
J. Inst. Math. Jussieu (2020) 19(5), 1629–1675

doi:10.1017/S1474748018000506 c© Cambridge University Press 2018

1629

WKB EXPANSIONS FOR HYPERBOLIC BOUNDARY VALUE
PROBLEMS IN A STRIP: SELFINTERACTION MEETS STRONG

WELL-POSEDNESS

ANTOINE BENOIT
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Abstract In this article we are interested in the rigorous construction of WKB expansions for hyperbolic

boundary value problems in the strip Rd−1
×[0, 1]. In this geometry, a new inversibility condition has to

be imposed to construct the WKB expansion. This new condition is due to selfinteraction phenomenon

which naturally appear when several boundary conditions are imposed. More precisely, by selfinteraction

we mean that some rays can regenerated themselves after some rebounds against the sides of the strip.
This phenomenon is not new and has already been studied in Benoit (Geometric optics expansions

for hyperbolic corner problems, I: self-interaction phenomenon, Anal. PDE 9(6) (2016), 1359–1418),

Sarason and Smoller (Geometrical optics and the corner problem, Arch. Rat. Mech. Anal. 56 (1974/75),
34–69) in the corner geometry. In this framework the existence of such selfinteracting rays is linked

to specific geometries of the characteristic variety and may seem to be somewhat anecdotal. However

for the strip geometry such rays become generic. The new inversibility condition, used to construct
the WKB expansion, is a microlocalized version of the one characterizing the uniform in time strong

well-posedness (Benoit, Lower exponential strong well-posedness of hyperbolic boundary value problems
in a strip (preprint)). It is interesting to point here that such a situation already occurs in the half space

geometry (Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23

(1970), 277–298).
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1. Introduction

This article deals with the geometric optics expansion of the following highly oscillating
hyperbolic problem in the strip Rd−1

×[0, 1]

L(∂)uε := ∂t uε +
∑d

j=1 A j∂ j uε = 0 for (t, x ′, xd) ∈ R×Rd−1
×]0, 1[,

B0uε
|xd=0 = gε for (t, x ′) ∈ R×Rd−1,

B1uε
|xd=1 = 0 for (t, x ′) ∈ R×Rd−1,

uε
|t60 = 0 for (x ′, xd) ∈ Rd−1

×[0, 1],

(1)

where the coefficients in the interior, namely the A j ’s, are in MN×N (R), the ones on the
boundaries, namely B0 and B1 are respectively in Mp×N (R) and MN−p×N (R) (the value
of p will be made precise in Assumption 2.2). Consequently the solution uε of (1) lies in
RN . In (1) the only non-zero source term1 is on the boundary Rd−1

×{0} and is highly
oscillating with respect to the parameter 0 < ε � 1 (we refer to Section 5 for more details
about the precise expression of gε).

1We could also consider problems (1) with a non-zero source term in the interior (and by linearity also

on the boundary Rd−1
×{1}). However, we are here mainly interested in the influence of the boundaries

on the behavior of the solution of (1). That is why we decided, in order to simplify the computations, to

set homogeneous source term on the boundary Rd−1
×{1} or/and in the interior.
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The aim of geometric optics expansions is to construct an approximate solution of (1)
in the high frequency asymptotic. Then we expect that some qualitative phenomenon
can be easily observed on this approximate solution whereas they are not easily readable
on the solution of (1).

Before to give some more comments about the strong well-posedness of (1) let us recall
some elements about the analogous (well-known) situation in the half space. We consider
the following boundary value problem in the half space geometry:

L(∂)uε = f ε for (t, x ′, xd) ∈ R×Rd−1
×R∗+,

Buε
|xd=0 = gε for (t, x ′) ∈ R×Rd−1,

uε
|t60 = 0 for (x ′, xd) ∈ Rd−1

×R+.

(2)

From the seminal work of [7] it is known that the strong well-posedness (here by
strong well-posedness we mean existence, uniqueness and an energy estimate in some
weighted (in time) L2-norm) of (2) is equivalent to the fulfillment of the so-called uniform
Kreiss–Lopatinskii condition. Roughly speaking this condition ensures that in the normal
mode analysis no stable mode is solution of the homogeneous boundary condition on
Rd−1

×{0}. With more details, the uniform Kreiss–Lopatinskii condition states that
for all (time–space) frequency parameter ζ in the normal mode analysis we have the
decomposition

E s(ζ )⊕ ker B = CN , (3)

or equivalently that the restriction of B to the stable subspace E s(ζ ) is an isomorphism.
Then when one wants to construct the geometric optics expansion for (2) (see

for example [13]) then he has to impose a microlocalized version of the uniform
Kreiss–Lopatinskii condition. To explain this, in a formal setting, let us consider a
situation in which a compactly supported interior source term f ε induces some waves
traveling (with fixed frequency ζ ) to the boundary Rd−1

×{0}. Then by finite speed of
propagation arguments these waves will hit the boundary (this kind of traveling waves
will be referred as outgoing waves) after a finite travel time and will be reflected back.
To determine the reflections that go from the boundary to the interior (they will be
referred as incoming waves) one needs to express the new incoming waves in terms of the
outgoing ones (at frequency ζ ) and it is exactly a microlocalized version of the uniform
Kreiss–Lopatinskii condition at the frequency ζ . Indeed in such a situation incoming
waves are elements of E s(ζ ) so that (3) microlocalized in ζ = ζ permits to invert B in
the boundary condition.

The first goal of the article is roughly speaking to determine if such a situation also
occurs in the strip geometry. That is does some condition (or a microlocalized version
of a condition), coming from the characterization of the strong well-posedness of (1) can
be observed in the construction of the WKB expansion of (1). This question has already
been addressed for hyperbolic boundary value problems in a corner (see [3, 14]).

The second one is to give some properties about the growth in time of the solution of
the strip problem. Indeed, for the half space geometry it is known from Kreiss [7] that
the solution is lower exponentially increasing with time. Whereas for the strip problem
the standard strong well-posedness proof (see bellow) indicates that there is a possible
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exponential growth in time of the solution. The question addressed here is: ‘Does the
geometric optics expansion show that this growth exists?’. ‘If the answer is positive can
we give some quantitative results about the rate of growth and can we explain its origin
thanks to the geometric optics expansions?’

These aims are motivated by the following points:

• First, as already noticed in [1] the problem in a strip is really close to the one in the
quarter space. Indeed the methods used in [1] to deal with the problem in a strip look
really closed to the ones used in [12] to deal with the problem in the corner geometry.
There is however a main difference between these two problems.
While the characterization of strongly well-posed (uniformly in time) strip problems
given in [1] involves matrices, the one used in [12] to characterize strongly well-posed
corner problems involves Fourier Integral Operators and thus is much more technical.
At present time, in the author’s knowledge, the full characterization of strongly
well-posed corner problems has not been achieved yet (we refer to [2] for some recent
advances). So the better we understand the (simpler) problem in the strip, the more
information and/or intuition we can obtain on the corner problem.

• Second the full characterization of lower exponentially strongly well-posed problems
described in [1] seems really difficult to verify for a fixed hyperbolic operator. This is
due to the fact that this condition requires uniform inversibility (compared with the
frequency parameter lying in a half open sphere) of the trace operator. We believe
that the simplest way (it was already the case for the uniform Kreiss–Lopatinskii
condition [7]) to show these uniform bounds is to have a look at the boundary of
the half sphere and to conclude by compactness/continuity arguments. So understand
what happens for frequencies of the boundary (which are exactly the ones of the
geometric optics regime) shall give some precious intuition to obtain an equivalent
characterization of the one described in [1] but which involves the boundary frequency.

• Finally the last motivation for studying the strip problem (1) is linked to numerical
simulation of Cauchy problems of waves propagation. Indeed due to the impossibility
to model the full space Rd on a computer when one deals with the numerical
simulation of some Cauchy problem, artificial boundary conditions have to be imposed.
Consequently the implemented numerical problem is in fact defined in a (possibly)
big box. Understand the (discrete) boundary conditions leading to a stable numerical
scheme is thus a natural question.
Historically, for the problem in the half space geometry, the full characterization of
the boundary conditions leading to the strong well-posedness of (2) has been obtained
before the one of the associated finite difference schemes (see (for example) [4, 5, 7]).
The study of the stability of finite difference approximations in a strip is a first step
in the study of the stability of finite difference approximations in a box. However
compared to the continuous problem (2) a finite difference scheme necessitates that
all the components of the solution are prescribed by the boundary conditions so that
once again compared to the continuous problem some extra boundary conditions have
to be imposed.
The question of the effect(s) of the adding of such extra (and purely arbitrary)
boundary conditions on the computed solution is thus natural. Indeed one may
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perfectly imagine that the boundary value problem in the strip (1) is strongly
well-posed and that its solution does not have any exponential growth compared to
time (some that it is uniformly well-posed in time) but that by a bad choice of the extra
discrete boundary conditions the computed approximation exhibits such a non-natural
growth.
In the author’s knowledge this stability question has not be widely considered in the
literature (we however refer to [15]). But we believe that it is a question that deserves
to be studied in future works. Once again the understanding of the geometric optics
regime (which is the one permitting this exponential growth of the solution) should be
of precious help for these future works.

About the strong well-posedness of (1) we first observe that from the result of [7],

localization and stability by zero order terms arguments it is easy to show that if the

strip problem (1) satisfies the uniform Kreiss–Lopatinskii condition on each side then

there exists a unique solution u of (1) with bounded exponential growth in time (we refer

to Definition 3.1 or to [1] for more details).

For problems with lower exponential growth in time we refer to [1] in which the author

gives a new characterization of uniformly strongly well-posed hyperbolic boundary value

problems in a strip in terms of the inversibility of some trace operator reading under

the form (I − T (ζ )), where T (ζ ) := T1→0(ζ )T0→1(ζ ). The operator T0→1(ζ ) (respectively

T1→0(ζ )) takes the value of the trace of the solution on Rd−1
×{0} (respectively Rd−1

×

{1}) and gives in output the value of the trace of the solution on Rd−1
×{1} (respectively

Rd−1
×{0}).

Let us explain why such a condition is so natural. Consider two decoupled transport

equations the first one traveling to the ‘right’ and the second to the ‘left’. Choose

boundary conditions in (1) coupling these two transport phenomena together. Intuitively

the non-trivial source term gε induces a wave traveling to the side Rd−1
×{1}. This wave

will be reflected against this side and travel back to Rd−1
×{0} and after some time more

travel time the same process is repeated periodically in time (this kind of phases will be

referred as selfinteracting phases). If we denote by R the coefficient of amplification during

the two reflections needed to regenerate back the first considered transport phenomenon,

then intuitively the growth of the source term gε with respect to time should behave like

Rt and we expect to have exponential growth in time when |R| > 1. The conditions in [1],

even if they seem to be somewhat technical, seem to be linked with this simple energy

observation (we refer to [1] Paragraph 3.3.3 (first part by ‘hand’) for more details).

In this article for the construction of the geometric optics expansion for (1) we exhibit

the fact that a microlocalized version of one of the conditions of [1] is necessary to initialize

the resolution of the cascade of equations. With more details we ask the inversibility of

an operator reading (I − T (ζ )) (where ζ is a (micro)-localization of the frequency) on

some spaces H∞\,γ (where γ stands for the maximal exponential growth in time of the

solution). In particular the geometric optic expansions if lower exponentially growing in

time if and only if γ = 0 and in this framework we can explicit some results of [1].

An another point of interest is that while one of the inversibility conditions in [1] is

asked to hold on the full subspace E s(ζ ), the one in this article only has to hold on the

hyperbolic component of E s(ζ )). This observation will be explained through this article
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and is linked to the fact that non-hyperbolic modes are linked to boundary layers so that

they do not propagate information from one side to the other. We postpone to § 10 for

more details.

The article is organized as follows, § 2 contains some notations and the main

assumptions, § 3 describes the main results. In § 4 we give a formal analysis of the phase

generation process and in particular we explain in a formal setting why selfinteraction

becomes generic in the strip geometry.

The construction of the geometric optics expansion is performed in Sections 5–7 and

justified in § 8. This permits to show the main results. As already noticed this construction

is made under a new inversibility condition which is studied in more details in § 9.

Finally § 10 contains some examples of application and gives some comments about the

obtained results.

2. Notations and definitions

For simplicity we introduce the following notations for the strip and the time/space strip:

0 := Rd−1
x ′ ×]0, 1[, ∂00 := 0 ∩ {xd = 0}, ∂01 := 0 ∩ {xd = 1}

� := Rt ×0, ∂�0 := Rt × ∂00 and ∂�1 := Rt × ∂01.

The frequency space and its boundary are defined by:

4 := {ζ := (σ = γ + iτ, η) ∈ C×Rd−1
\ γ > 0} and 40 := 4∩ {γ = 0}.

In order to state the energy estimates used in this article we define the following

weighted Sobolev spaces. Let s ∈ N, X ⊂ Rt ×Rd
x and χ > 0, the H s

χ -weighted (in time)

Sobolev space is defined by:

H s
χ (X) := {u ∈ D ′(X) \ ue−χ t

∈ H s(X)},

equipped with the norm ‖ · ‖H s
χ (X) := ‖ · e

−χ t
‖H s (X). We also denote H∞χ (X) :=⋂

s∈N H s
χ (X) and finally for s ∈ N∪ {∞} we define H s

\,χ (X) as the set of functions of

H s
χ (X) vanishing for negative times.

In all this article we make the following assumptions on the strip problem (1). The first

assumption ensures that the operator L(∂) is hyperbolic in the following sense:

Assumption 2.1 (Constantly hyperbolic operator). The system (1) is constantly

hyperbolic that is there exist q > 1, real valued analytic functions λ1, . . . , λq on Rd
\ {0}

and positive integers µ1, . . . , µq such that:

∀ξ ∈ Sd−1, det

τ + d∑
j=1

ξ j A j

 = q∏
j=1

(τ + λ j (ξ))
µ j ,

with λ1(ξ) < · · · < λq(ξ) and the eigenvalues λ j (ξ) of
∑d

j=1 ξ j A j are semi-simple.

The second one imposes that the boundaries are not characteristics for L(∂) and that

the number of boundary conditions imposed on each side of the boundary gives rise to a

well-determined problem.
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Assumption 2.2 (Non-characteristic boundary conditions). The matrix Ad is invertible.

Let p be the number of positive eigenvalues (counted with multiplicity) of Ad then B0 ∈

Mp×N (R) and B1 ∈MN−p×N (R).

With Assumption 2.2 in hand we can perform a Laplace transform in time (t ! σ)

and a Fourier transform in the tangential space variable (x ′! η) so that (1) reads in

the resolvent form: 
d

dxd
û(ζ, xd) = A (ζ )̂u(ζ, xd) for xd ∈]0, 1[,

B0û(ζ, 0) = ĝ(ζ ),

B1û(ζ, 1) = 0,

(4)

in which ζ ∈ 4 acts like a parameter and where the so-called resolvent matrix A (ζ ) is

defined by:

A (ζ ) = A−1
d

σ I + i
d−1∑
j=1

η j A j

 . (5)

The following classical result due to Hersh [6] ensures that as soon as the Laplace

parameter σ has non-vanishing real part then the elements in the spectrum of A (σ, η)

are well-separated.

