

semantics appropriately:

P
α−−�� Q ⇔ P

α−→ Q , for α ∈ Σ ∪ {τ},

P
offer A
−−�� P ⇔ ∀ a ∈ A • P

a−→ .

Lemma 19. The −−�� relation satisfies the rules given in Figure 3. (For standard events

in Σ ∪ {τ}, the rules are precisely as for the −−� relation, and so omitted.) For relational

renaming, we lift the renaming to apply to offer actions, by forming the subset-closure of

the relational image:

(offer A) R (offer B) ⇔ ∀ b ∈ B • ∃ a ∈ A • a R b.

For convenience, we define

A�† = A ∪ {offer B | B ∈ �A}.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1035

STOP
offer{}−− P STOP ,

P Q
offer{}−− P P Q ,

?a : A → P
offer B−− P ?a : A → P ,

for B ⊆ A,

i∈I
Pi

offer{}−− P
i∈I

Pi ,

P
offer A−− P P

Q
offer B−− P Q

P Q
offer A∪B−−− P P Q

P
offer A−− P P

P Q
offer A−− P P Q

P
offer X−− P P

Q
offer Y−− P Q

X ⊆ A ∧ Y ⊆ B ∧ X ∩ A = Y ∩ B
P A B Q

offer X∪Y−−− P P A B Q

P
offer X−− P P

Q
offer Y−− P Q

P ||| Q offer X∪Y−−− P P ||| Q

P
offer X−− P P

P \ A
offer X−A−−− P P \ A

P
offer A−− P P

(offer A)R (offer B)
P [[R]]

offer B−− P P [[R]]

μX • P
offer{}−− P μX • P .

Fig. 3. Derived operational semantics for the availability sets model; symmetrically equivalent

rules are omitted.

Traces will then be from (Σ�†)∗. We can extract traces of this form from the derived

operational semantics as in Definition 3 (writing
tr�−→� and

tr
=⇒� for the corresponding

relations).

We call this model the availability sets traces model, and will sometimes refer to

the previous model as the Singleton availability traces model, in order to emphasize the

difference.

Definition 20. The availability sets traces model A� contains those sets T ⊆ (Σ�†)∗ that

satisfy the following conditions.

1. T is non-empty and prefix-closed.

2. offer actions can always be removed from or duplicated within a trace:

tr�〈offer A〉�tr ′ ∈ T ⇒ tr�〈offer A, offer A〉�tr ′ ∈ T ∧ tr�tr ′ ∈ T .

3. If a process can offer an event it can perform it:

tr�〈offer A〉 ∈ T ⇒ ∀ a ∈ A • tr�〈a〉 ∈ T .

4. If a process can perform an event it can first offer it:

tr�〈a〉�tr ′ ∈ T ⇒ tr�〈offer{a}, a〉�tr ′ ∈ T .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1036

X

P
= ,

a tr
X

P
= a tr | tr ∈ tr

X

P
, if a X

{}, if a ∈ X ,

offer A tr
X

P
= {},

a tr
X

P
b tr = a tr | tr ∈ tr

X

P
tr }, if a = b ∈ X ,

{}, if a, b ∈ X , a = b,

a tr | tr ∈ tr
X

P
b tr }, if a X , b ∈ X ,

a tr | tr ∈ tr
X

P
b tr } ∪

b tr | tr a tr
X

P
tr },

if a, b X ,

offer A tr
X

P
offer B tr = {offer(A ∪ B) tr | tr ∈ tr

X

P
tr }, if A ∩ X = B ∩ X ,

{}, otherwise,

offer A tr
X

P
b tr = {}.

Fig. 4. Parallel combination of traces; symmetrically equivalent clauses are omitted.

5. The offers of a process are subset-closed

tr�〈offer A〉�tr ′ ∈ T ∧ B ⊆ A ⇒ tr�〈offer B〉�tr ′ ∈ T .

6. Processes can always offer the empty set

tr�tr ′ ∈ T ⇒ tr�〈offer{}〉�tr ′ ∈ T .

Lemma 21. For all processes P , {tr | P
tr

=⇒�} is an element of the availability sets traces

model.

Compositional semantics. We give below semantic equations for the availability sets traces

model. Most of the clauses are straightforward adaptations of the corresponding clauses

in the singleton availability traces model.

For the parallel operators and external choice, we define an operator ‖
X

�
such that

tr ‖
X

�
tr ′ gives all traces resulting from traces tr and tr ′, synchronizing on events and

offers of events from X . The operator is defined in Figure 4.

The semantic clauses are then as follows.

traces�
A [[STOP]] = traces�

A [[div]] = (offer{})∗,

traces�
A [[a → P]] = Init ∪ {tr�〈a〉�tr ′ | tr ∈ Init ∧ tr ′ ∈ traces�

A [[P]]},
where Init = {offer{}, offer{a}}∗,

traces�
A [[P � Q]] = traces�

A [[P]] ∪
{trP

�trQ | trP ∈ traces�
A [[P]] ∧ trP � Σ = 〈〉 ∧ trQ ∈ traces�

A [[Q]]},
traces�

A [[P � Q]] = traces�
A [[P]] ∪ traces�

A [[Q]],

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1037

traces�
A [[P � Q]] =

{tr | ∃ trP ∈ traces�
A [[P]], trQ ∈ traces�

A [[Q]] •

trP � Σ = trQ � Σ = 〈〉 ∧ tr ∈ trP ‖
{}

�
trQ} ∪

{tr�〈a〉�tr ′
P | ∃ trP

�〈a〉�tr ′
P ∈ traces�

A [[P]], trQ ∈ traces�
A [[Q]] •

trP � Σ = trQ � Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
{}

�
trQ} ∪

{tr�〈a〉�tr ′
Q | ∃ trP ∈ traces�

A [[P]], trQ
�〈a〉�tr ′

Q ∈ traces�
A [[Q]] •

trP � Σ = trQ � Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
{}

�
trQ},

traces�
A [[P A‖B Q]] = {tr | ∃ trP ∈ traces�

A [[P]] ∩ (A�†)∗, trQ ∈ traces�
A [[Q]] ∩ (B�†)∗ •

tr ∈ trP ‖
A∩B

�
trQ},

traces�
A [[P ||| Q]] = {tr | ∃ trP ∈ traces�

A [[P]], trQ ∈ traces�
A [[Q]] • tr ∈ trP ‖

{}

�
trQ},

traces�
A [[P \ A]] = {trP \ A | trP ∈ traces�

A [[P]] ∧ ∀ X • offer X in trP ⇒ X ∩ A = {}},
traces�

A [[P [[R]]]] = {tr | ∃ trP ∈ traces�
A [[P]] • trP R tr},

traces�
A [[μX • F (X)]] = the ⊆-least fixed point of the semantic

mapping corresponding to F .

