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The detrimental effect of hydrodynamic
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The problem of Brownian flocculation of spherical particles in strong shearing flow
without hydrodynamic interactions is studied in detail using the singular perturbation
method. All other types of interparticle interactions, such as van der Waals or
Lennard-Jones forces, are also ignored. In the limit of strong external flow, the
strength of which is measured by the Péclet number (Pe� 1), a complicated boundary
layer structure for the pair probability density function (P2) is identified and the
complete stationary spatial distribution of P2(x) in the domain is found. The results, in
particular the total mass flux in the accumulation process, are compared qualitatively
and quantitatively with the case where the spheres interact hydrodynamically and
it is demonstrated that the hydrodynamic interactions tend to decrease the rate of
flocculation. An explicit simple formula for the flocculation rate for a general form
of hydrodynamic interactions is provided. The limit of small Péclet number is also
discussed to confirm the conclusion on the detrimental influence of hydrodynamic
interactions on the rate of Brownian flocculation in shearing flow.
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1. Introduction
The problem of spontaneous Brownian flocculation of spherical particles in infinite

space was first addressed by Smoluchowski (1917). Due to numerous occurrences in
industry (e.g. production of cheese, application of paints, water treatment) and biology
(aggregation of polymers), this problem has attracted a great deal of attention and has
been developed to include additional effects present in real situations such as external
flow and hydrodynamic interactions between particles in some simplified forms. In
particular, polymer aggregation is a phenomenon that commonly occurs in many vital
biological processes. One example is plugging of vascular injuries, where the blood
flow unfolds the polymer chains, which then create a net for accumulation of platelets.
Other examples involve the development of Alzheimer’s and Parkinson’s diseases. In
all these examples the influence of the external flow is crucial. The first efforts were
simply confined to the study of a uniform velocity field at infinity (e.g. Acrivos &
Taylor 1962) and Frankel & Acrivos (1968) were the first to provide analytical results
for weak Stokes shearing flow around a sphere, i.e. Stokes flow satisfying no-slip
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impermeable boundary conditions at the central sphere and attaining shear flow form
at infinity with a magnitude small compared with the diffusive effects (i.e. small
Péclet number Pe). Batchelor (1979) by use of boundary layer theory generalized
the results to any steady Stokesian flow around the central spherical particle that is
linear in coordinates at infinity. In particular, the straining motion was analysed in
detail in the limits of large and small Pe. Noh, Koh & Kang (1998) investigated
numerically the shape of a growing particle for different types of straining flows
and for arbitrary Péclet number. The hydrodynamic interactions were included in a
numerical investigation by Zinchenko & Davis (1995) (see also the references therein)
via the exact mobility formulae for the two-particle hydrodynamics and near-contact
asymptotics (see e.g. Kim & Karrila 2005). To the best of the author’s knowledge
the issue of how the hydrodynamic interactions modify the process of Brownian
flocculation has never been addressed, since the problem without any hydrodynamic
interactions, i.e. pure shear flow everywhere in space, has never been resolved and
direct comparison has not been possible. Moreover, the presence of potential forces
between particles which is typically assumed in the literature strongly regularizes
the problem. Here, we neglect any types of interactions between particles other than
the hydrodynamic interactions; in particular, the regularizing influence of potential
forces (e.g. van der Waals, Lennard-Jones) is ignored. The need for such a clear
study, resolving solely the issue of the effect of the hydrodynamic interactions on the
flocculation process, mainly comes from the numerous simulations of this process in
biological fluid dynamics, where the hydrodynamic interactions are often neglected
but their influence on the final result is far from obvious.

Here, we fill this gap and determine the influence of hydrodynamic interactions
on the Brownian flocculation process, i.e. the concentration distribution and the
flocculation rate. To this end we must first resolve the problem without hydrodynamic
interactions, and then that solution is compared with that of the two-particle
hydrodynamic mobility functions (see e.g. Russel, Saville & Showalter 1989) and the
relation between the flocculation rates in the two cases is determined. Two limits,
namely Pe� 1 and Pe� 1, are studied, to isolate the effects of streamline divergence
and the decrease of diffusion with decreasing interparticle distances that result from
hydrodynamic interactions.

The paper is structured as follows. First, we mathematically formulate the problem
in § 2. Next, using the method of matched asymptotic expansions, which in the limit
Pe� 1 considered in § 3 is simply the boundary layer theory, we find an asymptotic
solution for the concentration field and determine the flocculation rate in agreement
with previously obtained results. At the end of § 3 we analyse the problem in which
hydrodynamic interactions are present and show that the flocculation rate is decreased
by their presence. In particular, § 3.2.1 is dedicated to the study of a general form
of hydrodynamic interactions, with a tunable degree of their strength. Section 4
is devoted to the small Péclet number limit, where we also prove the detrimental
influence of hydrodynamic interactions on the rate of flocculation. We end with
concluding remarks in § 5.

2. Mathematical formulation

For a detailed description of the dynamics of a suspension consisting of N identical
spheres immersed in a fluid the probability density function PN(x1, . . . , xN, t) is
introduced, which specifies the probability of finding spheres centred simultaneously
at (x1, . . . , xN), with the normalization

∫
PN dx1 . . . dxN =N! (cf. Russel et al. 1989).
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330 K. A. Mizerski

The function PN possesses the information about the microstructure of the suspension;
for example, the local number density can be expressed as

C(x1)= 1
(N − 1)!

∫
PNdx2 . . . dxN . (2.1)

However, typically much less information is required than that possessed in the
function PN and it is often sufficient to consider the pair probability density function

P2(x1, x2, t)= 1
(N − 2)!

∫
PNdx3 . . . dxN . (2.2)

In particular, this is the case for dilute suspensions, i.e. small volume fractions
4πa3C/3� 1, where a is the radius of the spheres. In the absence of any interactions
between the aggregating particles other than hydrodynamic interactions, which in
general may be present, the standard conservation law for the function P2 takes the
form (cf. Russel et al. 1989)

∂P2(r, t)
∂t

+∇ · [V(r)P2(r, t)− D(r) · ∇P2(r, t)]= 0, (2.3)

where r=x2−x1, D(r) is the diffusion matrix (related to the mobility matrix µ, which
is an inverse of the friction matrix, via the fluctuation–dissipation theorem, D= kBTµ,
where T is the temperature and kB is the Boltzman constant) and V(r) is the relative
velocity of particles. We consider shearing flow of the form

v =G · r=
0 0 0

0 0 0
γ̇ 0 0

x
y
z

= γ̇ xêz, (2.4)

where G is the velocity gradient tensor and γ̇ is the constant rate of shear. Following
Batchelor & Green (1972) (see also Russel et al. 1989) the velocity V takes the form

V(r)=G · r− C(r) ·G(s)
· r, (2.5)

where the superscript (s) denotes symmetrization and C(r) is known as the shear
disturbance tensor (and is directly linked to a component of the mobility matrix
typically denoted by µtd), which describes the influence of the particles on the flow of
the suspension. Here, C(r), just like the diffusion matrix D(r), can take different forms,
depending on the chosen level of approximation for the hydrodynamic interactions.
In particular, when the hydrodynamic interactions are neglected the tensor C(r) = 0
and the diffusion is a unitary matrix, D(r)= 1.