Lemma 2.1. [6] Under Assumptions 2.1 and 2.2, for all frequency parameter ζ ∈ 4 \40,

the resolvent matrix A (ζ ) only admits eigenvalues with non-zero real part, and thus does

not have purely imaginary eigenvalues. We denote by E s(ζ ) (respectively Eu(ζ )), the

stable (respectively unstable) space of A (ζ ) that is the eigenspace associated with the

negative (respectively positive) real part eigenvalues. Then independently of ζ ∈ 4 \40,

dim E s(ζ ) = p and dim Eu(ζ ) = N − p and we have the following decomposition:

CN
= E s(ζ )⊕ Eu(ζ ). (6)

However for ζ ∈ 40 then generically Lemma 2.1 is not satisfied anymore because of

the possible degeneracy of some real parts of the eigenvalues. In this setting the result

allowing to describe the situation is the so-called block structure theorem first shown

by [7] for strictly hyperbolic systems and then extended by [10] for constantly hyperbolic

systems (see also [11] for systems with non-constant multiplicities).

Theorem 2.1 (Block structure). Under Assumptions 2.1 and 2.2, for all ζ ∈ 4, there

exist a neighborhood V of ζ in 4, an integer L > 1, a partition N = µ1+ · · ·+µL , with

µ1, . . . , µL > 1 and an invertible matrix T , regular on V such that:

∀ζ ∈ V , T−1(ζ )A (ζ )T (ζ ) = diag(A1(ζ ), . . . ,AL(ζ ))

where the blocks A j (ζ ) ∈Mµ j×µ j (C) satisfy one of the following alternatives:

(i) All the elements in the spectrum of A j (ζ ) have positive real part.

(ii) All the elements in the spectrum of A j (ζ ) have negative real part.

https://doi.org/10.1017/S1474748018000506 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000506


1636 A. Benoit

(iii) µ j = 1, A j (ζ ) ∈ iR, ∂γA j (ζ ) ∈ R \ {0} and A j (ζ ) ∈ iR for all ζ ∈ 40 ∩V .

(iv) µ j > 1 and there exists k j ∈ iR such that

A j (ζ ) =

k j i 0
. . . i

0 k j

 ,
the coefficient in the lower left corner of ∂γA j (ζ ) ∈ R \ {0} and for all ζ ∈ 40 ∩V ,

A j (ζ ) ∈ iMµ j×µ j (R).

Consequently Theorem 2.1 permits to give the following decomposition of the boundary

of the frequency space.

Definition 2.1. For ζ ∈ 40 we define:

• E the elliptic area which is the set of ζ such that Theorem 2.1 is satisfied with blocks

of type (i) and (i i) only.

• EH the mixed area which is the set of ζ such that Theorem 2.1 is satisfied with blocks

of type (i), (i i) and at least one block of type (i i i).

• H the hyperbolic area which is the set of ζ such that Theorem 2.1 is satisfied with

blocks of type (i i i) only.

• G the glancing area which is the set of ζ such that Theorem 2.1 is satisfied with at

least one block of type (iv).

We thus have the following decomposition of 40:

40 = E∪EH∪H∪G. (7)

Moreover for all ζ ∈ 40 \G the decomposition (6) still holds and we write:

CN
= E s(ζ )⊕ Eu(ζ ), (8)

where E s(ζ ) (respectively Eu(ζ )) is the extension by continuity of E s(ζ ) (respectively

Eu(ζ )) up to the boundary 40.

Moreover we can decompose these spaces in the following way:

E s(ζ ) = E s
e(ζ )⊕ E s

h(ζ ) and Eu(ζ ) = Eu
e (ζ )⊕ Eu

h (ζ ), (9)

where E s
e(ζ ) (respectively Eu

e (ζ )) is the generalized eigenspace associated to eigenvalues

of A (ζ ) with negative (respectively positive) real part and where the E s
h(ζ ), Eu

h (ζ ) are

sums of eigenspaces associated to some purely imaginary eigenvalues of A (ζ ).

However for ζ ∈ G the decomposition (8) does not hold anymore because at glancing

frequencies we have E s(ζ )∩ Eu(ζ ) 6= {0}. In this setting we define the following

decompositions of the stable and unstable spaces E s(ζ ) and Eu(ζ ).

E s(ζ ) = E s
e(ζ )⊕ E s

h(ζ )⊕ E s
g(ζ ) and Eu(ζ ) = Eu

e (ζ )⊕ Eu
h (ζ )⊕ Eu

g (ζ ), (10)

where E s
g(ζ ) and Eu

g (ζ ) are sum of eigenspaces associated to the Jordan’s block(s) of type

(iv) of A (ζ ) in Theorem 2.1 and consequently satisfying E s
g(ζ )∩ Eu

g (ζ ) 6= {0}.
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Geometric optics expansions involving glancing frequencies (that is to say frequencies

such that E s
g(ζ )∩ Eu

g (ζ ) 6= {0}) have been studied in the half space geometry by [16,

17]. In these papers, in order to define a bounded projector on E s
g(ζ ) associated to

the decomposition (10) (which is needed in order to define the boundary layer induced

by glancing modes), the author assumes that E s
g(ζ ) =

⊕M
j=1 Gs

j (ζ ), where for all j =
1, . . . ,M , dim Gs

j (ζ ) = 1.

Following [7–10], this assumption is equivalent to the fact that Theorem 2.1 is satisfied

with block of type (iv) of size at most three. Indeed in this case the contribution in

E s
g(ζ ) (respectively Eu

g (ζ )) of one block of type (iv) is one dimensional (respectively one

dimensional if the associated block is of size two, two dimensional if the associated block

is of size three). Consequently the projector upon E s
g(ζ ) remains bounded.

In the following we shall define the projectors on both E s
g(ζ ) and Eu

g (ζ ) (because

glancing boundary layers are expected on both sides of the boundary) so that we make

the following assumption:

Assumption 2.3. Let ζ ∈ G; then Theorem 2.1 is satisfied with blocks of type (iv) of size

two only. In this setting we have that there exists M ∈ N, M 6 N
2 and (e j ) j=1,...,M ∈ CN

such that:

E s
g(ζ ) = Eu

g (ζ ) =

M⊕
j=1

G j (ζ ) where G j (ζ ) := vect{e j }.

We now give some precisions about the spaces E s
h(ζ ), Eu

h (ζ ), E s
g(ζ ) and Eu

g (ζ ).

Let iξ
m
∈ iR be a purely imaginary eigenvalue of A (ζ ) (possibly with multiplicity more

than two except for glancing modes thanks to Assumption 2.3); then

det

τ I +
d−1∑
j=1

η j A j + ξm
Ad

 = 0.

From Assumption 2.1 there exists an index km such that

τ + λkm (η, ξm
) = 0,

where λkm is smooth in both variables. This motivates the following definition:

Definition 2.2. The set of incoming (respectively outgoing) phases for the side ∂00
denoted by I0 (respectively O0) is the set of indices m such that the group velocity

vm := ∇λkm (η, ξm
) satisfies ∂ξλkm (η, ξm

) > 0 (respectively ∂ξλkm (η, ξm
) < 0).

The set of incoming (respectively outgoing) phases for the side ∂01 denoted by I1
(respectively O1) is the set of indices m such that the group velocity vm := ∇λkm (η, ξm

)

satisfies ∂ξλkm (η, ξm
) < 0 (respectively ∂ξλkm (η, ξm

) > 0).

The set of glancing phases for the side ∂00 (or equivalently for the side ∂01) denoted

by G is the set of indices m such that the group velocity vm := ∇λkm (η, ξm
) satisfies

∂ξλkm (η, ξm
) = 0.

Clearly we have I0 = O1 and O0 = I1. So that in the following we will use the

convention that an incoming (respectively outgoing) phase is incoming if it is incoming
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(respectively outgoing) for the side ∂00. Thus, with this convention in mind we set:

I := I0 = O1 and O := O0 = I1,

and for simplicity we also define H := I ∪O, the set of indices associated to hyperbolic

modes.

With this definition in hand we can give the following description of the spaces E s
h(ζ ),

Eu
h (ζ ), E s

g(ζ ) and Eu
g (ζ ).

Lemma 2.2. For all ζ ∈ 40 we have:

E s
h(ζ ) =

⊕
k∈I

ker L (τ , η, ξ
k
), Eu

h (ζ ) =
⊕
k∈O

ker L (τ , η, ξ
k
)

and E s
g(ζ ) = Eu

g (ζ ) =
⊕
k∈G

ker L (τ , η, ξ
k
), (11)

where L stands for the symbol of L(∂) defined for all ω = (ω0, . . . , ωd) ∈ Rd+1 by

L (ω) := ω0 I +
∑d

j=1 ω j A j .

Consequently for ζ ∈ G, (10) reads:

E s(ζ ) =
⊕
k∈I

ker L (τ , η, ξ
k
)
⊕
k∈G

ker L (τ , η, ξ
k
)⊕ E s

e(ζ ), (12)

Eu(ζ ) =
⊕
k∈O

ker L (τ , η, ξ
k
)
⊕
k∈G

ker L (τ , η, ξ
k
)⊕ Eu

e (ζ ). (13)

We now turn to the definition of the uniform Kreiss–Lopatinskii condition which is

the condition ensuring the strong well-posedness of the boundary value problem in the

half space (see [7]). It is not difficult to show (and to be convinced) that the strong

well-posedness of (1) requires that each boundary condition on ∂00 and ∂01 satisfies the

uniform Kreiss–Lopatinskii condition. So that in the WKB expansion construction we

should assume that these conditions hold. More precisely we assume the following

Assumption 2.4 (Uniform Kreiss–Lopatinskii condition). Under Assumptions 2.1 and 2.2

let ζ ∈ 4 and as previously we still denote by E s(ζ ) (respectively Eu(ζ )) the extension by

continuity of E s(ζ ) up to ζ ∈ 40 of the well-defined stable (respectively unstable) subspace

of A (ζ ). Then each of the boundary ∂00 and ∂01 satisfies the uniform Kreiss–Lopatinskii

condition that is to say that:

∀ζ ∈ 4, ker B0 ∩ E s(ζ ) = ker B1 ∩ Eu(ζ ) = {0}.

In other words, the restriction of B0 (respectively B1) to E s(ζ ) (respectively Eu(ζ )) is

invertible and we denote its inverse by φ0(ζ ) := B−1
0|Es (ζ ) (respectively φ1(ζ ) := B−1

1|Eu(ζ )).

We conclude this section by defining some projectors that will be useful in the

construction the WKB expansion.

Definition 2.3 (Interior projectors). Under Assumptions 2.1 and 2.2 for ζ = iτ + η ∈ 40
we define:
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• 5s
e := 5

s
e(ζ ) (respectively 5u

e := 5
u
e (ζ )) the spectral projector on E s

e(ζ ) (respectively

Eu
e (ζ )).

• For k ∈H ∪G , 5k
:= 5k(ζ ) the orthogonal projector on ker L (τ , η, ξk).

• For k ∈H ∪G , we define ϒk
:= ϒk(ζ ) the partial inverse of L (τ , η, ξk) characterized

by the relations: {
ϒkL (τ , η, ξk) = I −5k,

ϒk5k
= 5kϒk

= 0.
(14)

Definition 2.4 (Boundary projectors). Under Assumptions 2.1, 2.2 and 2.3 for ζ = iτ +
η ∈ 40 we define:

• Ps
e := Ps

e (ζ ) (respectively Pu
e := Pu

e (ζ )) the projector on E s
e(ζ ) with respect to (12)

(respectively (13)).

• For k ∈ I (respectively k ∈ O), Pk
h := Pk

h (ζ ) the projector on ker L (τ , η, ξ
k
) with

respect with the sums (12) (respectively(13)).

• For k ∈ G we define Pk
g,s := Pk

g,s(ζ ) (respectively Pk
g,u := Pk

g,u(ζ )) the projector on

ker L (τ , η, ξ
k
) with respect with the sum (12) (respectively (13)).

3. Main results

In this Section we state the main results of this paper but in order to do so we need to

give some more details about the strong well-posedness of the strip problem (1).

Definition 3.1. Let f ∈ L2(�), g0 ∈ L2(∂�0) and g1 ∈ L2(∂�1) be given source terms.

The hyperbolic boundary value problem in the strip 0

L(∂)u = f in �,

B0u|xd=0 = g0 on ∂�0,

B1u|xd=1 = g1 on ∂�1,

u|t60 = 0 on 0,

is said to be strongly well-posed if it admits a unique solution u ∈ L2(�) with traces

u|xd=0 ∈ L2(∂�0) and u|xd=1 ∈ L2(∂�1) satisfying the energy estimate that there exist

C > 0 and γ0 > 0 such that for all γ > γ0:

γ ‖u‖2L2
γ (�)
+‖u|xd=0‖

2
L2
γ (∂�0)

+‖u|xd=1‖
2
L2
γ (∂�1)

6 C
(

1
γ
‖ f ‖2L2

γ (�)
+‖g0‖

2
L2
γ (∂�0)

+‖g1‖
2
L2
γ (∂�1)

)
. (15)

In the particular setting where γ0 = 0 the strip problem is said to be lower exponentially

strongly well-posed.

As mentioned in the introduction, there exists γ0 > 0 such that the strip

problem is strongly well-posed in the sense of Definition 3.1 only requires the
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uniform Kreiss–Lopatinskii condition on each side of the boundary so that under

Assumptions 2.1, 2.2 and 2.4 the strip problem (1) is automatically strongly well-posed

in the sense of Definition 3.1.

The question of the lower exponential strong well-posedness of (1) is studied in [1].

In this article the author describes a particular framework, namely the one of strictly

dissipative boundary conditions in which the lower exponential strong well-posedness of

(1) as well as a full characterization of lower exponentially strongly well-posed problems.

More precisely this characterization asks the inversibility of some trace operators reading

under the form (I −T (ζ )) and (I − T̃ (ζ )): on the stable subspace E s(ζ ) for (I −T (ζ ))

and on ker B0 for (I − T̃ (ζ )). This inversibility is asked to be uniform with respect to

the frequency parameter ζ ∈ 4. That is we have that there exists C, C̃ > 0 such that for

all ζ ∈ 4

∀u ∈ E s(ζ ), |u| 6C |(I −T (ζ ))u|, (16)

∀v ∈ ker B0, |v| 6C̃ |(I − T̃ (ζ ))v|, (17)

where we stress that C and C̃ do not depend on ζ . The precise expressions of T (ζ ) and

T̃ (ζ ) can be found in [1] but we will also give it in Paragraph 9 in order to compare

T (ζ ) with T ε(ζ ). However these expressions are of little interest for the justification of

the WKB expansion which only requires the (lower exponential) strong well-posedness

of (1).

We sum up the known results about the strong well-posedness of (1) in the following

Theorem.

Theorem 3.1 (Strong well-posedness of (1)). • Under Assumptions 2.1, 2.2 and 2.4

there exists γ0 > 0 such that the strip problem (1) is strongly well-posed in the sense

of Definition 3.1.

• [1] Under Assumptions 2.1, 2.2 also assume that the matrices A j are symmetric for all

j = 1, . . . , d and that the boundary conditions on ∂00 and ∂01 are strictly dissipative

that is there exist C0,C1, ε0, ε1 > 0 such that

∀u ∈ RN ε0|u|2+〈Adu, u〉−C0|B0u|2 < 0 and ε1|u|2+〈Adu, u〉−C1|B1u|2 > 0,
(18)

then the strip problem (1) is lower exponentially strongly well-posed in the sense of

Definition 3.1.

• [1] Under Assumptions 2.1, 2.2, 2.4 also assume that the matrices A j are symmetric

for all j = 1, . . . , d and that ker B0 ∩ ker B1 = {0}. Then the strip problem (1) is lower

exponentially strongly well-posed in the sense of Definition 3.1 if and only if the

inversibility conditions (16) and (17) hold.