Theorem 22. The semantics is congruent to the operational semantics:

tr ∈ traces�
A [[P]] iff P

tr
=⇒� .

Full abstraction and no-junk. In order to prove a full abstraction result, we extend our

class of tests to include a test of the form ready A & T , which tests whether all the events

in A are available, and if so acts like the test T . Formally, this test is captured by the

following rule.

P
offer A
−−� P

ready A & T ‖ P
τ−→ T ‖ P

Given tr ∈ (Σ�†)∗, we can construct a test Ttr that detects the trace tr as follows:

T〈〉 = SUCCESS

T〈a〉�tr = a → Ttr

T〈offer A〉�tr = ready A & Ttr .

The full abstraction proof then proceeds precisely as in Section 2.

We can prove a no-junk result as in Section 2. Given trace tr , we can construct a

process Ptr as follows:

P〈〉 = STOP ,

P〈a〉�tr = a → Ptr ,

P〈offer A〉�tr = (?a : A → div) � Ptr .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1038

Then the traces of Ptr are just tr and those traces implied from tr by the healthiness

conditions. Again, given an element T from the availability sets traces model, we can

define P = �tr∈T
Ptr ; then traces�

A [[P]] = T .

Distinguishing power. We now consider the extent to which the availability sets model

can distinguish processes that the singleton availability model can not.

Example 23. The availability sets traces model distinguishes the processes

P = a → STOP � b → STOP ,

Q = (a → STOP � b → STOP) � Q ,

since just P has the trace 〈offer{a , b}〉. However, these are equivalent in the singleton

availability traces model; in particular, both can perform arbitrary sequences of offer a

and offer b actions initially.

The process Q above can diverge (i.e. perform an infinite number of internal τ events) by

repeatedly performing timeouts. We can obtain a similar effect without divergence, but

using unbounded nondeterminism.

Example 24. Consider

Q0 = STOP ,

Qn+1 = (a → STOP � b → STOP) � Qn ,

Q ′ = �n∈�
Qn .

Then P (from the previous example) and Q ′ are distinguished in the availability sets

traces model but not the singleton availability traces model.

For finitely nondeterministic, non-divergent processes, it is enough to consider the

availability of only finite sets: such a process can reach only a finite number of different

states after a given trace; hence it can offer an infinite set A if and only if it can offer all

its finite subsets. However, for infinitely nondeterministic processes, one can make more

distinctions by considering infinite sets.

Example 25. Let A be an infinite set of events. Consider the processes

?a : A → STOP and �b∈A
?a : A − {b} → STOP .

Then these have the same finite availability sets, but just the former has all of A available.

Theorem 26. If P and Q are non-divergent, finitely nondeterministic processes, that are

equivalent in the singleton availability model, then they are equivalent in the availability

sets model.

Proof: Suppose, for a contradiction, that P and Q are non-divergent and finitely

nondeterministic, are equivalent in the singleton availability model, but are distinguished

in the availability set model. Then, without loss of generality, there is an availability-set

trace tr that is a trace of P but not of Q .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1039

Suppose, for the moment, that tr contains a single offer action, so it is of the form

tr1
�〈offer A〉�tr2, with no offer actions in tr1 or tr2. By the discussion above, we may

assume, without loss of generality, that A is finite, say A = {a1, . . . , an}. Since Q is non-

divergent and finitely nondeterministic, there is some bound, k say, on the number of

consecutive τ events that it can perform after tr1 and before the next visible event. Since

P can offer all of A after tr1, it can also offer any individual events from A, sequentially,

in an arbitrary order (from clauses 2 and 5 of Definition 20). In particular, it has the

singleton availability trace

tr1
�〈offer a1, . . . , offer an〉k+1�tr2.

Since P and Q are, by assumption, equivalent in the singleton availability model, Q also

has this trace. Q must perform at most k τ events within the sub-trace 〈offer a1, . . . ,

offer an〉k+1. This tells us that there is a sub-trace within that, of length n , containing no

τ events. Within this sub-trace there are no state changes (i.e. there are only self-loops

corresponding to the offer actions), and so all the ai are offered in the same state. Hence

tr = tr1
�〈offer A〉�tr2 is an availability set trace of Q , giving a contradiction.

If tr contains multiple offer actions, the above argument can be applied

simultaneously to all those offer actions. �

3.3. Bounded sets

We can consider some variants on the availability sets traces model.

First, let us consider the model Ak that places a limit of size k upon availability sets.

It is reasonably straightforward to produce compositional semantics for such models: in

order to deduce the offers of size at most k for a composite process, it is enough to know

the offers of size at most k for the components; of course, this would not hold if we

considered the offers of size exactly k . It is perhaps surprising that such a semantics is

compositional, since a similar result does not hold for stable failures (Bolton and Lowe

2004) (although it is conjectured in Roscoe (2009b) that this does hold for acceptances).

It is also straightforward to adapt the full abstraction and no-junk results.

Clearly, A1 ≡ A, and A0 ≡ T (the standard traces model). Examples 23 and 24

show that A2 is finer that A1. We can generalize those examples to show that each model

Ak is finer than Ak−1.

