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Null steering has been a challenge in radar communications for the past few decades. In this paper, a novel cognitive null
steering technique in frequency diverse array radars using frequency offset selection is presented. The proposed system is a
complete implementable framework that provides precise and deep null placement in the range and angle locations of the
interference source. The proposed system is cognitive such that the transmitter and receiver are connected via a feedback
loop. System extracts interference source location parameters from the radar scene using Multiple Signal Classification, a
super resolution direction of arrival estimation technique. Neural networks known for minimum computation time, and
good non-linear and non-parametric approximation have been utilized for prediction of next location of the interference
source. Simulation results validate the proposed frequency offset selection by demonstrating precise and deep nulls at the
desired locations.
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I . I N T R O D U C T I O N

Null steering in radars and communications for interference
cancellation, and multi-path mitigation has been a focus of
research for decades [1]. In literature, various null steering
techniques have been deployed so far in phased-array radars
(PAR) systems [2–7]. When it comes to the localization of
signal sources, PAR systems are limited to provide only
angle localization. This limits the performance of PAR
system to mitigate undesirable range-dependent interferences.
Moreover, if we want to focus the transmit energy in the direc-
tions with different ranges multiple antennas or a multi-beam
antenna should be employed [8]. Above all the phase shifters
used for beam and null steering are very expensive amounting
to almost half the budget. The “range–angle”-dependent
beampattern of frequency diverse array (FDA) localizes the
targets in two dimensions i.e. in terms of slant ranges and ele-
vation angles and therefore provides potential solution to sup-
press range–angle-dependent clutter and interference [9].
Linear frequency diverse array (LFDA) radar finds potential
utility in the areas of range–angle localization of targets
[10], range and angle estimation of targets using transmit sub-
aperturing [11], two-dimensional (2D) range–angle imaging
[12], etc. On the other hand, cognition, a phenomenon
beyond “adaptivity” [13], on part of a radar system encom-
passes three basic capabilities [14] – firstly, continuous and

intelligent interaction of the transmitter and receiver with
the environment; secondly, a closed feedback loop between
transmitter, receiver, and environment; and thirdly, memory
system that preserves the information received in the form
of radar returns.

In this paper, a novel concept of cognitive null steering
technique is developed using frequency diverse arrays
(FDA). To the best of authors’ knowledge, null steering in
FDA in a cognitive radar scenario has not been exploited as
it has been in this paper. In our proposed system, we have
assumed only a single-point target and a single-point interfer-
ence source in a clutter-free environment. Both the target and
the interference source are non-stationary. The main objective
of the cognitive radar system is to place and maintain the
deepest null of the pattern at the location of the interferer.
Since a frequency offset selection-based null steering scheme
is presented, the target could be illuminated by any level of
radiation (which may or may not be a maximum). It has
been assumed that the system has a prior knowledge of
signal source classification as an interferer. Some of the
modern target classification techniques have been listed in
[15, 16]. The radar system scheme presented not only esti-
mates the direction of arrival of the interferer, but also predicts
the next possible locations with the result that the system is
able to maintain the null at the interferer location. The pro-
posed null steering technique localizes the null at the interfer-
ence not only in angle but also in range, and hence outsmarts
other existing null steering techniques in PAR. Moreover, the
lengthy iterative method-based techniques such as recursive
least squares, least mean square, minimum variance
distortion-less response, etc. have been replaced by a simple
and fast frequency offset selection-based scheme. Above all,
the element of cognition in the proposed methodology
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makes it best suited for practical radar environments, where
the sources are non-stationary requiring prediction of the
next location. The proposed scheme is suitable for the
future needs of surveillance radar systems, where the system
has to make decisions of interest on possible target and
unwanted sources, cognitively. The proposed system can
find its utility both in military as well as civil surveillance
radar systems that support air traffic control.

Rest of the paper is organized as follows. Section II presents
the System Model. In Section III, simulation results are pre-
sented, and finally Section IV concludes the paper with
future dimensions.