The main results of this article are the following.

The first ones show the existence and the convergence of the geometric optics

expansions in the case where the considered frequency is or is not a glancing frequency.

These results hold under a new assumption (namely Assumption 6.1). Without going

into details this assumption imposes a maximal growth in time for some operator.
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Theorem 3.2. Under Assumptions 2.1, 2.2 and 2.4 also assume that (1) is strongly

well-posed in the sense of Definition 3.1 for some γ
0
> 0 with 0 6 γ

0
6 γ0, that G = ∅

and finally that Assumption 6.1 holds for γ0. Then for all N0 ∈ N there exists an

approximate solution uεapp,N0
∈ L2

γ (�) (see (75) for a precise definition) of uε the solution

of (1) in the sense that: there exists C > 0 such that for all γ > γ0

‖uε − uεapp,N0
‖L2

γ (�)
6 CεN0+1. (19)

Theorem 3.3. Under Assumptions 2.1, 2.2, 2.3 and 2.4 also assume that (1) is strongly

well-posed in the sense of Definition 3.1 for some γ0 > 0 and that Assumption 6.1 holds

for γ
0

with 0 6 γ
0
6 γ0. Then there exists an approximate solution uεapp,glan ∈ L2

γ (�)

(see (76) for a precise definition) of uε the solution of (1) in the sense that: there exists

C > 0 such that for all γ > γ0

‖uε − uεapp,glan‖L2
γ (�)

6 Cε1/4.

Before to give a formal justification of Theorems 3.2 and 3.3 let us give some more

details about these results.

First remark that Theorem 3.2 gives a better approximation than Theorem 3.3 because

the difference uε − uεapp,N0
is O(εN0+1) where N0 is arbitrary while the maximal rate of

convergence in Theorem 3.3 is O(ε1/4). This is due to the fact that when glancing modes

exist we are only able to construct one corrector while if they are not present we can

define an arbitrary number of correctors (see [16, 17]).

Second about Assumption 6.1 appearing in Theorems 3.2 and 3.3. It asks the

inversibility of some operator, reading under the form (I − T ε(ζ )) (we refer to (47) for a

precise definition), to initialize the resolution of the WKB expansion. Crudely speaking

the operator T ε(ζ ) encodes the amplifications of the hyperbolic components of the WKB

expansion by successive reflections against the sides ∂00 and ∂01.

It is interesting to remark that the operator T ε(ζ ) is a microlocalized version of the

operator T (ζ ) at the frequency ζ = ζ . Note that it was already the case for the uniform

Kreiss–Lopatinskii condition in the half space geometry.

Some more details about Assumption 6.1 are given in § 9 in which we show in particular

that this assumption is always satisfied for a large enough threshold γ
0
. More precisely

in § 9 the given sufficient condition for Assumption 6.1 to hold is that the sum of the

coefficients of amplification during a complete circuit of reflection is bounded by eαγ 0 for

some strictly positive α encoding the time needed to perform a complete circuit. This

result agrees with the intuition that if during a complete circuit of reflection the energy

increases then the geometric optics expansion (and thus so do uε) has an exponential

growth in time.

Finally, Assumption 2.3 used in Theorem 3.3 was concerned. This assumption states

that all glancing modes are of size two and is used in a crucial way to define the projectors

on E s
g(ζ ) and Eu

g (ζ ) as explained in § 2. However, let us stress that Assumption 2.3 is

not necessary to show the strong well-posedness (and even the lower exponential strong

well-posedness) of (1) (which essentially require the uniform Kreiss–Lopatinskii on each

side and possibly the inversibility conditions described in [1]).
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Thus, in the author’s opinion, Theorem 3.3 should also hold without Assumption 2.32.

However, the literature does not provide any information about the construction of

geometric optics expansions without this size restriction on the glancing modes. Indeed,

the only papers constructing these expansions are, in the author’s knowledge, due to

Williams [16, 17].

That is why we made this technical assumption to deal with glancing modes (and

to define the associated boundary layers). Indeed concerning glancing modes we were

not really interested in obtaining the most general possible theorem but rather in

showing that Assumption 6.1 used to initialize the resolution of the cascade of equations

does not involve glancing modes. More comments about this observation are made in

Paragraph 10.2. The study of geometric optics expansion with glancing modes of size

greater than two is postponed to future studies.

The main point in the proof of Theorems 3.2 and 3.3 is the construction of a geometric

optics expansion. The existence of such an expansion is given by the following Theorems

which are demonstrated in Sections 5–7:

Theorem 3.4. Under Assumptions 2.1, 2.2 and 2.4 also assume that G = ∅ and that

Assumption 6.1 holds for some γ
0
> 0, then for all n ∈ N, for all k ∈H there exist

uεh,n,k ∈ H∞\,γ (�) for all γ > γ
0

and U ε
ev,n ∈ Pev, U ε

ex,n ∈ Pex satisfying the cascades of

equations (28), (31), (32) and (33).

Theorem 3.5. Under Assumptions 2.1–2.4 also assume that Assumption 6.1 holds for

some γ
0
> 0, then for all n = 0, 1, for all k ∈H there exist uεh,n,k ∈ H∞\,γ (�) for all

γ > γ
0
, U ε

ev,n ∈ Pev, U ε
ex,n ∈ Pex and for all k ∈ G , uεg,n,k ∈ H∞\,γ (�) for all γ > γ

0
the

cascades of equations (28), (31), (32) and (33) written for n = 0, 1.

4. Formal analysis

In this paragraph, we give a formal analysis describing the phases appearing in the WKB

expansion as well as the selfinteraction phenomenon between the oscillating ones.

As the reader will notice, in comparison with the expansions for the quarter space

geometry (see for example [3]), on the one hand the phase generation process in the strip

geometry will not be richer than the one in the half space geometry. Indeed the number

of generated phases will be the same as the one for the problem in the half space. This

was not the case for the corner problem for which the number of considered phases was

generically greater than the one in the half space (this number can even be infinite).

However on the other hand, the selfinteraction phenomenon (meaning that a phase can

regenerate itself after a suitable number of rebounds against the sides of the domain of

resolution), which can be seen as something somewhat anecdotal in the quarter space

geometry (because it requires strong constraints on the geometry of the characteristic

variety) becomes generic in the strip geometry. Indeed an incoming phase coming from

2Possibly with a rate of convergence which depends on the size of the glancing mode and which decreases
as the glancing mode’s size increases.
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the side ∂00 will always be reflected back against the side ∂01 and will always regenerate

itself after two reflections.

4.1. Source term induced phases

The first point of our discussion is to determine the source term induced phases. Note that

the system (1) is hyperbolic, so that it satisfies the finite speed of propagation property,

and that the only non-trivial information in (1) lies on the side ∂00. Consequently, this

information cannot hit the side ∂01 immediately and we can (in a formal setting and at

least during a short time) neglect the boundary condition on the side ∂01. By doing this

we shall consider the following system of equations:
L(∂)uε = 0 for (t, x ′, xd) ∈]−∞, T ]×Rd−1

×R∗+,

B0uε
|xd=0 = gε for (t, x ′) ∈]−∞, T ]×Rd−1,

uε
|t60 = 0 for (x ′, xd) ∈ Rd−1

×R+,

(20)

for T > 0 (possibly small). It is thus natural to choose for ansatz the one for the problem

in the half space (20). More precisely if gε reads

gε(t, x ′) := e
i
ε
(t,x ′)·(τ ,η)g(t, x ′),

where the amplitude g ∈ H∞\ (∂�0) is given and where the frequency parameters τ ∈ R,

η ∈ Rd−1 are fixed then the ansatz associated to (20) reads:

uεapp ≈

K∑
k=1

e
i
ε
((t,x ′)·(τ ,η)+xdξk )uεk(t, x), (21)

where uεk(t, x) :=
∑

n>0 ε
nun,k(t, x), the un,k are unknown amplitudes lying in some profile

space. Moreover in (21) the terms ξk are roots in the ξ variable of the so-called dispersion

relation det L (τ , η, ξ) = 0 where we recall that L stands for the symbol of L(∂).
The behavior of the uεk in (21) is thus given by the kind of phase that we are considering.

That is to say that it depends on ξk and we have to discuss several cases:

� ξk ∈ C, Im ξk 6= 0. In this case the factor e
i
ε
((t,x ′)·(τ ,η)+xdξk ) has a (real) exponential

behavior with respect to the sign of Im ξk . More precisely:

• Im ξk > 0 (evanescent for the side ∂00). In this subcase the factor e
i
ε
((t,x ′)·(τ ,η)+xdξk )

induces an exponential decrease with respect to the normal variable xd . The associated

amplitude has exponential decrease so that when it hits the side ∂01 its contribution is

O(ε∞) with respect to ε and it will not contribute to the boundary condition on ∂01.

Consequently it will not be reflected back.

• Im ξk < 0 (explosive for the side ∂00). In this subcase the factor e
i
ε
((t,x ′)·(τ ,η)+xdξk )

induces an exponential growth with respect to the normal variable xd . As in the half space

geometry we decide, to simplify the discussion, to initially neglect these amplitudes in the

ansatz (21) (recall that we are interested in solutions lying in L2
γ (�) for some γ > γ0 > 0).

� ξk ∈ R. In this case the factor e
i
ε
((t,x ′)·(τ ,η)+xdξk ) induces an oscillating behavior.

Moreover Lax’s lemma [8] should apply and the leading order term in the terms uεk ,
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namely the main amplitudes u0,k are expected to solve the transport equations:

∂t u0,k + vk · ∇x u0,k = 0, (22)

where the velocity vk is the so-called group velocity for ξk (we refer to § 2, Definition 2.2

for a precise definition). Depending on the sign of vk,d the transport equation (22) has

to be completed by some boundary conditions. This leads us to the following study of

subcases:

• vk,d < 0 (outgoing for the side ∂00). In this subcase the transport in the equation

(22) is made from the ‘right to the left’. So that the transported informations can be the

ones in the interior or the ones on the side ∂01. But in (1) these source terms are chosen

to be zero. Consequently, u0,k is zero and this amplitude is initially neglected in (21).

• vk,d = 0 (glancing for the side ∂00). In this subcase the transport equation (22) reads

∂t u0,k + v
′

k · ∇x ′u0,k = 0, (23)

equation which does not require any boundary condition on ∂00 or on ∂01. The only

transportable information is the one in the interior, it is zero, so that the associated

amplitude u0,k shall be zero and shall be neglected in (21).

However, to solve the boundary conditions for the WKB expansion of (1), with a

suitable error, it will be necessary to consider a boundary layer (around ∂00) for u0,k . We

refer to [16] and [17] for more details. Consequently, the u0,k are not neglected in (21).

However, due to the special form of the transport equation (23), this boundary layer

cannot be propagated to the side ∂01, it will not be reflected against this side and will

not contribute to the boundary condition on ∂01.

• vk,d > 0 (incoming for the side ∂00). Finally in this subcase the transport is made

from the ‘left to the right’. Consequently, the non-trivial information on the side ∂00, is

transported. The associated amplitude u0,k is not zero, it is not neglected in the ansatz

(21). Moreover, this non-trivial information will hit the side ∂01 after some travel time. It

will be reflected and we have to determine it(s) reflection(s). It is the aim of the following

paragraph.

In conclusion, the source term induced phases are the glancing ones, the incoming ones

and the evanescent ones. Only the incoming ones spread some non-trivial information

from the side ∂00 to the side ∂01 and only their reflections have to be considered. The

situation is summarized in Figure 1.

4.2. The first reflection

We assume that there exists at least one incoming phase3, that is that det L (τ , η, ξ) = 0
admits at least one root ξk such that the associated group velocity vk satisfies vk,d > 0.

We have justified in the previous paragraph that the amplitude u0,k , after some travel

time, induces a non-trivial information on the side ∂01. Once again by finite speed of

propagation arguments, this information cannot go back to the side ∂00 immediately, so

3This assumption is clearly not necessary at all. But we can easily show that if it is not satisfied, then
the WKB expansion for (1) is the same as the one for the problem in the half space {xd > 0} and this
case is of little interest.
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Figure 1. Appearance of the source term induced phases.

that, in a formal setting and at least during a short time, we can consider the problem

L(∂)uε = 0 defined on the half space {xd 6 1} with a boundary condition on ∂01 involving

the amplitude u0,k|xd=1
and with homogeneous initial condition. We shall describe the

amplitudes induced by the source term on ∂01.

Note that because we are still working in a half space indexed by xd , the possible

induced amplitudes satisfy the same dispersion relation as the one for the source term

induced phases4. That is the ξk are roots in the ξ -variable of the dispersion relation

det L (τ , η, ξ) = 0. So that the discussion of the previous paragraph can also be performed

to determine the reflections during the first rebound.

However, due to the change of orientation in the xd variable, the sign in the discussion

has to be reverse. More precisely, let ξk be such that det L (τ , η, ξk) = 0 we distinguish:

� ξk ∈ C, Im ξk 6= 0. Then the amplitude u0,k is associated to a non-trivial real

exponential factor. And depending on the sign of Im ξk we have:

• Im ξk < 0 (evanescent for the side ∂01). These amplitudes have been initially

neglected in the amplitudes induced by the source term. But at this step of the analysis

they are evanescent for the side ∂01 (or equivalently explosive for the side ∂00) so that

we reintroduce these amplitudes in the ansatz (21). They are associated to boundary

layer around the side ∂01 which propagate to ∂00 and hit this side as O(ε∞) so that

they are not reflected against ∂00 and do not contribute in the boundary condition on

∂00.

• Im ξk > 0 (explosive for the side ∂01). These amplitudes are evanescent for the side

∂00. So that they are still present in the ansatz (21) and there is no need to add them.

4It is not the case in the corner geometry, see [3], for which the dispersion relation changes at each
rebound. This explains why in the strip geometry, the phase generation process is not as rich as in the
quarter space.
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� ξk ∈ R. Then the associated amplitude is oscillating, Lax’s lemma [8] applies so we

expect to solve the transport equation (22) and we have to reiterate the discussion of the

previous paragraph depending on the sign of the dth component of the group velocity vk :

• vk,d > 0 (outgoing for the side ∂01). These amplitudes are already present in (21)

because they are incoming for the side ∂00.

• vk,d = 0 (glancing for the side ∂01 (or equivalently for ∂00)). In this case, once

again the transport equation (22) degenerates in (23) and we have justified already that

even if this equation is homogeneous we chose to keep u0,k as a boundary layer in the

neighborhood of ∂00 (in order to solve the boundary conditions up to an acceptable

error term). In order to solve the boundary condition on ∂01 (which at this step of the

analysis is not homogeneous anymore because it depends on u0,k|xd=1
) we will introduce

in u0,k a boundary layer in the neighborhood of ∂01. However this new layer cannot be

propagated to ∂00 (because of the degeneracy of the transport equation) so that it will

not contribute to the boundary condition on ∂00 and will not be reflected against this

side.

• vk,d < 0 (incoming for the side ∂01). We recall that these amplitudes have initially

been neglected in (21) and that they are associated to the transport equation for the

‘right to the left’. But at this step of the discussion, the information lying on the side

∂01 is not trivial anymore, so these amplitudes propagate this information from ∂01 to

∂00 and are not zero anymore. Consequently they have to be considered in (21). These

phases will hit the side ∂00 after some positive travel time and we have to determine

their rebounds. This is done in the next paragraph.