As is typical in the study of Brownian flocculation, we pick one sphere to be
located at the centre r= 0 and seek the distribution of P2(r) in the domain 2a6 r<∞
(note that in this case P2(r) is, in fact, the same as the concentration C(r)). Thus,
the following boundary conditions are imposed for the problem of spontaneous
aggregation in shear flow:

P2(r= 2a)= 0 and P2(r−→∞)=C0, (2.6a,b)

where C0 is the concentration at infinity of a spatially homogeneous microstructure
and the condition P2(r= 2a)= 0 denotes irreversible flocculation.
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We will be concerned with the stationary problem, thus ∂P2/∂t = 0. By assuming
a and C0 for the scales of length and the the pair probability density function
respectively, the stationary equation can be made dimensionless and reads

PeU · ∇P2 −∇ · [D · ∇P2]= 0, (2.7)

where Pe is the Péclet number (cf. Russel et al. 1989) and

Pe= γ̇ a2

D0
, D0 = kBT

3πηa
, V = γ̇ aU, D =D0D, (2.8a–d)

where η is the viscosity of the fluid. The boundary conditions in the dimensionless
form are

P2(r= 2)= 0 and P2(r−→∞)= 1. (2.9a,b)

We also assume throughout the paper that the Reynolds number Re= ργ̇ a2/η� 1, so
that the Stokes flow approximation remains valid. The dimensional mass flux towards
the central particle, in other words the rate of coagulation, is defined as follows:

J = 4D0C0a
∫

dΩn ·D · ∇P2|r=2, (2.10)

where Ω is the solid angle; thus, the integration is carried out over the surface of the
sphere r=2 and n is the unit normal. It should be noted that the advective term makes
no contribution because of the imposed absorbing boundary condition P2(r= 2)= 0.

3. The limit of large Péclet number, Pe� 1

3.1. Flocculation without hydrodynamic interactions
First, we study in detail the problem of aggregation of non-interacting hydrodynami-
cally spherical particles. Physically, this corresponds to very porous particles; to
imagine such a system one could think of spheres made of wire suspended in a fluid,
which may flow relatively freely through the particles. In this case C(r) = 0 and
D(r)= 1 (unitary matrix); thus, (2.7) reads

Pex∂zP2 −∇2P2 = 0, (3.1)

with the boundary conditions given in (2.9).
In the limit of large Péclet number, Pe � 1, we apply the standard boundary

layer theory. The mainstream problem outside the boundary layers is dominated by
advection; thus, at leading order we obtain (cf. (3.1))

v · ∇PM
2 = 0 or x∂zPM

2 = 0, (3.2a,b)

so that the mainstream solution is constant on the streamlines (which are parallel to
the z axis), and since the far-field boundary condition is PM

2 (r−→∞)= 1 we obtain

PM
2,I = 1 (3.3)

everywhere in the mainstream in regions I (see figure 1). The regions II, in fact, do
not span to infinity, since the two bounding boundary layers thicken with distance
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Region I
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(a)

(b)

FIGURE 1. The schematic boundary layer structure in the spatial distribution of the
probability density function P2(r): (a) in the XZ plane, (b) in the YZ plane.

from the central particle and eventually meet. Therefore, the absorbing boundary
condition determines the solution in these regions, where

PM
2,II = 0. (3.4)

To resolve the boundary layers on the sphere we need to write down (3.1) in spherical
coordinates,

vr
∂P2

∂r
+ vθ

r
∂P2

∂θ
− 1

Pe

[
1
r2

∂

∂r

(
r2 ∂P2

∂r

)
+ 1

r2 sin θ
∂

∂θ

(
sin θ

∂P2

∂θ

)
+ 1

r2 sin2 θ

∂2P2

∂φ2

]
=0,

(3.5)
where

vr = r sin θ cos θ cos φ, vθ =−r sin2 θ cos φ. (3.6a,b)

Due to the symmetry of the problem it is sufficient to concentrate on the upper half-
sphere −π/26φ6π/2 (and then the solution for the lower half-sphere can be easily
reproduced). On introducing the boundary layer variable

ξ = r− 2
δ
, (3.7)
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we may rewrite (3.5) in the following form:

0 = (2+ ξδ)
δ

sin θ cos θ cos φ
∂PBL

2

∂ξ
− sin2 θ cos φ

∂PBL
2

∂θ
− 1

Peδ2

∂2PBL
2

∂ξ 2

− 1
Peδ

2
2+ ξδ

∂PBL
2

∂ξ
− 1

Pe
1

(2+ ξδ)2 sin θ
∂

∂θ

(
sin θ

∂PBL
2

∂θ

)
− 1

Pe
1

(2+ ξδ)2 sin2 θ

∂2PBL
2

∂φ2
. (3.8)

The superscript BL is used throughout the text to denote the boundary layer function,
i.e. function dependent on the boundary layer variable/variables. The structure and
length scales of the boundary layers that form in the spatial distribution of the
probability density function P2(r) are presented in figure 1. They will be resolved in
the following sections.