I I . S Y S T E M M O D E L

Complete flow chart of the proposed system model is shown
in the block diagram of Fig. 1. The proposed cognitive radar
system has an FDA transmitter and a conventional PAR
receiver. The transmitter selects the desired frequency off
set cognitively, based on the feedback information provided
by the receiver, such that the deepest null of the pattern is
placed at interference source. The signal-processing unit at
the receiver localizes the interference source, described by
(range, elevation angle) tuple, i.e. (R, u). Direction of
arrival (DOA) is estimated using Multiple Signal
Classification (MUSIC) algorithm which is well known for
its precision and high-resolution capability. However,
range estimation is carried out by the conventional propaga-
tion delay technique. Knowledge obtained from the previous
illuminations is arranged in a time series manner and fed
into “one step ahead neural network (NN) predictor” to
predict the next location, i.e. (R, u) of interference source.
This information is fed back to the transmitter-processing
unit, where the selector unit again cognitively selects the
required frequency offset and precisely places the null at
the estimated position of interference source, thus promising
effective interference suppression. In this way, the cognitive
loop keeps on estimating, predicting the interference source
location, and succeeds in maintaining a deep null at the
desired location. This interference mitigation obviously
enhances signal-to-interference-plus-noise ratio (SINR) of
the system.

Block diagram of Fig. 1, consists of three parts: the radar
environment, transmitter processing unit, and receiver-
processing unit. We will describe each part in detail.

A) Transmitter-processing unit
The transmitter-processing unit consists of an FDA and a fre-
quency offset selector.

1) fda transmitted signal model

Transmitter consists of an N-element array with d inter-
element spacing as shown in Fig. 2. With f0 being the radar
operating frequency, a progressive frequency shift of Df is
employed along the length of the array, such that the fre-
quency at the nth element is given by:

fn = f0 + nDf . (1)

Taking the zeroth element as reference as shown in Fig. 2,
the path length difference between the waves of nth element
and reference element is given by:

Rn = R0 − ndsinu. (2)

Let the signal transmitted by nth element be expressed as:

Sn(t) = a0(t)exp −j2pfnt
{ }

, (3)

where a0(t) is a complex weight representing propagation and
transmission effects and is neglected here, i.e. a0(t) ¼ 1. Overall
signal arriving at far-field point (R0, u0) can be expressed as:

ST t( ) =
∑N−1

n=0

exp −j2pfn t − Rn

c

( ){ }
. (4)

Putting in the values of fn and Rn,

ST t( ) =
∑N−1

n=0

exp −j2p f0 + nDf
( )

t − (R0 − ndsinu0)
c

( ){ }
.

(5)

Making plane wave assumption: R0 ≫ (N 2 1)d and nar-
rowband FDA assumption (N 2 1)Df ≪ f0, the expression
reduces to:

ST t( ) = exp j2pf0 t − R0

c

( )[ ]∑N−1

n=0

ejnc, (6)

Fig. 1. Block diagram of FDA radar for cognitive null steering. Fig. 2. FDA transmitter.
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where

c = 2pDft + 2pf0

c
dsinu− 2pDfR0

c
. (7)

Arriving at closed-form expression, the array factor of the
FDA is:

AFn =
sin Nc/2
∣∣ ∣∣
sin Nc/2
∣∣ ∣∣ . (8)

2) frequency offset selector

In [17], the propagation time of peak signal from transmit
array to a target at some point is found by equating the
phase of field to 2 mp. But in order to create nulls, AFn ¼ 0
or equivalently

sin
Nc

2

( )
= 0. (9)

This leads to:

c = 2pDft

+ 2pf0

c
dsinu− 2pDf

c
R0 = +2np

N
, for N . n . −N.

(10)

Thus for the location of interferer at (Ri21, ui21), the time
of propagation of null of the field pattern from the transmit
array to the interferer location, can be calculated by (10) as:

ti−1 = Ri−1

c
+ 1

Dfi−1

n
N
− d

l0
sinui−1

( )
. (11)

Similarly for the location of interferer at (Ri, ui), the time of
propagation of field null from the transmit array to the inter-
ferer location is given by:

ti =
Ri

c
+ 1

Dfi

n
N
− d

l0
sinu

( )
i

. (12)

Now from above expressions it is clear that the time of
propagation of null of the field pattern from the transmit
array to the interferer location depends upon corresponding
offset Df. So if we equate time of null propagation from the
transmit array to the interferer location, at instants i and
i 2 1, i.e.

ti−1 = ti. (13)

Then we can calculate the required frequency off set Dfi

which when applied in a progressive incremental fashion to
the FDA, places null at desired location (Ri, ui).