Example 27. Let Ak be a set of size k . Consider

Pk = ?a : Ak → STOP ,

Qk = �b∈Ak
(?a : Ak − {b} → STOP) � Qk .

Then Pk and Qk are distinguished in Ak since only Pk has the trace 〈offer Ak 〉. However

they are equivalent in Ak−1: in particular, both can initially perform any trace of offers

of size k − 1.

The limit of the models Ak considers arbitrary finite availability sets; we term

this A�. The model A� distinguishes the processes Pk and Qk from Example 27, for

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1040

all k , so is finer than each of the models with bounded availability sets. As shown by

Example 25, A� is coarser than A�.

Example 27 makes critical use of timeout, as shown by the following result.

Proposition 28. Suppose P and Q do not use the timeout or hiding operators, and are

equivalent in the singleton availability traces model A. Then they are equivalent in A�,

and hence in all models Ak for finite k .

Proof: Suppose, for a contradiction, that P and Q are distinguished in A� by some

trace tr that can be performed (without loss of generality) by P but not Q . Consider

the singleton availability trace tr1 obtained from tr by replacing each action of the

form offer{a1, . . . , an} by the sequence 〈offer a1, . . . , offer an〉 (where the order is arbitrary).

Clearly tr1 is a singleton availability trace of P . But P and Q are presumed equal in the

singleton availability model, and hence tr1 is also a trace of Q . However, by Lemma 15, Q

cannot change state during any such subtrace 〈offer a1, . . . , offer an〉; hence Q must offer

the whole of the set {a1, . . . , an} in this state. But this means that Q has trace tr in A�,

giving a contradiction. �

In fact, for an arbitrary infinite cardinal κ, we can consider the model Aκ that places a

limit of size κ upon availability sets. Example 25 showed that considering finite availability

sets distinguishes fewer processes than allowing infinite availability sets, i.e. A� ≺ Aκ.

The following example shows that the models become finer as κ increases.

Example 29. Pick an infinite cardinal κ, and pick an alphabet Σ such that card (Σ) � κ.

Then the processes

Pκ = �A⊆Σ, card (A)=κ
?a : A → STOP ,

Qκ = �A⊆Σ, card (A)<κ
?a : A → STOP

are distinguished by the model Aκ, since only Pκ can offer sets of size κ. However, for

λ < κ, they are not distinguished by the model Aλ; for example, if Pκ has the trace

〈offer A1, . . . , offer An〉 in Aλ, then card (Ai) � λ < κ, for each i ; but also A =
⋃n

i=1 Ai

has card (A) � λ < κ, so Qκ can perform this trace by picking A in the nondeterministic

choice.

(In fact, this example shows that these models – like the cardinals – form a proper class,

rather than a set!) In most applications, the alphabet Σ is countable; these models then

coincide for processes with such an alphabet. The model A� distinguishes the processes

Pκ and Qκ from Example 29, for all κ, so is finer than each of the models Aκ.

Summarizing:

A0 ≡ T ≺ A1 ≡ A ≺ A2 ≺ . . . ≺ A� ≺ Aℵ0 ≺ Aℵ1 ≺ . . . ≺ A�.

3.4. Combining the variations

We can combine the ideas from Sections 3.1 and 3.2 to produce a family of models AK
N,

where:

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1041

AP ≡ AP

F

Aℵ2 ≡ Aℵ2
F

AP

3

Aℵ1 ≡ Aℵ1
F

AP

2

Aℵ0 ≡ Aℵ0
F

Aℵ2
3 AP

1

AF ≡ AF

F Aℵ1
3 Aℵ2

2

Aℵ0
3 Aℵ1

2 Aℵ2
1

A3 ≡ A3
F AF

3 Aℵ0
2 Aℵ1

1

A2 ≡ A2
F AF

2 Aℵ0
1

A ≡ A1 ≡ A1
F A3

3 AF

1

A2
3 A3

2

A3 ≡ A1
3 A2

2 A3
1

A2 ≡ A1
2 A2

1

A1 ≡ A1
1

A0 ≡ A0
N ≡ AK

0 ≡ T

Fig. 5. The hierarchy of models.

— K is either a natural number k or infinite cardinal κ, indicating an upper bound on

the size of availability sets, or the symbol � indicating arbitrary finite availability sets

are allowed, or the symbol � indicating arbitrary availability sets are allowed;

— N is either a natural number n , indicating an upper bound on the number of

availability sets between successive standard events, or the symbol � indicating any

finite number is allowed.

We write <, �, etc. for the obvious orderings over these parameters.

If K = 0 or N = 0 then AK
N is just the standard traces model. Further, AN ≡ A1

N
and AK ≡ AK

� .

We can show that this family is ordered as the natural extension of the earlier

(one-parameter) families; the relationship between the models is illustrated in Figure 5.

In particular, these models are distinct for N,K
= 0. We can re-use several of the earlier

examples to this end. Example 18 shows that for each K
= 0

AK
0 ≺ AK

1 ≺ AK
2 ≺ . . . ≺ AK

� .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1042

Example 27 shows that:

A0
� ≺ A1

� ≺ A2
� ≺ . . . ≺ A�

�.

The following example adapts Example 27 to a bounded number of offer sets.

Example 30. Let n and k be positive natural numbers. Let A be a set of size n × k + 1.

Consider

P = ?a : A → STOP ,

Q = �B⊂A
?a : B → STOP .

Let A1, . . . ,An , {a} be a partition of A, where each Ai is of size k . Then 〈offer A1, . . . ,

offer An , a〉 is a trace of P but not of Q , so these processes are distinguished by Ak
n .

However, the two processes are equivalent in Ak−1
n . Hence Ak−1

n ≺ Ak
n . Further, A�

n

distinguishes these processes, for all (finite) n and k , so Ak
n ≺ A�

n .

