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Abstract
A drought-related gene belonging to the Dehydration Responsive Element Binding protein

(DREB) family has been reported and characterized in durum wheat. Unlike other DREB-homolo-

gous genes, it consists of four exons and three introns and produces three transcripts by an

alternative splicing mechanism. The gene sequence was analysed in a number of varieties/

lines/accessions of durum wheat, triticale and in wheat genome donors, Aegilops speltoides,

A. tauschii and Triticum urartu, in order to evaluate the variability and to detect other interesting

molecular features. Herewith, some results are presented. In the exon 1, a single sequence repeat

codifying for a stretch of alanine residues variable in length (from 3 to 7), was identified. A novel

non-autonomous transposon was identified, encompassing the intron1–intron3 region and this

was characterized in detail. Part of the exon 4, containing the APetala2 (AP2) domain, responsible

for DNA recognition and binding, was isolated and sequenced in a collection of Aegilops species

and A. speltoides accessions from the Fertile Crescent, a region characterized by a high wheat

biodiversity. Although the 338 bp-long analysed sequences did not reveal substantial differences

in the polymorphic patterns, using a geographic subdivision with three clusters (east, centre and

west), they completely separated Aegilops from the A. speltoides genus.
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Introduction

TdDRF1 (T. durum dehydration responsive factor 1), a

DREB2-related gene that was isolated and characterized

in durum wheat (Latini et al., 2007), belongs to the

AP2 gene family and is highly homologous to the

barley HvDRF1 gene (Xue and Loveridge, 2004) and to

the bread wheat wdreb2 gene (Egawa et al., 2006).

These genes share a complex gene structure, consisting

of four exons and three introns, and produce three

transcript variants by means of alternative splicing.

In the present investigation, the different parts of the

gene have been systematically analysed in several

accessions of durum wheat, triticale, wheat genome

donors (A. speltoides, A. tauschii and Triticum urartu)

as well as in other related plants.

Material and methods

Eight T. durum genotypes (total 67 accessions), a few

accessions of T. urartu, A. tauschii and triticale, as well

as 69 accessions of A. speltoides v speltoides, A. speltoides

v ligustica and other Aegilops were grown in the green-

house and used for DNA extraction.

The amplified fragments (PCR thermal cycle reaction:

initial denaturation 948C for 5 min, 948C for 1 min, 558C

for 1 min, 728C for 1 min and 30 s and final extension

at 728C for 7 min, then at 48C for storage) were gel-

purified, cloned (pCRwII-TOPOw vector by Invitrogen,

USA) and sequenced (ABI 3730 DNA analyzer; Applied

Biosystems, USA) following standard procedures.D. D. Bianco and K. Thiyagarajan contributed equally to this work.
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An exon 1 region of 150 bp at the beginning of protein

CoDing Sequence (CDS), was sequenced in 100 genotypes

(E1 For: 50-AAGTCGACGCGGCGAA 30; SSR1 Rev: 50-CCG-

GGATCTCGAAGGGTG 30).

An exon 4 part, from 400 bp to 1 kb long, including the

whole AP2 domain coding region, was sequenced in 168

samples of Aegilops (E4 FOR: 50-ATGATCCACAGGGT-

GCAA 30; E4 Rev: 50-GGTCCACCATTTGATCTTCATT 30).

Six full-length DRF1 gene sequences, namely FJ858188,

FJ858187, FJ843102, EU089819, EU197052 and GU017675,

were submitted to Genbank and used for transposon

identification and analysis.

Several computational tools were used for phylo-

genetic and molecular evolutionary analyses (Rozas

et al., 2003; Excoffier et al., 2005; Huson and Bryant,

2006; Tamura et al., 2007), sequence analyses as well as

identification of repeats and palindromes (Kurz et al.,

2001; Kohany et al., 2006), secondary structure prediction

and modelling (for details see Supplementary Table S1,

available online only at http://journals.cambridge.org).

Results and discussion

The various analyses provided interesting insights into

the DRF1 gene which are outlined below, separately,

for each exon.

Exon 1

Simple sequence repeat (SSR) genetic polymorphism

occurs due to variations in the number of repeated units,

probably due, in turn, to slippage during DNA replication

(Levinson and Gutman, 1987; Taylor et al., 1999). An SSR

was identified in the DRF1 gene (Fig. 1). This SSR is located

at the N terminus of exon 1, position 10, and codes for a

stretch of alanine residues variable in length (from 3

to 7). Another study on SSR loci in expressed sequences

suggested the potential correlation between mutational

events within SSR repeats and the evolutionary relation-

ships across taxa (Rossetto et al., 2002). It is worthwhile

pointing out that the shortest SSRs belong mainly to the

ancestor of Triticum and to Brachypodium distachyon.

Variability was also observed, resulting from a single

nucleotide mutation (ALA to SER or THR), exclusively at

the beginning or at the end of the stretch. The ALA stretch

is present also in Leymus chinensis and B. distachyon,

suggesting that this SSR represents a shared feature of

the Pooideae subfamily (Poaceae family), and is not pre-

sent in other subfamilies such as Ehrhartoideae (Oryza

sativa) and Panicoideae (Zea mays). A double mutation

changing ALA to LEU was observed in L. chinensis, while

a single change, GLU to VAL, was found in B. distachyon.

Further investigations are needed to better understand

the possible linkage of this SSR and its variability, both at

genomic and transcriptomic level, in relationship with

maps and phenotypic traits.