Dfi =
(n/N)−(d/l0)sinui

(Ri−1/c)−(Ri/c)
( )

+(1/Dfi−1)((n/N)−(d/l0)sinui−1)
.

(14)

B) Radar environment
Figure 3 depicts the assumed trajectory of the interferer in the
far field. As mentioned earlier the radar environment has a
non-stationary target and a non-stationary interference
source. Since the proposed scheme estimates, predicts, and
maintains deepest nulls at the interference source, only trajec-
tory of the interference source is considered. Target is not
being considered for the time being.

C) Receiver-processing unit
Receiver array is a conventional phased array of M elements,
such that M ¼ N, with inter element spacing d. The processing
unit has two main parts – DOA estimator and NN predictor
for the next location (R, u).

1) doa estimator

DOA encompasses angle (u) and range (R) estimation.
The MUSIC algorithm has been used for angle of arrival

estimation. The MUSIC algorithm is counted amongst super
resolution DOA estimation techniques as it can resolve mul-
tiple signals simultaneously with much lesser computational
time [18].

Receiver signal model
Consider a general uniform linear phased-array configur-

ation of M elements with d inter-element spacing. Let ui be
the angle of the source to be detected, with range Ri, as mea-
sured from the reference element, i.e. the first element in our
case. The signal received by the first element is:

r t( ) = ST t − Ri

c

( )
. (15)

Similarly signal received by the second element is

r2 t( ) = ST t − Ri

c

( )
exp j2p

f0

c
dsinui

( )
, (16)

where the additional phase is introduced due to the path
length difference between the two elements. Thus, the input

Fig. 3. Range–angle plot of the assumed trajectory.
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signal vector at the receiver array:

x t( ) = r t( ) a F( ) + n t( ) , (17)

where

a(F) =
exp( − j2p(f0/c)dsinui)

..

.

exp( − jM2p(f0/c)dsinui)

⎡
⎢⎣

⎤
⎥⎦

is the steering vector and

n(t) =
n1(t)
..
.

nM(t)

⎡
⎢⎣

⎤
⎥⎦

is the white Gaussian noise vector with variance s2
n.

For L signals arriving at this array, the output of the array is
the linear combination of L incident waveforms.

U = Ar t( ) + n(t), (18)

where A is M × L array steering vector of the form

Input covariance matrix is given as

Ru = ARrAH + s2
nI . (20)

If l1 ≥ l2 ≥ l3, . . ., lM be the eigenvalues of Ru, q1, q2, q3,
. . ., qM be the eigenvectors of Ru, v1 ≥ v2 ≥ v3, . . ., vL be the
eigenvalues of ARrAH, then

li =
vi + s2

n i = 1, 2, . . . , L,
s2

n i = L + 1,M.

{
(21)

The eigenvector associated with a particular eigenvalue, is
the vector such that,

Ru − liI = 0 . (22)

For eigenvectors associated with smallest eigenvalues, we
have

ARrAHqi = 0, (23)

Since A has full rank and Rr is non-singular, this shows that
AHqi = 0 or equivalently

aH
k F( )qi = 0, i = L + 1, . . . ,M and k = 1, . . . , L. (24)

This means that the eigenvectors associated with the M–
L smallest eigenvalues are orthogonal to the steering vectors
that make up A. Thus by finding the steering vectors
orthogonal to the eigenvectors associated with the eigenva-
lues of Ru, one can estimate the steering vectors of received
signals.

