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The halting scale of the inverse energy cascade and the partition between kinetic and
potential energy are considered for the case of forced quasigeostrophic turbulence
in the regime of intermediate Rossby deformation length, for which the deformation
length is comparable to the energy-containing scales of the flow. Phenomenological
estimates for the halting scale and equilibrated energy of the forced–dissipative
system with a simple representation of large-scale thermal damping are tested against
numerical integrations and are found to poorly describe the numerically obtained
dependence on damping coefficient; a modified scaling law is proposed that more
accurately describes the dependence. The scale-selective nature of the damping leads
to a large-scale spectral bottleneck that steepens the energy spectrum, consistent with
previous studies of hypodiffusive dissipation. It is found that, across the parameter
range considered, the blocking is largely insensitive to the ratio of deformation radius
to the energy-containing scales.

Key words: geophysical and geological flows, geostrophic turbulence, quasi-
geostrophic flows

1. Introduction

This paper examines the equilibration of energy in the two-dimensional
quasigeostrophic equations (e.g. Vallis 2006), arguably the simplest description of
the large-scale, low-frequency motion of planetary atmospheres and oceans that
allows for free-surface effects and a representation of the gravitational restoring
force. The system arises also in the theory of drift-wave turbulence in a magnetically
confined plasma (Hasegawa & Mima 1978). Free-surface effects introduce two main
complications into the simple two-dimensional barotropic model: an extra length scale,
the Rossby deformation length LD =√gH/f , where g is the gravitational acceleration,
H is the mean layer depth, and f is the Coriolis parameter, that measures the relative
effects of gravitation and rotation; and a partition of the fluid energy into kinetic
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and potential components. The introduction of the extra length scale fundamentally
alters the properties of turbulence in the system, while the partition into kinetic and
potential energies renders inadequate the predictions of energy equilibration available
from two-dimensional barotropic theory.

The system is governed by the following equation of motion:

qt + J(ψ, q)= F + D, (1.1)

where the quasigeostrophic potential vorticity, q, is related to the streamfunction ψ

through

q=1ψ − λ2ψ, (1.2)

and where λ = L−1
D is the inverse Rossby deformation length. The terms F and D

represent forcing and damping, respectively: F may represent the input of energy
into the system from large-scale instabilities, or from small-scale convective motions,
while D may represent the dissipation of energy at large scales by flow over rough
topography or from radiative transfer processes, as discussed below.

When LD/L� 1, where L is a typical length scale of the flow, such as the scale
at which the forcing is dominant, the evolution of (1.1) is practically indistinguishable
from the two-dimensional Euler equations. Phenomenological and numerical studies of
(1.1) have tended to focus on the opposite situation in which LD/L� 1 (e.g. Larichev
& McWilliams 1991; Iwayama, Shepherd & Watanabe 2002; Smith et al. 2002), which
allows certain asymptotic results to be obtained, including scaling laws for the increase
in dynamical time scales with increasing λ. No scaling laws have been derived or
empirically deduced for the intermediate case LD/L ∼ O(1), even for fundamental
quantities such as the ratio of kinetic and potential energies at statistical equilibrium,
or the halting scale of the inverse energy cascade by large-scale dissipation. These two
quantities are the focus of the current paper.

Two essentially distinct forms of large-scale dissipation can be considered as
relevant, according to the physical situation, which may be motivated by consideration
of the rotating shallow-water system of equations from which (1.1) is derived. The
shallow-water equations can be viewed as describing the motion of a shallow layer
of rotating fluid, of mean layer depth H, or, alternatively, as describing an internal
vertical mode of equivalent depth H in a continuously stratified fluid. In the shallow-
water system, the effect of bottom friction may be represented simply by a linear
drag on the velocity, u, in the horizontal momentum equations. The effect of long-
wave cooling, the dissipation mechanism most relevant to the motions of planetary
atmospheres, may be represented by a Newtonian cooling in the thermodynamic
equation (e.g. Andrews, Holton & Leovy 1987), which in the shallow-water system
is equivalent to a relaxation on the height field h. Thus,

ut + u ·∇u+ fk× u=−g∇h− ru, (1.3a)
ht +∇ · (uh)=−α(h− H), (1.3b)

where r is the frictional damping rate, α is the thermal damping rate, and k is the unit
vector in the vertical direction. The system (1.3) can be combined to form an evolution
equation for the potential vorticity, Q= (ζ + f )/h,