To sum up, the first rebound makes us consider the explosive and outgoing (for the side

∂00) phases which has been initially discarded. So that all the possible phases are now

taken into account in (21). Moreover, we also add a boundary layer in the neighborhood

of ∂01 to deal with glancing modes. However the only phases carrying some non-trivial

information from the side ∂01 to the side ∂00 are the outgoing ones. The generated

phases during the first reflection are described on Figure 2.

4.3. Selfinteraction phenomenon

Once again we assume that there exists an outgoing phase associated to some ξ` satisfying

det L (τ , η, ξ`) = 0 and v`,d < 0. Then the information carried by the amplitude u0,` hits

the side ∂00 after some travel time and we have to determine it(s) reflection(s) against

this side.

However reiterating exactly the same arguments as in Paragraph 4.1 (that is finite

speed of propagation property to restrict the problem to the study of the problem (20)),

we obtain that the reflections are associated to the ξk satisfying det L (τ , η, ξk) = 0 and

one of the following alternatives:

(i) Im ξk > 0,

(ii) ξk ∈ R, vk,d = 0,

(iii) ξk ∈ R, vk,d > 0.
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Figure 2. The first rebound.

Recall that all of these phases are already considered in the ansatz (21). Consequently

we do not have to add any phase in (21).

But let us remark that the amplitude u0,k considered at the beginning of Paragraph 4.2

satisfies (i i i) so that this phase has regenerated itself after two rebounds. It is what we

mean by selfinteraction.

This phenomenon will be crucial in the construction of the geometric optics expansion

for (1) and will lead to an inversibility condition imposed to initialize the resolution of

the cascade of equations (see Assumption 6.1).

Let us make some other remarks. In this discussion we followed the path of phases

k ↪→ ` but if one changes ` and considers a path of phases k ↪→ `′ then during the

second rebound the phase k is still generated. So that each path of the form k ↪→ `,

where ` is associated to an outgoing phase (for the side ∂00) gives a contribution to the

regeneration of the phase associated to k.

Moreover a path of phases of the form k ↪→ ` where k 6= k is associated to an incoming

phase (for the side ∂00) and ` to an outgoing phase (for the side ∂00) will also generate

the phase associated to k. 5

We conclude this section by Figure 3 illustrating the several amplitudes in the WKB

expansion and the selfinteraction phenomenon.

5Consequently, compared to the corner geometry see [3], the selfinteraction phenomenon is here a bit
more complicated because there is a priori more than one path of phases that regenerate a fixed phase.
Moreover, once again compared to the corner geometry, here the selfinteraction phenomenon is generic
because to hold it only requires the existence of an incoming phase and an outgoing phase. Whereas
in the corner geometry, some really restrictive assumptions have to be made on the geometry of the
characteristic variety (we refer to [3] for more details).
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Figure 3. Phases in the WKB expansion and selfinteraction.

5. The cascades of equations

We consider the following system of equations

L(∂)uε = ∂t uε +
∑d

j=1 A j∂ j uε = 0 in �,

B0uε
|xd=0 = gε on ∂�0,

B1uε
|xd=1 = 0 on ∂�1,

uε
|t60 = 0 on 0.

(24)

Let ζ := (iτ , η) ∈ 40 be a fixed frequency parameter. We define the phase functions

ψ(t, x ′) := τ t + η · x ′ and for k ∈H ∪G , ϕk(t, x) := ψ(t, x ′)+ ξ
k
xd , (25)

where the ξ
k

stands for the real roots of det L (τ , η, ξ) in the ξ variable.

In (24) the source term on the boundary ∂�0 reads:

gε := gε(t, x ′) := e
i
ε
ψ(t,x ′)g(t, x ′), (26)

where the amplitude g ∈ H∞\ (∂�0).

We define the ansatz6

uε(t, x) ∼
∑

k∈H

e
i
ε
ϕk (t,x)

∑
n>0

εnuεh,n,k(t, x)+
∑
k∈G

e
i
ε
ϕk (t,x)

1∑
n=0

εnuεg,n,k(t, x)

+

∑
n>0

e
i
ε
ψ(t,x ′)εnU ε

ev,n

(
t, x,

xd

ε

)
+

∑
n>0

e
i
ε
ψ(t,x ′)εnU ε

ex,n

(
t, x,

xd − 1
ε

)
, (27)

6Remark that in (27) we take an arbitrary number of correctors for the non-glancing modes while we
take only one corrector for the glancing ones. This choice is motivated by [16, 17] and will be explained
in Paragraphs 6.2 and 7.3.
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where for all 0 < ε � 1, for all n ∈ N and for all k ∈H (respectively k ∈ G ) the profiles

uh,n,k (respectively ug,n,k) are in H∞\,γ (�) for all γ > γ
0

for some γ
0
> 0 to be determined

and where the evanescent (respectively explosive) profiles U ε
ev,n (respectively U ε

ex,n) are

in the following profile spaces:

Definition 5.1. The space Pev (respectively Pex ) of evanescent (respectively explosive)

profiles is the set of functions U (t, x, Xd) ∈ H∞\ (�×R+) (respectively H∞\ (�×R−))
satisfying that there exists δ > 0 such that eδXd U (t, x, Xd) ∈ H∞\ (�×R+) (respectively

H∞\ (�×R−)).

In the ansatz (27) let us stress that depending on the kind of the frequency ζ some

(but not all) sums can be zero. Indeed for example if ζ ∈ E then the sums on H and

on G are zeros. We also insist on the fact that the sum on H can always be zero when

ζ /∈ H.

Plugging the ansatz (27) in the evolution equation of (24) leads, by identification on

the εn , to the following cascade of equation

L ( dϕk)uεh,0,k = 0 ∀k ∈H ,

iL ( dϕk)uεh,n+1,k + L(∂)uεh,n,k = 0 ∀k ∈H ,∀n ∈ N,

L ( dϕk)uεg,0,k = 0 ∀k ∈ G ,

iL ( dϕk)uεg,1,k + L(∂)uεg,0,k = 0 ∀k ∈ G ,

L(∂)uεg,1,k = 0 ∀k ∈ G

L(∂Xd )U
ε
ev,0 = L(∂Xd )U

ε
ex,0 = 0,(

L(∂Xd )U
ε
ev,n+1+ L(∂)U ε

ev,n

)
(t, x, Xd) = 0 ∀n ∈ N, Xd > 0,(

L(∂Xd )U
ε
ex,n+1+ L(∂)U ε

ex,n

)
(t, x, X̃d) = 0 ∀n ∈ N, X̃d < 0,

(28)

where the operator of differentiation with respect to the fast variable is defined by

L(∂Xd ) = Ad(∂Xd −A (ζ )).

Then plugging the ansatz (27) in the boundary conditions of (24) gives

B0

∑
k∈H

uεh,n,k(t, x ′, 0)+
∑
k∈G

uεg,n,k(t, x ′, 0)+U ε
ev,n(t, x ′, 0, 0)+U ε

ex,n

(
t, x ′, 0,−

1
ε

)
= δn,0g, (29)

and

B1

∑
k∈H

e
i
ε
ξk uεh,n,k(t, x ′, 1)+

∑
k∈G

e
i
ε
ξk uεg,n,k(t, x ′, 1)

+ U ε
ev,n

(
t, x ′, 1,

1
ε

)
+U ε

ex,n(t, x ′, 1, 0)
]
= 0, (30)

where δn,p stands for the Kronecker’s symbol.
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However by definition of Pev and Pex , the terms U ε
ex,n(t, x ′, 0,− 1

ε
) and U ε

ev,n(t, x ′, 1, 1
ε
)

appearing in (29) and (30) respectively are O(ε∞) so that the boundary conditions (29)

and (30) can be simplified into

B0

∑
k∈H

uεh,n,k(t, x ′, 0)+
∑
k∈G

uεg,n,k(t, x ′, 0)+U ε
ev,n(t, x ′, 0, 0)

 = δn,0g, (31)

and

B1

∑
k∈H

e
i
ε
ξk uεh,n,k(t, x ′, 1)+

∑
k∈G

e
i
ε
ξk uεg,n,k(t, x ′, 1)+U ε

ex,n(t, x ′, 1, 0)

 = 0. (32)

Finally plugging the ansatz (27) in the initial condition of (24) leads to

uεh,n,k|t60
= 0 ∀k ∈H ,∀n ∈ N,

uεg,n,k|t60
= 0 ∀k ∈ G ,∀n ∈ N,

U ε
ev,n|t60

= 0 ∀n ∈ N,

U ε
ex,n|t60

= 0 ∀n ∈ N.

(33)

So that to construct an approximate solution of (24) one shall solve the cascades

of equations (28)–(31)–(32) and (33) up to some order. The construction of the leading

order term, that is the one associated to ε0, in the expansion is performed in the following

section.

6. Construction of the leading order term

To initialize the construction of the leading order term of the geometric optics expansion

we study the behavior of the oscillating and glancing amplitudes in (27), that is

uh,0,k and ug,0,k . The first (respectively the third) equation of (28) implies that for

all k ∈H (respectively k ∈ G ), uh,0,k ∈ ker L ( dϕk) (respectively ug,0,k ∈ ker L ( dϕk)).

Consequently we have the well-known polarization condition

∀k ∈H ∪G , 5kuh,0,k = uh,0,k (34)

where we recall that the projectors 5k are introduced in Definition 2.3.

Using the polarization condition (34) and composing the second (respectively the

fourth) equation of (28) by 5k gives

5k L(∂)5kuh,0,k = 0 (respectively 5k L(∂)5kug,0,k = 0),

so that we are in a position to apply Lax’s lemma [8]:

Lemma 6.1 [8]. Under Assumption 2.1 we have the equalities

∀k ∈H ∪G ,5k L(∂)5k
= (∂t + vk · ∇x )5

k, (35)

where we recall that vk is the group velocity associated to k introduced in Definition 2.2.
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As a consequence the leading order oscillating and glancing amplitudes are expected

to satisfy transport equations and we have to consider several cases depending on k:

• k ∈ I . By definition of I the group velocity vk satisfies vk,d > 0 so that the

transport equation (35) only requires a boundary condition on the side ∂00 and an

initial condition to be solved (the value of the trace on ∂01 is deduced by integration

along the characteristics).

• k ∈ O. By definition of O the group velocity vk satisfies vk,d < 0 so that the transport

equation (35) only requires a boundary condition on the side ∂01 and an initial condition

to be solved (the value of the trace on ∂00 is deduced by integration along the

characteristics).

• k ∈ G . By definition of G the group velocity vk satisfies vk,d = 0 so that the transport

operator in (35) reads ∂t + v
′

k · ∇x ′ and no boundary conditions are required so that we

just only require the initial condition.

These remarks lead us to study the boundary conditions (31) and (32) written for

n = 0, they read:

B0

∑
k∈I

uεh,0,k|xd=0
+

∑
k∈G

uεg,0,k|xd=0
+U ε

ev,0|xd=Xd=0

 = g− B0
∑
`∈O

uεh,0,`|xd=0
, (36)

and

B1

∑
`∈O

e
i
ε
ξ`uεh,0,`|xd=1

+

∑
`∈G

e
i
ε
ξ`uεg,0,`|xd=1

+U ε
ex,0

|xd=X ′d=1

 = −B1
∑
k∈I

e
i
ε
ξk uεh,0,k|xd=1

.

(37)

We remark, from (12) (respectively (13)), that the term in the left hand side of

(36) (respectively (37)) lies in B0 E s(ζ ) (respectively B1 Eu(ζ )), so that, by the uniform

Kreiss–Lopatinskii condition (see Assumption 2.4), we can multiply (36) (respectively

(37)) by φ0(ζ ) (respectively φ1(ζ )) and then by Pk
h , Pk

g,s , Pev respectively (respectively

Pk
h , Pk

g,u , Pex ) (recall that these projectors are those of Definition 2.4) to obtain
uεh,0,k|xd=0

= Pk
h φ0(ζ )

(
g− B0

∑
`∈O uεh,0,`|xd=0

)
∀k ∈ I ,

uεg,0,k|xd=0
= Pk

g,sφ0(ζ )
(

g− B0
∑
`∈O uεh,0,`|xd=0

)
∀k ∈ G ,

U ε
ev,0|xd=Xd=0

= Pevφ0(ζ )
(

g− B0
∑
`∈O uεh,0,`|xd=0

)
,

(38)

and 
uεh,0,`|xd=1

= −e−
i
ε
ξ` P`hφ1(ζ )B1

∑
k∈I e

i
ε
ξk uεh,0,k|xd=1

∀` ∈ O,

uεg,0,`|xd=1
= −e−

i
ε
ξ` P`g,uφ1(ζ )B1

∑
k∈I e

i
ε
ξk uεh,0,k|xd=1

∀` ∈ G ,

U ε
ex,0

|xd=X ′d=1
= −Pevφ1(ζ )B1

∑
k∈I e

i
ε
ξk uεh,0,k|xd=1

,

(39)

where we used the fact that Pk
h5

k
= 5k , Pk

g,s5
k
= Pk

g,u5
k
= 5k combined with the

polarization condition (34).
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The main observation is that in (38) and (39), to determine the traces of the glancing

amplitudes, the evanescent amplitude or the explosive amplitude it is sufficient to first

determine the traces of the amplitudes associated to indices in H . Consequently we shall

determine the amplitudes associated to indices in H before the other ones to initialize

the resolution of the cascade of equations.

However in (38) to determine the traces associated to the indices in I we have to

determine the traces of the amplitudes for the indices in O, which depend on the traces

of the amplitudes for the indices in I by (39). So that (38) and (39) show that the traces

of the amplitudes for the indices in I (or O) depend on themselves which agree with

the selfinteraction phenomenon described formally in § 4. The rigorous determination of

these amplitudes is made in the next paragraph.

6.1. Construction of the leading order selfinteracting amplitudes

In this paragraph we show that the determination of the amplitudes associated to the

indices in I necessitates a new inversibility condition. We consider ` ∈ O so that the

group velocity v` is outgoing and the resolution of the transport equation (35) only

requires a boundary condition on ∂01. More precisely from (39), the equation to solve is:
(∂t + v` · ∇x )uεh,0,` = 0,

uεh,0,`|xd=1
= −e−

i
ε
ξ` P`hφ1(ζ )B1

∑
k∈I e

i
ε
ξk uεh,0,k|xd=1

,

uεh,0,`|t60
= 0.