Range estimation. Range is calculated by the conventional
propagation delay method. As calculated in (12), null takes
ti time to reach the interference source at location (Ri, ui).
Now from the interference source to the receiver time taken
is Ri/c. So the total delay between the wave departure from
transmitter to the arrival at the receiver is given by Ti, i.e.
Ti ¼ ti + (Ri/c), where

Ti =
2Ri

c
+ 1

Dfi

n
N
− d

l0
sinui

( )
. (25)

The range Ri can be calculated as:

Ri =
c
2

Ti −
1
Dfi

n
N
− d

l0
sinu

( )( )
i

. (26)

2) nn predictor

Once the interference source is localized, the next step is pre-
dictor. Prediction is claiming future value of a function
depending upon the past values. When dealing with the pre-
dictions in real time, it is necessary that the technique used
for the prediction of the next outcome should neither be too
complex nor much time consuming that the predicted event
occurs before the prediction. We have employed, for the pre-
diction of location (Ri, ui), NNs as a time series predictor.

NNs are a good choice for prediction for two basic reasons.
They behave as a non-linear and non-parametric approach to
approximate any continuous function to high degree of accur-
acy [19]. NNs are preferred here because they are simpler to
implement and outsmart other prediction techniques when
the functional relationship between independent and depend-
ent variables are unknown [20]. Unlike the extended Kalman
filters implementation, NNs do not require a model of the
system [21].

A =

exp −j2p
f0

c
dsinu1

( )

..

.

exp −jM2p
f0

c
dsinu1

( )

exp −j2p
f0

c
dsinu2

( )

..

.

exp −jM2p
f0

c
dsinu2

( ) . . . . . . .

exp −j2p
f0

c
dsinuL

( )

..

.

exp −jM2p
f0

c
dsinuL

( )

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦
. (19)
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In the beginning of the setup, consecutive interference
source locations are noted down and arranged in a form of
time series sequence of “range” and “angle” independently.
This input sequence is given to NN which then adjusts its
weights and trains itself to give a best fit until the performance
criterion is met. The network takes in previous input and
output values and continues to give required step ahead pre-
diction by keeping the performance criterion as a constraint
and keeps on readjusting its weight in case of errors
between the actual outcomes and its estimates. In our case,
we have used the NN time series tool in MATLAB. The
model employed is non-linear autoregressive with exogenous
inputs (NARX). The NARX model describes any non-linear
model very conveniently [22], where non-linear mapping

is generally approximated by a standard multilayer perceptron
network [23]. Figure 4 explains the architecture and working
of the NARX model.

The standard NARX is a two-layer feedforward network.
The hidden layer uses sigmoid function as transfer function,
while the output layer uses a linear transfer function. NARX
time series predictor predicts y(t + 1), given “p” past values
of y(t) and the input series u(t), i.e. y(t + 1) ¼ f [u(t), u(t 2

1),. . ., u(t 2 p), y(t), y(t 2 1),. . ., y(t 2 p)]. For storing the
past values of the u(t) and y(t) sequences, the NARX uses
tapped delay lines. Performance criterion is MSE which is
defined as the squared difference between actual and esti-
mated outcome. This is the most common criterion of estima-
tors and is given by:

MSE = Actual − Estimated| |2.

I I I . S I M U L A T I O N S A N D R E S U L T S

In this section, the simulation results of the proposed system
are presented. It is assumed that the transmitter and receiver
arrays are of 10 elements each, with uniform spacing of half-
wavelength. The operating frequency selected is 10 GHz.

Fig. 4. Architecture and working of the NARX model.

Fig. 5. Input autocorrelation curve for (a) range time series prediction, and (b) angle time series prediction.

Fig. 6. Validation performance for (a) range time series prediction, and (b) angle time series prediction.
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A) NN predictor results
Time series sequences of successive range and angle locations of
interference sources are loaded into NN time series tool in
MATLAB. NARX model is selected. The number of hidden
neurons is set to 8 and the number of tapped delay lines is 4.
Default Levenberg–Marquardt back propagation algorithm is
used for training the network. System performance criterion
is MSE. The input autocorrelation curves for the range and
angle time series prediction are shown in Figs 5(a) and 5(b),
respectively. It relates prediction errors in time. Value of auto-
correlation function at zero lag is basically representing MSE,
which is 0.01 and 0.02 for range and angle prediction,

respectively. Secondly all the other correlations are within the
tolerance boundary, so the system is performing adequately.