3.1.1. The δ ∼ Pe−1 boundary layer
Outside the neighbourhood of (r= 2, θ =π/2), (r= 2, θ =π) and (r= 2, φ=±π/2)

the distinguished balance in the boundary layer includes the dominant advective term
and the dominant diffusive term, and thus yields

2 sin θ cos θ cos φ
∂PBL

2

∂ξ
− ∂

2PBL
2

∂ξ 2
= 0 (3.9)

and
δ = Pe−1. (3.10)

The solution satisfying the absorbing boundary condition on the sphere, P2(r= 2)= 0,
and matching the mainstream solution as ξ −→+∞ is

PBL
2 = 1− evr0ξ = 1− esin 2θ cos φξ , (3.11)

where vr0 = 2 sin θ cos θ cos φ is the value of the radial velocity component at the
surface of the sphere. Of course, a solution of this form can only be matched with the
mainstream solution for π/2< θ <π (or in the lower half-plane for π/2 6 φ 6 3π/2
and 0<θ <π/2), i.e. on the side where the flow is hitting the sphere surface, and on
the other side, where the flow leaves the sphere, there is no boundary layer, thus the
pair probability density function (concentration) must vanish at least in some finite
region past the sphere (namely region II). It remains to determine what happens in
the regions that have been left out, i.e. in the vicinity of (r = 2, θ = π/2), (r = 2,
θ =π) and (r= 2, φ=±π/2), or in other words to resolve all the remaining boundary
layers in the problem. However, as will become evident later, the δ ∼ Pe−1 boundary
layer is the thinnest of all the boundary layers at the sphere, thus it determines the
leading-order average flux, J0, towards the central particle

J0 = −8D0C0a
∫ π/2

−π/2
dφ
∫ π

π/2
dθ sin θ

∂P2

∂r

∣∣∣∣
r=2

= −8PeD0C0a
∫ π/2

−π/2
dφ
∫ π

π/2
dθ sin θ

∂PBL
2

∂ξ

∣∣∣∣
ξ=0

= 16PeD0C0a
∫ π/2

−π/2
dφ
∫ π

π/2
dθ sin2 θ cos θ cos φ =− 32

3 PeD0C0a, (3.12)

which agrees with the ballistic result of Levich (1962).
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3.1.2. The boundary layer at (r= 2, θ =π/2)
At θ =π/2 the normal component of the velocity vanishes, implying singularity in

the boundary layer and thus different spatial scales. In the vicinity of θ = π/2 we
introduce a new variable

ϑ = π/2− θ
δϑ

H⇒ θ =π/2− ϑδϑ , (3.13)

where δϑ � 1 defines the span of the singular boundary layer in the meridional
direction, and expand

sin θ = 1− 1
2 (ϑδϑ)

2 +O
(
δ4
ϑ

)
, cos θ = ϑδϑ +O

(
δ3
ϑ

)
. (3.14a,b)

By introducing the new variable, i.e. (3.13) and (3.14), into (3.8) we get the following
distinguished dominant balance:

2ϑ cos φ
∂PBL

2

∂ξ
+ cos φ

∂PBL
2

∂ϑ
− ∂

2PBL
2

∂ξ 2
= 0, (3.15)

with
δ = Pe−2/3, δϑ = Pe−1/3. (3.16a,b)

A change of variables

ϑ = τ

cos1/3 φ
, ξ = κ

cos2/3 φ
(3.17a,b)

and
PBL

2 = 1− eκτ−τ
3/3Ψ (κ, τ ) (3.18)

leads to the following equation for Ψ (κ, τ ):

∂2Ψ

∂κ2
− κΨ = ∂Ψ

∂τ
. (3.19)

The boundary conditions are written down for the pair probability density function

PBL
2 (κ −→∞, τ )= 1, (3.20a)
PBL

2 (κ = 0, τ )= 0, (3.20b)
PBL

2 (κ, τ −→−∞)= 1, (3.20c)

where the last condition (3.20c) comes from matching with the δ ∼ Pe−1 boundary
layer, already solved in the previous section. Interestingly, the same boundary
layer problem was obtained in a quite different physical configuration of magneto-
hydrodynamic channel and Couette flows with singular boundary layers of Hartmann
type by Roberts (1967) and Dormy, Jault & Soward (2002). We will briefly
summarize the method of solving (3.19) with (3.20a)–(3.20c) in appendix A, where
the asymptotic form for τ � 1 is also obtained. The solutions are of the form

Ψ =Ψ−1 +Ψ0 +Ψ1, (3.21)

where

Ψn =
∫ ∞

0

Ai(σ )Ai(κ +ωnσ)

Ai(ωnσ)
exp(ωnτσ )dσ . (3.22)
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It is a simple task to introduce the solution (3.21) and (3.22) into (3.19) to verify that
it satisfies the boundary layer equation. By the use of (A 3) and (A 6) this solution
easily satisfies the boundary conditions (3.20b) and (3.20a). On the other hand, the
asymptotic (κ, τ )-dependence as −τ � 1 can be readily obtained from (3.15) and
(3.17), PBL

2 (κ, τ → −∞) ∼ 1 − e2τκ , which is the exact form of the solution of
the δ ∼ Pe−1 boundary layer achieved for θ − π/2 ∼ Pe−1/3, thus the matching is
correct. Moreover, it will prove to be useful later to also provide the asymptotic
(κ, τ )-dependence for τ � 1, which is (see appendix A)

PBL
2 (κ, τ � 1)∼ 1

2
erfc

(
τ 2 − κ√

4τ

)
. (3.23)

3.1.3. The upper boundary layer past the sphere
It is now convenient to switch to cylindrical polar coordinates (s, φ, z) and, by

defining the boundary layer coordinate as

ζ = s− 2
δ
, (3.24)

obtain the dominant distinguished balance in the boundary layer past the sphere in
the vicinity of r= 2, which spans from z= 0 to infinity (for z> 0 above region II in
figure 1a),

∂2PBL
2

∂ζ 2
− 2 cos φ

∂PBL
2

∂z
= 0, (3.25)

for
δ = Pe−1/2. (3.26)

Rescaling of the z coordinate,
z= z

2 cos φ
, (3.27)

leads to a diffusion equation of the form

∂2PBL
2

∂ζ 2
− ∂PBL

2

∂z
= 0. (3.28)

The ‘initial condition’ PBL
2 (ζ , z= 0) for ζ > 0 (s > 2) is provided by the solution

obtained in the previous section for τ −→ ∞ (3.23) and for ζ < 0 (s < 2) the
probability density function PBL

2 vanishes due to the absorbing boundary condition at
the sphere. In the latter case the curvature of the boundary should, in principle,
be taken into account; however, it influences the boundary condition only at
higher orders, thus at leading order PBL

2 (ζ < 0, z= 0) = 0. To obtain the ‘initial
condition’ PBL

2 (ζ , z= 0) for ζ > 0 explicitly first we need the explicit form of
(3.23) in the suitable contracted boundary layer variables, i.e. ζc = (s − 2)Pe2/3 and
zc = zPe1/3/2 cos φ. The relations between the variables (κ, τ ) and (ζc, zc) are

κ = (ζc + z2
c cos2 φ

)
cos2/3 φ, τ = zc cos4/3 φ, (3.29a,b)

hence (3.23) can be transformed into

1
2

erfc
(
τ 2 − κ√

4τ

)
= 1

2
erfc

(
− ζc√

4zc

)
. (3.30)
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Now, returning to the original variables (ξ , z) we obtain

1
2

erfc
(
− ζc√

4zc

)
= 1

2
erfc

(
− ζ√

4z

)
z→0−→ 1. (3.31)

Thus, the leading-order boundary condition at z= 0 takes the form

PBL
2 (ζ , z= 0)=

{
1 for ζ > 0,
0 for ζ < 0.