(40)

Let us assume that in (40) the right hand side of the boundary condition, namely∑
k∈I e

i
ε
ξk uεh,0,k|xd=1

, is a known function. Then is it easy to solve (40) by integration

along the characteristics to determine uεh,0,`. More precisely, we have:

uεh,0,`(t, x) = −e−
i
ε
ξ`

P`hφ1(ζ )B1
∑
k∈I

e
i
ε
ξk uεh,0,k|xd=1

(t +
1
v`,d

(1− xd), x ′+
v′`

v`,d
(1− xd)

)
,

(41)

where we used the notation v` = (v
′

`, v`,d) ∈ Rd−1
×R∗−. We easily determine the value

of uεh,0,`|xd=0
for ` ∈ O

uεh,0,`|xd=0
(t, x ′) = −e−

i
ε
ξ`

P`hφ1(ζ )B1
∑
k∈I

e
i
ε
ξk uεh,0,k|xd=1

(t +
1
v`,d

, x ′+
v′`

v`,d

)
. (42)

Using (42) we can compute the right hand side of the first equation of (38). For k ∈ I
we have:

uεh,0,k|xd=0
(t, x ′) = Pk

h φ0(ζ )g(t, x ′)+ Pk
h φ0(ζ )B0

∑
`∈O

e−
i
ε
ξ` P`hφ1(ζ )B1

×

∑
k′∈I

e
i
ε
ξk′ uεh,0,k′

|xd=1

(
t +

1
v`,d

, x ′+
v′`

v`,d

)
. (43)
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Because k ∈ I , uεh,0,k solves the incoming transport equation (35). We deduce by

integration along the characteristics that:

uεh,0,k(t, x) = Pk
h φ0(ζ )g

(
t −

1
vk,d

xd , x ′−
v′k
vk,d

xd

)
+ Pk

h φ0(ζ )B0
∑
`∈O

e−
i
ε
ξ` P`hφ1(ζ )B1

∑
k′∈I

e
i
ε
ξk′ uεh,0,k′

|xd=1

×

(
t +

1
v`,d
−

1
vk,d

xd , x ′+
v′`

v`,d
−

v′k
vk,d

xd

)
, (44)

from which we immediately obtain the value of the trace of uεh,0,k on ∂01:

uεh,0,k|xd=1
(t, x ′) = Pk

h φ0(ζ )g
(

t −
1
vk,d

, x ′−
v′k
vk,d

)
+ Pk

h φ0(ζ )B0
∑
`∈O

e−
i
ε
ξ` P`hφ1(ζ )B1

∑
k′∈I

e
i
ε
ξk′uεh,0,k′

|xd=1

×

(
t +

1
v`,d
−

1
vk,d

, x ′+
v′`

v`,d
−

v′k
vk,d

)
. (45)

Equation (45) holds for all k ∈ I so that we can multiply by e
i
ε
ξk and sum over k ∈ I

to derive the following condition on UεI :=
∑

k∈I e
i
ε
ξk uεh,0,k|xd=1

:

(I − T ε(ζ ))UεI = Gε(ζ )g, (46)

where we set for f a function defined on Rt ×Rd−1
x ′

(T ε(ζ ) f )(t, x ′) :=
∑
k∈I

e
i
ε
ξk Pk

h φ0(ζ )B0
∑
`∈O

e−
i
ε
ξ` P`hφ1(ζ )

× B1 f
(

t +
1
v`,d
−

1
vk,d

, x ′+
v′`

v`,d
−

v′k
vk,d

)
, (47)

and

(Gε(ζ ) f )(t, x ′) :=
∑
k∈I

e
i
ε
ξk Pk

h φ0(ζ ) f
(

t −
1
vk,d

, x ′−
v′k
vk,d

)
. (48)

Note that in the definitions of T ε(ζ ) and Gε(ζ ) the evaluations in the time variable

are of the form t −αk,` where αk,` > 0 because by definition for k ∈ I , vk,d > 0 and for

` ∈ O, v`,d < 0. Consequently, the form of the operator T ε(ζ ) agrees with the intuition

given in § 4 that the selfinteraction phenomenon needs some time (more precisely at least

the minimum of the times needed to make two reflections) to appear. We will give more

comments about the operator T ε(ζ ) in § 9.

Moreover from (47) and (48) it is clear that H∞\,γ (Rt ×Rd−1
x ′ ) is an invariant set for

T ε(ζ ) and Gε(ζ ).
Equation (46) combined with the fact that UεI ∈ E s

h(ζ ) and Gε(ζ )g ∈ E s
h(ζ ) lead us to

the following assumption:
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Assumption 6.1. Let γ
0
> 0 we assume that for all 0 < ε � 1 the operator (I − T ε(ζ )),

where T ε(ζ ) is defined in (47) is invertible from H∞\,γ (∂�1, E s
h(ζ )) to H∞\,γ (∂�1, E s

h(ζ ))

for all γ > γ
0
.

Remark. Let A := infk∈I ,`∈O
1
vk,d
−

1
v`,d

and note that from the special form of (46)

it is trivially invertible on H∞\,γ ([0, A[×Rd−1), because for f ∈ H∞\,γ (] −∞, A[×Rd−1),

the term T ε(ζ ) vanishes so that (I − T ε) = I . So in fact a more precise version of

Assumption 6.1 is to assume that (I − T ε(ζ )) is invertible from H∞\,γ (R×Rd−1, E s
h(ζ )) to

H∞\,γ (]A,∞]×Rd−1, E s
h(ζ )) for all γ > γ

0
.

This is due to the fact that before the time A the wave packets have not performed a

complete reflection so that there is no selfinteraction and only the identity component of

(I − T ε(ζ ) prescribes the behavior of the wave.

However Assumption 6.1 has the advantage of simplicity compared to the other weaker

version described above. This is why even if it is not the sharpest one we used to use

it. We refer to Paragraph 9.2 for more details about the differences between these two

assumptions.

We refer to § 9 for a partial study of Assumption 6.1 and to § 10 for explicit examples.

With Assumption 6.1 in hand it is now easy to determine the amplitudes associated

to indices in H . From Assumption 6.1 we obtain:

UεI = (I − T ε(ζ ))−1
|Es

h(ζ )
Gε(ζ )g,

and we can use this expression in (41) and (44) to obtain that for all ` ∈ O:

uεh,0,`(t, x) = −e−
i
ε
ξ` P`hφ1(ζ )B1

(
(I − T ε(ζ ))−1

|Es
h(ζ )

Gε(ζ )g
)

×

(
t +

1
v`,d

(1− xd), x ′+
v′`

v`,d
(1− xd)

)
, (49)

and for all k ∈ I :

uεh,0,k = Pk
h φ0(ζ )g

(
t −

1
vk,d

xd , x ′−
v′k
vk,d

xd

)
+ Pk

h φ0(ζ )B0
∑
`∈O

e−
i
ε
ξ` P`hφ1(ζ )B1

(
(I − T ε(ζ ))−1

|Es
h(ζ )

Gε(ζ )g
)

×

(
t +

1
v`,d
−

1
vk,d

xd , x ′+
v′`

v`,d
−

v′k
vk,d

xd

)
, (50)

equations which uniquely determine uεh,0,k for k ∈H in terms of the known source term

g. Also note that due to the fact that g ≡ 0 for negative times, the initial condition (33)

written for n = 0 is satisfied for k ∈H .

This concludes the construction of the leading order amplitudes for selfinteracting

phases. It remains to consider the other kinds of phase. The construction is made in the

following paragraphs.
To sum up we give the following proposition:
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Proposition 6.1. Under Assumptions 2.1, 2.2, 2.4 and 6.1. For all k ∈H and for all

0 < ε � 1 there exists uεh,0,k ∈ H∞\,γ (�) for all γ > γ
0

(the one fixed in Assumption 6.1)

satisfying the cascade of equations (28),(31),(32) and (33) written for n = 0.

6.2. Construction of the leading order glancing amplitudes

To simplify the following we introduce the notations:

Uεn,I :=
∑
k∈I

e
i
ε
ξk5kuεh,n,k|xd=1

and Uεn,O :=
∑
`∈O

5`uεh,n,`|xd=0
. (51)

Let k ∈ G ; then the associated amplitude uεg,0,k shall solve the transport equation (see

(35),(38),(39) and (33))

(∂t + v
′

k · ∇x ′)uεg,0,k = 0 for (t, x) ∈ �,

uεg,0,k|xd=0
= Pk

g,sφ0(ζ )(g− B0Uε0,O ) on ∂�0,

uεg,0,k|xd=1
= −e−

i
ε
ξk Pk

g,uφ1(ζ )B1Uε0,I on ∂�1,

uεg,0,k|t60
= 0 on 0,

(52)

where from Paragraph 6.1 the right hand sides in the boundary conditions of (52)

are known functions in H∞\,γ (Rt ×Rd−1
x ′ ), for all γ > γ

0
depending on g (their precise

expression in terms of g can be made precise from (49) and (50) but is of little interest

in the following).

As noticed in [16, 17], the main issue in the resolution of (52) is due to the fact that

the group velocity vk is tangent to the boundary, the couple of equations (∂t + v
′

k · ∇x ′)uεg,0,k = 0,

uεg,0,k|t60
= 0,

(53)

already determines the solution uεg,0,k . Moreover with homogeneous initial condition and

interior forcing term it shall be zero. Consequently with the boundary conditions the

system (52) is overdetermined (and the boundary conditions cannot be satisfied because

uεg,0,k ≡ 0).

However we stress that we need to solve theses boundary conditions to obtain a suitable

error on the boundary in the energy estimate.

To overcome this difficulty induced by glancing modes, we follow the method of [16]

that is we decompose uεg,0,k = uε,]g,0,k + uε,[g,0,k where uε,]g,0,k solves the transport equation

(53) (in our study we can choose uε,]g,0,k ≡ 0) and where uε,[g,0,k is a boundary layer satisfying

the boundary conditions of (52). Indeed, note that if uε,[g,0,k does not satisfy the boundary

conditions (38) and (39) then because boundary conditions (31) and (32) are decoupled

compared to n the error on the boundaries for glancing modes will be O(1) with respect

to ε which is not a suitable error rate for the justification of the WKB expansion (see

§ 8).
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Following [16] let χ ∈ C∞(]0, 1[) satisfying χ(x) = 1 for x 6 1
4 and χ(x) = 0 for x > 3

4 ,

we define7:

uεg,0,k(t, x) = uε,[g,0,k(t, x) :=χ
(

xd
√
ε

)
Pk

g,sφ0(ζ )
(

g− B0Uε0,O
)
(t, x ′)

−

(
1−χ

(
xd
√
ε

))
e−

i
ε
ξk Pk

g,uφ1(ζ )B1Uε0,I (t, x ′). (54)

It is clear that such a uεg,0,k satisfies the boundary conditions (38) and (39). Moreover,

by construction uεg,0,k ∈ ker L (dϕk), so that the third equation of (28) is satisfied and by

definition of g, the initial condition (33) written for n = 0 is satisfied for k ∈ G .

The construction of a corrector term is postponed to Paragraph 7.3. In the last

paragraph of this section we conclude the construction by the one of evanescent/explosive

amplitudes.

6.3. Construction of evanescent and explosive leading order amplitudes

The only remaining leading order amplitudes to be constructed are the evanescent and

the explosive ones. We recall that the evanescent amplitude of leading order satisfies the

equations (see (28),(38) and (33))
L(∂Xd )U

ε
ev,0(Xd) = 0 for Xd > 0,

U ε
ev,0|xd=Xd=0

= Pevφ0(ζ )(g− B0Uε0,O ),

U ε
ev,0|t60

= 0,

(55)

and that the explosive amplitude of leading order satisfies the equations (see (28),(39)

and (33)) 
L(∂X̃d

)U ε
ex,0(X̃d) = 0 for X̃d 6 0,

U ε
ex,0

|̃xd=X̃d=0
= −Pexφ1(ζ )B1Uε0,I ,

U ε
ex,0|t60

= 0,

(56)

where we set X̃d = Xd − 1, x̃d = xd − 1. From Paragraph 6.1 (see Proposition 6.1) for all

0 < ε � 1 the right hand side of the boundary condition in (55) (respectively (56)) is a

known function in H∞\,γ (∂�0) (respectively H∞\,γ (∂�1) for all γ > γ
0

depending only on g.

To solve these systems of equation we follow the method introduced by [9] that is we

first determine the value of the double traces xd = Xd = 0 and x̃d = X̃d = 0 and then we

extend these traces for xd 6= 0 and x̃d 6= 0 as boundary layers in the normal variable.

The following Lemma is a trivial generalization of the one dealing only with evanescent

modes in [9] to explosive modes:

7The scaling ε−1/2 for the size of the boundary layers comes from [16] and is explained in Paragraph 7.3.

It permits to construct a corrector for glancing modes such that the error in the interior in O(ε1/4) is
L2
γ (�). Note that this is the sharpest possible error rate.
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Lemma 6.2 [9]. We define for Xd > 0

PevU (Xd) := eXdA (ζ )5s
eU (0), (57)

QevF(Xd) :=

∫ Xd

0
e(Xd−y)A (ζ )5s

e A−1
d F(y) dy−

∫
∞

Xd

e(Xd−y)A (ζ )5u
e A−1

d F(y) dy, (58)

and for X̃d 6 0

PexU (X̃d) := e X̃dA (ζ )5u
e U (0), (59)

Qex F(X̃d) :=

∫ X̃d

−∞

e(X̃d−y)A (ζ )5s
e A−1

d F(y) dy−
∫ 0

X̃d

e(X̃d−y)A (ζ )5u
e A−1

d F(y) dy, (60)

then for all F ∈ Pev (respectively F ∈ Pex ) the equation

L(∂Xd )U = F for Xd > 0, (respectively L(∂X̃d
)U = F for X̃d 6 0),

admits a solution reading U = PevU +QevF (respectively U = PexU +Qex F).

Lemma 6.2 combined with equations (55) and (56) implies that we have the conditions

U ε
ev,0 = PevU ε

ev,0 and U ε
ex,0 = PexU ε

ex,0 which are comparable to the polarization condition

(34) for oscillating amplitudes. We describe in the following the way to construct the

evanescent amplitude U ε
ev,0. The arguments are exactly the same for the explosive

amplitude U ε
ex,0.

From the definition of Pev and the ‘polarization’ condition U ε
ev,0 = PevU ε

ex,0 to

determine U ε
ev,0 it is sufficient to determine its trace on {Xd = 0}. However by (55) we

do not know this trace but only the double trace on {xd = Xd = 0}, so that we follow the

method of [9] consisting in extending this double trace for xd > 0 as a boundary layer.

Consequently

U ε
ev,0(t, x, Xd) = χ(xd)eXdA (ζ )PevU ε

ev,0(t, x ′, 0, 0) = χ(xd)eXdA (ζ )Pevφ0(ζ )(g− B0Uε0,O ),

where χ ∈ C∞(]0, 1[) satisfies8 χ(x) = 1 for x 6 1
4 and χ(x) = 0 for x > 3

4 . So that U ε
ev,0

is a solution of (55). The same kind of formula also holds for explosive amplitude.

Moreover clearly by definition of Pev (respectively Pex ) it is clear that U ε
ev,0(t, x, Xd) ∈

Pev (respectively U ε
ex,0(t, x, Xd) ∈ Pex ).

We sum up the results of this section in the following proposition:

Proposition 6.2. Under Assumptions 2.1, 2.2, 2.4, assume that ζ /∈ G and that

Assumption 6.1 holds for γ
0
. For all k ∈H and for all 0 < ε � 1 there exist uεh,0,k ∈

H∞\,γ (�) for all γ > γ
0

satisfying the cascade of equations (28),(31),(32),(33) written for

n = 0 and there exist U ε
ev,0 ∈ Pev and U ε

ex,0 ∈ Pex satisfying the cascade of equations (28),

(31), (32), (33) written for n = 0.

So at this step we have determined all the amplitudes of the leading order in the ansatz

(27). The following section aims to show that this construction can be repeated to higher

orders to obtain an approximate solution of (24) (we postpone the justification to § 8).

8Note that compared to the boundary layer for glancing modes the size of the boundary layer for elliptic
modes can be made independent on ε.
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7. Construction of higher order terms

In this paragraph we first sketch the construction of the amplitudes of order one in the

WKB expansion. As the reader will notice, the construction for selfinteracting amplitudes

is rather classical, that is we first determine the unpolarized part of the amplitudes

(which only depends on the leading order amplitude) and then reiterate the construction

described in Paragraph 6.1 to determine the polarized part. The determination of the

evanescent or explosive amplitudes follows more or less the same ideas. More precisely

we decompose the evanescent/explosive amplitude in some ‘unpolarized part’ depending

only on the leading order evanescent/explosive amplitude and some ‘polarized’ part which

is determined as described in Paragraph 6.3.

