
J. Fluid Mech. (2019), vol. 863, pp. 293–340. c© Cambridge University Press 2019
doi:10.1017/jfm.2018.992

293

The influence of the chemical composition
representation according to the number of

species during mixing in high-pressure
turbulent flows

Luca Sciacovelli1 and Josette Bellan1,2,†
1California Institute of Technology, Pasadena, CA 91125, USA

2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

(Received 14 May 2018; revised 17 September 2018; accepted 4 December 2018;
first published online 24 January 2019)

Mixing of several species in high-pressure (high-p) turbulent flows is investigated to
understand the influence of the number of species on the flow characteristics. Direct
numerical simulations are conducted in the temporal mixing layer configuration
at approximately the same value of the momentum ratio for all realizations. The
simulations are performed with mixtures of two, three, five and seven species to
address various compositions at fixed number of species, at three values of initial
vorticity-thickness-based Reynolds number, Re0, and two values of the free-stream
pressure, p0, which is supercritical for each species except water. The major species
are C7H16, O2 and N2, and the minor species are CO, CO2, H2 and H2O. The
extensive database thus obtained allows the study of the influence not only of Re0
and p0, but also of the initial density ratio and of the initial density difference between
streams, 1ρ. The results show that the layer growth is practically insensitive to all
of the above parameters; however, global vortical aspects increase with Re0, p0 and
the number of species; nevertheless, at the same Re0, p0 and density ratio, vorticity
aspects are not influenced by the number of species. Species mixing produces strong
density gradients which increase with p0 and otherwise scale with 1ρ but, when
scaled by 1ρ, are not affected by the number of species. Generalized Korteweg-type
equations are developed for a multi-species mixture, and a priori estimates based
on the largest density gradient show that the Korteweg stresses, which account for
the influence of the density gradient, have negligible contribution in the momentum
equation. The species-specific effective Schmidt number, Scα,eff , is computed and it
is found that negative values occur for all minor species – particularly for H2 – thus
indicating uphill diffusion, while the major species experience only regular diffusion.
The probability density function (p.d.f.) of Scα,eff shows strong variation with p0
but weak dependence on the number of species; however, the p.d.f. substantially
varies with the identity of the species. In contrast, the p.d.f. of the effective Prandtl
number indicates dependence on both p0 and the number of species. Similar to
Scα,eff , the species-specific effective Lewis-number p.d.f. depends on the species,
and for all species the mean is smaller than unity, thus invalidating one of the most
popular assumptions in combustion modelling. Simplifying the mixture composition by
reducing the number of minor species does not affect the crucial species–temperature
relationship of the major species that, for accuracy, must be retained in combustion
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simulations, but this relationship is affected for the minor species and in regions of
uphill diffusion, indicating that the reduction is nonlinear in nature.

Key words: general fluid mechanics, turbulent mixing

1. Introduction
Mixing of several species under high-pressure (high-p) conditions is encountered

in many chemical engineering processes and in virtually all combustion systems used
for either transportation or propulsion, e.g. diesel engines, gas turbine engines and
rocket engines. In many of these systems the fuel used is a complex mixture of
many chemical species (Edwards & Maurice 2001; Edwards 2003; Edwards et al.
2004). Chemical reactions in these engineering applications produce additional species
compared to the mixture of reactants. Frequently in chemical engineering applications
and in all the above-mentioned combustion systems, one encounters high-p turbulent
reactive flows. Understanding these flows is challenging due to the coupling among
transport, thermodynamics and dynamics of the flow. Experimental and simulation
challenges in discerning the control parameters in these applications are similar.
For example, conducting experiments and simulations at high p is demanding and
financially expensive. Could perhaps these be conducted at atmospheric p with
no penalty on the resulting outcome in finding the control parameters at high p?
Both experiments (e.g. Oschwald & Schik 1999; Chehroudi, Talley & Coy 2002)
and simulations (e.g. Okong’o & Bellan 2002, 2004) have shown that the high-p
regime displays fundamentally different features from the atmospheric-p regime, thus
indicating the necessity of exploring high-p turbulent reactive flows in their specific
(p, T) realm, where T is the temperature.