(3.32)

The diffusion equation (3.28) can be solved by the use of the Green’s formula

PBL
2 (ζ , z)= 1√

4πz

∫ ∞
−∞

PBL
2

(
ζ ′, z= 0

)
exp

[
−(ζ − ζ

′)2

4z

]
dζ ′ = 1

2
erfc

[
− ζ√

4z

]
. (3.33)

Of course, the solution satisfies the boundary conditions, i.e. it tends to unity as ζ −→
∞ and to zero as ζ −→−∞. By comparison of the solution (3.33) and the asymptotic
form in (3.30) the matching with the layer at θ =π/2 is correct.

3.1.4. The lower boundary layer past the sphere
To resolve the boundary layer that forms past the sphere in the vicinity of x = 0

and for z < 0 exists below the YZ plane whereas for z > 0 above it (cf. figure 1a),
we return to the dimensional equation (2.3) with ∂PBL

2 /∂t= 0, V(r)= v(r), D(r)=D01
and use the standard variable transformation in the boundary layer theory introduced
by von Mises (1927) and used, e.g., in Batchelor (1979),

ψ = 1
2 γ̇ x2

∗, (3.34)

where ψ is the stream function of the shearing flow v(r) (cf. (2.4)) and the starred
Cartesian coordinates are dimensional. We also introduce a new variable in place of z∗,

λ=√2D0γ̇
1/2
(

z∗ ±
√

4− y2∗
)
, (3.35)

where the + sign corresponds to the layer that forms for z< 0 and the − sign to the
layer that forms for z> 0. The standard boundary layer theory allows one to arrive at
a conclusion that the only two important terms in (3.1) which determine the structure
of this boundary layer are the advective term x∂zPBL

2 and the second x-derivative (and
the boundary layer thickness is δ∼Pe−1/3). Therefore, in the new variables (ψ, λ) the
boundary layer equation for the pair probability density function takes the form

∂PBL
2

∂λ
= ∂

∂ψ

(
ψ1/2 ∂PBL

2

∂ψ

)
, (3.36)

and the natural boundary conditions are such that

PBL
2 (ψ = 0)= 1, PBL

2 (ψ −→∞)= 0 and PBL
2 (λ= 0)= 0; (3.37a–c)

therefore, they do not involve any dimensional constants. Hence, the solution must be
a function solely of the dimensionless variable

Ξ = ψ
1/2

λ1/3
, (3.38)
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with the use of which (3.36) reduces to

d2PBL
2

dΞ 2
+ 4

3
Ξ 2 dPBL

2

dΞ
= 0. (3.39)

The solution has the form

PBL
2 = 1− 1

K

∫ Ξ

0
exp
(
−4

9
Ξ ′3
)

dΞ ′, (3.40)

where Ξ = 2−2/3Pe1/3x/(z ± √4− y2)1/3 and
∫ Ξ

0 exp(− 4
9Ξ
′3)dΞ ′ is one of the

incomplete gamma functions; thus,

K =
∫ ∞

0
exp
(
−4

9
Ξ ′3
)

dΞ ′ ≈ 1.170. (3.41)

The solution (3.40) satisfies the boundary conditions (3.37) and, moreover, it has the
property

PBL
2 (z−→−∞) = 1 for x< 0, (3.42a)
PBL

2 (z−→∞) = 1 for x> 0. (3.42b)

For the sake of completeness of the presented analysis we will now resolve the
two remaining boundary layers numerically. First, we consider the boundary layer that
forms on the half-circumference of the central sphere above the YZ plane for z<0 and
below it for z> 0 and matches the δ∼ Pe−1 boundary layer with the lower boundary
layer past the sphere of thickness δ ∼ Pe−1/3, which it penetrates to the depth Pe−1/2

(cf. figure 1a). The last remaining boundary layers are the ones at both sides (in the y
direction) of the lower boundary layer past the sphere of thickness δ∼ Pe−1/3, which
match this layer to the mainstream value PM

2 = 1 (cf. figure 1b).

3.1.5. The half-circumference boundary layer at the YZ plane
For this layer we have

δ = Pe−1/2, δφ = Pe−1/2, (3.43a,b)

and thus the boundary layer equation takes the form

φ sin 2θ∂ξPBL
2 − ∂2

ξPBL
2 −

1
4 sin2 θ

∂2
φPBL

2 = 0, (3.44)

with boundary conditions resulting from the absorbing condition at the central sphere
(ξ = 0), matching with the mainstream solution (ξ→∞, φ > 0 for z< 0 and φ < 0 for
z> 0), matching with the lower boundary layer past the sphere of thickness δ∼Pe−1/3

(φ→−∞ at constant ξ and ξ→∞ at constant φ for z< 0, and φ→∞ at constant
ξ and ξ→∞ at constant φ for z> 0) and matching with the δ∼Pe−1 boundary layer
(φ→∞ for z< 0 and φ→−∞ for z> 0),

PBL
2 (ξ = 0, φ)= 0, PBL

2 (ξ→∞, φ)= 1, (3.45a)
PBL

2 (ξ , φ→−∞)= 0, PBL
2 (ξ , φ→∞)= 1. (3.45b)
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FIGURE 2. The grey-scale map and contour lines of the probability density function in
the half-circumference boundary layer at the YZ plane; the numerical solution of (3.47)
with the boundary conditions (3.48).

A change of variables

ς =√∓ cos θξ, χ =±2 sin θ
√∓ cos θφ, (3.46a,b)

where the plus sign under the square root corresponds to the layer that forms for z> 0
and the minus sign under the square root to the layer that forms for z< 0, allows one
to transform (3.44) into

χ∂ςPBL
2 + ∂2

ςPBL
2 + ∂2

χPBL
2 = 0. (3.47)

To fix ideas let us consider the region z < 0, y < 0 (or, equivalently, z > 0, y < 0),
where the boundary conditions take the form

PBL
2 (ς = 0, χ)= 0, PBL

2 (ς→∞, χ)= 1, (3.48a)
PBL

2 (ς, χ→−∞)= 0, PBL
2 (ς, χ→∞)= 1. (3.48b)

The numerical solution of (3.47) with the boundary conditions (3.48) is presented in
figure 2.