Qt + u ·∇Q= αQh′/h− rζ, (1.4)

where ζ = k · ∇ × u is the vorticity and h′ = h − H is the height perturbation. Note
that Q is materially conserved when α = r = 0. Under the usual quasigeostrophic
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approximation, and defining the quasigeostrophic streamfunction ψ = gh′/f , (1.4)
reduces to (1.1) and (1.2) with

D= αλ2ψ − r1ψ. (1.5)

This paper is mainly concerned with the case of thermal damping α 6= 0, r = 0. As
is discussed in § 2 below, the case of purely frictional damping does not in general
lead to a stationary state, since equilibration of potential energy requires a dissipation
mechanism more active at large scales. In § 3, we consider the equilibration of energy
and the scale at which equilibration occurs when thermal damping is used, discussing
simple phenomenological predictions and presenting numerical support for a refined
scaling law. In § 4, we consider briefly the effect of the scale-selective nature of
thermal damping on the inverse cascade: distortion of the energy spectrum is obtained
in all cases but in a way that is largely independent of λ. Conclusions are given in § 5.

2. Energy equilibration

2.1. Partition of kinetic and potential energy
In the inviscid limit (1.1), equilibrium consists of a balance between energy input by
F and large-scale dissipation by D. Multiplying (1.1) by −ψ and integrating over the
domain yields

Ė =−2rT − 2αP + ε, (2.1)

where ε is the rate of energy input and where E = − ∫
ψq dA, T = − ∫

ψζ dA,
and P = ∫

λ2ψ2 dA are the domain-integrated total, kinetic and potential energies,
respectively. In the undamped case r = α = 0, energy increases linearly at rate ε, but
the distribution between T and P is not predicted. An approximate partition may be
obtained from the identity

λ2T(k)= k2P(k) (2.2)

where T(k) and P(k) are the kinetic and potential energy spectra, and k is the
wavenumber. If it is assumed that the spectra are peaked at a distinct wavenumber
kp then (2.2) may be integrated to yield

λ2T ∼ k2
pP. (2.3)

The ratio of kinetic to potential energy thus depends on the ratio of the energy peak
wavenumber kp and inverse deformation length λ.

For illustration, figure 1(a) shows the growth in time of kinetic (solid line) and
potential (dotted line) energy for representative integrations of (1.1) for values of
λ = 0.5, 1, 2, 4, 8, 16. In these integrations F is an isotropic, band-limited stochastic
forcing, delta-correlated in time, of Fourier modes k satisfying |k − kf | 6 δf centred
on wavenumber kf = 32 with width δf = kf /16. The energy input rate ε = 1. The
integration uses a standard pseudo-spectral algorithm with a fourth-order Runge–Kutta
time-stepping scheme, and a periodic domain of size 2π × 2π with N = 1024 grid
points in each direction. De-aliasing is by way of a spectral filter, giving a maximum
resolved wavenumber of kmax = 3N/8 = 384, and a weak fourth-order Laplacian
hyperdiffusion controls the enstrophy at small scales. The choice of parameters gives
a value of kmax/kf = 12 large enough that forcing scales are adequately resolved (Scott
2007) and ensures that almost all of the energy input is transferred to larger scales
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FIGURE 1. (a) Kinetic energy (solid) and potential energy (dotted) as a function of time,
obtained from integrations of (1.1) with D = 0, and λ = 0.5, 1, 2, 4, 8, 16. (b) The ratio k2

p/λ
2

(solid), where kp is the energy centroid (2.4), and T /P (dotted). In (a) lines of T are lower in
the plot for larger λ, corresponding lines of P are higher; in (b) lines of kp/λ and T /P are
both lower at larger values of λ.

with minimal loss to hyperdiffusion. Higher resolution integrations and the effects of
varying kf and kmax are considered in more detail in §§ 3 and 4.