Example 25 shows that A�
N ≺ Aκ

N for each infinite cardinal κ and for each N. Further,

Example 29 shows that if λ < κ are two infinite cardinals, then Aλ
N ≺ Aκ

N ≺ A�
N.

4. Alternatives

In this section, we consider models that record events that were available as alternatives to

the events that were actually performed: i.e. those alternative events were available from

the same state as the events that were performed. More precisely, an event b is considered

an alternative to a particular transition P
a−→ Q if b was available from the state P , i.e.

P
b−→.

The following example illustrates the idea.

Example 31. Consider the processes

P = a → c → STOP � b → STOP ,

Q = (a → STOP � b → STOP) � a → c → STOP .

Then P can perform a while offering b as an alternative, and can then perform c; however,

if Q performs a while offering b as an alternative, it must be from the first branch of the

timeout, so can not subsequently perform c.

However, it turns out that a model that records just the events that were available

from the same state as the events that were performed cannot be compositional. To see

why, consider the processes

a → STOP � b → STOP and b → STOP � a → STOP .

These would be equivalent in such a model: each can perform a or b and offers no events

as alternatives from the states where those events are performed. However,

a → STOP � b → STOP ||| c → d → STOP

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1043

can perform c while offering a as an alternative, and then perform d while offering b as

an alternative; but

b → STOP � a → STOP ||| c → d → STOP

cannot do this. Hence, such a model would not be compositional.

We therefore need to record both those alternative events that were available from

the same state as the events that were performed, and events that were offered before

events were performed (as in the previous models).

In order to capture this idea, we adapt the transition relation to record transitions of

the form P
(alt B ,a)
−−−�Alt Q to indicate that P can perform a to become Q , but that P could

also have performed any event from B from the same state; we specify a
∈ B in this case

(since including a in B gives no extra information). We also record offers as in previous

models. The transition relation is defined as follows:

P
(alt B ,a)
−−−�Alt Q iff P

a−→ Q ∧ ∀ b ∈ B • P
b−→, for a ∈ Σ, a
∈ B ,

P
τ−−�Alt Q iff P

τ−→ Q ,

P
offer B
−−−�Alt P iff ∀ b ∈ B • P

b−→ .

Note, in particular, that if P
a−→ Q then P

(alt{},a)
−−−�Alt Q . Note also that we do not record

alternatives for τ-transitions.

Lemma 32. The −−�Alt relation satisfies the rules in Figure 6. (Rules for offer actions and

the τ-promotion rules are as in Figure 3, so are omitted.) For relational renaming, we lift

the renaming to alternative sets:

AR B ⇔ ∀ b ∈ B • ∃ a ∈ A • a R b.

For A ⊆ Σ, we let AAlt be the set of (alt B , a) actions and offer B actions, where

a ∈ A, B ⊆ A, a
∈ B . We define an alternatives trace to be a sequence tr in (ΣAlt)∗. We

can extract alternatives traces from the operational semantics, as in the earlier models

(writing
tr�−→Alt and

tr
=⇒Alt for the corresponding relations).

Example 33. Consider again the processes

P = a → c → STOP � b → STOP ,

Q = (a → STOP � b → STOP) � a → c → STOP .

Then P has the alternatives trace 〈(alt{b}, a), (alt{}, c)〉; but Q does not have this trace.

Note that these two processes are equivalent in A�
�, and hence all the other availability

models.

Definition 34. The alternatives traces model A contains those sets T ⊆ (ΣAlt)∗ such that:

1. T is non-empty and prefix-closed;

2. offer actions can always be remove from or duplicated within a trace:

tr�〈offer A〉�tr ′ ∈ T ⇒ tr�〈offer A, offer A〉�tr ′ ∈ T ∧ tr�tr ′ ∈ T .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1044

?a : A → P
(alt B,a)−−− Alt P , for a ∈ A, B ⊆ A − {a},

P
(alt X ,a)−−− Alt P

Q
offer Y−−− Q

a Y

P Q
(alt X∪Y ,a)−−− Alt P

P
(alt X ,a)−−− Alt P

P Q
(alt X ,a)−−− Alt P

P
(alt X ,a)−−− Alt P

Q
offer Y−−− Alt Q a ∈ A − B ∧ a Y ∧ X ⊆ A ∧ Y ⊆ B ∧

X ∩ A = Y ∩ B
P A B Q

(alt X∪Y ,a)−−− Alt P A B Q

P
(alt X ,a)−−− Alt P

Q
(alt Y ,a)−−− Alt Q a ∈ A ∩ B ∧ X ⊆ A ∧ Y ⊆ B ∧

X ∩ A = Y ∩ B
P A B Q

(alt X∪Y ,a)−−− Alt P A B Q

P
(alt X ,a)−−− Alt P

Q
offer Y−−− Alt Q

a Y

P ||| Q (alt X∪Y ,a)−−− Alt P ||| Q

P
(alt X ,a)−−− Alt P

a A

P \ A
(alt X−A,a)−−− Alt P \ A

P
(alt X ,a)−−− Alt P

a ∈ A
P \ A

τ−− Alt P \ A

P
(alt X ,a)−−− Alt P

a R b ∧ X R Y

P [[R]]
(alt Y ,b)−−− Alt P [[R]]

Fig. 6. Derived operational semantics for the alternatives traces model; symmetrically equivalent

rules are omitted.

3. Events performed and their alternatives can be previously offered:

tr�〈(alt B , a)〉�tr ′ ∈ T ⇒ tr�〈offer B ∪ {a}, (alt B , a)〉�tr ′ ∈ T .

4. If a process can offer a set of events, it can perform any member of that set with the

rest available as alternatives:

tr�〈offer A〉 ∈ T ⇒ ∀ a ∈ A • tr�〈(alt A − {a}, a)〉 ∈ T .

5. Alternatives can be performed:

tr�〈(alt B , a)〉�tr ′ ∈ T ⇒ ∀ b ∈ B • tr�〈(alt B − {b} ∪ {a}, b)〉 ∈ T .