Finally we show in Paragraph 7.4 that these constructions can be performed at any

order for selfinteracting and evanescent/explosive amplitudes if ζ /∈ G.

However, the situation is not so ideal when glancing modes exist. Indeed as mentioned

in Paragraph 6.2, the glancing amplitudes cannot solve simultaneously the boundary

conditions and the equation in the interior. This fact implies that we are able to define

only one corrector ensuring a suitable rate of convergence. We refer to Paragraph 7.3 for

more details.

7.1. Selfinteracting amplitudes of order one

First, in a classical setting (see for example [13]), we determine the unpolarized part of

the hyperbolic amplitudes of order one, namely the uεh,1,k for k ∈H . In order to do so, we

apply the pseudo-inverse ϒk (see Definition 2.3) to the second equation of (28) written

for n = 0. By definition of ϒk we obtain that

∀k ∈H , (I −5k)uεh,1,k = iϒk L(∂)uεh,0,k . (61)

The right hand side of (61) has been determined in Paragraph 6.1, so that (61) uniquely

determines the unpolarized part of the selfinteracting amplitudes (moreover they are in

H∞\,γ (�) for all γ > γ
0
). So to conclude the construction it only remains to determine the

polarized parts, namely the 5kuεh,1,k for k ∈H .

Consider the second equation of (28) written for n = 1, compose by 5k and use the

trivial decomposition I = I −5k
+5k leads to:

5k L(∂)5kuεh,1,k = −5
k L(∂)(I −5k)uεh,1,k ⇐⇒ 5k L(∂)5kuεh,1,k = −i5k L(∂)ϒk

h L(∂)uεh,0,k .

We can apply Lax’s lemma [8] to rewrite this equation as:

(∂t + vk · ∇x )5
kuεh,1,k = −i5k L(∂)ϒk

h L(∂)uεh,0,k . (62)

We again have to solve a transport equation so we reiterate the discussion depending on

the type of the phase.

� k ∈ I . In that case the transport phenomenon is incoming so that to be solved (62)

only requires a boundary condition on ∂00. To determine this boundary condition we
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consider (31) written for n = 1 that we write under the form:

B0

∑
k∈I

5kuεh,1,k +
∑
k∈G

5kuεh,1,k +U ε
ev,1|Xd=0


|xd=0

= −B0

∑
k∈I

(I −5k)uεh,1,k +
∑
`∈O

(I −5`)uεh,1,`

+

∑
k∈G

(I −5k)uεg,1,k +
∑
`∈O

5`uεh,1,`


|xd=0

, (63)

and we remark that all the terms in the right hand side of (63), except the last

one, are known functions in H∞\,γ (∂�0) for all γ > γ
0
. Consequently applying the

uniform Kreiss–Lopatinskii condition (see Assumption 2.4) and the projector Pk
h (see

Definition 2.4) to (63) shows that the polarized part 5kuεh,1,k for k ∈ I satisfies the

transport equation (note that Pk
h5

k
= 5k):

(∂t + vk · ∇x )5
kuεh,1,k = Fε

1,k,I ,

5kuεh,1,k|xd=0
= −Pk

h φ0(ζ )B0

(
Uε1,O +Gε1,I

)
,

5kuεh,1,k|t60
= −(I −5k)uεh,1,k|t60

= 0,

(64)

where we recall that Uε1,O is defined in (51) and where the source terms are given by:

Fε
1,k,I := −i5k L(∂)ϒk L(∂)uεh,0,k,

Gε1,I :=

∑
k∈I

(I −5k)uεh,1,k +
∑
`∈O

(I −5`)uεh,1,`+
∑
k∈G

(I −5k)uεg,1,k


|xd=0

.

� ` ∈ O. In that case the transport phenomenon is outgoing so that to be solved (62)

only requires a boundary condition on ∂01. Reiterating essentially the same computations

as the ones for the case k ∈ I we easily obtain that the polarized part of an outgoing

amplitude satisfies the transport equation:
(∂t + v` · ∇x )5

`uεh,1,` = Fε
1,`,O ,

5`uεh,1,k|xd=1
= −e−

i
ε
ξ` P`hφ1(ζ )B1

(
Uε1,I +Gε1,O

)
,

5`uεh,1,`|t60
= 0,

(65)

where the source terms are given by:

Fε
1,`,O := −i5`L(∂)ϒ`L(∂)uεh,0,`,

Gε1,O :=

∑
k∈I

e
i
ε
ξk (I −5k)uεh,1,k +

∑
`∈O

e
i
ε
ξ`(I −5`)uεh,1,`+

∑
k∈G

e
i
ε
ξk (I −5k)uεg,1,k


|xd=1

.
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We can repeat the same arguments as the ones described in Paragraph 6.1 to obtain

a compatibility condition on Uε1,I =
∑

k∈I e
i
ε
ξk5kuεh,1,`|xd=1

. Integrating (65) along the

characteristics gives:

5`uεh,1,`(t, x) = − e−
i
ε
ξ` P`hφ1(ζ )B1Uε1,I

(
t +

1
v`,d

(1− xd), x ′+
v′`

v`,d
(1− xd)

)
− e−

i
ε
ξ` P`hφ1(ζ )B1Gε1,O

(
t +

1
v`,d

(1− xd), x ′+
v′`

v`,d
(1− xd)

)
−

∫ 1−xd

0
Fε

1,`,O

(
t +

1
v`,d

(1− xd − s), x ′+
v′`

v`,d
(1− xd − s), 1− s

)
ds,

(66)

and consequently the right hand side of the boundary condition of (64) depends on Uε1,I ,

Gε1,O and Fε
1,`,O . Integrating again along the characteristics the transport equation gives

(by linearity):

5kuεh,1,k(t, x) = Pk
h φ0(ζ )B0

∑
`∈O

e−
i
ε
ξ` P`hφ1(ζ )B1Uε1,I

×

(
t +

1
v`,d
−

1
vk,d

xd , x ′+
v′`

v`,d
−

v′k
vk,d

xd

)
+ Pk

h φ0(ζ )B0
∑
`∈O

e−
i
ε
ξ` P`hφ1(ζ )B1Gε1,O

×

(
t +

1
v`,d
−

1
vk,d

xd , x ′+
v′`

v`,d
−

v′k
vk,d

xd

)
− Pk

h φ0(ζ )B0Gε1,I

(
t −

1
vk,d

xd , x ′−
v′k
vk,d

xd

)
+ Pk

h φ0(ζ )B0
∑
`∈O

∫ 1

0
Fε

1,`,O (tk,`(s, xd), x′k,`(s, xd), 1− s) ds

+

∫ xd

0
Fε

1,k,I

(
t −

1
vk,d

(xd − s), x ′+
v′k
vk,d

(xd − s), s
)

ds, (67)

where we defined:

tk,`(s, xd) := t +
1
v`,d

(1− s)+
1
vk,d

xd and x′k,`(s, xd) := x ′+
v′`

v`,d
(1− s)+

v′k
vk,d

xd .

Multiplying (67) by e
i
ε
ξk and summing over k ∈ I we obtain the compatibility condition:

(I − T ε(ζ ))UεI ,1 = T ε(ζ )Gε1,O −
∑
k∈I

e
i
ε
ξk Pk

h φ0(ζ )B0Gε1,I

(
t −

1
vk,d

, x ′−
v′k
vk,d

)

+

∑
k∈I

e
i
ε
ξk Pk

h φ0(ζ )B0
∑
`∈O

∫ 1

0
Fε

1,`,O (tk,`(s, xd), x′k,`(s, xd), 1− s) ds

+

∑
k∈I

e
i
ε
ξk

∫ 1

0
Fε

1,k,I

(
t −

1
vk,d

(1− s), x ′+
v′k
vk,d

(1− s), s
)

ds, (68)

https://doi.org/10.1017/S1474748018000506 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000506


WKB expansions for hyperbolic boundary value problems in a strip 1661

where T ε(ζ ) is defined in (47). Remark that all the terms in the right hand side of (68)

are in E s
h(ζ ) (recall that by definition Fε

1,k,I reads Fε
1,k,I = 5

k F̃ε1,k,I for k ∈ I ) so

we can use Assumption 6.1 in (68) to determine the value of UεI ,1 (in terms of some

known functions in H∞\,γ (∂�1, E s
h(ζ )), namely Gε1,O , Gε1,I , Fε

1,k,I and Fε
1,`,O). Plugging

this value in (66) and (67) gives the value of the polarized part of the amplitude for

selfinteracting phases namely the 5kun,1,k for k ∈H . This concludes the construction of

the selfinteracting amplitudes of order one.

7.2. Evanescent and explosive amplitudes of order one

We now turn to the determination of evanescent and explosive amplitudes of order one.

Considering (28) written for n = 0 we obtain that

L(∂Xd )U
ε
ev,1 = −L(∂)U ε

ev,0 for Xd > 0 and L(∂X̃d
)U ε

ex,1 = −L(∂)U ε
ex,0 for X̃d 6 0.

(69)

From Proposition 6.2 the known function U ε
ev,0 ∈ Pev (respectively U ε

ex,0 ∈ Pex ) and

it is clear that Pev (respectively Pex ) is stable by L(∂). Consequently the right hand

sides in (70) are in Pev and Pex respectively, and we can apply Lemma 6.2 to obtain the

decompositions:

U ε
ev,1 = PevU ε

ev,1−QevL(∂)U ε
ev,0 and U ε

ex,1 = PexU ε
ex,1−Qex L(∂)U ε

ex,0. (70)

To determine U ε
ev,1 (respectively U ε

ex,1) it is sufficient to determine PevU ε
ev,1

(respectively PexU ε
ex,1). This is done mainly in the same way that in Paragraph 6.3.

We briefly sketch the construction of PevU ε
ev,1 for completeness. Recall that by definition

of Pev (see (57)) PevU ε
ev,1 is known if and only if we know the value of its trace on

{Xd = 0} to determine this trace we consider the cascade of equation (31) written for

n = 1 and then we extend the double trace on {Xd = xd = 0} as a trace on {Xd = 0}
only. The second equation of (31) written for n = 1 reads (after decomposition on the

stable/unstable subspaces and by the uniform Kreiss–Lopatinskii condition on ∂00 and

the composition by Ps
e ):

U ε
ev,1|xd=Xd=0

= −Ps
e φ0(ζ )B0

∑
k∈O

uεh,1,k|xd=0
,

where from Paragraph 7.1 the right hand side is a known function in H∞\,γ (�) for all

γ > γ
0
.

Consequently by definition of Pev we obtain (by using a function χ as before) that:

PevU ε
ev,1(t, x, Xd) = −χ(xd)eXdA (ζ )Ps

e φ0(ζ )B0
∑
k∈O

uεh,1,k|xd=0
,

which concludes the construction of evanescent amplitude of order one. Once again by

definition of Pev and Qev it is clear that U ε
ev,1 ∈ Pev. The same permits to show that

U ε
ex,1 ∈ Pex .

7.3. A corrector for glancing amplitudes

In this paragraph we follow the method of [16] to construct a corrector for glancing modes

such that the geometric optics expansion is a good approximation of the exact solution

up to an admissible rate of convergence (that is O(ε1/4)).
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To this aim we recall the equations governing glancing amplitudes of order one in (28)

(namely the fourth and the fifth equation of (28) in which we reintroduced the power of

ε for convenience) that is: ε
0
(

iL ( dϕk)uεg,1,k + L(∂)uεg,0,k
)
= 0 ∀k ∈ G ,

εL(∂)uεg,1,k = 0 ∀k ∈ G .
(71)

We decompose the first equation of (71) as:

ε0(iL ( dϕk)ug,1,k + L(∂)5kuεg,0,k) = ε
0(iL ( dϕk)uεg,1,k

+5k L(∂)5kuεg,0,k + (I −5
k)L(∂)uεg,0,k) = 0.

This equation has exactly the same form as the one for hyperbolic amplitudes except

that we chose the leading order glancing mode in such a way that it satisfies the boundary

condition (to ensure an error at least of size O(ε) on the boundary) but not the interior

equation so that compared to hyperbolic modes 5k L(∂)5kug,0,k is not zero and gives rise

to an extra error in the interior.

However as for oscillating modes we compose the first equation of (71) by ϒk the partial

inverse of L ( dϕk) and we define:

uεg,1,k = (I −5
k)uεg,1,k := iϒk L(∂)uεg,0,k . (72)

By doing this we obtain that for all k ∈ G

L(∂)(ei ϕk
ε (uεg,0,k + εu

ε
g,1,k)) = 5

k L(∂)5kuεg,0,k + εL(∂)uεg,1,k . (73)

The term of order ε0 in the right hand side of (73) may seem to be alarming to obtain

a good error estimate for glancing modes but thanks to the choice of the boundary layer

in (54) it is not. Indeed, from (54) and using the fact that for all k ∈ G , 5k L(∂)5k
=

∂t + v
′

k · ∇x ′ (so that 5k L(∂)5k does not act on the xd variable) we have that:

5k L(∂)5kuεg,0,k = χε(xd)B0(t, x ′)+ (1−χε(xd))B1(t, x ′),

where χε(xd) := χ(ε
−1/2xd) and where from Proposition 6.1 B0(t, x ′), B1(t, x ′) are in

H∞\,γ (Rt ×Rd−1
x ′ ) for all γ > γ

0
. So a simple change of variables shows that5k L(∂)5kuεg,0,k

is O(ε1/4) in L2
γ (�) for all γ > γ

0
.

We now turn to the term εL(∂)uεg,1,k in the right hand side of (73). From (54) and (72),

uεg,1,k reads under the form:

uεg,1,k = ε
−1/2 (χ ′ε(xd)B̃0(t, x ′)+ (1−χ ′ε(xd))B̃1(t, x ′)

)
+ h.o.t.,

where B̃0, B̃1 ∈ H∞\,γ (Rt ×Rd−1
x ′ ) for all γ > γ

0
. From which we immediately deduce that

εL(∂)uεg,1,k is O(ε1/4) in L2
γ (�) for all γ > γ

0
.

By construction of uεg,0,k|xd=0 = gε it follows:
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Proposition 7.1. Assume that the hyperbolic strip problem (24)9 satisfies Assumptions

2.1, 2.2, 2.4, 2.3 and 6.1 for some γ
0
> 0. Then with uεg,0,k defined in (54) and uεg,1,k

defined in (72) we have

L(∂)
(∑

k∈G ei ϕk
ε (uεg,0,k + εu

ε
g,1,k)

)
= O�(ε1/4) in �,

B0

(∑
k∈G ei ϕk

ε (uεg,0,k + εu
ε
g,1,k)

)
|xd=0

= O∂�0(ε) on ∂�0,

B1

(∑
k∈G ei ϕk

ε (uεg,0,k + εu
ε
g,1,k)

)
|xd=1

= O∂�1(ε) on ∂�1,(∑
k∈G ei ϕk

ε (uεg,0,k + εu
ε
g,1,k)

)
|t60
= 0 on 0,

(74)

where OX (·) is understand in L2
γ (X) for all γ > γ

0
.

7.4. Higher order non-glancing amplitudes

As mentioned in Paragraph 7.3 when the frequency ζ admits glancing modes then we can

construct a first order corrector such that the error (in the interior) is O(ε1/4) in L2
γ (�).

However it seems difficult to reiterate this method to construct a second order corrector

giving rise to an admissible error (the reason remains that glancing modes cannot solve

the interior and the boundary equations simultaneously).