In figure 1(a), T and P are scaled by the fraction of ε, εeff , that is transferred
to large scales, to account for the small fraction of ε that is lost to hyperdiffusion
(typically less than a few per cent). The growth of total energy at rate ε = 1 is
represented by the straight dashed line with unit slope. At early time growth of kinetic
energy follows growth of total energy, until significant energy builds up at scales close
to LD. At this time, which occurs earlier at higher values of λ, growth of kinetic
energy slows, while growth of potential energy increases: at late time and large λ

almost all energy growth is associated with increasing P .
As shown in figure 1(b), the change in the ratio of kinetic and potential energy

approximately follows the evolution of the peak wavenumber kp, the latter represented
here simply by the wavenumber centroid of the energy spectrum:

kp =

∫
kE(k) dk∫
E(k) dk

. (2.4)

When kp � λ the time evolution of kp/λ is close to the scaling kp/λ ∼ λ−1/4ε1/3t−3/8

suggested by Watanabe, Fujisaka & Iwayama (1997), although the observed
dependence on λ appears to be significantly stronger. We note that due to saturation
of the energy at the domain scale, we do not expect exact agreement between T /P
and kp/λ here. More detailed comparison will be made in § 3 below for cases in which
large-scale dissipation allows equilibration at scales well below the domain scale.
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FIGURE 2. Kinetic energy (solid) and potential energy (dotted) as a function of time, obtained
from integrations of (1.1) with λ= 1, 2, 4, 8, 16 and D given by (1.5) with r = 0.2, α = 0. Lines
of T are lower in the plot for larger λ, corresponding lines of P are higher.

2.2. Frictional dissipation
Frictional dissipation has been widely used in studies of two-dimensional barotropic
turbulence (λ = 0), in part because it allows a convenient energy closure, although it
has the drawback of damping vorticity equally across scales, thereby preventing a true
inertial range (Sukorianski, Galperin & Chekhlov 1999). For the case λ 6= 0 considered
here, (2.1) with r 6= 0, α = 0 gives at equilibrium the balance

T = ε/2r. (2.5)

Unlike the barotropic case, however, there is no property of (2.1) that indicates
a stationary state should be reached. Assuming that Ṫ and Ṗ are both positive
definite, the most that can be inferred from (2.1) is that T will equilibrate at a value
T 6 ε/2r, while P may continue growing indefinitely at rate Ṗ = ε − 2rT , at least
until the domain scale is reached. Such growth in P would be associated with a
redistribution of kinetic energy to larger scales in accordance with the relation (2.2).

Figure 2 shows the kinetic and potential energy for integrations of (1.1) and
(1.5) with r = 0.2, α = 0. For λ = 1, 2, 4 equilibration occurs on a time scale of
approximately 1/r = 5, with T close to the predicted value of ε/2r = 2.5. For larger
λ, equilibration has not yet occurred by t = 100: values of T remain measurably
below the predicted value and accordingly the potential energy shows continued
growth over this period. It is likely that over sufficiently long time scales equilibrium
will be reached as the potential energy peak reaches the domain scale and further
redistribution of T(k) is restricted. It is not clear, and difficult to test computationally,
whether complete equilibration of T(k) and P would ever occur in an unbounded
domain.

2.3. Thermal damping
Thermal relaxation is the most physically relevant form of energy dissipation for
studies of the middle atmosphere, or of the atmospheres of the gas giant planets,
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FIGURE 3. As figure 2 but with thermal damping at rate α = 20/λ2.

where there is no frictional boundary layer overlying a lower solid surface; it is
known to be the main mechanism for energy dissipation in the terrestrial stratosphere
(e.g. Andrews et al. 1987). Recent studies of global shallow-water turbulence on a
sphere have indicated that the form of large-scale dissipation can determine the nature
of equatorial jets, with thermal damping favouring equatorial super-rotation (Scott
& Polvani 2007, 2008) consistent with the sense of the equatorial jets on the gas
giant planets. In the analysis of the inverse energy cascade, thermal damping may
also be a favourable choice: in contrast to frictional dissipation, it is scale-selective,
acting predominantly at large scales, and may thus, in principle, avoid the frictional
contamination of the inertial range observed by Sukorianski et al. (1999), although,
as shown in § 4 below, it is nevertheless subject to bottleneck effects and spectral
steepening similar to that found with high-order hypodiffusive operators considered by
Borue (1994) and Danilov & Gurarie (2001).