No comparable study exists addressing the complexity of the species mixture,
despite the pivotal role it has in tailoring both the fuel composition and combustion
processes for increased power and reduced pollutants. Experimental investigations of
high-p turbulent flows have been primarily limited to two species. Such experiments
observed a jet injected into a chamber of different composition than the jet. Notable
experiments have been conducted for liquid oxygen (LOX) into H2 (Mayer et al. 1996;
Mayer & Tamura 1996), LOX into N2 (Chehroudi et al. 2002), N2 into N2 (Oschwald
& Schik 1999; Chehroudi et al. 2002), N2 into H2 (Oschwald et al. 1999), He into N2
(Chehroudi et al. 2002), N2 into He (Chehroudi et al. 2002), a fluoroketone into N2
(Roy, Clement Joly & Corin Segal 2013), and butanol, n-dodecane or n-hexadecane
into N2 (Falgout et al. 2016). Few exceptions from the binary-species arrangements
exist, but they are not sufficiently quantitatively documented for understanding the
influence of particular species, particularly since in some experiments the composition
is uncertain. For example, N2 was injected into 10 % CO and 90 % N2 (Chehroudi
et al. 2002) but only limited jet spreading information is available. On the other hand,
Crua, Manin & Pickett (2015b) injected n-heptane, n-dodecane or n-hexadecane into
a mixture of C2H2, H2, N2 and O2 of indefinite composition, while Crua, Heikal &
Gold (2015a) used a rapid compression machine to inject fuels of uncertain chemical
composition (e.g. diesel, kerosene) into air.

For combustion investigations, the importance of the composition representation
of a given fuel according to the identity and number of species in the mixture
enters consideration from two important viewpoints. First, in order to tailor the
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composition of fuels to benefit combustion and reduce emissions, it is generally
accepted that, instead of studying the real fuel it is more attractive to construct a
surrogate for more tractable and comprehensive investigations. Diesel surrogates have
been proposed by Mueller et al. (2016) containing four, five and eight species, and
kerosene surrogates were proposed by Dagaut & Cathonnet (2006); but although these
surrogates may well reproduce physical properties, thermodynamic characteristics and
global chemical properties, there is uncertainty that the molecular transport of the
species in the surrogate fuel will duplicate that in the real fuel. The importance of
molecular transport in high-p turbulent flows is directly associated with the reduced
molecular mass diffusivities, resulting in reduced species-specific effective diffusivities
(Masi et al. 2013) that measure the combined effect of molecular and turbulent
processes. These reduced mass diffusivities are responsible for the formation of
high density-gradient magnitude (HDGM) regions seen both in simulations (Okong’o
& Bellan 2002; Masi et al. 2013) and in experiments (Oschwald & Schik 1999;
Chehroudi et al. 2002; Falgout et al. 2016), including those of the engine combustion
network (ECN) Sandia data as detected by Falgout et al. (2015). The significance
of the HDGM regions is that experimental observations indicate that high density
gradients act akin to solid surfaces and influence the vortical distribution in flows,
damping turbulence in the perpendicular direction to them and enhancing it in the
tangential direction (Hannoun, Fernando & List 1988). Additionally, in reactive
flows, diffusion is responsible for bringing reactive species into contact and therefore
determines whether reactions occur, thus being one of the governing processes.

This discussion introduces the second viewpoint highlighting the importance of
the particular representation of a complex mixture of species by a selected smaller
number of species: since each neat-hydrocarbon combustion is described by a set of
tens of thousands of elementary reactions among thousands of species (e.g. Simmie
2003; Silke, Pitz & Westbrook 2007), such chemical mechanisms are not utilizable in
turbulent combustion simulations due to the extreme computational burden needed to
solve such a set of equations. To make the simulations tractable, elementary reaction
mechanisms are reduced to a much smaller set of species and a representative set
of reactions yielding information about the auto-ignition time and the time-wise
evolution of species and temperature (Hernández, Ballesteros & Sanz-Argent 2010;
Kourdis & Bellan 2014). These reduced chemical kinetic models are typically included
in turbulent reactive codes together with drastic assumptions on transport processes
(e.g. the popular assumption that Le= 1, where Le is the Lewis number), and results
thus obtained are evaluated with experimental data which are reliably available only at
atmospheric-p conditions; many pitfalls are involved in these studies (Bellan 2017b).
Lam (2007), Harstad & Bellan (2013) and Bellan (2017b) highlighted the necessity
of accounting for the global diffusional influence of the neglected species when using
reduced kinetic mechanisms to predict laminar flame propagation. Without focusing
specifically on reduced kinetics, the interest is here to assess whether representing
a mixture by a reduced number of species would bias the development of a flow
resulting from species turbulent mixing, compared to using a larger number of species.
Currently, this information is not available.

