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In this paper, we examine the dimensionality of a single electrically driven vortex
bounded by two no-slip and perfectly insulating horizontal walls a distance h apart.
The study was performed in the weakly inertial limit by means of an asymptotic
expansion, which is valid for any Hartmann number. We show that the dimensionality
of the leading order can be fully described using the single parameter [)/h, where
I represents the distance over which the Lorentz force is able to act before
being balanced by viscous dissipation. The base flow happens to introduce inertial
recirculations in the meridional plane at the first order, which are shown to follow
two radically different mechanisms: inverse Ekman pumping driven by a vertical
pressure gradient along the axis of the vortex, or direct Ekman pumping driven by a
radial pressure gradient in the Hartmann boundary layers. We demonstrate that when
the base flow is quasi-2D, the relative importance of direct and inverse pumping is

solely determined by the aspect ratio n/h, where n refers to the width of the vortex.

Of the two mechanisms, only inverse pumping appears to act as a significant source
of helicity.

Key words: channel flow, MHD and electrohydrodynamics, vortex dynamics

1. Introduction

The question of the dimensionality of plane fluid layers is crucial to understanding
the mechanisms of energy dissipation in turbulence, which occurs in a number of
natural and industrial problems. Indeed, whether three-dimensionality is present or
not decides whether turbulence transfers energy to large, weakly dissipative structures
(two-dimensional turbulence) or efficiently dissipates energy at small scales in the bulk
of the flow (Tabeling 2002; Clercx & Van Heijst 2009). These antagonistic behaviours
may even co-exist in a number of real-world situations. For instance, planetary
atmospheres feature quasi-two-dimensional (2D) large scales transporting small-scale
three-dimensional (3D) turbulence (Lindborg 1999). Magnetohydrodynamic (MHD)
turbulence in external magnetic fields (found in planetary cores or heat-extracting
devices) also shares this feature (Klein & Pothérat 2010). Two-dimensionality can
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be lost when either a third velocity component or velocity gradients appear across
the fluid layer. Shats, Byrne & Xia (2010) showed that the former mechanism
accompanied the disruption of the inverse cascade in two-dimensional turbulence.
Transverse transport across the layer is all the more important as it is often
associated with strong vorticity and therefore contributes to generating kinematic
helicity (Deusebio & Lindborg 2014). This quantity not only alters the properties
of turbulence but also greatly helps to sustain dynamos (Gilbert, Frisch & Pouquet
1988).

Thanks to the diverse ways that exist to two-dimensionalize a flow (e.g. shallow
confinement, background magnetic field or rotation), a broad range of studies
focusing on elementary structures have flourished only to reach the same conclusion:
three-dimensionality occurs as a result of gradients across the fluid layer. From a
practical point of view, such gradients are usually introduced by no-slip boundaries,
which are an intrinsic feature of any real system. A first attempt to quantify the
quasi-2D/3D structure of a single vortex confined in a shallow container was
conducted by Satijn et al. (2001). They numerically studied the decay of a vortex,
vertically bounded by a no-slip wall at the bottom and a free surface at the top, and
showed that the relationship between shallow confinement and quasi-2D behaviour
was not straightforward. Furthermore, they characterized the dimensionality of the
vortex as a function of two non-dimensional parameters characterizing the diffusion of
momentum in the vertical and horizontal directions respectively. Later on, Akkermans
et al. (2008) were able to visualize the recirculations that take place in front of a
dipolar vortex travelling in a similar configuration as above. Their main conclusion
was that three-dimensionality resulted from vertical gradients of horizontal quantities
(either velocity or forcing). It is only recently that the topological dimensionality
of low-Rm MHD turbulence was elucidated by Pothérat & Klein (2014) in the
light of diffusion lengths associated with the rotational part of the Lorentz force
(first introduced by Sommeria & Moreau 1982). A recent study from Pothérat er al.
(2013), based on numerical simulations and experimental observations, showed that
meridional recirculations could follow either direct or inverse pumping.

There are, however, a number of limitations inherent to numerical and experimental
methods that left the question in suspense since they could not investigate the finer
properties of the flow. On the one hand, the main shortcoming of any numerical
study comes from accessible computational power. Even though there was a recent
breakthrough in solving low-Rm MHD turbulent flows in wall-bounded domains
(Kornet & Pothérat 2015), the regimes reachable by direct numerical simulation
(DNS) are, to date, still far from those encountered experimentally. On the other
hand, experiments are limited by the resolution of the measuring devices in use.
These issues prevent a thorough investigation of the boundary layers, which happen
to be one of the most crucial sources of three-dimensionality.

The work that we present here takes place within the low-Rm MHD framework, in
continuance of the studies described above. The goal of this paper is to characterize
the relationship between the topological dimensionality of a wall-bounded electrically
driven vortex and the occurring secondary flows. In order to do so, we focus on
a single axisymmetric vortex confined between two horizontal planes. An analytical
solution to the problem is derived by means of an asymptotic expansion in the weakly
inertial limit, which is carried out up to the first order. The investigation performed
here is valid for any Hartmann number, which makes it possible to investigate the
finer properties of the boundary layers without concessions.

The model’s geometry and governing equations are presented in § 2, and the exact
solutions at leading and first order are given in §§3 and 4 respectively. Section 5 is
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FIGURE 1. Sketch of the problem. An isolated vortex of height I < h confined between
two horizontal no-slip and electrically insulating walls a distance /& apart.

dedicated to the validation of the method, while §6 is dedicated to presenting and
discussing our results.

2. Geometry and governing equations

Let us consider an axisymmetric flow taking place in a cylindrical cavity of
radius R (see figure 1). As such, we focus exclusively on solutions that are invariant
to rotations about the axis of the channel, i.e. 99 = 0. The domain is bounded
by two no-slip horizontal walls located at z = 0 and z = h, and is filled with
an electrically conducting fluid (typically a liquid metal such as Galinstan, of
electrical conductivity o = 3.4 x 10° S m~!, density p = 6400 kg m—> and viscosity
v=4x 1077 m? s7!). A static and uniform magnetic field By e, is applied vertically.
The low-Rm approximation is assumed to hold, meaning that the magnetic field
induced by the flow is negligible compared to the imposed magnetic field (Roberts
1967). Consequently, the total magnetic field B is uniform across the domain and
follows B = By e,. In addition, the electric field E is derived from the electric potential
¢ according to E = —V¢. A flow is driven by injecting electric current through an
electrode of radius n located on the bottom plate. The top and bottom plates are
perfectly electrically insulating otherwise, which forces the current to exit the channel
through the sides. In anticipation of the upcoming calculations, the profile of injected
current is assumed to be a smooth function, such as the Gaussian distribution:

I
Jr) = == exp[—(r/m)?] 2.1)
mn

where I, is the total current injected inside the domain up to the correction factor
(1 — exp[—(R/n)*]), which is almost identical to 1 for R/n > 10. Given this
configuration, the electric current is known to flow radially, interacting with the
vertical magnetic field to induce a patch of vertical vorticity right above the bottom
Hartmann layer.