3.1.6. The side boundary layers at y=±2
In this case we have

δx = δy = Pe−1/3 (3.49)

and the boundary layer equation is

ξx∂zPBL
2 − ∂2

ξx
PBL

2 − ∂2
ξy

PBL
2 = 0, (3.50)

where
ξx = x

δx
, ξy = y

δy
. (3.51a,b)
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For definiteness let us consider now the side boundary layer in the region x> 0, y> 0
and z> 0. The boundary conditions result from matching with the mainstream solution
at ξx = 0 (ξy, z fixed), ξy→∞ (ξx, z fixed) and z→∞ (ξx, ξy fixed), matching with
the upper boundary layer past the sphere of thickness δ∼Pe−1/2 at ξx→∞ and with
the lower boundary layer past the sphere of thickness δ ∼ Pe−1/3 at ξy→−∞,

PBL
2 (ξx = 0, ξy, z)= 1, (3.52a)

PBL
2 (ξx −→∞, ξy < 0, z)= 0, (3.52b)

PBL
2 (ξx −→∞, ξy > 0, z)= 1, (3.52c)
PBL

2

(
ξx, ξy→∞, z

)= 1, (3.52d)

PBL
2 (ξx, ξy→−∞, z)= 1− 1

K

∫ ξx/(4z)1/3

0
exp
(
−4

9
Ξ ′3
)

dΞ ′, (3.52e)

PBL
2

(
ξx, ξy, z→∞)= 1. (3.52f )

Based on the dimensional analysis presented in 3.1.4, we propose to reduce the
number of independent variables by the following change of variables:

µ= x
(4z)1/3

, ν = y
(4z)1/3

. (3.53a,b)

Equation (3.50) now takes the form

4
3µ

2∂µPBL
2 + 4

3µν∂νP
BL
2 + ∂2

µPBL
2 + ∂2

νPBL
2 = 0 (3.54)

and the boundary conditions (3.52) transform into

PBL
2 (µ= 0, ν)= 1, PBL

2 (µ→∞, ν < 0)= 0, PBL
2 (µ→∞, ν > 0)= 1, (3.55a)

PBL
2 (µ, ν→∞)= 1, PBL

2 (µ, ν→−∞)= 1− 1
K

∫ µ

0
exp
(
−4

9
µ′3
)

dµ′. (3.55b)

The numerical solution of the boundary layer equation (3.54) with the boundary
conditions (3.55) is presented in figure 3. It can be seen that on the external side
y > 2 the layer is, in fact, very weak. In the vicinity of z = 0 this layer extends to
−z ∼ Pe−1/5, where the other length scales change to δx = δy = Pe−2/5 and where it
matches with the half-circumference boundary layer at the YZ plane from the previous
section.

3.2. Flocculation with hydrodynamic interactions
The hydrodynamic interactions between the spheres are included through the
non-trivial tensor functions D(r) and C(r), which can be found, e.g., in Russel
et al. (1989). The common level of approximation for the hydrodynamic interactions
corresponds to the so-called Rotne–Prager–Yamakawa approximation (cf. Rotne &
Prager 1969 and Yamakawa 1970), within which the flow obtained by introducing a
sphere into the shear flow v(r) (cf. (2.4)), say v1(r), is used to calculate the velocity
V(r) of another sphere, introduced into the new flow v1(r). We start at this level and
then generalize in § 3.2.1. For the Rotne–Prager–Yamakawa case we have

C(r)=
[

5
(a

r

)3 − 8
(a

r

)5
]

r̂r̂+ 16
3

(a
r

)5
(1− r̂r̂), (3.56)
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FIGURE 3. The grey-scale map and contour lines of the probability density function in
the side boundary layer at y= 2, z> 0; the numerical solution of (3.54) with the boundary
conditions (3.55).

so that

Ur =
(

r− 5
r2
+ 8

r4

)
sin θ cos θ cos φ, (3.57a)

Uθ =
(
−r+ 16

3r4

)
sin2 θ cos φ − 8

3r4
cos φ, (3.57b)

Uφ = 8
3r4

cos θ sin φ (3.57c)

and

D(r)=D‖(r)r̂r̂+D·(r)
(
1− r̂r̂

)
, (3.58)

D‖(r)= 1− 3
2r
+ 1

r3
, D⊥(r)= 1− 3

4r
− 1

2r3
, (3.59)

where (r, θ, φ) are the usual spherical coordinates. Hence,

∇ · [D · ∇P2]= 1
r2

∂

∂r

(
r2D‖(r)

∂P2

∂r

)
+ D⊥(r)

r2
L2
θ,φP2, (3.60)

where

L2
θ,φ =

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2
. (3.61)

In the limit of large Péclet number, Pe� 1, the mainstream problem outside all the
boundary layers is dominated by advection; thus, at leading order (cf. (2.7))

U · ∇PM
2 = 0, (3.62)
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so that the mainstream solution is constant on the streamlines of U(r). Since the far-
field boundary condition is PM

2,I(r−→∞)= 1 we obtain

PM
2,I = 1 (3.63)

in the mainstream region, where the streamlines span to infinity. To establish the
region of validity of the above mainstream solution one must find the streamlines of
the velocity field U(r) given in (3.57). These are found numerically and depicted in
figure 4. Clearly, two types of significantly different regions can be identified, region
II in the figure, where, at least in part of the region, the streamlines emerge from the
sphere, reverse on the YZ plane and then come back to the sphere, and region I, where
the streamlines span to infinity (some of them hitting the sphere). These two regions
are separated by critical streamlines (surfaces) and boundary layers must necessarily
form along them. Since the pair probability density function vanishes at the sphere,
it must vanish in the entire region II and thus must be matched through a boundary
layer along the critical streamlines to the mainstream solution (3.63). On one side the
critical streamline is the one that is tangent to the sphere at θ =π/2. (In fact, just as
in the case without hydrodynamic interactions at θ = π/2, the normal component of
the velocity vanishes, implying singularity in the boundary layer. The boundary layer
at (r= 2, θ =π/2) of thickness δ= Pe−2/3 and meridional span δϑ = Pe−1/3 could, in
fact, be solved by the introduction of new variables τ ′= (25Pe cos φ/44)1/3 (π/2− θ)
and κ ′ = (55/54)1/3(Pe cos φ)2/3 (r− 2) in place of τ and κ and then by proceeding
exactly as in § 3.1.2.) On the other side the critical streamline starts at infinity and hits
the sphere at some |xC|< 2a (point C in figure 4) and all other streamlines that are
closer to the YZ plane reverse at that plane. The existence of such a streamline can
be shown analytically in the asymptotic regime |z|� 1 and |x|� 1/|z|� 1, where the
velocity field U can be approximated by Ux ≈−8/3z4, Uz ≈ x (and Uy ≈−15xy/3z4)
and thus the asymptotic form of the streamlines on planes y= const. is described by
x2 = Consty + 16/9|z|3. The critical streamline is that for Consty = 0, since for any
Consty < 0 the streamline must reverse at x = 0, whereas for Consty > 0 it spans to
infinity. The surface bounding the region of closed streamlines was found by Batchelor
& Green (1972) to be axisymmetric about the x axis.