This study is devoted to elucidating the effect of the representation of a mixture
of species in high-p turbulent flows by a selected number of its species constituents,
including minor species. Effectively, we focus on the number of species and
remove the influence of the species identity by considering an increasingly larger
number of minor species while the major species have the same identity in all
mixtures considered. Essentially, the mixture composition is increasingly refined by the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.992


296 L. Sciacovelli and J. Bellan

additional number of minor species. Since well-conducted direct numerical simulation
(DNS) presents a special opportunity to explore details which are difficult to unravel
in other computational methods (e.g. large-eddy simulation or Reynolds-averaged
Navier–Stokes) because of embedded approximate submodels, DNS is here selected
as the method of choice. This paper is organized as follows. In § 2 we recall the
governing equations consisting of the conservation equations and the equation of state,
all coupled to the transport properties. The numerical method is briefly addressed
in § 3. The configuration, boundary conditions and initial conditions for the 13
conducted DNS realizations are presented in § 4. The results are examined in § 5,
encompassing the global characteristics of the layer, instantaneous flow visualizations,
the density gradients, effective transport coefficients, the dissipation and the joint
probability density function between normalized mass fractions and the normalized T .
The findings from this study are summarized in § 6 and conclusions synthesize the
aspects impacting future investigations.

2. Governing equations
2.1. Differential conservation equations

The conservation equations are

∂ρ

∂t
+

∂

∂xj
(ρuj)= 0, (2.1)

∂

∂t
(ρui)+

∂

∂xj
(ρuiuj + pδij − T ij)= 0, (2.2)

∂

∂t
(ρet)+

∂

∂xj
[(ρet + p)uj − uiT ij + qj] = 0, (2.3)

∂

∂t
(ρYα)+

∂

∂xj
(ρYαuj + Jαj)= 0, (2.4)

where α ∈ [1,N − 1], N is the number of species, t denotes the time, x is a Cartesian
coordinate, subscripts i and j refer to the spatial coordinates, ui is the velocity, et =

e + uiui/2 is the total energy (i.e. internal energy, e, plus kinetic energy), Yα is the
mass fraction of species α and T ij is the Newtonian viscous stress tensor

T ij =µ

(
2Sij −

2
3

Skkδij

)
, Sij =

1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (2.5a,b)

where µ is the viscosity, Sij is the strain-rate tensor, and Jαj and qj are the j-direction
α-species mass flux and heat flux, respectively.

Because of the different constitutive relations used for expressing Jα and q,
equations (2.1)–(2.4) under high-p conditions have ultimately a different form from
that used under atmospheric-p conditions. The present Jα and q expressions utilize the
full matrices of mass-diffusion coefficients and thermal-diffusion factors derived by
Harstad & Bellan (2004a). In order to enforce global mass conservation, we consider
a set of (N − 1) species equations rather than the complete set of N dependent
species; in these (N − 1) equations, the original molar-fraction fluxes and the heat
flux were rewritten to account for only (N − 1) gradients. The final form is

Jα =−ρ

[
Yα(DT,α)

∇T
T
+ Yα(Dp,α)

∇p
p
+

N−1∑
β=1

(
D′αβ

mα

mβ

)
∇Yβ

]
, (2.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.992


Mixing in high-pressure turbulent flows 297

q=−λ∇T +
N−1∑
α=1

Jα
[(

hα
mα

−
hN

mN

)
− RuT

(
ᾱb

T,α

mα

−
ᾱb

T,N

mN

)]
, (2.7)

where

DT,α =−

N∑
β=1

ᾱb
T,βDβα, Dp,α =

p
RuT

N∑
β=1

vβDβα, (2.8a,b)

Dαγ =

N∑
β=1

DαβαDβγ , (2.9)

ᾱb
T,α =

N∑
β=1

Xβαb
T,βα, (2.10)

D′αβ =Dαβ −

(
1−

mβ

mN

)(N−1∑
γ=1

DαγXγ

)
. (2.11)

Here, Xα = Yαm/mα represents the species molar fraction; mα is the species molar
mass; m is the mixture molar mass, m =

∑N
γ=1 mγXγ ; vα = (∂v/∂Xα)T,p,Xβ (β 6=α) is

the partial molar volume, where the molar volume is v = 1/n and n = ρ/m is the
molar density; hα = (∂h/∂Xα)T,p,Xβ (β 6=α) is the partial molar enthalpy, where the molar
enthalpy is h=G− T(∂G/∂T)p,X with G being the Gibbs energy; Ru is the universal
gas constant; Dαγ are the pairwise mass-diffusion coefficients; αb