In the inertialess limit (Kalis & Kolesnikov 1980), the development of this patch of
vorticity relies on the competition between two effects. On the one hand, the rotational
part of the Lorentz force diffuses momentum along the magnetic field (Sommeria &
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Moreau 1982), hence leading to a vortex extending in the z direction. On the other
hand, viscous friction diffuses momentum isotropically, therefore opposing the growth
of the vortex along z. Calling [} the range of action of the Lorentz force, its diffusive
effect takes place over the characteristic time t,p = (p/aBé)(l; /n)?. Conversely,
viscous dissipation takes place over the time 7, =7n*/v. Assuming a steady flow, the
distance I over which the Lorentz force is able to act before being balanced by
viscous d1551pat10n is derived by equating the two effects, yielding:

— " Ha, 2.2)

where Ha = Byh+/o /pv is the Hartmann number based on the height of the channel.
Asymptotically speaking, [’/h <1 means that the diffusive effect of the Lorentz force
is balanced by viscous dissipation long before momentum can reach the top wall. In
this case, the distance I, may be physically interpreted as the height of the vortex. In
contrast, [ /h>> 1 means that momentum can be diffused far beyond the top wall. This
process, however, is blocked by the presence of the no-slip top wall, which prevents
the vortex from extending past it. The ratio I/h has been identified by Pothérat &
Klein (2014) as the non-dimensional parameter defining whether the structure is able
to feel the presence of the top wall, hence controlling its dimensionality: 3D when
I!/h <1 and quasi-2D when I /h > 1.

From now on, let us use the dimensionless coordinates ¥ =r/n and z=2z/h, as well
as the non-dimensional variables it = u/U, & = wn/U, j=j/oUB, and ¢ =¢/UBo.
We also introduce the non-dimensional operator V defined as

o 9 13 na 23
S \9F 700 hoz ) '

The scaling for the velocity U is derived from the linear theory of quasi-2D
electrically driven vortices put forward by Sommeria (1988). It is estimated from

= (I'/n)\/l’/h, where I' = Iy/2m,/opv is the circulation induced right above a
point-like electrode through which flows the current I;, when viscous friction in the
horizontal plane is neglected. This scaling for U is representative of the velocity at
the edge of the vortex core, whose radius results from the competition between the
Lorentz force and viscous dissipation. Hence the explicit dependence of U on the
ratio []/h. The governing equations consist of the steady-state vorticity equation for

o=V xu,
! ( Vo —a V) L[k 71A~+ L (" ai 2.4)
—(u-Vo—@-Vu)=— | = ® = , .
N Ha \ h ~Ha \ h 97
Ohm’s law 3 o
J=-Vé+uxe, (2.5)
the conservation of mass y
V.-u=0 (2.6)
and charge
V.j=0. (2.7)
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The problem at hand is governed by three non-dimensional parameters, namely the
interaction parameter N based on the width of the injection electrode 7, the Hartmann
number Ha based on the height of the channel & and the ratio . /h:

oB? o r 2
N="" Ha=Boh />, Z="Ha (2.8a—c)
oU oV h R

The boundary conditions on the horizontal walls consist of no-slip boundaries

u(@, 0)=u(r, 1)=0, 1)

an imposed vertical current at the bottom wall
J(F7,0) =] (7) (ii)

and a perfectly electrically insulating top wall
J:(7, 1) =0. (iii)

In addition, we impose a perfectly conducting and free-slip radial boundary

J:(R.2)=0 (iv)

and _
7:(R,2) =0, V)

where T; represents the shear stress exerted on the wall whose normal vector
is e,. These boundary conditions were chosen to match as closely as possible the
experimental set-ups of Sommeria (1988) and Pothérat & Klein (2014), where a
flow is driven by injecting a known amount of electric current /. The free-slip and
perfectly conducting radial boundary can be physically interpreted as a pseudo-wall
made of liquid metal, and was preferred over a no-slip boundary condition as it does
not introduce parallel layers along the radial boundary. Keeping the experimental
analogy in mind, the model we propose here focuses on an elementary structure,
which has been extracted from an array of vortices.

Considering the scaling that was chosen for U, the normalized bottom boundary
condition on the current j;v is expressed as

Twosy 2 l; - ~2 29
J: (r)_ﬁ (h) exp(—r ) . 2.9)

In other words, for a given value of Ha and [/h, the intensity of the total injected
current is adjusted so that the intensity of the resulting flow remains comparable
throughout all cases investigated.

We shall now consider a weakly inertial flow in the limit N > 1, and expand (2.4)—
(2.7) using the regular perturbation series:

J=7 N AENT T L ONT, (2.10)
u=u"+N"'ua' +N‘2ﬁ2+O(N‘3), 2.11)
=@ +N '@ +N2@* + 0(N‘3). (2.12)
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3. Inertialess base flow
The equations governing the problem at leading order are

. PN\ 8
A@:—Jﬁz(ﬁ 3.1)

h 0z
J =—-Vé +it° xe., (3.2)
V. =0, (3.3)
V.j =0. (3.4)

Solving ®@° and ]'0 can be done separately by taking the Laplacian of the vorticity
equation (2.4) on the one hand, and taking the Laplacian of twice the curl of Ohm’s
law (2.5) on the other hand. Combining them yields the following set of equations:

. '\? 9%
20 _
A@ = (;l) PES 3.5
and o
. lv aZJ
A== . 3.6
J (h) o7 (:6)

It is quite remarkable that (3.5) and (3.6) can be solved independently, and depend
on the same and unique parameter []/h. They remain nonetheless coupled via twice

the curl of Ohm’s law:
. 1 /\"* @
Aj'=— = —_ 3.7
J ~/Ha <h> 0z G7)

Equations (3.5) and (3.6) admit a purely azimuthal solution for #° and a purely
meridional solution for j°. Consequently, knowing either component @! or @}, and
j or ]N*; is enough to completely derive the solution at leading order. The boundary
conditions associated with the leading order read

(7, 0)=al(F, 1) =0, i
R 0) =] (), (ii%)
2F 1) =0, (iii®
R, 2 =0. (iv°)

In addition, we shall approximate boundary condition (v) by
& (R,7) =0. ")

Boundary condition (v’) is not entirely equivalent to the free-slip boundary
condition (v), which can be rewritten in terms of @ as

AR == R, 2). (3.8)

| B9
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It is only in the limit R > 1 (since i} is of order 1) that boundary condition
(v) may be approximated by (v°). However, (v°) offers a much simpler numerical
implementation. Indeed, not only does it remove any remaining dependency on iy, it
also naturally introduces an orthogonal basis of functions on which the solution can
be projected. From a practical point of view, we ensured that the edge of the channel
was sufficiently far from the injection area in order to minimize the impact of this
approximation on the flow (see §5).