At equilibrium, (2.1) with r = 0, α 6= 0 gives the balance

P = ε/2α. (2.6)

At first sight this does not appear to offer any advantages over the frictional damping
case considered above, since now (1.1) does not constrain T . Use may be made,
however, of the identity (2.2) together with the fact that energy cascades to larger-
scales. Since, through (2.2), P may be considered to be a larger-scale quantity than
T , equilibration of P will necessarily constrain values of T : in particular, no P-
preserving rearrangement of P(k) is possible in which there is both a transfer of total
energy to larger-scales and a simultaneous increase of T .

Figure 3 shows the kinetic and potential energy for cases similar to those in figure 2
but with thermal damping at rate α = 20/λ2 (and r = 0). This value was chosen
empirically to give approximately the same values for the equilibrated kinetic energy
as the previous case r = 0.2, α = 0. The time scale for equilibration of T is here
also similar to the previous case. Note from (1.5) that scaling α with λ−2 ensures
comparable damping of the streamfunction across different values of λ, and results
in the comparable values of equilibrated T , which are almost indistinguishable in
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figure 3. Note, again, that values of both T and P are scaled by εeff to account for
the small amount of energy input lost to hyperdiffusion at small scales. The important
point here, however, is that, in contrast to the case of frictional damping, the potential
energy P reaches a steady value in all cases. Equilibrium values of P scale as λ2

in accordance with (2.6). The approximate relation (2.3) thus describes the energy
equilibration reasonably accurately across this range of λ.

3. Halting scale and energy partition

The scaling of T /P with λ−2 holds in the above integrations because the peak
in the energy spectrum occurs at similar wavenumbers kp across all values of λ. A
more complete description of the partition between T and P requires an estimate of
kp for different values of the large-scale dissipation rates α or r. Due to the lack of
equilibration when α = 0, we restrict attention here to the case r = 0, α > 0, which
gives clear equilibration of both T and P .

It is useful to consider the four main parameters that govern the system (1.1) with
the form of forcing and dissipation used here: λ, ε, α and kf . These may be combined
into two non-dimensional parameters that control the behaviour of the system:

γ1 = ελ2/α3 and γ2 = λ/kf . (3.1)

These two parameters completely specify the system up to a rescaling of time
or space: different values of the physical parameters that leave γ1, γ2 unchanged
correspond simply to different time and length scales, but are otherwise equivalent.
The parameters in the numerical integrations presented below have been chosen such
that the maximum and minimum length scales imposed by the domain and resolution
are respectively much larger and smaller than typical length scales of the flow.

If it assumed that the forcing scale is sufficiently small that γ2 � 1, and that γ2

consequently has no effect on the evolution, then kp/λ can depend only on γ1. An
estimate for kp in terms of γ1 was suggested previously by Smith et al. (2002) for
the case kp � λ, termed large-scale quasigeostrophic flow, based on a comparison of
typical damping and advective time scales. We begin by noting that in fact the same
estimate holds also in the other limit, namely when kp� λ. In this case, the right-hand
side of (1.5) gives the damping time scale of motions at scale k−1

p as

τrad ∼ (k2
p + λ2)/αλ2 ∼ k2

p/αλ
2, (3.2)

while for the advective time scale

τadv ∼ [k3
pT(kp)]−1/2

(3.3)

may be taken with an assumed Kolmogorov–Kraichnan (Kraichnan 1967) kinetic
energy spectrum of the form T(k) ∼ ε2/3k−5/3. Combining (3.2) and (3.3) yields
kp ∼ (α3λ6/ε)

1/8, or

kp/λ∼ γ −1/8
1 , (3.4)

which is the same as the estimate obtained by Smith et al. (2002) (equation (5.7c),
therein), but valid in the range kp� λ rather than kp� λ. The same estimate may also
be obtained without reference to the slope of the energy spectrum using the simpler

τadv ∼ (kpU)−1, (3.5)
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FIGURE 4. Ratio kp/λ against γ1. In (a) kp is the full energy centroid (2.4); in (b) it is the
centroid of the potential energy spectrum, defined analogously. Dotted lines indicate the slope
−1/8. Each group of four filled or open circles indicates a separate value of λ, higher values of
λ to the right; values of α decrease to the right within each group.

where U is a characteristic velocity, which may be taken here as T 1/2, and using
the relations (2.3) and (2.6). Since thermal damping is effectively a dissipation on the
streamfunction, the quantity kp in (3.2) and (3.5) should be taken to be the centroid of
the potential energy spectrum P(k), rather than that of the full spectrum E(k).