T,αβ are the binary
thermal-diffusion factors; and λ is the thermal conductivity. The mass-diffusion factors,
αDαβ , are calculated from thermodynamics as

αDαβ ≡
1

RuT
Xα
∂µα

∂Xβ
= (δαβ − δαN)+ Xα(Rαβ − RαN), (2.12)

with 1 6 α 6 N, 1 6 β 6 N − 1, and

Rαβ ≡
∂ ln γα
∂Xβ

, (2.13)

with 1 6 α 6 N and 1 6 β 6 N. In (2.12) and (2.13), µα is the chemical potential
of species α written in terms of N − 1 species; γα ≡ ϕα/ϕo

α where ϕ is the fugacity
coefficient written in terms of N species and the superscript o denotes the pure
(Xα = 1) limit. Matrix elements Dβγ are the solution of the mixing rules equations
(Harstad & Bellan 2004a)

N∑
β=1

[
δαβ − (1− δαβ)Xβ

D̄α

Db
αβ

]
Dβγ

Xβ
= D̄α

(δαγ − Yα)
Xα

, (2.14)

where

D̄α = 1

/
N∑
β=1
β 6=α

(
Xβ
Db
αβ

)
. (2.15)

Solutions for Dβγ may be obtained by an approximate inversion (Ern & Giovangigli
1998) as follows:

Dβγ ' XβD(1)
βγ , (2.16)
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D(1)
αβ =

(1+ Yα)
Xα

D∗αδαβ + (1− δαβ)
D∗αD∗β
Db
αβ

− (σαD∗α + σβD∗β)+
N∑
γ=1

(YγσγD∗γ ), (2.17)

D∗α = (1− Yα)D̄α, (2.18)

σα =
mα

m
(1+ Yα)+

N∑
β=1
β 6=α

Yβ
D∗β
Db
αβ

, (2.19)

where Db
αβ is the full approximation binary-diffusion matrix. This method leads to a

singularity when the mixture is composed of only one species (as, for instance, in
pure fuel zones). In that case (2.15) is no longer used and the diffusion coefficients
are evaluated using the binary-diffusion matrix, by setting D∗α = Db

αN where N
represents the index associated with the solvent. This method was tested against an
exact Gauss inversion (not shown) and it gave the same results, with an additional
gain in computational time. Defining Dαβ as the first approximation of the binary
diffusion matrix and realizing that the deviation of the ratio Db

αβ/Dαβ from unity is
comparable to uncertainties in binary diffusion coefficients values (Harstad & Bellan
2004a), we assume Db

αβ = Dαβ . The computation of Dαβ and αb
T,αβ is described in

appendix A along with the other transport properties.

2.2. Equation of state
Equations (2.1)–(2.4) are coupled with the Peng–Robinson (PR) equation of state
(EOS)

p=

RuT

(
α=N∑
α=1

Xα

)
(vPR − bmix)

−
amix

(v2
PR + 2bmixvPR − b2

mix)
, (2.20)

from which T and p are obtained as an iterative solution which satisfies both values of
ρ and of e, as obtained from the conservation equations (Okong’o, Harstad & Bellan
2002). Here vPR is the molar PR volume, and v = vPR + vs, where vs is the volume
shift introduced for improving the accuracy of the PR EOS at high p; amix and bmix are
functions of T and Xi (see appendix B). The vs computation was described in detail
elsewhere (Okong’o et al. 2002).

3. Numerical method
The differential equations combined with the EOS described in § 2 were numerically

solved using a fourth-order explicit Runge–Kutta time integration and a sixth-order
compact scheme spatial discretization (Lele 1992). In order to ensure time stability,
the conservative variables were filtered using the eighth-order compact filter described
in Gaitonde & Visbal (1998). The transfer function of this filter is sharper than that
associated with the high-order explicit filters of the Kennedy & Carpenter (1994)
family used for similar simulations in the past (e.g. Masi et al. 2013; Bellan 2017a).
A parametric study (not shown) using several filter coefficients (0.4, 0.45, 0.475
and 0.49) indicated that the value 0.475 was sufficiently large to ensure that the
filter only acts on the shortest wavelengths which can be resolved on the grid and
it does not affect the physical content of the data. The code was parallelized using
three-dimensional domain decomposition and message passing. The tridiagonal solvers
for the compact derivative scheme and the compact filter were efficiently parallelized
using the method of Muller & Scheerer (1991).
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4. Configuration, boundary conditions and initial conditions
The configuration is that of a temporal mixing layer with periodic boundary