Solutions with separated variables of (3.5) and (3.6), which satisfy the coupling
(3.7), as well as boundary conditions (iv’) and (v°) are of the form

o0 4
2= Jo(LF) Y A exp(s,?) (3.9)
n=1 i=1
and
00 4
2= "Jo(u P Y Bu expls), (3.10)
n=1 i=1

where Jo(7) refers to the zeroth-order Bessel function of first kind, and A, represents
its nth root normalized by R. Note that solutions with separated variables that satisfy
the coupling (3.7) and boundary condition (v°) alone automatically satisfy boundary
condition (iv’), making the latter redundant and therefore unnecessary to close the
problem. Conversely, a different set of boundary conditions at # =R may not admit
a solution with separated variables. The arguments for the exponentials s, may be
expressed in terms of Ha and [)/h exclusively. They take four different values s,; =
=+s,+, where s,. is defined by

O P P L R G.11)
Spe = — = . )
= 2 Ha \ h

Restricting ourselves to cases that are relevant to MHD (i.e. cases where Ha is
sufficiently large), the parameter Ha '(I!/h)~' is expected to be much less than 1.
Under this assumption, the roots s, are expected to scale as

s L and s ~Azﬁ (3.12a,b)
n+ 8 n— nlv’ . )

Z

where § = h/Ha represents the thickness of the Hartmann boundary layer. That is to
say, s,+ scales as 1/§, and thus describes the boundary layers, while s,_ scales as
A2/l', which is the diffusion length associated with Bessel mode n. In this sense it
represents the dimensionality of the bulk of the flow. From (3.7), coefficients A,; and
B,; must satisfy

Sni

By=-A;——5—,
Stk — 4,7 [k

(3.13)
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with k = Ha"'/*(I/h)'/>. The coefficients A,; are determined by solving the linear
system stemming from the boundary conditions:

4
> Au=0,
i=1

4
D Au exp(s) =0,

i=1 0
4 (8%
D A= o
P sm2K - /l 2 /K
4
ZA R E— exp(s,) =0
=1 snizK - /lnz/K J
where «, results from the projection of ] Y(7) on the basis of Bessel functions:
a, = Y (&) Jo(1,6)d 3.14
JZ(AHR)/ E7(6) Jo(A, £) dé. (3.14)

At this stage, the supplementary radial components @} and j? ] as well as the velocity
field @’ = it} es, can be readily determined by integrating V - @ =0, V - J =0, and
@ =V xu’ respectively.

4. Correction due to inertia
The equations governing the problem at first order are

N B2 N 1\ a5
-V —@ -Vi' = — | = A®' + £ —_—, 4.1)
Ha \ h VHa \ h 9z
j ==-V¢' +i' xe, (4.2)
V-i' =0, 4.3)
vV.j =o. (4.4)

Unlike the leading order (which is forced electrically at the bottom wall), the first
order is driven by an azimuthal inertial force stemming from the base flow. In other

words, @: and j] must satisfy homogeneous boundary conditions all along the edges of

the domain. As a consequence, @; is strictly null and ¢' is uniform across the channel.
In order to have a non-divergent solution on the axis of the channel, @; must also
be null throughout the domain, meaning that the inertial correction to the base flow
occurs in the meridional plane exclusively. In addition, the electric current becomes
purely electromotive, since it is proportional to the velocity via Ohm’s law. These
arguments simplify the problem greatly by removing all couplings between mechanical
and electrical quantities at first order. In the end, the equations reduce to

. 1N 1" o
Fre,—_— (= AG — = — e, 4.5
%= Ha <h> © VHa <h> 0z e )
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where FY is the inertial forcing originating from the nonlinear terms of the base flow:

i @

Fy=2 (4.6)

Owing to the previous arguments, (4.5) is non-trivial only in the e, direction. It is
solved by 1ntr0ducmg the stream function ' =1'/Un such that &' =V x (/' &) and
=V x V x (' e), yielding the following equation for '

l;"fH Fo— [A ] <>821//‘ 4.7
B a2 V) @7

where A represents the scalar Laplace operator in cylindrical coordinates. Again, the
intensity of the flow depends on the interaction parameter N, while the topology of
the first-order recirculations depends on Ha and the ratio [)/h. Since mechanical and
electrical quantities are decoupled at first order, the boundary conditions associated
with this problem boil down to no-slip and non-penetrating boundaries at the top and
bottom walls, and no shear stress at the radial boundary:

3y I(FY) |
= =0,
07 | oF | (io)
7,0 7,0
W2, i)
07 | ar |
71 71
a (1 oGy 32y
— | = (riﬁ) — 1# =0. (Vl)
ar \ v or . 07 |.
Rz R,z

Solutions of (4.7) are sought as the sum of a homogeneous solution ¥} (7, Z) and
a particular solution of the problem with inertial forcing v (7, 7). The homogeneous
problem is very similar to the one solved earlier and reads

e’} 4
UE D= Ii(ua® Y Cu exp(pui?), (4.8)
n=1 i=1

where J;(7) is the first-order Bessel function of the first kind and u, represents its nth
root normalized by R. As for the leading order, the roots p,; are defined as

Ha 4 (N7

The particular solution ¥; is found by expanding Fg as a Fourier—Bessel series of
Ji(un 7):

B 2=)" 1w o), (4.10)

n=1
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with
g A Aji sjg -
G@==2k> > By — o expllut sl (4.11)
ij=1 k=1 Ly
where
2/R2
Brij = 2w R)/ EN(:E) T (48) T (w, §)dE. (4.12)

The response of the flow to the forcing is therefore

VI FED =D TP Y Kujia explis + i) 2], (4.13)

n=1 ijkl

2@ liv zAikAjlsjl
K h /l,'/lj

_ —
K = [(h> + 2(n k)

Note that at this stage the value of K, is fully determined, since it depends only on
quantities resulting from the base flow. Finally,

where

(4.14)

(s + 5i)* =+ [re (s + si0)1°

Z Jl(:un i") (Z Cm eXP(Pm Z) + Z ijkl exp[(stk + s/l)Z]> (415)

ij,k,l

where the integration constants C,; are determined from the boundary conditions:

4
Z Cm = Z ijkl:

i=1 ij,k,l

4
E CoiPni=— E K (six + 8j1),
i=1 i,j.k,l

. (Sh
> Curexp(pu) ==Y Kuja exp(sic + 1),

i=1 ijik,l

4
Z Coi Pri €Xp(Pni) = — Z K (six + sj1) exp(six + 5j1).

i=1 ij.k,l

To summarize, (3.9), (3.10) and (4.15) provide a complete solution for the flow at
order O(N™') in the limit N > 1, and for any arbitrary value of Ha or [’/h. This
solution is shown to be exclusively governed by three non-dimensional parameters: N,
which determines the intensity of the flow (as in the theory of Pothérat, Sommeria
& Moreau 2000); Ha, which controls the thickness of the boundary layers (as in the
classical theory); and [7/h, which defines the dimensionality of the flow. With such a
formulation of the problem, one can clearly see that the geometrical aspect ratio n/h
is not the most appropriate parameter to precisely describe the dimensionality of the
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base flow. However, I’ /h is. This may explain why the height-to-width aspect ratio
of the vortex can be seen as a ‘confusing parameter’ (Satijn et al. 2001). It is also
worth noting that the even orders correspond to the azimuthal component of the flow,
while the odd orders give corrections in the meridional plane. This behaviour was
also found in the analogous configuration described by Davoust, Achard & Drazek
(2015), which consists of an annular channel with a rotating bottom. We shall now
numerically evaluate this solution to find how the topological dimensionality of the
base flow impacts the secondary recirculations.

5. Numerical methods
5.1. Algorithm description

An in-house FORTRANYS code was developed to evaluate numerically @?(7, Z),
jg(?, Z) and 1/71(?, 7). The goal of the solver was to compute the Fourier—Bessel
coefficients A,; and C,. That is to say, solve systems (S°) and (S') in order to
reconstruct the solution via (3.9), (3.10) and (4.15) respectively. The FMLIB 1.3
multi-precision package (Smith 1991) was used to ensure sufficient accuracy of the
solution for any value of Ha. The input parameters for our code were Ha, I!/h and
the number of modes N,,q. The structure of the algorithm is as follows.

(a) Set the working precision based on Ha.

(b) Generate the zeros of Bessel functions J, and J;.

(¢) Compute «, and B,; according to (3.14) and (4.12) respectively, by evaluating
the integrals using a Gauss—Legendre quadrature rule of order 100.

(d) Compute s,+ and p,. according to (3.11) and (4.9) respectively.

(e) Compute K,;; according to (4.14).

(f) Find A,; and C, by solving (S°) and (S') with a Gauss—Jordan elimination
method.

(g) Discretize the domain, build the solution according to (3.9), (3.10) and (4.15),
and convert the output to double precision.

5.2. Convergence test

In this section, we evaluate the number of terms necessary to accurately represent
infinite sums. To this end, let us introduce e, the relative error at order n respectively
defined by

iy Nmo e) T 7 Nmux
ety N P = N 51
Nl (Nomax) |12

and

“Jfl (Nmode) - JII (Nmax) ”2
”&l (Nmax)||2

where || - ||, represents the classically defined .#>-norm. €" compares the difference
between a run computed with the number of modes N,.. and the reference case
computed with the highest number of modes N,,.. For all cases, N, was set to 80.
The convergence tests were conducted for three different channel radii R = 5, 10
and 20, since this parameter was expected to impact the accuracy of the solution.
According to figure 2, the number of modes required to achieve a given relative error
unsurprisingly increases with R. Indeed, the vortex becomes thinner with respect to the

(5.2)

€' (Nmode) =
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(b) 10°
107!
3 1072
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1074
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N mode N mode

FIGURE 2. Convergence test. (a) Leading order, (b) first order. Legend in (b) same as
for (a).

total width of the channel, meaning that modes of smaller wavelengths are required
to capture it precisely.

At leading order, increasing the number of modes with R =10 and R =20 steadily
improves the accuracy of the solution until €” eventually reaches double precision. The
behaviour of €° for R=>5 is completely different: fast convergence is observed at first,
followed by a region where accuracy hardly improves with N,,... This effect is first
evidence that the radial wall is too intrusive for R =5.

At first-order, €' follows a similar behaviour regardless of the position of the
radial wall: increasing the number of modes improves the residual error before
it levels off. This behaviour comes from the discrepancy that exists between the
real inertial forcing Fj (which is only approximately null at the edge due to the
simplified boundary condition) and its Fourier—Bessel expansion, which is strictly
null by definition of J,(u,R). This discrepancy introduces Gibbs phenomena close
to the edge of the channel. It is, however, important to note that the oscillations are
confined to a region close to the edge. Additionally, they become less and less an
issue as R is increased, since Fj naturally vanishes away from the core of the vortex.

The conclusion of this convergence analysis is that R must be as large as possible
to prevent numerical artefacts. The operating point chosen was R =20 and N,.q = 50,
which gave us a good compromise between accuracy and computational time
(proportional to N ,). With these settings, the solution at leading order is reliable
up to eight significant digits, and the relative accuracy of the first order is better
than 0.01 %.

5.3. Validity of the radial boundary condition

Figure 3 shows the radial profiles of azimuthal velocity evaluated at the middle of
the channel for different radial wall distances. In the case at hand, [)/h = 1000,
meaning that the base flow is already quasi-2D. According to figure 3, the azimuthal
velocity follows a 1/7 decay law outside the core of the vortex. This behaviour is
in agreement with the quasi-2D theory developed by Sommeria (1988) for a vortex
driven by injecting current through a point-like electrode. This suggests that the radial
distribution of injected current plays a minor role in determining the actual shape of
the vortex, and that a Gaussian distribution provides a very good representation of a
thin current injection electrode (at least when the flow is quasi-2D). This point will
be further studied in the following section.
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FIGURE 3. Velocity profile at the middle of the channel, obtained for Ha =456 and I /h=
1000. The inset highlights how the azimuthal velocity decays as 1/ away from the core
of the vortex.

R=5 R=10 R=20
74 3.99x1072 1.00x 1072 2.50 x 1073
TABLE 1. Shear stress at the radial boundary.