Performance plots are shown in Figs 6(a) and 6(b) for
range and angle time series prediction, respectively. These
plots show that all errors (testing, validation, and training)
are decreasing until best validation is met and so there is no
overfitting, i.e. errors are continuously being reduced with
every iteration and predicted values are getting closer to the
original values. Thus, the NN is predicting the next location
of the interferer more and more precisely.

Prediction plots are shown in Figs 7(a) and 7(b) for range
and angle time series, respectively. This plot shows the predic-
tion performance of NARX predictor.

B) Null steering results
For the simulation purpose, we have considered a 10 GHz
FDA, consisting of ten elements with l/2 inter-element
spacing and an initial frequency offset of 10 kHz. As can be
inferred from Fig. 4, few locations of the interference source
are given below. In Table 1, for every location, the frequency
offset so obtained from (14) has also been mentioned.

Figure 8(a) shows nulls of the beampattern in angle keeping
range fixed, whereas Fig. 8(b) shows null placement in range
keeping angle fixed. Sharp nulls of the order of 2300 dB in
all the cases validate the proposed methodology and also

Fig. 7. Prediction performance plot for (a) range time series prediction, and (b) angle time series prediction.

Table 1. Locations of the interference source and the frequency offsets so
obtained.

Ri (km) ui (deg) Dfi (kHz)

3 249 10.15
4 240 10.47
2.5 220 19.49
2.8 0 21.82
4.5 10 228.71
5 20 219.94

Fig. 8. (a) Field versus angle with time and range fixed. (b) Field versus range with time and angle fixed.
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Fig. 9. Periodicity of nulls (a) 2D representation, (b) 3D representation.

Fig. 10. Range–angle beampattern of FDA with the proposed offset for (a) (2498, 3 km), (b) (2408, 4 km), (c) (2208, 2.5 km), (d) (08, 2.8 km), (e) (108, 4.5 km),
and (f) (208, 5 km).
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show the versatility of the proposed formulation, which can
cast nulls at any combination of (R, u). Due to the periodic
nature of the FDA beampattern, one can notice periodic nulls
at different (R, u) pairs. However, deepest nulls appear only
at the specified locations of the interferer as obtained by the
proposed methodology. In order to present a clear view of
the nulls, position of the interferer with coordinates (3 km
2498) is considered. In Fig. 9(a), clear nulls at locations
other than the desired locations can be witnessed, of the
order of 240 to 250 dB. Periodicity of the null in LFDA beam-
pattern is c/NDf, as deduced from (10). ForDf of 10.15 kHz and
10 element array, nulls are repeated every 3 km. This can be
verified from Fig. 9. So not only other nulls are appearing but
are also periodic. In Fig. 9(b), three-dimensional (3D) absolute
field representation also verifies nulls at other range–angle
pairs, as shown by the data tips.

Figures 10(a)–10(f) show 3D range angle-dependent beam-
patterns for null placement at all the six selected locations of the
interferer. For clarity of the figure, absolute values of the field
are plotted which show sharp nulls with extremely low values.

I V . C O N C L U S I O N S A N D F U T U R E
W O R K

This paper has provided an implementable cognitive null steer-
ing solution in FDA radars. As shown through simulations,
frequency diversity provides extra maneuverability and
higher degree of freedom for precise null placement i.e. null
placement in angle as well as in range, which is seldom possible
with PAR. The MUSIC estimation method provides the exact
DOA estimation. The NN used as time series predictor for the
next location (range, angle) of interference source behaves
adequately with minimum errors and helps keeping a track
of the interference source. Precise and deepest nulls are
placed at the estimated next positions of the interference
source, thus minimizing the returns from interferer, which
can potentially enhance system performance in terms of
SINR. Simultaneous placement of beam maximum at the
target and null at the interference source is one of our future
aims. Similarly multiple null steering methods for the suppres-
sion of multiple interferers is an avenue still to be explored in
FDA radars.
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