However when G = ∅ we can repeat the construction made in Paragraphs 7.1 and 7.2

to define an arbitrary number of correctors. In this paragraph we briefly describe the way

to proceed.

Assume that all the terms uεh,n,k , k ∈H and U ε
ev,n , U ε

ex,n appearing in (27) have been

constructed up to some order n0 > 1. We sketch the construction of uεh,n0+1,k for k ∈H ,

U ε
ev,n0+1 and U ε

ex,n0+1.

• First the second equation of (28) written for n = n0 gives the unpolarized part of the

hyperbolic amplitude uεh,n0+1,k (so that it is sufficient to determine the polarized part)

and the 7th (respectively 8th) equation of (28) combined with Lemma 6.2 implies that

to determine U ε
ev,n0+1 (respectively U ε

ex,n0+1) it is sufficient to determine PevU ε
ev,n0+1

(respectively PexU ε
ex,n0+1) (see (57) and (59)).

• From Lax’s lemma [8] and Lemma 6.2 each of the terms mentioned above require only

a boundary condition (on ∂00 for the uεh,n0+1,k , k ∈ I and U ε
ev,n0+1 and on ∂01 for

the uεh,n0+1,`, ` ∈ O and U ε
ex,n0+1). Identify in (31) and (32) (written for n = n0) the

stable and the unstable parts of the traces show that the ‘double trace’ of evanescent

and explosive amplitudes only depends on the trace of the hyperbolic amplitudes.

Consequently we shall determine the traces of the hyperbolic amplitudes first.

• To determine the trace of the oscillating amplitudes we remark that by the uniform

Kreiss–Lopatinskii condition on each side the boundary conditions (31) and (32)

9In fact in this setting as we only construct a first order corrector in (27) it is in fact sufficient to take

g ∈ H2
\ (∂�0) to ensure that the uεg,1,k ∈ H1

γ (�) for all γ > γ 0 in such a way that the previous discussion

makes sense.
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(written for n = n0) can be written under the form:

5
kuεh,n0+1,k|xd=0 = −Pk

n φ0(ζ )B0Uεn0+1,O + F0 k ∈ I

5`uεh,n0+1,`|xd=1 = −P`n φ1(ζ )B1Uεn0+1,I + F1 ` ∈ O,

where F0 and (respectively F1) is a given source term that depends on the uεh,n,k
for k ∈H and n 6 n0, on (I −5k)uεh,n0+1,k|xd=0 (respectively (I −5`)uεh,n0+1,`|xd=1,

` ∈ O) but not on 5kuεh,n0+1,k|xd=0 (respectively 5`uεh,n0+1,`|xd=1).

Reiterate exactly the same kind of computations as the ones described in

Paragraphs 6.1 and 7.1 leads to the compatibility condition:

(I − T (ζ ))UεI ,n0+1 = Fn0+1,

where Fn0+1 is a known function in H∞\,γ (∂�1, E s
h(ζ )) for all γ > γ

0
. From

Assumption 6.1 we determine UεI ,n0+1 and then each oscillating amplitude uεh,n0+1,k
for k ∈H by resolution of transport equations.

• The final step is to construct the ‘polarized’ parts of the evanescent/explosive

amplitude (that is PevU ε
ev,n0+1 and PexU ε

ex,n0+1). Is it done exactly as it has been done

in Paragraphs 6.3 and 7.2. More precisely the knowledge of the traces of the oscillating

amplitudes gives the knowledge of the ‘double’ traces of U ε
ev,n0+1 and U ε

ex,n0+1 then we

are free to extend these double traces in simple ones thanks to the cut-off function χ .

This concludes the construction of the amplitudes at any order in the particular

framework where G = ∅ to sum up we give the following proposition:

Proposition 7.2. Under Assumptions 2.1,2.2 and 2.4 also assume that G = ∅ and that

Assumption 6.1 holds for some γ
0
> 0. Then for all n ∈ N, for all k ∈H there exist

uεh,n,k ∈ H∞\,γ (�) for all γ > γ
0

and U ε
ev,n ∈ Pev, U ε

ex,n ∈ Pex satisfying the cascades of

equations (28), (31), (32) and (33).

8. Proofs of the main results

In this paragraph we give two justifications of the geometric optics expansion depending

on the kind of the frequency ζ .

As explained in Paragraph 7.3, when the frequency ζ involves glancing modes (that

is to say G 6= ∅) then the error between the approximate solution given by the WKB

expansion and the exact solution of (24) is O(ε1/4) because of the glancing amplitudes

of order one, namely the uεg,1,k .

Whereas when the frequency ζ does not involve glancing modes, the arguments

described in Paragraphs 7.1, 7.2 and 7.4 show that we can construct the amplitudes

at any order so that the error between this expansion and the exact solution of (24)

is of order O(εN0+1), where N0 stands for the number of terms in the geometric optics

expansion.
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We first consider the case where G = ∅. In this framework we define an approximate

solution of uε by: for N0 ∈ N

uεapp,N0
:=

N0∑
n=0

∑
k∈H

e
i
ε
ϕk (t,x)εnuεh,n,k(t, x)

+

N0∑
n=0

e
i
ε
ψ(t,x ′)εn

(
U ε

ev,n

(
t, x,

xd

ε

)
+U ε

ex,n

(
t, x,

xd − 1
ε

))
, (75)

where the terms appearing in the right hand side of (75) are defined in Proposition 7.2.

We are now in a position to show Theorem 3.3.

By construction of uεapp,N0
, uεapp,N0+1− uε satisfies the hyperbolic boundary value

problem 

L(∂)(uεapp,N0+1− uε) = εN0+1 f εN0+1 in �,

B0(uεapp,N0+1− uε)|xd=0 = 0 on ∂�0,

B1(uεapp,N0+1− uε)|xd=1 = 0 on ∂�1,

(uεapp,N0+1− uε)|t60 = 0 on 0,

where we defined

f εN0+1 :=
∑

k∈H

e
i
ε
ϕk L(∂)uεh,N0+1,k

+ e
i
ε
ψ

(
L(∂)U ε

ev,N0+1

(
t, x,

xd

ε

)
+ L(∂)U ε

ex,N0+1

(
t, x,

xd − 1
ε

))
.

By construction and from Assumption 6.1 the terms composing f εN0+1 are H∞\,γ (�)
for all γ > γ

0
(because the uεh,N0+1,k ∈ H∞\,γ (�) for all γ > γ

0
independently on ε).

Consequently f εN0+1 is in H∞\,γ (�) for all γ > γ
0

so that from the energy estimate (15)

we obtain:

‖uε − uεapp,N0+1‖
2
L2
γ (�)

6 CεN0+1,

for all γ > γ0. We then conclude to (19) by the triangle inequality.

We now turn to the case where G 6= ∅. We include in (75) the contribution of glancing

modes and restrict the expansion to the order one to define:

uεapp,glan :=

1∑
n=0

∑
k∈H

e
i
ε
ϕk (t,x)εnuεh,n,k(t, x)+

1∑
n=0

∑
k∈G

e
i
ε
ϕk (t,x)εnuεg,n,k(t, x)

+

1∑
n=0

e
i
ε
ψ(t,x ′)εn

(
U ε

ev,n

(
t, x,

xd

ε

)
+U ε

ex,n

(
t, x,

xd − 1
ε

))
, (76)

where the extra terms uεg,0,k and uεg,1,k are defined in (54) and (72), respectively.

Then theorem 3.3 is an immediate corollary of Theorem 3.2 and Proposition 7.1.
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9. Study of Assumption 6.1

9.1. Sufficient conditions

In this paragraph we study Assumption 6.1, that is to say that there exists some γ 0 > 0
such that the operator (I − T ε(ζ )) is invertible on H∞\,γ (Rt ×Rd−1

x ′ , E s
h(ζ )) with values in

H∞\,γ (Rt ×Rd−1
x ′ , E s

h(ζ )) for all γ > γ 0. For convenience we recall that T ε(ζ ) is defined

by:

(T ε(ζ ) f )(t, x ′) :=
∑

k∈I ,`∈O

e
i
ε
(ξk−ξ`)Rk,`(ζ ) f

(
t −αk,`, x ′+βk,`

)
(77)

where we set

Rk,`(ζ ) := Pk
h φ0(ζ )B0 P`hφ1(ζ )B1, αk,` :=

1
v`,d
−

1
vk,d

and βk,` :=
v′`

v`,d
−

v′k
vk,d

.

Clearly when f ∈ H∞\,γ (Rt ×Rd−1
x ′ , E s

h(ζ )) then so do (I − T ε(ζ )) f (because the

derivatives only apply on f and because by definition v`,d < 0 for ` ∈ O and vk,d > 0
for k ∈ I so that t −αk,` < t).

First let us note that when there is no selfinteracting phase then the geometric optics

expansion does not have any exponential growth in time. Consequently, this seems to

indicate that the exponential growth in time of the exact solution is linked to the

selfinteracting modes.

Moreover it is clear from (77) that T ε(ζ ) is compact so that Fredholm alternative

applies and we have the following proposition.

Proposition 9.1. Assumption 6.1 holds if and only if there exists γ 0 > 0 such that for all

0 < ε � 1, (I − T ε(ζ )) is one to one on H∞\,γ (Rt ×Rd−1
x ′ , E s

h(ζ )) for all γ > γ 0.

The simplest way to show that (I − T ε(ζ )) is invertible over H∞\,γ (Rt ×Rd−1
x ′ , E s

h(ζ ))

with values in H∞\,γ (Rt ×Rd−1
x ′ , E s

h(ζ )) is of course to show that T (ζ ) is a contraction on

H∞\,γ (Rt ×Rd−1
x ′ , E s

h(ζ )). In Paragraphs 10.1.1 and 10.1.2 we give some examples of such

a situation.

From the particular expression of T ε(ζ ) it is sufficient to consider the L2
γ (Rt ×

Rd−1
x ′ )-norm.

Proposition 9.2. Let γ 0 be such that10

√ ∑
k∈I ,`∈O

‖Rk,`(ζ )‖2 < eγ 0 mink∈I ,`∈O αk,l , (78)

then T ε(ζ ) is a contraction on H∞\,γ (Rt ×Rd−1
x ′ , E s

h(ζ )) for all γ > γ 0 and consequently

Assumption 6.1 is satisfied.

10Such γ 0 always exists because mink∈I ,`∈O αk,l > 0.
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Proof. As already mentioned it is sufficient to consider the L2
γ (Rt ×Rd−1

x ′ )-norm of T ε(ζ ).

We have for f ∈ L2
γ (Rt ×Rd−1

x ′ )

‖T ε(ζ ) f ‖2
L2
γ (Rt×Rd−1

x ′ )
6

∑
k∈I ,`∈O

∫
R+×Rd−1

e−2γ t
|Rk,`(ζ ) f (t −αk,`, x ′−βk,`)|

2 dt dx ′,

6
∑

k∈I ,`∈O

e−2αk,`γ

∫
R+×Rd−1

e−2γ t
|Rk,`(ζ ) f (t, x ′)|2 dt dx ′,

6‖ f ‖2
L2
γ (Rt×Rd−1

x ′ )

∑
k∈I ,`∈O

e−2αk,`γ ‖Rk,`(ζ )‖
2.

So that if we choose γ 0 > 0 large enough such that
√∑

k∈I ,`∈O ‖Rk,`(ζ )‖2 <

eγ 0 mink∈I ,`∈O αk,l then T ε(ζ ) is a contraction on H∞\,γ (Rt ×Rd−1
x ′ , E s

h(ζ )) for all γ > γ 0.

Remark. •We note that if γ 0 = 0 in (78) then Assumption 6.1 holds with γ 0 = 0 and

consequently the approximate solution given by the geometric optics expansion (76) or

(75) admits a lower exponential growth in time (so that it can be a good approximation

of a solution which is lower exponentially strongly well-posed).

• In (78) the term mink∈I ,`∈O αk,` is the minimal time to perform a full regenerating

reflection.

• In the particular setting where #I = #O = 1 (meaning that there is only one

selfinteraction path of phases) then (78) becomes ‖R(ζ )‖ < eαγ 0 , where α is the

time needed to perform a full regenerating reflection. In particular when γ 0 = 0 this

condition is nothing but asking that the coefficient of reflection for a complete circuit

is less than one so that the energy decreases after a complete circuit.

This condition agrees with the intuition that if the energy increases after one complete

circuit then the associated solution should have an exponential growth in time

depending on the time needed to perform a complete circuit.

• In [1] one of the conditions characterizing the lower exponentially strongly well-posed

problems, namely the uniform inversibility of (I −T (ζ )) on E s(ζ ) , can be explicit as:

T (ζ ) = φ0(ζ )B0e−A (ζ )φ1(ζ )B1eA (ζ ).

So that from this expression it immediately follows that the condition used to construct

the WKB expansion (that is Assumption 6.1) is a microlocalized version of the

condition (16) on hyperbolic modes (and only on hyperbolic modes).

Proposition 9.2 has the interesting counterpart to show that the solution of the strip

problem (1) admits a WKB expansion. Indeed consider a problem which is strongly

well-posed (in the sense of Definition 3.1) for some γ0 > 0 then it is also strongly

well-posed for all γ̃0 > γ0. In particular it holds for the γ̃0 satisfying γ̃0 > γ 0, where

γ 0 > 0 satisfies Proposition 9.2. Consequently Theorem 3.2 or 3.3 applies.

However let us stress that in this argument the maximal exponential growth in time

of the solution may not be sharp because we are assuming that γ̃0 is large enough.

Consequently the lowest γ 0 is, the best (in terms of the L2
γ spaces) the approximation

https://doi.org/10.1017/S1474748018000506 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000506


1668 A. Benoit

given by the geometric optics expansion is. The following Paragraph is devoted to this

study in the simplest possible case of selfinteraction.

To conclude this Paragraph let us notice that if one considers geometric optics

expansions for hyperbolic strip problems in finite time that is to say for the following

equation

L(∂)uε := ∂t uε +
∑d

j=1 A j∂ j uε = 0 for (t, x ′, xd) ∈]−∞, T ]×Rd−1
×]0, 1[,

B0uε
|xd=0 = gε for (t, x ′) ∈]−∞, T ]×Rd−1,

B1uε
|xd=1 = 0 for (t, x ′) ∈]−∞, T ]×Rd−1,

uε
|t60 = 0 for (x ′, xd) ∈ Rd−1

×[0, 1],

(79)

where T > 0 stands for a finite time of resolution. Then in this setting Assumption 6.1

is trivially satisfied and consequently to construct the WKB expansion only the

uniform Kreiss–Lopatinskii condition on both sides is necessary. Indeed from the

expression of T ε(ζ ) it is clear that for p = p(T ) large enough (T ε(ζ ) f )p
≡ 0 for all

f ∈ H∞\,γ (] −∞, T ]×Rd−1, E s
h(ζ )) so that the Neumann series expansion is finite and

equals (I − T ε(ζ ))−1. This remark is coherent with the fact that in finite time imposing

the uniform Kreiss–Lopatinskii condition on both sides of the strip is sufficient to ensure

strong well-posedness.

9.2. The case #I = #O = 1

In the particular setting where #I = #O = 1 (which is automatically satisfied when

N = 2 but also includes systems with N > 2) then we can give a full characterization

of systems satisfying Assumption 6.1 in terms of the reflection coefficient. For simplicity

we write

(T ε(ζ ) f )(t, x ′) := e
i
ε
ξR(ζ ) f (t −α, x ′+β) (80)

instead of (77). The result is the following.