Table 1 gives an estimation of the leading-order shear stress at the edge of the
domain,

, (5.3)

for different positions of the radial wall. It gives an a posteriori confirmation that
the simplified radial boundary condition (v°) tends towards a free-slip boundary
condition when R is increased. Furthermore, we find that 7!, scales as 1/R? to a very
good precision. This provides supplementary evidence that the solution is reliable,
since i) (R) is expected to scale as 1 /I~€ for quasi-2D structures. In 3D flows, ag(ie)
is expected to be lower, and so should be 7¢. For R =20, the order of magnitude of
the shear stress at the wall is 1073

5.4. Sensitivity to the injection profile and relevance to experiments

Let us now investigate the sensitivity of the base flow to the bottom electric boundary
condition. This question is all the more legitimate as the very existence of the flow
relies on the injection of electric current at the bottom. The spatial distribution of
current density can thus be expected to shape the resulting flow. In order to quantify
the relevance of our model to describing electrically driven vortices, we shall compare
the flow induced by two different injection profiles:

I
JUr) = == exp[—(r/n)’] (5.4)
N
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FIGURE 4. Velocity profile right above the Hartmann layer induced by two different radial
distributions of electric current. - - - -: flow resulting from a Gaussian distribution of current.
—: flow resulting from a step distribution of current. The inset shows the respective

current profiles at the bottom wall ]N‘;(?, 0).

and I
JUr) = —S[H(r) — H(r — )], (5.5)
)

where H(r) refers to the Heaviside step function. These two particular profiles were
chosen so that the typical width of the electrode remained n and the total amount of
electric current injected in the domain was I,. For both cases Ha and I /h were set
to Ha =456 and [!/h = 1000. Furthermore, the number of modes used to expand the
Gaussian distribution was N,,,4. =50 (in agreement with § 5.2), while N,,,4. =200 was
imposed to expand the step distribution. A much higher number of modes is obviously
necessary for the latter profile since it is singular at 7= 1.

Figure 4 shows the leading order azimuthal velocity along 7, right above the bottom
Hartmann layer (z = 5/Ha) for both current distributions. The associated current
profiles are displayed in the inset. The first striking feature of figure 4 is that both
velocity profiles follow the same asymptotic behaviour whether close to the axis of
the vortex or away from its core. This behaviour comes from the fact that the lateral
diffusion of momentum is driven by viscous dissipation, and is therefore independent
of the injected electric current. As already discussed in § 5.3, both vortices follow a
1/7 decay law away from their core, which is expected for quasi-2D structures. The
velocity peak is found at 7=1 in both cases, which corresponds to the outer edge of
the electrode. The main difference between the two profiles, however, is the value of
the peak, which is approximately twice as large for the step distribution. As a result,
we can expect the Gaussian distribution to slightly underestimate the magnitude of
the inertial terms. However, since the shape of the flow is identical in both cases, the
mechanisms driving the first-order recirculations will be unchanged (recall that the
inertial forcing stems from mechanical quantities only).

As in experiments on electrically driven flows, the intensity of the vortex is
controlled by the total imposed current through the electrode (Sommeria 1988;
Messadek & Moreau 2002; Klein & Pothérat 2010; Pothérat & Klein 2014).
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Nevertheless, it is also possible to impose a fixed voltage between electrodes, or
between the injection electrode and the side wall. Kalis & Kolesnikov (1980) showed
that imposing a uniform current density or uniform voltage at the electrode was
essentially equivalent as far as the topology of the base flow was concerned. We
can therefore assert that our model is a faithful representation of electrically driven
vortices in experiments, even if a Gaussian distribution of current is imposed at the
bottom.

It is also worth noting that although high-frequency oscillations exist in the
expansion of the step distribution (such oscillations are unavoidable regardless of
the number of modes taken into account, as a result of its singular nature), they do
not appear in the induced flow. This effect comes from the analytical approach that
was used, and more specifically from the systematic use of dot products to build the
solution. This provides supplementary evidence that our model is reliable and robust,
since it is insensitive to numerical artefacts.

6. Results

Numerical experiments were conducted for four values of the Hartmann number:
Ha =456, 911, 1822 and 3644. For all values of Ha, the ratio I’ /h was set within
the range 10~2 to 10°. From now on, the low-Ha case refers to Ha =456, while the
high-Ha case refers to Ha = 3644.

6.1. Inertialess base flow

Figure 5 depicts the base flow for Ha=3644, and for three values of I /h: 0.01, 1 and
10000. The lower Ha cases are not presented here, since they look almost identical.
As a matter of fact, the only difference between them at leading order is the thickness
of the boundary layers.

The dimensionality of the flow can be estimated by comparing the intensity of
the velocity field along the top and bottom walls. For I/h = 0.01, the flow is
mostly concentrated at the bottom of the channel (i.e. where the electric forcing
takes place), while there is absolutely no flow at the top. The base flow is said to
be weakly 3D (in the sense of Klein & Pothérat 2010), meaning that although the
topological patterns remain the same across the channel (that is to say, the vortex
stays columnar), their intensity still depends on z. This behaviour is a consequence
of the Lorentz force not being strong enough to compete with viscous dissipation
beyond /!, which is in this case a hundred times smaller than h. In other words,
weak three-dimensionality characterizes a flow where two adjacently stacked layers
of horizontal velocity experience differential rotation, as a result of vertical gradients.
As [’/h increases, the range of action of the Lorentz force becomes longer, and
momentum is diffused further up the channel. For I)/h=10000, the flow is quasi-2D
in the sense that all velocity gradients along z have been smoothed out outside the
boundary layers (a z-dependence always exists in the top and bottom Hartmann layers
due to the no-slip walls). The vortex spans across the channel and is therefore able
to feel the effect of the top wall.

Figure 5 also displays current densities. As expected, they are highest where strong
velocity gradients exist, i.e. in the boundary layers and in the core of the vortex. For
all cases, we have verified that, up to numerical precision, exactly half of the total
current injected in the channel flows within the bottom Hartmann layer, while the
other half flows vertically. This result confirms the heuristic prediction of Pothérat
& Kilein (2014). For low values of [/h (0.01 and 1), the velocity gradient along


https://doi.org/10.1017/jfm.2015.420

https://doi.org/10.1017/jfm.2015.420 Published online by Cambridge University Press

340 N. T. Baker, A. Pothérat and L. Davoust

I /h
-0.32 -0.22 —0.11 0

[ T
(b) 0

—

e

—5/Ha

(@) 1.0
0.8
0.6
(¢) 5/Ha

0.4

0.2

0
(d) (e) 0
h
—5/Ha
b4
(f) 5/Ha

(€3]

FIGURE 5. Solution at leading order for Ha = 3644, and for I!/h=0.01 (a), 1 (d) and
10000 (g) respectively. The magnitude of iig/I¥/h is indicated by filled contours. The
electric current density is represented by black and white vectors (colour choice is just a
matter of contrast). Scaling of vectors has been adapted to compensate the much higher
current densities in the boundary layers. Insets: close-up view of the top Hartmann layer
(b,e,h) and bottom Hartmann layer (c.f,i) featuring the usual exponential profile for the
electric current.

z introduced by three-dimensionality progressively extracts the vertical current into
the bulk, channelling it towards the edge of the domain. For I /h = 10000, however,
quasi-two-dimensionality has smoothed out all velocity gradients along Z in the bulk:
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FIGURE 6. Axial vorticity ®?(0, Z) normalized by the vorticity right outside the bottom
Hartmann layer @?(0, b) for Ha=3644. (a) z is normalized by the height of the channel A.
(b) z is normalized by the Lorentz force diffusion length 7.

the vertical current flows exclusively within the core of the vortex and the top and
bottom Hartmann layers.