conditions in the streamwise (x1) and spanwise (x3) directions and non-reflecting
boundary conditions in the cross-stream (x2) direction. The cross-stream domain size
(L2) is sufficiently large so that there is no interference of the mixing region at any
time with the domain boundaries. The layer is not symmetric in extent in the x2
direction, so as to accommodate the larger layer growth in the stream hosting the
lighter mixture; specifically, the upper stream is 1.5 times larger than the lower stream.
The domain lengths Li are the same for all simulations, i.e. L1 = 0.2 m, L2 = 0.22 m
and L3= 0.12 m. The domain size in the streamwise and spanwise directions is such
that it accommodates initially four vortices associated with the wavelengths λ1 and
λ3 of perturbations: λ1/δω,0 = 7.29 and λ3 = 0.6λ1 as in Moser & Rogers (1991).
The amplitudes of the initial perturbations are F3D = 0.048 and F2D = 0.05; details
about the initial mean flow and the initial analytical perturbation used to hasten
the flow transition to turbulence characteristics may be found in Masi et al. (2013).
The upper-stream and lower-stream temperatures are TU = 1000 K and TL = 600 K,
with subscripts U and L labelling the upper and lower streams, respectively, for all
simulations. The initial Reynolds number is defined as

Re0 ≡
0.5(ρU + ρL)1U0δω,0

µR
with δω,0 =

1U0

∂u0

∂x2

∣∣∣∣
max

, (4.1)

where δω,0 is the initial vorticity thickness computed using u0, which is the (x1, x3)
planar average of the initial velocity in the streamwise direction; ρU and ρL are
mixture initial densities, 1U0 =UU −UL is the initial free-stream velocity difference
across the layer and µR is a reference viscosity. A physical initial mixture viscosity
µph,0 is computed based on the physical initial species viscosities (see § A.1), then
the reference value µR is obtained from the chosen value of Re0, and finally a factor
F ≡ µR/µph,0 is defined. All transport properties computed during the simulation are
then scaled by F , a procedure which allows the computation of accurate dimensionless
numbers, which according to Batchelor (1999) define the character of the solution.
The value of F was computed at the initial time, for the initial constant p0 and T0,
using a mixture composed of two to seven species, each species being averaged over
the entire domain. In this manner, a unique F value is employed in the computational
domain. The value of 1U0 is calculated from a specified value of the convective
Mach number, Mc, through an expression valid for a general fluid

UU = 2McaU

[
1+

(
aU

aL

)√
ρU

ρL

]−1

, UL =−

√
ρU

ρL
UU, (4.2a,b)

where a is the speed of sound, being computed from the EOS. The convective Mach
number is set to Mc = 0.4 for all simulations.

The number of species considered in the DNS range from two to seven and their
identity is selected for their relevance to combustion. The fuel is represented by
n-heptane (C7H16) because it has similar cetane number (CN) value to diesel fuel
(CN of ≈56 versus ≈50); the significance of CN is that it measures the ignition delay
time. Air is here represented by its major species, N2 and O2, in suitable proportions.
The principal products of complete combustion, CO2 and H2O, are part of the set of
species. Finally, the products of incomplete combustion leading to CO2 and H2O (i.e.
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Species mα Tc pc vc Ω ζ

(kg kmol−1) (K) (bar) (10−3 m3 kmol−1) (D)

H2O 18.015 647.14 220.64 55.95 0.344 1.855
CO 28.01 132.85 34.94 93.1 0.045 0.1
CO2 44.01 304.12 73.74 94.07 0.225 0
H2 2.016 32.98 12.93 64.2 −0.217 0
O2 32.0 154.58 50.43 73.37 0.0222 0
C7H16 100.2 540.2 27.4 428 0.35 0
N2 28.014 126.2 33.98 90.1 0.037 0

TABLE 1. Species properties: molecular weight mα , critical temperature Tc, pressure pc
and volume vc, acentric factor Ω and dipole moment ζ .