6. The offers of a process are subset-closed:

tr�〈offer A〉�tr ′ ∈ T ∧ B ⊆ A ⇒ tr�〈offer B〉�tr ′ ∈ T .

7. The alternatives of a process are subset-closed:

tr�〈(alt A, a)〉�tr ′ ∈ T ∧ B ⊆ A ⇒ tr�〈(alt B , a)〉�tr ′ ∈ T .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1045

X

Alt
= ,

α tr
X

Alt
= {},

offer A tr
X

Alt
offer B tr =

offer(A ∪ B) tr | tr ∈ tr
X

Alt
tr }, if A ∩ X = B ∩ X ,

{}, otherwise,

(alt A, a) tr
X

Alt
offer B tr =

(alt A ∪ B , a) tr | tr ∈ tr
X

Alt
tr }, if a X ∧ a B ∧ A ∩ X = B ∩ X ,

{}, otherwise,

(alt A, a) tr
X

Alt
(alt B , b) tr =

(alt A ∪ B , a) tr | tr ∈ tr
X

Alt
tr }, if a = b ∈ X ∧ A ∩ X = B ∩ X ,

{}, otherwise.

Fig. 7. Parallel composition of traces in the alternatives traces model; symmetrically equivalent

clauses are omitted.

8. Processes can always offer the empty set:

tr�tr ′ ∈ T ⇒ tr�〈offer{}〉�tr ′ ∈ T .

Lemma 35. For all processes P , the set T = {tr | P
tr

=⇒Alt} is an element of the

alternatives traces model.

4.1. Compositional semantics

We now give compositional semantic equations for this model with alternatives. Most

equations are straightforward adaptations of earlier equations; we discuss here a few

interesting points.

For parallel composition and external choice, we define an operator ‖
X

Alt
such that

tr ‖
X

Alt
tr ′ gives all traces resulting from traces tr and tr ′, synchronizing on actions

corresponding to events from X . We arrange for each (alt A, a) to synchronize with an

offer B action if a
∈ X , or with a (alt B , a) action if a ∈ X ; in each case, A and B should

contain the same events from X . Figure 7 gives the definition.

We define a hiding operator over traces such that tr \ X removes all (alt A, a) actions

such that a ∈ X ; the semantic equation below blocks all offer B or (alt B , a) events with

B ∩ A
= {}.
For relational renaming, we lift the renaming to apply to alternative actions so that

(alt X , a) R (alt Y , b) if a R b and ∀ y ∈ Y • ∃ x ∈ X • x R y .

The semantic equations are as follows:

tracesAlt [[STOP]] = tracesAlt [[div]] = (offer{})∗,

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1046

tracesAlt [[a → P]] =

Init ∪ {tr�〈(alt{}, a)〉�tr ′ | tr ∈ Init ∧ tr ′ ∈ tracesAlt [[P]]},
where Init = {offer{}, offer{a}}∗,

tracesAlt [[P � Q]] =

tracesAlt [[P]] ∪
{trP

�trQ | trP ∈ tracesAlt [[P]] ∧ trP � Σ = 〈〉 ∧ trQ ∈ tracesAlt [[Q]]},
tracesAlt [[P � Q]] = tracesAlt [[P]] ∪ tracesAlt [[Q]],

tracesAlt [[P � Q]] =

{tr | ∃ trP ∈ tracesAlt [[P]], trQ ∈ tracesAlt [[Q]] •

trP � Σ = trQ � Σ = 〈〉 ∧ tr ∈ trP ‖
{}

trQ} ∪

{tr�tr ′
P | ∃ trP

�〈(alt B , a)〉�tr ′
P ∈ tracesAlt [[P]], trQ ∈ tracesAlt [[Q]] •

trP � Σ = trQ � Σ = 〈〉 ∧ tr ∈ trP
�〈(alt B , a)〉 ‖

{}
trQ} ∪

{tr�tr ′
Q | ∃ trP ∈ tracesAlt [[P]], trQ

�〈(alt B , a)〉�tr ′
Q ∈ tracesAlt [[Q]] •

trP � Σ = trQ � Σ = 〈〉 ∧ tr ∈ trP ‖
{}

trQ
�〈(alt B , a)〉},

tracesAlt [[P A‖B Q]] =

{tr | ∃ trP ∈ tracesAlt [[P]] ∩ (AAlt)∗, trQ ∈ tracesAlt [[Q]] ∩ (BAlt)∗ •

tr ∈ trP ‖
A∩B

trQ},

tracesAlt [[P ||| Q]] =

{tr | ∃ trP ∈ tracesAlt [[P]], trQ ∈ tracesAlt [[Q]] • tr ∈ trP ‖
{}

trQ},

tracesAlt [[P \ A]] =

{trP \ A | trP ∈ tracesAlt [[P]] ∧
∀ B • offer B in trP ∨ (alt B , a) in trP ⇒ B ∩ A = {}},

tracesAlt [[P [[R]]]] = {tr | ∃ trP ∈ tracesAlt [[P]] • trP R tr},
tracesAlt [[μX • F (X)]] =

the ⊆-least fixed point of the semantic mapping corresponding to F .

Theorem 36. The semantics is congruent to the operational semantics:

tr ∈ tracesAlt [[P]] iff P
tr

=⇒Alt .

4.2. Full abstraction

In order to prove a full abstraction result, we extend our class of tests to include a test

of the form (alt A, a) → T , which tests whether all the events in A ∪ {a} are available,

and if so performs a , and then acts like the test T . Formally, the behaviour of this test is

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1047

captured by the following rule.

P
(alt A,a)
−−−�Alt Q

(alt A, a) → T ‖ P
τ−→ T ‖ Q

Given tr ∈ (ΣAlt)∗, we can construct a test Ttr that detects the trace tr as follows:

T〈〉 = SUCCESS ,

T〈(alt A,a)〉�tr = (alt A, a) → Ttr ,

T〈offer A〉�tr = ready A & Ttr .