The δ=Pe−1 boundary layer still forms at the sphere, but now only in the region I,
since only in that region is the mainstream solution PM

2,I = 1 and are strong gradients
formed at the sphere to adjust the solution to the boundary condition. To resolve this
boundary layer we introduce the boundary layer variable ξ = (r− 2)/δ, and as before,
due to the symmetry of the problem, it is sufficient to concentrate on the upper half-
sphere −π/26φ6π/2 (and then the solution for the lower half-sphere can be easily
reproduced). Outside the neighbourhood of (r= 2, θ =π/2), (r= 2, x= xC) and (r=
2, φ =±π/2) the distinguished balance in the boundary layer includes the dominant
advective term and the dominant diffusive term, and thus yields

10
3

sin θ cos θ cos φ
∂PBL

2

∂ξ
− ∂

2PBL
2

∂ξ 2
= 0. (3.64)

The solution satisfying the absorbing boundary condition on the sphere, P2(r = 2)=
PBL

2 (ξ = 0)= 0, and matching with the mainstream solution as ξ −→+∞ is

PBL
2 = 1− e(Ur0/D

‖
0)ξ = 1− e5/3 sin 2θ cos φξ , (3.65)

where Ur0/D
‖
0 = (10/3) sin θ cos θ cos φ is the ratio of the radial velocity component

to the diffusion component D‖ at the surface of the sphere. Precise calculation of
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FIGURE 4. The numerically computed streamlines of the flow U(r) given in (3.57) in the
XZ plane. The bold lines indicate the critical streamlines along which boundary layers
form and which separate regions with different mainstream solutions. The black bold line
for x > 0 is tangent to the sphere in the XY plane and for z > 0 indicates a boundary
layer that forms past the sphere in the flow. The bold grey line for x < 0 indicates the
numerically estimated position of a streamline below which the particles from infinity
are hitting the central sphere and above which the concentration is zero (cf. figure 5 in
Zinchenko & Davis (1995)); below its point of contact with the sphere, denoted by C, a
boundary layer of thickness δ ∼ Pe−1 forms at the sphere.

the leading-order average flux towards the central particle requires knowledge of the
limits of integration at the surface of the sphere, i.e. the part of the sphere surface in
contact with region I. However, for the present purposes it is sufficient to provide
the following upper bound on the value of the coagulation rate (average flux), by
performing the integration over the entire region π/2 < θ < π, −π/2 < φ < π/2
and 0 < θ < π/2, π/2 < φ < 3π/2, as in the previous case without hydrodynamic
interactions, which yields

Jwith HI < −8D0c0a
∫ π/2

−π/2
dφ
∫ π

π/2
dθ sin θD‖

∂P2

∂r

∣∣∣∣
r=2

= −3PeD0c0a
∫ π/2

−π/2
dφ
∫ π

π/2
dθ sin θ

∂PBL
2

∂ξ

∣∣∣∣
ξ=0

= 10PeD0c0a
∫ π/2

−π/2
dφ
∫ π

π/2
dθ sin2 θ cos θ cos φ =− 20

3 PeD0c0a, (3.66)
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a value 0.625 times smaller than the result obtained in the absence of hydrodynamic
interactions in (3.12). The actual rate of aggregation is even smaller, as indicated
by the inequality in (3.66). It can be computed directly using, e.g., the approach of
Batchelor & Green (1972) (cf. their (6.9) and (3.74) in this paper with ε = 0), which
allows one to estimate the value of the x coordinate of point C in figure 4, xC=0.5757.
This, in turn, leads to

Jwith HI =−20
3

[
1−

(xC

2

)2
]3/2

PeD0c0a≈ 5.86PeD0c0a, (3.67)

which is approximately 55 % of the coagulation rate in the absence of hydrodynamic
interactions.

3.2.1. Generalization of the hydrodynamic interactions
The results can be very easily generalized to any form of two-particle mobility

functions. However, to include the near-field dynamics (i.e. the lubrication corrections)
one needs to set the surface of pair formation, where the irreversible flocculation
occurs, away from r= 2, since the relative particle mobility vanishes at r= 2 in such
a case. This corresponds to the introduction of a simplest interaction potential, i.e. to
the imposition of the following flocculation condition:

P2(r= 2+ ε)= 0, (3.68)

where ε is a dimensionless parameter, denoting the ratio of the radial distance between
the surface r = 2 and the surface of flocculation to the particle radius a, typically
much smaller than unity. The general form of the shear disturbance tensor is (cf. e.g.
Zinchenko & Davis 1995)

C(r)= A(r)r̂r̂+ B(r)(1− r̂r̂). (3.69)

The degree of strength of the hydrodynamic interactions can now be easily tuned
with the choice of functions A(r), B(r), D‖(r) and D⊥(r) (see (3.58)), which can be
found in Russel et al. (1989) or Wang, Zinchenko & Davis (1994). This leads to

Ur = (1− A)r sin θ cos θ cos φ, (3.70a)
Uθ = (−1+ B) r sin2 θ cos φ − 1

2 Br cos φ, (3.70b)

Uφ = 1
2 Br cos θ sin φ. (3.70c)

To include the near-field dynamics (1− A∼ r − 2; D‖ ∼ r − 2) we assume at this
point ε� Pe−1, so that the dominant δ= Pe−1 boundary layer balance between radial
advection and radial diffusion holds. Introducing

ξ = [r− (2+ ε)]Pe, (3.71)

similarly to (3.65),we arrive at

PBL
2 = 1− e(Ur0/D

‖
0)ξ = 1− exp(((1− A0)/D

‖
0)(2+ ε) sin θ cos θ cos φξ), (3.72)
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where the subscript 0 denotes a value taken at ξ = 0, i.e. r= 2+ ε. The flocculation
rate can now be calculated in an analogous way to (3.67),

Jwith HI =−4
3
(2+ ε)3 (1− A0)

[
1−

(xC

2

)2
]3/2

PeD0c0a, (3.73)

and xC is the x coordinate of the point of intersection between the critical streamline
bounding the region of closed streamlines and the pair formation surface at r= 2+ ε.
We rewrite here the formula for xC from Batchelor & Green (1972) for the
convenience of the reader,

x2
C = exp

[
2
∫ ∞

2+ε

A(r)− B(r)
1− A(r)

dr
r

] ∫ ∞
2+ε

rB(r)
1− A(r)

exp
[
−2
∫ ∞

r

A(r′)− B(r′)
1− A(r′)

dr′

r′

]
dr.