CO and H2) complete the set of seven species. The properties of these species are
listed in table 1. The initial compositions used for the simulations are listed in table 2,
where both the mass and molar fractions are listed for each species and each case.
The abbreviation of the cases is as follows: the first digit indicates the number of
species; R1, R2 and R3 designate the initial Reynolds number (1000, 2000 and 3500,
respectively); p60 and p80 stand for the initial pressure (60 and 80 atm, respectively).
The last letter represents the methodology used to specify the initial composition:
Y indicates that the initial mass fractions Yα have been specified; whereas X means
that the initial molar fractions Xα were chosen. The advantage of specifying initial
molar fractions rather than mass fractions is that the former can be used to spatially
distribute these species stoichiometrically in both streams whereas the latter are
not amenable to stipulate stoichiometric spatial distributions. For the two-species
configuration, two different initial compositions are considered: s2R2p60Y, in which
N2 and C7H16 are initially unmixed; and s2R2p60Ya, in which a small amount of N2
is mixed with C7H16 in the lower stream. The composition in the latter case is chosen
such that the initial density ratio, ρL/ρU, matches the s7R2p60X case; comparison of
the results from s2R2p60Ya and s7R2p60X permits one to discriminate between the
influence of the initial composition, of the number of species, and that of (ρL/ρU); it
is well known that ρL/ρU has a strong effect in turbulence dynamics, even in simpler
variable-density shear flows (Almagro, Garcia-Villalba & Flores 2017). Regarding the
five species initial compositions, s5R2p60Y corresponds to the case studied in Masi
et al. (2013), in which the mass fractions of the two major products of combustion,
CO2 and H2O, were initially distributed uniformly, as minor species, over the entire
domain. With the perspective of addressing combustion-relevant situations, we also
consider the configuration s5R2p60X, where the composition is fixed as follows: first,
the initial molar fraction of one of the products is arbitrarily fixed (e.g. XH2O= 0.04);
then, the molar fractions of the other products are chosen according to stoichiometry;
lastly, the sum of the molar fractions of these minor species is subtracted from the
sum of Xα of the major species, that is, air in the upper stream and fuel in the lower
stream. The same procedure is used for the seven-species case, in which H2 and CO
are also present. All simulations are performed for a free-stream pressure p0= 60 atm,
except s7R2p80X for which p0 = 80 atm.

In conducting simulations of temporal configurations the results of which we wish
to compare, it is mandatory to ensure that differences in results can be attributed
to specific differences in initial conditions. Thus, for all realizations the initial
momentum ratio |ρU|L/|ρU|U has an approximately similar value, varying in the
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Case Stream C7H16 N2 O2 H2O H2 CO CO2

s2R1p60Y Yα,U 0 100 0 0 0 0 0
s2R2p60Y Yα,L 100 0 0 0 0 0 0
s2R3p60Y Xα,U 0 100 0 0 0 0 0

Xα,L 100 0 0 0 0 0 0

s2R2p60Ya Yα,U 0 100 0 0 0 0 0
Yα,L 96.1 3.9 0 0 0 0 0
Xα,U 0 100 0 0 0 0 0
Xα,L 87.324 12.676 0 0 0 0 0

s3R1p60Y Yα,U 0 75.5 24.5 0 0 0 0
s3R2p60Y Yα,L 100 0 0 0 0 0 0

Xα,U 0 77.8761 22.1239 0 0 0 0
Xα,L 100 0 0 0 0 0 0

Yα,U 0 75.50 20.00 1.00 0 0 3.50
s5R1p60Y Yα,L 95.50 0 0 1.00 0 0 3.50
s5R2p60Y Xα,U 0 78.00 18.09 1.61 0 0 2.30

Xα,L 87.59 0 0 5.10 0 0 7.31

Yα,U 0 70.7173 21.4723 2.4893 0 0 5.3211
s5R1p60X Yα,L 97.6188 0 0 0.7589 0 0 1.6223
s5R2p60X Xα,U 0 73.075 19.425 4 0 0 3.50

Xα,L 92.5 0 0 4 0 0 3.50

s7R1p60X Yα,U 0 67.5572 20.5128 2.5879 0.2896 3.5207 5.5318
s7R2p60X Yα,L 96.246 0 0 0.8143 0.0911 1.1078 1.7406
s7R2p80X Xα,U 0 67.15 17.85 4.0 4.0 3.50 3.50