Close-up views of the Hartmann layers are given in the insets of figure 5. It is
clear from these figures that the electric content of all bottom Hartmann layers is quite
similar, but that the electric content of the top Hartmann layer depends on how far the
Lorentz force is able to diffuse momentum along z. As expected, the electric current
decreases away from the walls, following an exponential profile in all cases.

The dimensionality of the base flow is better quantified with figure 6. From now
on, @(7, t) and (¥, b) refer to the vorticity right outside the top and bottom
Hartmann layers respectively (see Pothérat, Sommeria & Moreau (2002) for a
mathematically rigorous definition of this concept) Figure 6 portrays the profile
of vertical vorticity @2(0, z) normalized by @2(0, b) along the axis of the channel. In
figure 6(a), all structures evolve in a channel of fixed height (Z is normalized by h).
This representation hlghllghts the effect of the ratio [/h on the dimensionality of
the base flow: as I/h increases, the momentum induced right above the injection
electrode is diffused farther and farther by the Lorentz force, hence progressively
smoothing out velocity gradients along z. In figure 6(b), all curves are shifted down
by 58 to account for the varying thickness of the Hartmann layer, and then normalized
by /. The collapse of all curves in these variables clearly indicates that all vortices
follow a universal proﬁle which is solely defined by the competition between the
Lorentz force and viscous dissipation. In other words, the effect of the vertical
confinement is local, and only consists in ending the universal profile by introducing
a no-slip boundary: the presence of the top wall is felt over a distance whose order
of magnitude is no larger than the thickness of the Hartmann layer.

Figure 7 compares the vorticity on the axis of the channel right below the top
Hartmann layer to the vorticity right above the bottom one. This figure highlights how
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FIGURE 7. Dimensionality of the base flow: 3D when @?(0, 1)/@2(0, b) < 1; quasi-2D
when @2(0, 1)/@?(0, b) — 1. A colour gradient is used to highlight the smooth transition
from a 3D to a quasi-2D base flow as the parameter [!/h increases.

all the information about the dimensionality of the base flow is exclusively contained
within the single parameter [)/h, regardless of the value of the Hartmann number.
Furthermore, the transition from 3D to quasi-2D base flows appears to be a gradual
process that occurs around [)/h~ 100. This effect was also noted by Klein & Pothérat
(2010) in turbulent flows.

6.2. The topology of meridional recirculations

Figures 8 and 9 give a complete view of the velocity field for the low- and high-Ha
cases. When the base flow is 3D (IJ/h < 100), a large counter-clockwise recirculation
dominates the flow. This phenomenon has been observed by Akkermans et al. (2008)
in electrolytes, and by Pothérat er al. (2013) in steady and turbulent liquid metal
flows. It is driven by an axial pressure gradient that builds up along the axis of the
vortex as a result of the negative gradient of azimuthal velocity along e,. Since the
associated flow recirculates in the opposite direction to Ekman pumping, and both
are driven by differential rotation, it was called inverse Ekman pumping by the latter
authors. As the base flow becomes increasingly quasi-2D (Z2/h > 100), a clockwise
recirculation becomes visible at the bottom of the domain and grows steadily with
I?/h. The secondary flow is then composed of two counter-rotating structures, which
correspond to direct Ekman pumping (Ekman 1905), or what is also called the
‘tea-cup effect’. Unlike inverse pumping (which stems from a pressure gradient along
the axis of the vortex), direct pumping is driven by a radial pressure gradient inside
the boundary layers, which develops in the bulk to oppose centrifugal forces. To
further elucidate the role of pressure gradients on the topology of secondary flows,
let us reconstruct numerically from the Navier—Stokes equation projected along e, the
vertical pressure gradient along the axis of the vortex:

a2 I\ 8% 1 9%

9z  Ha (h) 97

— . 6.1
0’2+ Ha*> 937? D

0,z
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FIGURE 8. Complete velocity field for 3D base flows. (a—d) Ha =456; (e—h) Ha =3644.
The magnitude of #j is indicated by filled contours. Streamlines correspond to iso-values
of ¥'. —: counter-clockwise recirculation (' <0), —: ' =0. (a,e) I'/h=1; (b,f) =3;
(c,g) =10; (d,h) = 30.

The profiles of pressure gradient along the axis of the vortex are represented in
figure 10 in order to illustrate the previous argument. When the flow is 3D, a positive
pressure gradient exists in the bulk, whose effect is to drive a jet down along the axis
of the vortex. Because this phenomenon is entirely governed by velocity gradients in
the core, it is no surprise that the intensity of the inverse pumping is driven by [ /h.
As a result of quasi-two-dimensionality, the dependence of the pressure (or any other
quantity for that matter) on 7z in the bulk disappears. However, a very strong vertical
pressure gradient exists at both ends of the axis as a result of a converging radial flow
within the boundary layers.

Interestingly, a negative pressure gradient always exists in the bottom Hartmann
layer regardless of whether the base flow is 3D or quasi-2D. This means that a
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FIGURE 9. Complete velocity field for increasingly quasi-2D base flows. (a—d)
Ha = 456; (e-h) Ha = 3644. The magnitude of uj is indicated by filled contours.
Streamlines correspond to iso-values of i'. ---: clockwise recirculation (' > 0), —:
counter-clockwise recirculation (¥' <0), —: ¢! =0. (a,e) IJ/h=10; (bf) =100; (c,g)
=1000; (d,h) = 10000.

recirculation always exists at the bottom of the channel (though it is not always
visible), which results from direct pumping. By contrast, a positive pressure gradient
does not exist in the top Hartmann layer for [/h =1, meaning that in this particular
case, the top recirculation is exclusively driven by inverse pumping due to the vertical
pressure gradient in the lower half of the channel. As a matter of fact, figure 10
showcases the progressive shift in the mechanism driving the top recirculation, which
is not obvious a priori, as it does not transpire in its topology. To summarize, direct
and inverse pumping co-exist in all cases investigated.