(3.74)
With the use of the above formulae (3.73) and (3.74) we can easily reproduce the

results of the previous sections. By setting A(r) = B(r) = ε = 0 we obtain the result
for the case of no hydrodynamic interactions as in (3.12) and by setting the Rotne–
Prager–Yamakawa mobility functions for A(r) and B(r) as in (3.56) and ε = 0 we
reproduce the result in (3.67). Finally, we compare the expression for the flux obtained
in (3.73) with the flux in the case without hydrodynamic interactions but as in the
current considerations with the flocculation surface set at a distance ε from the sphere
r= 2,

Jwith HI

Jno HI
= (1− A0)

[
1−

(xC

2

)2
]3/2

< 1. (3.75)

This clearly shows that the effect of hydrodynamic interactions on the movements
of spherical particles in a shearing flow is detrimental to the rate of Brownian
flocculation. However, it is not the only effect, which needs to be taken into account
when the hydrodynamic interactions are considered. In the limit of large Pe analysed
the diffusion has very little effect on the coagulation process, but hydrodynamic
interactions influence the diffusion significantly. To determine the influence of the
hydrodynamic interactions on the full coagulation process one must also see how the
rate of coagulation is affected by non-trivial diffusion. In the next section we show
that the other effect, i.e. the influence of non-trivial diffusion for hydrodynamically
interacting particles, is also detrimental to the coagulation process.

4. Limit of small Péclet number, Pe� 1

We will briefly review the solution for the small Péclet number limit in the
absence of hydrodynamic interactions, which is essentially the same as that of
Frankel & Acrivos (1968) for q(r) = 1 − P2(r). Since the diffusion significantly
decreases with decreasing interparticle distances, it is naturally expected that the
hydrodynamic interactions should weaken the flocculation process for Pe � 1. The
perturbative problem for small Péclet number is singular since the term Pex∂zP2

in (3.1) is negligible only for r � Pe−1/2 and for r ∼ Pe−1/2 becomes comparable
with the diffusion term. Therefore, following Frankel & Acrivos (1968) we use the
method of matched asymptotic expansions and we divide the domain into two regions,
the inner region, 2 < r � Pe−1/2, where diffusion dominates, and the outer region,
r ∼ Pe−1/2, where the advection and diffusion are comparable, and expand in the
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following perturbative series:

q(r, θ, φ)= q0(r, θ, φ)+
∞∑

n=1

fn(Pe)qn(r, θ, φ) in the inner region, (4.1a)

Q(R, θ, φ)=
∞∑

n=0

Fn(Pe)Qn(r, θ, φ) in the outer region, (4.1b)

where the outer variable R = Pe1/2r and the solutions from both regions must be
matched for 1� r� Pe−1/2. The problem in the outer region at leading order takes
the form

X∂ZQ0 −∇2
RQ0 = 0. (4.2)

The Green’s function for this equation, thus the solution that vanishes at infinity (i.e.
for r�Pe−1/2) and behaves as 2/R+Const. for R� 1 (i.e. for r�Pe−1/2), following
Elrick (1962) and Frankel & Acrivos (1968) has the form

Q0 (R)= 1√
π

∫ ∞
0

ds(
1+ s2/12

)1/2
s3/2

exp

{
−
[
(X − sY/2)2

4s
(
1+ s2/12

) + Y2 + Z2

4s

]}
. (4.3)

Indeed, for R� 1 we obtain

Q0(R)≈ 2
R
+ k√

π
, with k=

∫ ∞
0

ds
s3/2

[(
1+ s2/12

)−1/2 − 1
]
≈−0.9104. (4.4)

(We divide the integral in (4.3) into two integrals
∫ ε

0 +
∫∞
ε

, where ε�1 is an arbitrary
constant. We can then expand the integrand under the first integral for small s and the
second integral is convergent for R= 0.) On the other hand, since the inner solution
has to satisfy spherically symmetric boundary conditions it also has to be spherically
symmetric at least up to the order defined by f1(Pe), hence

q(r)= 2
r
+ f1(Pe)

(
1− 2

r

)
+ · · · . (4.5)

The two solutions can be matched in the region 1� r� Pe−1/2 for

F0(Pe)= Pe1/2 and f1(Pe)= k√
π

Pe1/2. (4.6a,b)

Therefore, the total dimensional flux takes the form (by integrating over the surface
r= 2)

Jno HI, small Pe = 4D0c0a
∫ 2π

0
dφ
∫ π

0
dθ sin θ

∂q
∂r

∣∣∣∣
r=2

=−8πD0c0a
(

1− k√
π

Pe1/2

)
+O(Pe), (4.7)

where k ≈ −0.9104, so that the correction resulting from the presence of the shear
flow increases the flux towards the central particle.
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Next, if we switch on the hydrodynamic interactions according to (3.56)–(3.59), the
outer problem for QHI 0(R) remains unchanged and the only thing that changes is the
inner solution for qHI(r), which is now

qHI(r)= 1−

∫ r

2

dr′

r′2D‖ (r′)∫ ∞
2

dr
r2D‖(r)

. (4.8)

Since D‖(r) satisfies 0<D‖(r) < 1 for all r> 2, we obtain∫ ∞
2

dr
r2D‖(r)

>

∫ ∞
2

dr
r2
= 1

2
, (4.9)

which means that the aggregation rate satisfies

Jwith HI, small Pe = 4D0c0a
∫ 2π

0
dφ
∫ π

0
dθ sin θ D‖

∂qHI

∂r

∣∣∣∣
r=2

= 1

2
∫ ∞

2

dr
r2D‖(r)

Jno HI, small Pe < Jno HI, small Pe (4.10)

(direct numerical computation of the integral in the second line of (4.10) leads to
a more exact relation Jwith HI, small Pe ≈ 0.6Jno HI, small Pe). Therefore, as expected, in the
limit of small Pe the hydrodynamic interactions slow down the flocculation process,
similarly to what was reported for Pe� 1.