Exons 2–3

The six available full-length gene sequences from

T. durum and Aegilops were analysed in order to identify

possible transposable elements. Repeats, palindromes,

tandem and inverted repeats were investigated. All the

identified elements, namely a terminal inverted repeat

(TIR-32 bp), a target site duplication (TSD-2 bp), an

internal TSD (ITSD-4 bp), direct and reverse repeats and

a variable number of tandem repeats revealed the pre-

sence of a transposable element in the DRF1 gene

which had never been described before.

AAAAAAAP 34% cDNA from many durum cultivars, as Ciccio, and some pseudogene
forms from A. speltoides
cDNA from pseudogene form from Ciccio durum cultivar

cDNA from L. chinensis
cDNA from many durum cultivars, as Cannizzo, and some gDNA from
T. urartu accessions

cDNA from Triticale Pollmer
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Fig. 1. Sequences and frequencies of the ALA-stretch in T. durum, A. speltoides, T. urartu, A. tauschii and in two related
plants. (Brachypodium d.: Bd2:29505646.29515646, http://www.brachybase.org/blast/; Leymus c.: GenBank accession
EU999998.1).
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Thus, a novel transposable element, approximately

1.5 kb in length, was identified between intron 1 and

intron 3, including exon 2 and exon 3. Since no sequence

for transposase was found in the transposon identified,

it was classified as a non-autonomous transposon.

Furthermore, the presence of nested TIR-18bp was also

observed, the sequences of which are highly homo-

logous to the longest ones (Supplementary Fig. S1,

available online only at http://journals.cambridge.org).

The new transposon is now included in Repbase

(see Report at http://www.girinst.org/2009/vol9/issue3/

AsDRF1.html; Thiyagarajan et al., 2009).

All analysed genes showed the above observations,

with minor mismatch/deletion, mainly located at

30 Terminal Inverted Repeat (TIR) that appears to be

the most variable part of the transposable element.

The transposon is inserted into a poor CG (about 40%)

region and its core (exon 2 þ intron 2 þ exon 3 and few

bps of intron 1 and intron 3 at flanking sides) appears to

be very similar (85% identity, 372 bp fragment, E ¼ 10269)

to a sequence from B. distachyon, suggesting that the

transposon might have played a vital role in moving

these exons during evolution of the Pooideae subfamily.

Furthermore, it is tempting to hypothesize its possible

involvement in the mechanism of the alternative splicing

regulation of the DRF1 gene.

Exon 4

Even if most of the variations intra- and inter- species are

selectively neutral (Nei, 1987), there is an increasing

interest in detecting genes, or genomic regions, that

affect the fitness of the organisms (Nielsen, 2005). As

the exon 4 sequence of DRF1 gene contains the region

codifying the AP2 domain, responsible for DNA recog-

nition and binding, 168 sequences (137 from A. speltoides

and 31 from other Aegilops species) were analysed

to evaluate variability (Supplementary Fig. S2, available

online only at http://journals.cambridge.org).

Overall, 279 sites were analyzed (excluding gaps/

missing data) for all 168 sequences; 67 polymorphic

sites were identified (25 singleton variable sites, two var-

iants; 35 parsimony informative sites, two variants; and

seven parsimony informative sites, three variants). Out

of 67 polymorphic sites, five were located in the AP2

domain and their effect was investigated in a structural

model. The AP2 local geometry was not affected (data

not shown).

To investigate the evolutionary relationships among

the 168 sequences, a minimum spanning tree was built.

Two main groups were observed, lineage I and lineage

II, separated by 21 mutation steps (Fig. 2). The neigh-

bour-joining tree, estimated using a Kimura-2 parameter
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Fig. 2. Minimum spanning tree of 168 genotypes of Aegilops calculated by an exon 4 region of the DRF1 gene. A. speltoides
ssp ligustica is shown in light grey ( ), A. speltoides ssp speltoides is shown in black ( ), A. speltoides is shown in black ( )
and other Aegilops are shown in dark grey ( ).
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model, clustered in the same way, a 70% bootstrap value

(data not shown).

Lineage I is a complex network, with two main groups,

‘star-like’ pattern, including all except three A. speltoides

accessions. These three genotypes, classified as

A. speltoides (2065_3, 2065_4 and 2065_5), cluster in the

lineage II, together with all Aegilops genotypes. Possibly,

a reconsideration of the taxonomic assignment could be

proposed, even if more loci have to be analysed before

reaching a final conclusion.

A geographic subdivision was applied to investigate

geographic frequency patterns, but the design, based

on three clusters (east, centre and west) was unable to

reveal substantial differences in polymorphic patterns,

thus suggesting a neutral selection.

A design based on taxonomy was also tested; the varia-

bility observed in the analysed DNA region was unable

to distinguish ssp speltoides from ssp ligustica, while it

was able to distinguish Aegilops from A. speltoides (data

not shown). Analysis of molecular variance (AMOVA)

was carried out testing the genetic structure (two

groups and four populations). The F-statistic was

shown to be quite significant (F-statistic, i.e. specific

population index (Fst) P value ¼ 0.00) and a substantial

variation between A. speltoides and Aegilops species

was found, accounting for 62.34% of the total variation,

even if not significant, P . 0.1. Due to missing data,

locus-by-locus AMOVA provided a better estimate and,

indeed, the data were significant (54.7%, P ¼ 0.00).

In conclusion, the detailed analysis of the sequence

of the DRF1 gene and its variability intra- and

inter-species highlighted some interesting features char-

acterizing the complex structure of this gene, clearly

contributing to our overall knowledge and thus

opening new perspectives regarding the evolution and

regulation of this gene.
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