Figure 11 gives a close-up view of the bottom Hartmann layers for the smaller
values of [’/h. This figure confirms the existence of a weak clockwise recirculation
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FIGURE 10. Normalized pressure gradient along the axis of the vortex 9p°/9z (I!/h)*/>.
(a) Bulk; (b) top Ha layer; (c) bottom Ha layer. 3D base flows introduce a positive
pressure gradient along e, in the bulk, which drives a jet to flow down the axis of the
channel. In the Hartmann layers, the negative pressure gradient at the bottom pushes the
fluid up along the axis, while the positive pressure gradient at the top pulls it down.

in the Hartmann layers, although this direct recirculation is too weak to balance
the downwards axial jet. The confinement of this weak direct pumping to the thin
boundary layers makes it very difficult to fully capture whether experimentally or
numerically. Yet, it is a clear feature of the analytical solution. In addition, figure 11
demonstrates that the Hartmann number does not actually impact the mechanisms
driving the meridional flow, but modifies its topology instead by squeezing the
streamlines closer to the walls. In order to further quantify the secondary flows, we
introduce the poloidal flow rate q% (z) defined by

1 21 ,R
93 =~ / / it (7, 3)| 7 dF do. 6.2)
2 0 0

We also introduce h, = h./h, where h, represents the height of the bottom
recirculation. k. is found as the first local minimum of ¢} (). Figure 12 plots the
height of the bottom recirculation against the variable I /h Ha™', which can also be
interpreted as the ratio (n/h)*> by virtue of (2.2). When the base flow is quasi-2D
(I2/h > 100), the quantity n/h may naturally be confused with the aspect ratio of
the vortex. It appears from figure 12 that when the leading order is close to being
quasi-2D, the topology of the meridional flow is fully determined by the parameter
n/h. More specifically, narrow aspect ratios correspond to inverse Ekman pumping,
while wide aspect ratios lead to an asymptotic state where two counter-rotating
structures of equal size split the channel in half. The shift from inverse to direct
pumping concurs with a ratio (n/h)? that is of order unity. Note that for a perfectly
quasi-2D flow (I)/h — 00) only direct Ekman pumping subsists for any finite value
of n/h.

In order to quantify the relative intensity of secondary flows, we introduce g,
and ¢, the mean flow rates occurring inside the bottom and top recirculations,
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FIGURE 11. Close-up view of the velocity field in the bottom Hartmann layer for 3D
base flows. (a—d) Ha =456; (e-h) Ha =3644. The magnitude of # is indicated by filled
contours. Streamlines correspond to iso-values of ¥!'. ---: clockwise recirculation (' > 0),
—: counter-clockwise recirculation (' <0), —: ' =0. ----: plausible positioning of
the outer edge of the Hartmann layer located at z/8y, =5, where 8y, =h/Ha for Ha =456
and Ha = 3644 respectively: (a.e) I/h=1; (bf) =3; (c,g) =10; (d,h) =30.

respectively defined as

1 e 1 o
Gvor = = / ¢i(x)dz and g, = = / ¢:(2) dz. (6.3a,b)
h. Jo I —he Jh

- e

According to figure 13, the ratio g, /g, can also be fully described by the unique
variable (17/h)?> when the flow is close to being quasi-2D. More specifically, Ekman
pumping starts dominating the flow when (17/h)* increases beyond unity, at which
point the intensity of both recirculations converges towards the same value.

The behaviours of h. and g, /q.,, are quite similar, which leads to a robust criterion
expressing whether the secondary flow is driven by inverse or direct pumping, namely
(n/h)* > 1. A phase diagram summarizing all different configurations is reported in
figure 14. More specifically, it underlines the fact that inverse pumping can still exist
when the base flow is close to being 2D if the vortex is of sufficiently small aspect
ratio n/h. This comes from the very nature of direct pumping, which originates within
the boundary layers and is therefore strongest there. In thin vortices, its influence on
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FIGURE 12. Height of the bottom recirculation against (1/h)%. The middle of the channel
is located at z=1/2. An estimation of the thickness of the bottom Hartmann layer is given
by z=568u./h, where 8y, =h/Ha for Ha =456, 911, 1822 and 3644 respectively.
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FIGURE 13. Ratio between g, and g, as a function of (n/h)? for Ha =456, 911,
1822 and 3644.

the bulk is limited, whereas a small pressure gradient in the bulk suffices to drive
inverse pumping.

6.3. Is two-dimensionality a good source of helicity?

Having now characterized both the azimuthal and meridional flows, we are in a
position to determine their potential to generate helicity. Figure 15 displays the
helicity H(Z) integrated over a cross-section of height Z:

R
HEF) =2mn / it @&7dr, (6.4)
0
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FIGURE 14. Phase diagram summarizing all features of wall-bounded low-Rm
MHD vortices.
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FIGURE 15. Normalized local helicity integrated over horizontal cross-sections
H'(Z)(I'/h). (a) Bulk; (b) top Ha layer; (c) bottom Ha layer.

which happens to be significant only at first order, i.e. HZ)=N"'H' + O(N~?), with

R
H () =2n / (i &p + itk & + it &) 7 dF-
0

(6.5)

Figure 15 suggests that helicity exists in the bulk when the base flow is 3D, while
quasi-two-dimensionality confines helicity to the boundary layers. Furthermore, H'(Z)
is non-symmetrical only for 3D base flows, meaning that the global production of
helicity will be non-zero only in this case. Consequently, Ekman pumping does not
appear to be the most favourable source of global helicity in MHD vortices, which
may seem surprising at first. It can, however, be attributed to several factors. First,
secondary flows are a lot stronger when inverse pumping dominates. Second, Ekman
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pumping introduces symmetrical structures of opposite sign, which compensate each
other globally. Helicity generated by inverse pumping, on the other hand, conserves
its sign across the entire layer.

Finally, direct and inverse pumping appear to produce helicity in different ways.
While inverse Ekman pumping collocates the axial velocity and vorticity in the bulk,
direct pumping produces helicity mainly by combining centripetal jets and shear
within the boundary layers.

7. Conclusion

We showed in this paper that the topology of an electrically driven vortex confined
between two no-slip walls in the low-Rm approximation and weakly inertial limit
can be fully described with two parameters. On the one hand, the dimensionality
of the leading order is uniquely characterized by the ratio I]/h, which compares the
range of action of the Lorentz force to the height of the channel. On the other hand,
the topology of the secondary recirculations is fully described by the parameter n/h,
which compares the width of the injection electrode to the height of the channel. In
the quasi-two-dimensional limit, n/h may be interpreted as the aspect ratio of the
vortex.