The full abstraction proof then proceeds precisely as in Section 2.

We can prove a no-junk result as in Section 2. Given trace tr , we can construct a

process Ptr as follows:

P〈〉 = STOP ,

P〈(alt B ,a)〉�tr = a → Ptr � ?b : B → div,

P〈offer B〉�tr = ?b : B → div � Ptr .

Then the traces of Ptr are just tr and those traces implied from tr by the healthiness

conditions. Again, given an element T from the alternatives traces model, we can define

P = �tr∈T
Ptr ; then tracesAlt [[P]] = T .

4.3. Variations

We now consider some variations on the alternatives traces model. As with offers, we can

place an upper bound R on the size of the alternatives set: either a natural number r , the

symbol � indicating arbitrary finite alternatives sets are allowed, an infinite cardinal ρ,

or the symbol � indicating arbitrary alternatives sets are allowed. We write RAK
N for

the model that has alternative information of size at most R, and at most N offer sets

between successive events, with offer sets of size at most K (where N and K are as in

Section 3.4). When R = 0, no alternatives are recorded, so 0AK
N ≡ AK

N.

It turns out that RAK
N is not compositional if K < R. The following example shows

this in the case that both are finite, generalizing the example at the start of this section;

this example can easily be adapted to non-finite K or R.

Example 37. Suppose k < r , with both finite. Let #A = #B = r with A ∩ B = {}.
Consider,

P = (?a : A → STOP � ?b : B → STOP) � (�X⊆A∪B ,#X=k
?x : X → P),

Q = (?b : B → STOP � ?a : A → STOP) � (�X⊆A∪B ,#X=k
?x : X → P).

Then P and Q are equivalent in rAk
N; for example each allows arbitrary offers from A∪B

of size at most k , followed by an action of the form (alt B − {b}, b) with b ∈ B . However,

let c, d
∈ A ∪ B and consider,

P ||| c → d → STOP and Q ||| c → d → STOP .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1048

Then the former has the alternatives trace 〈(alt A, c), (alt B , d)〉 but the latter does not.

Hence rAk
N is not compositional.

Further, if n is finite (i.e. n
= �) and K,R
= 0, then RAK
n is not compositional, as

shown by the following example.

Example 38. Let n be finite, and let K,R
= 0. Consider

P0 = STOP ,

Pn+1 = (a → STOP � b → STOP) � Pn .

Then Pn+1 and Pn+2 are equivalent in RAK
n : each can perform an arbitrary sequence of

up to n offer{a} or offer{b} actions followed by either (alt{}, a) or (alt{}, b). However, let

Q = c → d → Q ,

and consider Pn+1 ||| Q and Pn+2 ||| Q . These are distinguished in RAK
n since only

the latter has the trace 〈(alt{a}, c), (alt{b}, d), (alt{a}, c), (alt{b}, d), . . .〉 of length n + 2.

Hence, RAK
n is not compositional.

If K � R then the models RAK
� are compositional. The semantic equations can

be adapted appropriately to produce only suitable traces. The critical point is that an

alternative of size R in a composite process cannot depend upon a larger offer from a

component (in particular, see the case combining an offer and an alternative in Figure 7).

We now investigate the relative discriminating strengths of the models (including those

that are not compositional). The following examples show that these models become more

discriminating as the size of the availability parameter R increases.

Example 39. Let r > 0 be finite, #X = r , and let a
∈ X . Consider

P =̂ a → a → STOP � ?x : X → STOP ,

Q =̂ (a → STOP � ?x : X → STOP) �

(a → a → STOP � �y∈X
?x : X − {y} → STOP).

Then P and Q are distinguished in the rAK
N models (for all K and N), since P has

trace 〈(alt X , a), (alt{}, a)〉, but Q does not. However, the processes are not distinguished

in model r−1AK
N; for example, each has (for K > r and for each y ∈ X) the trace

〈offer X ∪ {a}, (alt X −{y}, a), (alt{}, a)〉, with the first action coming from the first branch.

Hence r−1AK
N ≺ rAK

N. Further, �AK
N distinguishes P and Q (for all finite r), and so

rAK
N ≺ �AK

N.

Example 40. Pick an infinite cardinal ρ, and pick an alphabet Σ such that card (Σ) � ρ.

Consider the following processes:

P =̂ a → a → STOP � �X⊆Σ, card (X)=ρ
?x : X → STOP ,

Q =̂ (a → STOP � �X⊆Σ, card (X)=ρ
?x : X → STOP) �

(a → a → STOP � �X⊆Σ, card (X)<ρ
?x : X → STOP).

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1049

Then P and Q are distinguished in models ρAK
N and �AK

N, since only P can offer an

alternative X of size ρ in a trace of the form 〈(alt X , a), (alt{}, a)〉. However, they are not

distinguished in models �AK
N or σAK

N for σ < ρ.

Summarizing the above two examples, for all N and K:

0AK
N ≺ 1AK

N ≺ 2AK
N ≺ · · · ≺ �AK

N ≺ ℵ0AK
N ≺ ℵ1AK

N ≺ · · · ≺ �AK
N.

For a given maximum size of the alternative set, the models become more

discriminating as the number of offer sets increase; Example 18 shows that for all

k
= 0, and for all R,

RAk
0 ≺ RAk

1 ≺ · · · ≺ RAk
�.

We now consider how the size of offer sets affects the distinguishing power of the

models.

Example 41. Let k > 0 be finite; let N
= 0; let A be a set of events with #A = k ; let

c
∈ A. Consider,

P = ?a : A → STOP � c → STOP ,

Q = (�A′⊂A,#A′=k−1
?a : A′ → STOP � Q) � c → STOP � ?a : A → STOP .

Then in RAk
N, P and Q are distinguished since only P has trace 〈offer A, (alt{}, c)〉.

However, they are equivalent in RAk−1
N ; for example, both have the trace 〈(alt A− {a}, a)〉

when R � k − 1 and a ∈ A; and both have traces 〈offer A1, . . . , offer An , (alt{}, c)〉 with

each Ai ⊆ A, #Ai = k − 1. Further, RA�
N distinguishes P and Q .