Xα,L 85.0 0 0 4.0 4.0 3.50 3.50

TABLE 2. Acronyms denoting each case, with a case name being the string of the
acronyms under the column ‘Case’ (e.g. s2R1p60Y; see also table 3). All simulations in
the same case bin have the same initial condition composition as specified by the initial
mass (Yα) and molar (Xα) fractions (in %) for upper and lower streams; s2, s3, s5 and s7
indicate the number of species considered; R1 denotes Re0= 1000, R2 denotes Re0= 2000,
R3 denotes Re0 = 3500, as listed in table 3; p60 and p80 denote 60 atm and 80 atm, as
also listed in table 3.

small range [3.0, 3.6], a fact which is intentional while considering the substantial
variation in composition. Had CO2, H2O, CO and H2 been major rather than minor
species, it would have been extremely difficult to conduct simulations within such
a narrow range of |ρU|L/|ρU|U values. Additionally, the five- and seven-species
compositions can be thought to mimic mixing under exhaust gas recirculation (EGR)
conditions; the three-species composition mimics mixing without EGR; finally, the
binary-species compositions relate to most experiments described in § 1. The ECN
Spray A Sandia data of C7H16 injection also included EGR and was obtained at an
ambient p= 60 atm and ambient T = 900 K, similar to some of the upper free-stream
conditions of the present study. These latter data are described on the Sandia website
as ‘The Spray A condition is a low-temperature combustion condition relevant to
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Run Re0 F p0
ρL

ρU
1ρ

|ρU|L
|ρU|U

N1 ×N2 ×N3 Rem,tr Reλ,tr t∗tr
(atm) (kg/m3)

s2R1p60Y 1000 10600 60 12.966 240.0 3.6 480× 530× 288 1800 148 100
s3R1p60Y 1000 10278 60 12.556 239.4 3.0 480× 530× 288 1806 152 100
s5R1p60Y 1000 7806 60 9.800 182.6 3.1 480× 530× 288 1761 176 90
s5R1p60X 1000 8758 60 10.912 205.8 3.3 480× 530× 288 1784 158 95
s7R1p60X 1000 7102 60 9.015 160.1 3.0 480× 530× 288 1752 196 90
s2R2p60Y 2000 5300 60 12.966 240.0 3.6 800× 880× 480 3192 286 80
s2R2p60Ya 2000 3614 60 8.997 160.4 3.0 800× 880× 480 3201 330 80
s3R2p60Y 2000 5139 60 12.556 239.4 3.0 800× 880× 480 3177 310 80
s5R2p60Y 2000 3903 60 9.800 182.6 3.1 800× 880× 480 3225 312 80
s5R2p60X 2000 4379 60 10.912 205.8 3.3 800× 880× 480 3203 315 80
s7R2p60X 2000 3551 60 9.015 160.1 3.0 800× 880× 480 3194 325 80
s7R2p80X 2000 5061 80 9.492 224.8 3.1 1000× 1100× 600 3246 271 85
s2R3p60Y 3500 3028 60 12.966 240.0 3.6 1200× 1200× 720 4935 448 65

TABLE 3. List of the DNS realizations and associated resolution. Information regarding the
initial upper stream and lower stream compositions is provided in table 2. The subscript
tr denotes the transitional time.

engines that use moderate EGR’, which is entirely consistent with the composition
listed in table 2.

The grid spacing, 1xi, is uniform and is selected to ensure that the smallest scales
relevant to dissipation are resolved and that there is no accumulation of energy at
those scales (see § 5.1). For fully turbulent flows, the relationship l/ηK ∼Re3/4 (where
l is the integral scale and ηK is the Kolmogorov scale) suggests that the grid points
should increase as a power law of Re (Tennekes & Lumley 1989). However, for
transitional flows where turbulence is not fully developed and the small structures
not yet defined, such scaling is not necessarily expected. Moreover, for flows in
which the Prandtl or Schmidt number, Pr or Sc, may have values larger than unity,
the smallest active scales could be the thermodynamic (rather than dynamic) scales,
which thus become the limiting length in resolution. It is difficult to preliminarily
rely on one criterion to determine the correct resolution; therefore, a certain amount
of experimentation led to the grids listed in table 3. More quantitative resolution
assessments are made in § 5.1. The number of grid points used in various realizations
ranges from 73× 106 to 1.04× 109.

In summary, the database of DNS generated and listed in table 3 allows a thorough
study that takes into account the influence of Re0, ρL/ρU, 1ρ ≡ ρL − ρU, the number
of species, the composition and p0.