A generalization analogous to the large Pe number limit is easily made here by
changing the lower limits of the integrals in (4.8) from 2 to 2+ ε.

5. Concluding remarks
The problem of the influence of hydrodynamic interactions on the process of

Brownian flocculation in external shear flow has been investigated in detail.
First, the problem without hydrodynamic interactions, as defined by (3.1) and (2.9),

has been solved in the limit of large Pe number. A complete solution for the spatial
distribution of the pair probability density function P2(r) has been provided by use
of boundary layer theory and the regularizing effect of the potentials of interaction
between particles, such as van der Waals or Lennard-Jones potentials, has been
ignored. The limit of vanishing hydrodynamic interactions turned out to be very
singular; the structure of the solution exhibits a number of different length scales,
as depicted in figure 1. The thinnest boundary layer, of thickness δ ∼ Pe−1, allows
one to calculate the flocculation rate at leading order, which agrees with the known
ballistic result of Levich (1962). Other length scales present in the system are Pe−1/3,
Pe−1/2 and Pe−2/3 and there are six different boundary layer types in the distribution
of P2(r), which are all resolved here.

Next, the hydrodynamic interactions were included in the problem. First, the
well-known Rotne–Prager–Yamakawa approximation (cf. Rotne & Prager 1969;
Yamakawa 1970 and Russel et al. 1989) was exploited. In the limit of large Pe
number the analysis of the thinnest, δ ∼ Pe−1, boundary layer allowed us to find
the flocculation rate and prove that, since the hydrodynamic interactions diverge the
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streamlines hitting the central sphere, they weaken the Brownian flocculation process,
and thus the rate of flocculation is decreased by approximately 55 %. The structure
of the P2(r) distribution is still quite singular in this case (see figure 4 and comments
below), and there are still boundary layers that span from the sphere surface to
infinity. The hydrodynamic interactions were then generalized to an arbitrary form
of the two-particle mobility functions, with the flocculation surface shifted by an
arbitrary distance ε from the central sphere, i.e. P2(r = 2 + ε) = 0, to take into
account the near-field dynamics (lubrication). A simple explicit final expression
for the flocculation rate was obtained, and the detrimental effect of hydrodynamic
interactions was confirmed. Finally, the limit of small Pe number was also considered
and it was demonstrated, perhaps not surprisingly in this case, that the inclusion of
hydrodynamic interactions slows down the flocculation process.

To conclude, it was shown here that both effects, the divergence of streamlines
hitting the central sphere and the decrease of diffusion with decrease of the
interparticle distances, which result from hydrodynamic interactions between particles,
are detrimental to the process of Brownian flocculation. (In other words, both
components of the mobility matrix, typically denoted as µtd (translational–dipolar)
and µtt (translational–translational), slow down the flocculation process.)
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Appendix A

Following Dormy et al. (2002), (3.19) determining the structure of the boundary
layer at r= 2, θ =π/2 has solutions in the form

eτλ1σAi(λ1σ + κ), eτλ2σAi(λ2σ + κ), eτλ3σAi(λ3σ + κ), (A 1)

where λj (j= 1, 2, 3) and σ are the solution parameters, and Ai (·) is the Airy
function. The identity

3
∫ ∞

0
σ 3mAi (σ ) dσ = (3m)!

3mm! for m= 0, 1, 2, 3, . . . (A 2)

can be used to derive the following relation:∫ ∞
0

Ai(σ )[exp(ω−1τσ )+ exp(τσ )+ exp(ωτσ)]dσ = exp
(

1
3
τ 3

)
, (A 3)

where ω= e2/3πi (1, ω and ω−1 are the cubic roots of unity).
The condition (3.20b) suggests λ1 = 1, λ2 = ω and λ3 = ω−1; hence, the solution

takes the form of the following linear combination of the terms given in (A 1):

Ψ =Ψ−1 +Ψ0 +Ψ1, (A 4)
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where

Ψn =
∫ ∞

0

Ai(σ )Ai(κ +ωnσ)

Ai(ωnσ)
exp(ωnτσ )dσ . (A 5)

By the use of (A 3) this solution easily satisfies the boundary condition (3.20b). On
the other hand, the asymptotic form of the Airy function for large arguments (cf.
Abramowitz & Stegun 1972),

Ai(z)∼ 1
2π1/2z1/4

e−2z3/2/3

[
1− 5

48z3/2
+O

(
z−3
)]
, for |z|→∞, |arg z|<π, (A 6)

demonstrates that the Airy functions decay exponentially for large and positive σ ; thus,
it is evident that the condition (3.20a) is also satisfied.

The asymptotic behaviour of the solution as τ→−∞, although evident from (3.15)
and (3.17), can also be found via the saddle point method. We direct the interested
reader to Roberts (1967) and Dormy et al. (2002).

As a final step we find the asymptotic behaviour of the solution (A 4) and (A 5) for
large and positive τ (which proves useful for matching with the upper boundary layer
past the sphere of thickness δ∼Pe−1/2). In this case the dominant contribution comes
from Ψ0, since Re(ω−1) < 0 and Re(ω) < 0. We will find its asymptotic form by use
of the saddle point method.

By expanding the Airy functions in (A 5) up to the first order as in (A 6) for large
σ one obtains

Ψ0 ∼
∫ ∞

0

exp
[
γ (σ )

]
√

4π(κ + σ)1/4 dσ , for τ � 1, (A 7)

where γ (σ )=−2(κ + σ)3/2/3+ στ . The saddle point coordinate σs must satisfy

γ ′(σs)=−(κ + σs)
1/2 + τ = 0, H⇒ σs = τ 2 − κ. (A 8)

By substituting into γ (σs) we obtain

γ (σs)∼ 1
3τ

3 − τκ, (A 9)

and since γ ′′(σs) = −1/2τ , the asymptotic evaluation in the neighbourhood of the
saddle leads to

Ψ0 ∼ 1
2

exp
(

1
3
τ 3 − τκ

)
erfc

(
−τ

2 − κ√
4τ

)
. (A 10)

Hence, the asymptotic (κ, τ )-dependence of the pair probability density function (3.18)
as τ→∞ is

PBL
2 (κ, τ � 1)∼ 1− 1

2
erfc

(
−τ

2 − κ√
4τ

)
= 1

2
erfc

(
τ 2 − κ√

4τ

)
. (A 11)
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