Example 42. Let κ be an infinite cardinal; let N
= 0; let A be a set of events with

#A = κ; let c
∈ A. Consider,

P = ?a : A → STOP � c → STOP ,

Q = (�A′⊂A,#A′<κ
?a : A′ → STOP � c → STOP) � ?a : A → STOP .

Then in RAκ
N, P and Q are distinguished since only P has trace 〈offer A, (alt{}, c)〉.

However, they are equivalent in RAλ
N for λ < κ; for example, both have the trace

〈(alt A − {a}, a)〉 when R � κ and a ∈ A; and both have traces 〈offer A1, . . . , offer An ,

(alt{}, c)〉 with each Ai ⊆ A, #Ai = λ. Further, RA�
N distinguishes P and Q , but RA�

N
identifies them.

Hence, for N
= 0, and for all R:

RA0
N ≺ RA1

N ≺ · · · ≺ RA�
N ≺ RAℵ0

N ≺ RAℵ1

N ≺ · · · ≺ RA�
N.

To summarize: we have shown that for each R, the RAK
N models (as N and K

vary) form a hierarchy isomorphic to that in Figure 5, but that the models become more

discriminating as R increases.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1050

5. Discussion

5.1. Simulation and model checking

The models described in this paper are not supported by the model checker FDR (Formal

Systems Europe; Roscoe 1994). However, it is possible to simulate the semantics, using a

fresh event offer.A to simulate the action offer A, and a fresh event alt.A.a to simulate

the action (alt A, a). For example, P = a → STOP � b → STOP would be simulated by

Psim = alt.{}.a → STOPsim � alt.{b}.a → STOPsim

� alt.{}.b → STOPsim � alt.{a}.b → STOPsim

� offer?A : �({a , b}) → Psim,

STOPsim = offer.{} → STOPsim.

This simulation process, then, has the same traces as the original process in the

full alternatives model, but with each offer A or (alt A, a) action replaced by offer.A or

alt.A.a , respectively. (Inevitably, the number of actions available in this model grows

exponentially in the number of events available in standard models, which limits the size

of systems that can be analysed.) The semantics in each of the other models can be

obtained by restricting the size or number of offer and alt events.

In Roscoe (2009a), he shows that any operational semantics that is CSP-like, in a

certain sense, can be simulated using standard CSP operators. The derived operational

semantics in Figures 2, 3 and 6 are CSP-like, in this sense. Roscoe’s simulation is supported

by a tool by Gibson-Robinson (2010), which has been used to automate the simulation of

the singleton availability model and availability sets model. This opens up the possibility

of using FDR to perform analyses in these models. Note, though, that Theorem 26 shows

that the singleton availability model is as expressive as the availability sets model in

most practical circumstances. We see no difficulty in using the tool to also automate the

alternatives model.

In practice, simulating a semantics in this way is somewhat inefficient. We are

currently planning a new version of FDR, which will allow users to define their own

operational semantics, which could be used to directly support models like those in the

current paper.

5.2. Related and further models

We’ve explored many different models in this paper. However, we believe that there are

many related models still to be explored.

In Roscoe (2009b), he investigates the hierarchy of finite linear observation models

of CSP. All of these models record availability or unavailability of events only in stable

states (if at all), unlike the models of this paper. Example 5 shows that the singleton

availability model is incomparable with the stable failures model. In fact, this example

shows that all of the models in this paper except the traces model are incomparable with

all of the models in Roscoe’s hierarchy except the traces model (so including the ready

trace model (Olderog and Hoare 1983) and the refusal testing model (Mukarram 1993;

Phillips 1987)); it is, perhaps, surprising that the hierarchies are so unrelated.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1051

We believe that we could easily adapt our models to extend any of the finite linear

observation models from Roscoe (2009b), so as to obtain a hierarchy similar to that

in Figure 5: in effect, the consideration of availability and alternative information is

orthogonal to the finite linear observations hierarchy.

Further, we have not considered divergences within this paper. We believe that it

would be straightforward to extend this work with divergences, either building models

that are divergence-strict (like the traditional failures-divergences model (Hoare 1985;

Roscoe 1997)), or non-divergence-strict (like the model in Roscoe (2005)).

In van Glabbeek (1993, 2001), he considers a hierarchy of different semantic models

in the linear time – branching time spectrum. Several of the models correspond to

standard finite linear observation models, discussed above. One other model of interest is

simulation.

Definition 43 (van Glabbeek (2001)). A simulation is a binary relation R on processes

such that for all events a , if P R Q and P
a−→ P ′, then for some Q ′, Q

a−→ Q ′ and

P ′ R Q ′. Process P can be simulated by Q , denoted P
⊂→ Q if there is a simulation R with

P R Q . P and Q are similar if P
⊂→ Q and Q

⊂→ P .

Proposition 44. If P and Q are similar, they are equivalent in the alternatives traces

model, and hence all our other models.

Proof: If P
⊂→ Q via relation R, and P

α−−�Alt P ′, then it is easy to show that Q
α−−�Alt Q ′

for some Q ′ such that P ′ R Q ′, by a case analysis on the action α. Hence, if P
⊂→ Q

and P
tr�−→Alt , then Q

tr�−→Alt , by induction on the length of tr; so if P
⊂→ Q , then

tracesAlt [[P]] ⊆ tracesAlt [[Q]]. Hence if P and Q are similar, they are equivalent in the

alternatives traces model. �

The following (standard) example shows that simulation is strictly finer than all our

models.

Example 45. Consider the processes

P = a → (b → c → STOP � b → d → STOP),

Q = a → b → c → STOP � a → b → d → STOP .

Then P
 ⊂→ Q , essentially because no state of Q simulates the state b → c → STOP �

b → d → STOP of P . However, these processes are equivalent in all of our models.