Proposition 9.3. Let γ0 > 0 and assume that R(ζ ) > eαγ0 then there exists a non-trivial

f ∈ H∞\,γ (Rt ×Rd−1, E s
h(ζ )) for all γ > lnR

α
such that (I − T ε(ζ )) f = 0 in H∞\−α,γ (Rt ×

Rd−1
x ′ , E s

h(ζ )).

In particular the (weak version of) Assumption 6.1 is not satisfied for all γ > γ0.

Proof. Performing a Fourier transform x ′! η in the equation (I − T ε(ζ )) f (t, x) = 0,
gives the functional equation

f̂ (t, η)− e
i
ε
ξR(ζ )eiβη f̂ (t −α, η) = 0, (81)

and we are looking from a solution of (81) under the form f̂ (t, η) = eσ t 1[0,∞[(t)ĝ(η)v
where g lies in H∞(Rd−1

x ′ ), where v ∈ E s
h(ζ ) and where σ := λ+ iτ ∈ C has to be fixed.

Injecting such an ansatz in (81) gives:(
1[0,∞[(t)− e

i
ε
ξR(ζ )eiβηe−ασ1[α,∞[(t)

)
eσ t ĝ(η)v = 0. (82)
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Recall that from Remark 6.1 it is sufficient to solve section 9.2 on the time interval

[α,∞[ one which section 9.2 simplifies into:(
1− e

i
ε
ξR(ζ )eiβηe−ασ

)
eσ t ĝ(η)v = 0,

so that we choose  τ := τ(ε, η) =
1
α

(
ξ
ε
+βη

)
,

λ =
lnR(ζ )
α

,
(83)

in such a way that is satisfied. The constructed Fourier transform is in L2(Rd−1)

independently on t ∈ R+. So that by inverse Fourier transform the function

f (t, x) = e
lnR(ζ )

α
t 1[0,∞[(t)F−1

η→x (e
i
α
(
ξ
ε
+βη)t ĝ(η), )v is solution of (I − T ε(ζ )) f = 0 lying in

H∞\−α,γ (Rt ×Rd−1
x ′ , E s

h(ζ ) for all γ >
lnR(ζ )
α

> 0 (because R(ζ ) > 1).

10. Examples and comments

10.1. Examples

10.1.1. The wave equation in two dimensions. In this first example we consider

the wave equation in two dimensions

∂t uε + A1∂1uε + A2∂2uε = 0 for (t, x) ∈ �,

B0uε
|x2=0 :=

[
1 −α0

]
uε
|x2=0 = gε on (t, x1) ∈ ∂�0,

B1uε
|x2=1 :=

[
−α1 1

]
uε
|x2=1 = 0 on (t, x1) ∈ ∂�1,

uε
|t60 = 0 for x ∈ 0,

(84)

where α0, α1 ∈ R and where the coefficients A1, A2 are given by:

A1 :=

[
1 0
0 −1

]
and A2 :=

[
0 1
1 0

]
.

In (84) the source term gε reads

gε(t, x1) := e
i
ε
(τ t+ηx1)g(t, x1), (85)

where g ∈ H∞\ (∂�0) and where τ , η ∈ R are fixed frequency parameters.

We can easily check that the boundary conditions in (84) are strictly dissipative (see

(18)) if and only if the parameters α0, α1 satisfy α0 < 0, α1 > 0. So for such parameters

Theorem 3.1 applies and (84) is exponentially strongly well-posed. We also recall that

from [6], as in the case N = 2 the uniform Kreiss–Lopatinskii condition is equivalent

to the strict dissipativity of the boundary condition. Consequently the restrictions α0 <

0, α1 > 0 are the only ones leading to an exponentially strongly well-posed problem.

We are now interested in the fulfillment of Assumption 6.1 in order to construct a

geometric optics expansion by Theorem 3.2 or Theorem 3.3 (depending on the frequency

(τ , η)).
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The resolvent matrix associated to (84) for ζ = (σ, η) is

A (ζ ) =

[
0 −σ + iη

−(σ + iη) 0

]
.

So that for ζ = (iτ , η) we deduce that if X is an eigenvalue of A (ζ ) then it satisfies the

dispersion relation

X2
= η2
− τ 2.

Consequently the partition of the boundary of the frequency space 40 in (7) reads:

E = {(τ, η) ∈ R2
\ |η| > |τ |}, H = {(τ, η) ∈ R2

\ |τ | > |η|},

G = {(τ, η) ∈ R2
\ |η| = |τ |} and EH = ∅.

Without loss of generality let us assume that τ > 0 and in order to study

Assumption 6.1 we assume that ζ ∈ H (if ζ ∈ E∪G then clearly Theorem 3.2 or 3.3

applies independently on Assumption 6.1). In this setting the stable (respectively

unstable) eigenvalue X s
:= X s(τ , η) (respectively Xu

:= Xu(τ , η)) is given by:

X s
:= iξ = −i

√
τ 2− η2 (respectively Xu

= −X s), (86)

from which we immediately deduce that the stable subspace E s(ζ ) and the unstable

subspace Eu(ζ ) are parametrized by:

E s(ζ ) = vect{(−ξ, τ + η)t } and Eu(ζ ) = vect{(ξ , τ + η)t }.

We now study Assumption 6.1, in the setting of (84) the restriction of the operator

T ε(ζ ) to E s(ζ ) = E s
h(ζ ) is:

T ε(ζ )

[
−ξ

τ + η

]
= e2 i

ε
ξ
−ξ +α0(τ + η)

ξ +α0(τ + η)
·
α1ξ + τ + η

−α1ξ + τ + η

[
−ξ

τ + η

]
. (87)

Consequently Assumption 6.1 is automatically satisfied for all boundary parameters

α0, α1 leading to strictly dissipative boundary conditions (for all ζ ∈ H) because in such

a framework one can easily check that Proposition 9.2 applies with γ 0 = 0 so that T ε(ζ )

is a contraction.

However, it is also interesting to note that in fact T ε(ζ ) is a contraction for more

boundary parameters than the ones leading to strictly dissipative boundary conditions.

Indeed, it is not difficult to check that we have the following equivalence:∣∣∣∣T ε(ζ )

[
−ξ

τ + η

]∣∣∣∣ < ∣∣∣∣[ −ξτ + η

]∣∣∣∣⇔ α1α0 < 1,

so that Assumption 6.1 is satisfied for more parameters than the strictly dissipative ones.

The aim of the next example is to give more details about this observation.
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10.1.2. A modification of the wave equation . In this second example we consider

the following modification of the classical wave equation:

∂t uε + A1∂1uε + A2∂2uε = 0 for (t, x) ∈ �,

B0uε
|x2=0 = gε on (t, x1) ∈ ∂�0,

B1uε
|x2=1 = 0 on (t, x1) ∈ ∂�1,

uε
|t60 = 0 for x ∈ 0,

(88)

where the coefficients A1, A2 are given by:

A1 :=

1 0 0
0 −1 0
0 0 a

 , A2 :=

0 1 0
1 0 0
0 0 −b

 ,
for fixed parameters a ∈ R, b ∈ R∗+. So the evolution equation of (88) is a wave equation

(for the components u1 and u2) combined with an uncoupled transport phenomenon for

the component u3. The source term gε is of the form (85).

The boundary matrices in (88) are defined by (note that A2 admits only one positive

eigenvalue):

B0 :=
[
1 −α0 −α1

]
, B1 :=

[
−1 1 0
0 1 −δ

]
,

where α0, α1, δ ∈ R. Consequently in (88) the coupling between u1, u2 and u3 is made

in the boundary conditions.

As in Paragraph 10.1.1 in order to study Assumption 6.1 for (88) we are interested in

the hyperbolic area of (88). The system is decoupled and the transport equation added

on u3 is hyperbolic whatever the frequency parameter is. So that we have the following

decomposition of the boundary of the frequency space:

EH = {(τ, η) ∈ R2
\ |η| > |τ |}, H = {(τ, η) ∈ R2

\ |τ | > |η|},

G = {(τ, η) ∈ R2
\ |η| = |τ |} and E = ∅,

consequently in the following we will assume that |τ | > |η| to be in the hyperbolic area.11

Reiterating essentially the same computations as the ones performed in

Paragraph 10.1.1, we can easily show that the stable subspace E s(ζ ) and the unstable

subspace Eu(ζ ) associated to (88) are given by:

E s(ζ ) := vect{es} = vect{(−ξ, τ + η, 0)t }

and Eu(ζ ) := vect{eu,1, eu,2} = vect{(ξ , τ + η, 0)t , (0, 0, 1)t },

where ξ is defined in (86).

It is also easy to show that the boundary condition on ∂00 is strictly dissipative if and

only if α0 < 0 and α2
1 + 2α0b < 0. This condition satisfies the uniform Kreiss–Lopatinskii

11In this example, the mixed area is of little interest because A (ζ ) has two elliptic roots and only one
hyperbolic root so that the selfinteraction phenomenon cannot occur.
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if and only if α0 < 0, independently on α1. With such a choice of α0, the inverse given by

the uniform Kreiss–Lopatinskii condition is given by: φ0(ζ ) : C→ E s(ζ )

φ0(ζ )x :=
−x

ξ +α0(τ + η)
es .

The boundary condition on ∂01 satisfies the uniform Kreiss–Lopatinskii condition for

all δ 6= 0 and is strictly dissipative if and only if we have δ2 > b
2 . For δ 6= 0 the inverse

given by the uniform Kreiss–Lopatinskii condition is: φ1(ζ ) : C2
→ Eu(ζ )

φ1(ζ ) :=


ξ

−ξ+τ+η
0

τ+η

−ξ+τ+η
0

τ+η

δ(−ξ+τ+η)
−

1
δ

 .
With these expressions in hand it is easy to show that the operator T ε(ζ ) applied to

es reads:

T ε(ζ )es =

(
e2

iξ
ε

ξ + τ + η

−ξ + τ + η
·
−ξ +α0(τ + η)

ξ +α0(τ + η)

+ e
i
ε
(ξ− 1

b (τ+aη)) 2ξ(τ + η)

δ(−ξ + τ + η)
·

α1

ξ +α0(τ + η)

)
es (89)

:= (%1+ %2)es . (90)

Let us first remark that if in B0 one chooses α0 < 0 and α1 = 0 (so that the boundary on

∂00 is strictly dissipative) then from (90) and Paragraph 10.1.1, T ε(ζ ) is a contraction

on E s(ζ ) and consequently Assumption 6.1 holds for γ 0 = 0 and Theorem 3.2 applies

independently on δ. Choose 0 < δ <

√
b
2 shows that Theorem 3.2 applies for non-strictly

dissipative boundary condition on ∂01.

Then it is easy to show that for all strictly dissipative boundary conditions on ∂00
and ∂01 we have |%1| < 1 and |%2| < 1 independently on ζ . Unfortunately this result is

not sufficient to conclude that T ε(ζ ) is a contraction and that Assumption 6.1 holds for

γ 0 = 0 for all possible ζ ∈ H.

However numerical results seem to indicate that |%1+ %2| < 1 for all strictly dissipative

boundary conditions independently on ζ ∈ H. We refer to Figure 4 for an illustration when

an explicit computation12 with α0 = −
1
2 , b = 1, α1 =

√
−2α0b+ 10−2 and δ =

√
b
2 − 10−2.

10.2. Conclusion and comments

In this article we show that to construct the geometric optics expansion associated to a

hyperbolic boundary value problem defined in a strip a new inversibility condition has

12Note that in Paragraph 10.1.2 we make a crude estimate in the sense that we do not take into account
the oscillating factors and the dependency of ξ < 0 with respect to (τ , η).
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Figure 4. The set (in blue) of (x, y) ∈ R2 such that | y+x
−y+x

−y+α0x
y+α0x +

2xy
δ(−y+x)

α1
y+α0x | < 1.

to be imposed (see Assumption 6.1). This condition involves the traces of the hyperbolic

components of the geometric optics expansion.

This condition is shown to be automatically satisfied when the considered localization

frequency does not involve selfinteracting phases, when the strip problem is finite in

time and also if during a full circuit of reflection the coefficients of reflection ensure that

the energy does not increase. Moreover in the particular setting where there are only

two selfinteracting modes this non-increasing property is equivalent to the fulfillment of

Assumption 6.1.

As a consequence, this condition meets the intuition that if after a full reflection the

boundary conditions are such that the energy increases then as the full reflection is

periodically repeated in time the associated ansatz should have an exponential growth

in time (with some rate depending on the time needed to perform a full reflection).

This seems to indicate that the maximal exponential growth in time of the solution is

linked to the time needed to perform a full reflection and to the maximum of the reflection

coefficients for all selfinteracting frequencies (that is to say boundary frequencies involving

at least an incoming and an outgoing phase).

Moreover the examples described in Paragraphs 10.1.1, 10.1.2 seem to indicate that

Assumption 6.1 is trivially (in the sense that T (ζ ) is a contraction) satisfied for all strictly

dissipative boundary conditions (for which the (lower exponential) strong well-posedness

of (24) is known to hold).

A point of interest is that in the expansions described so far the inversibility condition

used to construct the WKB expansions does not involve the elliptic or the glancing parts

of the ansatz. This point meets the intuition that these parts of the ansatz are linked

to boundary layers so that they cannot propagate the information from one side to the

other and consequently they should behave like they do in the half space geometry.

However, in the author’s opinion, this observation has an important counterpart.

More precisely, in [1] the author obtains a full characterization of lower exponentially
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strongly well-posed problems (see Definition 3.1) in terms of new inversibility conditions

involving the traces of the solution of each side of the strip. Nevertheless compared to

the inversibility condition Assumption 6.1 one of the inversibility conditions used in [1]

differs by the following:

• first, as it is not at the microlocalized level, it has to hold uniformly in terms of the

frequency parameter ζ ∈ 4 \40.

• Second this condition has to be imposed on the full stable subspace E s(ζ ) and not only

on the hyperbolic part of this space that is E s
h(ζ ) (note that by Hersh’s lemma [6] this

space is empty for ζ ∈ 4 \40).

The main issue with the characterization used in [1] is its uniformity in terms of ζ ∈ 4 \40
which seems really difficult to check in practice. To overcome this difficulty the natural

strategy is to have a look to the boundary frequencies ζ ∈ 40 to obtain the uniform

bound by compactness arguments (it is the classical method of [7]).

First let us remark that the extension of the condition made in [1] to hyperbolic

frequency ζ ∈ 40 is nothing but Assumption 6.1 for hyperbolic frequencies. Consequently

Assumption 6.1 is a microlocalized version of the condition ensuring the lower exponential

strong well-posedness. This phenomenon already appeared for the geometric optics

expansions of boundary value problems in the half space. So we believe that it is

interesting to notice that such a situation also occurs in more complex geometries.

Second as pointed in [1], the condition ensuring the lower exponential strong

well-posedness cannot hold for glancing modes. So the fact that Assumption 6.1 only holds

on E s
h(ζ ) seems to indicate that in fact in the extension to 40 only the hyperbolic part

of the solution should be considered. So probably the extension of the characterization

in [1] up to 40 does not require any inversibility property on glancing modes. Meaning

that it may be possible to extend the symmetrizer construction of [1] up to 40 (except

at glancing modes) to recover the uniformity of the bound. We expect to have further

results about this conjecture in some forthcoming publications.

Acknowledgments. The author is grateful to the referee of this paper for its many

very interesting remarks and questions which improve the results of the paper. The

author was supported by the French National Research Agency project NABUCO, grant

ANR-17-CE40-0025.

References

1. A. Benoit, Lower exponential strong well-posedness of hyperbolic boundary value
problems in a strip, Preprint.
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