Thanks to the analytical approach that was undertaken, we were able to completely
resolve the finest properties of the flow and in particular the Hartmann boundary
layers, which are an inherent source of three-dimensionality. The Hartmann numbers
used in this study were comparable to those found experimentally. Using this
approach, we were able to distinguish two different inertial mechanisms able to
drive the first-order recirculations: inverse and direct Ekman pumping. We found out
that both co-existed in all cases investigated (although direct pumping is confined to
the bottom boundary layer when the base flow is three-dimensional), and that the
shift from one mechanism to the other occurred smoothly. This result could not have
been obtained either numerically or experimentally due to a lack of resolution of
both approaches at high Ha.

Finally, it was found that global helicity is expected to be prominent only in
three-dimensional configurations. In a geophysical context, this result might help
clarify the question of whether Ekman pumping is a relevant source of helicity to
sustain planetary dynamos. As noted by Davidson (2014), Ekman pumping may not
be a very efficient source of helicity in planetary cores because quasi-2D vortices
extending across the liquid core of the Earth, for example, are unlikely to exist.
They can therefore be expected to be three-dimensional, hence favouring alternative
mechanisms such as inverse pumping or the propagation of inertial waves.

Acknowledgements

The authors are grateful to the CNRS laboratories LNCMI and CRETA, and in
particular to F. Debray and A. Sulpice for hosting and supporting their work. The
laboratory SIMAP is part of the LabEx Tec 21 (Investissements d’Avenir — grant
agreement no. ANR-11-LABX-0030).

REFERENCES

AKKERMANS, R. A. D., CIESLIK, A. R.,KAMP, L. P. J,, TRIELING, R. R., CLERCX, H. J. H. &
VAN HEUST, G. J. F. 2008 The three-dimensional structure of an electromagnetically generated
dipolar vortex in a shallow fluid layer. Phys. Fluids 20, 116601.


https://doi.org/10.1017/jfm.2015.420

https://doi.org/10.1017/jfm.2015.420 Published online by Cambridge University Press

350 N. T. Baker, A. Pothérat and L. Davoust

CLERCX, H. J. H. & VAN HEUST, G. 2009 Two-dimensional Navier—Stokes turbulence in bounded
domains. Appl. Mech. Rev. 62, 1-25.

DAVIDSON, P. A. 2014 The dynamics and scaling laws of planetary dynamos driven by inertial
waves. Geophys. J. Intl 198 (3), 1832-1847.

DAvOUST, L., ACHARD, J.-L. & DRAZEK, L. 2015 Low-to-moderate Reynolds number swirling flow
in an annular channel with a rotating end wall. Phys. Rev. E 91, 023019.

DEUSEBIO, E. & LINDBORG, E. 2014 Helicity in the Ekman boundary layer. J. Fluid Mech. 755,
654-671.

EKMAN, V. W. 1905 On the influence of the Earth’s rotation on ocean currents. Ark. Mat. Astron.
Fys. 2, 1-53.

GILBERT, A. D., FRISCH, U. & POUQUET, A. 1988 Helicity is unnecessary for alpha effect dynamos,
but it helps. Geophys. Astrophys. Fluid Dyn. 42 (1-2), 151-161.

KALis, KH. E. & KOLESNIKOV, YU. B. 1980 Numerical study of a single vortex of a
viscous incompressible electrically conducting fluid in a homogeneous axial magnetic field.
Magnetohydrodynamics 16, 155-158.

KLEIN, R. & POTHERAT, A.2010 Appearance of three-dimensionality in wall bounded MHD flows.
Phys. Rev. Lett. 104 (3), 034502.

KORNET, K. & POTHERAT, A.2015 A method for spectral DNS of low Rm channel flows based on
the least dissipative modes. J. Comput. Phys. 298, 266-279.

LINDBORG, E. 1999 Can the atmospheric kinetic energy spectrum be explained by two-dimensional
turbulence? J. Fluid Mech. 388, 259-288.

MESSADEK, K. & MOREAU, R. 2002 An experimental investigation of MHD quasi-two-dimensional
turbulent shear flows. J. Fluid Mech. 456, 137-159.

POTHERAT, A. & KLEIN, R. 2014 Why, how and when MHD turbulence at low Rm becomes
three-dimensional. J. Fluid Mech. 761, 168-205.

POTHERAT, A., RUBICONI, F., CHARLES, Y. & DOUSSET, V. 2013 Direct and inverse pumping in
flows with homogeneous and non-homogeneous swirl. Eur. Phys. J. E 36 (8), 94.

POTHERAT, A., SOMMERIA, J. & MOREAU, R. 2000 An effective two-dimensional model for MHD
flows with transverse magnetic field. J. Fluid Mech. 424, 75-100.

POTHERAT, A., SOMMERIA, J. & MOREAU, R. 2002 Effective boundary conditions for
magnetohydrodynamic flows with thin Hartmann layers. Phys. Fluids 14 (1), 403—410.

ROBERTS, P. H. 1967 Introduction to Magnetohydrodynamics. Longmans.

SATIIN, M. P., CENSE, A. W., VERzICCO, H., CLERCX, H. J. H. & VAN HEuUSsT, G. J. F. 2001
Three-dimensional structure and decay properties of vortices in shallow fluid layers. Phys.
Fluids 13 (7), 1932-1945.

SHATS, M., BYRNE, D. & X1A, H. 2010 Turbulence decay rate as a measure of flow dimensionality.
Phys. Rev. Lett. 105, 264501.

SMITH, D. M. 1991 Algorithm 693: a Fortran package for floating-point multiple-precision arithmetic.
ACM Trans. Math. Softw. 17 (2), 273-283.

SOMMERIA, J. 1988 Electrically driven vortices in a strong magnetic field. J. Fluid Mech. 189,
553-569.

SOMMERIA, J. & MOREAU, R. 1982 Why, how and when MHD turbulence becomes two-dimensional.
J. Fluid Mech. 118, 507-518.

TABELING, P.2002 Two-dimensional turbulence: a physicist approach. Phys. Rep. 362 (1), 1-62.


https://doi.org/10.1017/jfm.2015.420

	Dimensionality, secondary flows and helicity in low-Rm MHD vortices
	Introduction
	Geometry and governing equations
	Inertialess base flow
	Correction due to inertia
	Numerical methods
	Algorithm description
	Convergence test
	Validity of the radial boundary condition
	Sensitivity to the injection profile and relevance to experiments

	Results
	Inertialess base flow
	The topology of meridional recirculations
	Is two-dimensionality a good source of helicity?

	Conclusion
	Acknowledgements
	References