We believe that there is another variant of the alternatives traces model, which

considers alternatives of only the last event of a trace. The following example illustrates

this model.

Example 46. Consider again the processes from Example 33:

P = a → c → STOP � b → STOP ,

Q = (a → STOP � b → STOP) � a → c → STOP .

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

G. Lowe 1052

These processes are distinguished in the alternative traces model. However, they are

equivalent when alternatives are restricted to the last event of the trace: for example, they

both have traces 〈(alt{b}, a)〉 and 〈offer{a , b}, a , (alt{}, c)〉.

We believe that such a model would be compositional, essentially because the alternatives

to the final event in a trace of a composite process depend only on the alternatives to the

final event in the subcomponents. We leave further investigation of this model for future

work.

Two further possible directions in which this work might be extendable would be

(A) to record what events are not available, or (B) to record the complete set of events

that are available. We see considerable difficulties in producing such models. To see why,

consider the process a → P . There are two different ways of viewing this process (which

amount to different operational semantics for this process):

— One view is that the event a becomes available immediately. With this view: in model A,

one cannot initially observe the unavailability of a; in model B, the initial complete

availability set is {a}.
However, under this view, the fixed point theory does not work as required, since

div is not the bottom element of the subset ordering: in model A, div has a initially

unavailable; in model B, div’s initial complete availability set is {}; these are both

behaviours not exhibited by a → P .

Further, under this view, nondeterminism is not idempotent, since, for example,

a → P � a → P has a unavailable initially; one consequence is that the proof of

the no-junk result cannot be easily adapted to this view.

— The other view is that a → P takes some time to make the event a available: initially

a is unavailable, but an internal state change occurs to make a available. With this

view: in model A, one can initially observe the unavailability of a; in model B, the

initial complete availability set is {}.
However, under this view, it turns out that the state of a → P after the a has become

available cannot be expressed in the syntax of the language; this means that the proof

of the no-junk result cannot be easily adapted to this view. (Proving a full abstraction

result is straightforward, though.)

Further, this view leads to some common identities not holding; for example,

a → STOP � a → STOP is not the same as a → STOP , since the former has a

trace where a is available and then unavailable.

Similar problems arise if one tries to record (A′) what events are not available as

alternatives, or (B′) the complete set of alternative events.

As noted in the introduction, in Lowe (2009) we considered models for an extended

version of CSP with a construct ‘if ready a then P else Q ’. This construct tests whether or

not its environment offers a , so the model has much in common with model A above (and

was built following the second view). As such, it did not have a no-junk result. Further,

it did not have a full abstraction result, since it distinguished if ready a then P else P

and P , but no reasonable test would distinguish these processes.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

Models for CSP with availability information 1053

Acknowledgements

I would like to thank Bill Roscoe, Tom Gibson–Robinson and the anonymous referees

for useful comments on this work.

References

Andrews, G. R. (2000) Foundations of Multithreaded, Parallel, and Distributed Programming, Addison-

Wesley.

Bolton, C. and Lowe, G. (2004) A hierarchy of failures-based models. Electronic Notes in Theoretical

Computer Science 96 129–152.

de Nicola, R. and Hennessy, M. C. B. (1984) Testing equivalences for processes. Theoretical Computer

Science 34 83–133.

Formal Systems (Europe) Ltd. (2005) Failures Divergence Refinement – User Manual and Tutorial,

Version 2.8.2.

Gibson-Robinson, T. (2010) Tyger: A Tool for Automatically Simulating CSP-Like Languages in

CSP, Master’s thesis, Oxford University http://www.cs.ox.ac.uk/files/4607/Thesis.pdf.

Hoare, C. A. R. (1985) Communicating Sequential Processes, Prentice Hall.

Lowe, G. (2009) Extending CSP with tests for availability. In: Proceedings of Concurrent Process

Architectures, IOS Press 325–348.

Milner, R. (1980) A Calculus of Communicating Systems. Springer Lecture Notes in Computer Science

92.

Mukarram, A. (1993) A Refusal Testing Model for CSP, D. Phil thesis, Oxford.

Olderog, E. R. and Hoare, C. A. R. (1983) Specification-oriented semantics for communicating

processes. In: Diaz, J. (ed.) 10th ICALP. Lecture Notes in Computer Science 154 561–572.

Phillips, I. (1987) Refusal testing. Theoretical Computer Science.

Roscoe, A. W. (1994) Model-checking CSP. In: A Classical Mind, Essays in Honour of C. A. R. Hoare,

Prentice-Hall 353–378.

Roscoe, A. W. (1997) The Theory and Practice of Concurrency, Prentice Hall.

Roscoe, A. W. (2005) Seeing beyond divergence. In: Proceedings of ‘25 Years of CSP’. Lecture Notes

in Computer Science 3525 15–25.

Roscoe, A. W. (2009) On the expressiveness of CSP. Available via http://web.comlab.ox.ac.uk//

files/1383/complete(3).pdf.

Roscoe, A. W. (2009) Revivals, stuckness and the hierarchy of CSP models. Journal of Logic and

Algebraic Programming 78 (3) 163–190.

Roscoe, A. W. (2010) Understanding Concurrent Systems, Springer.

van Glabbeek, R. J. (1993) The linear time–branching time spectrum II; the semantics of sequential

systems with silent moves (extended abstract). In: Proceedings CONCUR’93, 4th International

Conference on Concurrency Theory. Springer-Verlag Lecture Notes in Computer Science 715 66–

81.

van Glabbeek, R. J. (2001) The linear time–branching time spectrum I; the semantics of concrete,

sequential processes. In: Bergstra, J. A., Ponse, A. and Smolka, S. A. (eds.) Handbook of Process

Algebra, Elsevier chapter 1, 3–99.

Welch, P., Brown, N., Morres, J., Chalmers K. and Sputh B. (2007) Integrating and extending JCSP.

In: Communicating Process Architectures 48–76.

https://doi.org/10.1017/S0960129514000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000334