The estimate (3.4) has not been very well supported by numerical computations.
For the situation of kp � λ, Smith et al. (2002) computed the peak in the energy
spectrum (rather than the centroid) and found reasonable agreement with the estimate
(3.4), but with a dependence of kp on α somewhat stronger than suggested by
(3.4). The dependence on λ was not considered. Figure 4 shows the results from a
series of integrations across all combinations of the values λ = 0.5, 1, 2, 4, 8, 16 and
αλ2 = 2.5, 5, 10, 20, for which we cover the regime kp� λ as well as extending across
into kp� λ. For each calculation equilibration of P and T was verified (equilibration
was marginal for the case λ = 16 and α = 2.5 but otherwise achieved well before the
end of the integrations at T = 100). The value of kp was computed from both the full
energy centroid (2.4) (figure 4a) and the potential energy centroid (figure 4b), averaged
over the last 20 % of each integration, and the value of kp/λ plotted against γ1. As in
Smith et al. (2002), the agreement is reasonable but not perfect. In particular, within
each group of simulations with a given λ (groups of filled or open circles), there
is a systematic departure from the predicted scaling with α, suggesting a somewhat
shallower power-law dependence. The scaling of the data with λ follows (3.4) more
closely across the full range of kp/λ, particularly when kp is taken to be the centroid of
the potential energy spectrum.

An improved scaling may be obtained by retaining a possible dependence on kf

through the parameter γ2. We make the observation that (3.4) holds well for values
of α and λ such that αλ2 is fixed; this corresponds simply to kp being independent
of λ for fixed αλ2, the coefficient of dissipation in (1.5). Equation (3.4) may then be
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10–1

103

FIGURE 5. Ratios (a) kp/λ and (b) T /P against γ1γ
2
2 , with kp obtained from the centroid

of the potential energy spectrum. Dotted lines indicate the slopes −1/10 and −1/5 in (a) and
(b), respectively. Filled and open circles denote kf = 32 as in figure 4; crosses denote kf = 16,
triangles denote kf = 64, stars denote kf = 128.

generalized to

kp/λ= C(β)γ −1/8
1 , (3.6)

where C(β) is a non-universal prefactor and β = εk8
f /α

3λ6 = γ1/γ
8
2 is the unique

non-dimensional combination of the parameters ε, kf and αλ2. In particular, the
choice C(β)= β1/40 yields

kp/λ∼ (γ1γ
2
2 )
−1/10

, (3.7)

which has a shallower dependence on α than (3.4) and provides a remarkably
good fit to the numerical data, as shown in figure 5(a). This scaling has been
verified by performing additional integrations of all the above cases with the values
kf = 16, 32, 64 (at grid resolutions 512, 1024, 2048 to keep the ratio kmax/kf = 12
fixed), as well as a selection of cases with kf = 128. Figure 5(a) shows all values
of kp/λ plotted against γ1γ

2
2 , and indicates good agreement with a −1/10 power

law, again over the full range of parameters, and for all values of kf . We note that
the scaling obtained here holds across a wide range of kp/λ, from kp � λ to the
kp � λ limit considered by Smith et al. (2002). A least-squares linear regression of
the data indicates kp/λ = Ch (γ1γ

2
2 )

p, with p = −0.099 and prefactor Ch = 1.76, with
a chi-square goodness-of-fit of 0.045. Fitting to the more general kp/λ = Ch(γ

p
1 γ

q
2 )

suggested a possibly lower value for q of −0.176, but with an almost negligible
improvement of the goodness-of-fit to 0.040.

Finally, the partition between kinetic and potential energy may be obtained from
(2.3) and (3.7), giving

T /P ∼ (γ1γ
2
2 )
−1/5

. (3.8)
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FIGURE 6. (a) Kinetic energy spectrum T(k) and (b) energy flux Π(k) for integrations with
kf = 512, αλ2 = 10, and λ = 1, 4, 16 (solid, dotted, and dashed, respectively). The straight
dotted line in (a) indicates the slope −5/3 for reference only.

Values of T /P for the simulations described above are plotted in figure 5(b), and
indicate good agreement with (3.8) across all parameter values. A least-squares fit to
T /P = Ce (γ1γ

2
2 )

p here gives p ≈ −0.20 and Ce ≈ 4.30, with a chi-square goodness-
of-fit of 0.196. Again, the form of (3.7) is such that kp depends on α and λ only
in the combination αλ2. Since P = ε/2α, it follows from (2.3) that T also depends
only on the combination αλ2, consistent with the uniform energy levels obtained in the
integrations shown in figure 3, for which α ∝ λ−2.

4. Inertial-range properties

In view of the similarity to atmospheric radiative damping, we consider briefly
the structure of the inverse energy cascade at equilibrium. Borue (1994) noted
the large-scale condensation and steepening of the energy spectrum that occurs in
two-dimensional barotropic turbulence when energy dissipation is confined to the
lowest wavenumbers. Danilov & Gurarie (2001) further showed the incompatibility
of a constant-flux energy inertial range with the Kolmogorov–Kraichnan k−5/3 energy
spectrum. In effect, the thermal damping of (1.5) with α > 0 may be considered as a
hypodiffusive operator in the limit λ→ 0 such that the coefficient αλ2 retains a finite
value, and so distortion of the inverse cascade is also expected in this case.

Figure 6(a) shows the kinetic energy spectrum, T(k), for three cases λ = 1, 4, 16
and with forcing at wavenumber kf = 512. In all cases there is significant distortion
of the Kolmogorov–Kraichnan spectrum, with elevated energy levels across a range of
intermediate wavenumbers extending from kp towards kf and steeper spectral slopes
near kf ; the form is similar to spectra obtained in other studies (e.g. Borue 1994;
Danilov & Gurarie 2001). Perhaps surprisingly, there is little dependence on λ across
the range considered, apart from a slight flattening at λ = 16: this suggests that the
large-scale condensation arising from the scale-selective dissipation may be a more
important effect than any condensation associated with the finite deformation radius,
at least over the parameter range considered here. Figure 6(b) shows the energy flux,
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exhibiting the constant flux range where thermal dissipation has no effect on the
energy cascade. The reduction from Π(k) = ε is due to significant energy dissipation
in the vicinity of the forcing scales for the high value of kf used in these cases.

5. Conclusions

In the quasigeostrophic system (1.1) with finite deformation radius and constant
energy input at small scales, energy dissipation must be scale-selective to guarantee
equilibration of total energy at scales below the domain scale. In particular, linear
friction, which controls the kinetic energy equilibrium places no constraint on potential
energy, which may grow unrestricted until saturation at the domain scale. Thermal
damping is a natural dissipation mechanism, closely related to long-wave cooling in
the atmosphere, that ensures equilibration of both potential energy and kinetic energy.

Equilibrium levels of kinetic and potential energy are related through the
approximate partition (2.3), where kp is a suitably defined halting scale of the inverse
cascade that may depend on a combination of two non-dimensional parameters γ1 and
γ2 given by (3.1). Simple dimensional arguments give kp/λ ∼ γ −1/8

1 , over a range of
kp/λ not restricted to the kp� λ limit considered by Smith et al. (2002); this scaling
captures the dependence on λ (not considered by Smith et al.) but overestimates the
dependence on α. On the other hand, based on a large number of integrations of
(1.1) the halting scale is found to be better estimated by kp/λ = Ch (γ1γ

2
2 )
−1/10, with

prefactor Ch ≈ 1.76 obtained from a least-squares fit. At present there is no adequate
theory for the value of the prefactor, nor for the suggested dependence on kf that arises
through γ2 = λ/kf . The estimate for the halting scale gives immediately an estimate
for the partition between kinetic and potential energy T /P = Ce (γ1γ

2
2 )
−1/5, with

prefactor Ce ≈ 4.30 again obtained from a least-squares fit.
The scale-selective nature of thermal damping produces a large-scale bottleneck in

the inverse cascade and a steepening of the energy spectrum, similar to that found in
the two-dimensional barotropic system with high-order hypodiffusive dissipation. The
distortion of the energy spectrum is largely independent of λ for values in a range
around kp, suggesting that the bottleneck effect arising from the damping is more
important than that arising from a reduction of the energy cascade by λ.
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