5. Results

Considering the present interest in high-p turbulent flows, each simulation is
conducted for time units t∗ = t1U0/δω,0 until a time denoted t∗tr at which the
one-dimensional fluctuation-based energy spectra become smooth, except for the
forcing frequency, indicating that the flow, having started from laminar conditions,
has achieved turbulent characteristics; t∗tr is labelled the transitional time, and most,
although not all, of the analysis is conducted at t∗tr.
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To show the quality of the database, we first focus in § 5.1 on numerical resolution
aspects by examining the properties of the database at t∗tr. Then, in § 5.2 we discuss
the evolution of the global quantities up to transition. Flow visualizations are
examined in § 5.3 followed by an analysis of the density gradients, their impact on the
momentum through the Korteweg tensor and an inquiry into the HDGM composition
in § 5.4. We examine both the interaction among species for a specified number of
species in a selected realization and the effect of the number of species across the
database. The transport properties and non-dimensional numbers related to species and
heat transport are addressed in § 5.5. Since dissipation is a gradient-induced process
which is due to transport properties, we investigate in § 5.6 the irreversible entropy
production. Finally, in § 5.7 we examine whether a reduced, as contrasted to a more
detailed, chemical representation of the mixture influences the functional relationship
between each species and T; maintaining this relationship is one of the important
aspects in the modelling of reactive flows using reduced kinetic mechanisms.

5.1. Numerical resolution and spectra at transition
A crucial aspect in numerical experiments is to ensure that the computational aspects
are conducive to exploring the physics under investigation. To this purpose, we inspect
the resolution and the spectra at the transitional time.

Turbulent flows are characterized by the activity of a wide range of scales, the
smallest dynamic ones being related to the turbulent kinetic energy dissipation
〈ε〉 ≡ 〈T ′ij∂u′i/∂xj〉, where 〈 〉 symbolizes averages over homogeneous (x1, x3) planes
and (·)′ denotes fluctuations from the average. Generally, it is possible to associate
a characteristic length scale with the dynamic, the thermal-diffusion and the
mass-diffusion phenomena. A measure of the smallest dynamic active scale is
provided by the Kolmogorov scale, defined as (e.g. Jagannathan & Donzis 2016)

ηK =

(
〈µ〉3

〈ρ〉2〈ε〉

)1/4

. (5.1)

Thermal processes are related to the Prandtl number Pr, which measures the
importance of momentum transfer with respect to heat transfer. An estimate of the
smallest thermal length scale is provided by ηθ = ηKPr−0.5 (Goto & Kida 1999),
which suggests that, at locations where Pr > 1, thermal phenomena involve scales
smaller than ηK . Similarly, mixing may also occur at scales smaller than ηK; for
reactive flows, resolving the mixing scales is of paramount importance since species
can react only if they are brought together. The Schmidt number, which measures
the importance of momentum transfer with respect to species-mass transfer, can
provide an estimate of the mixing scales. For a binary species mixture the mixing
scale is the Batchelor scale, ηB, related to ηK by ηB = ηK Sc−0.5, but it is noted that
then Sc is only defined for a single species mass-diffusion coefficient. Masi et al.
(2013) circumvented this problem for a mixture of several species modelled utilizing
a complete mass-diffusion matrix, by defining an effective species-specific Schmidt
number, Scα,eff , which accounts for all relevant species’ mass-diffusion coefficients,
for DT,α and Dp,α of (2.6) and for the state of the flow represented by ∇T , ∇p
and ∇Yα. The corresponding effective Prandtl number, Preff , is defined in Masi et al.
(2013) using the same strategy.

Figure 1 shows the cross-stream profile of 1x/ηK and 1x/ηθ at t∗tr for the
Re = 2000 cases, and for the two-species Re = 1000 and Re = 3500 cases; ηθ was
computed as ηθ = ηK〈Preff 〉

−0.5 using the model of Masi et al. (2013) to compute Preff .
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FIGURE 1. (Colour online) Averaged resolution in terms of (a) local Kolmogorov length
scale 1x/ηK and (b) local thermal length scale 1x/ηθ at the transition time t∗tr.

The resolution is assessed at t∗tr because the core of the analysis is performed at this
time; moreover, t∗tr is the time of most severe grid requirements since ηK increases
monotonically past this station. The results show that 1x/ηK . O(1), indicating that
all the relevant turbulent scales are well resolved. The maximum values are in the
range 0.9 < (1x/ηK)max < 1.15 for all p60 simulations; case s7R2p80X displays an
even better resolution, with (1x/ηK)max < 0.8. The resolution is comparable for R1,
R2 and R3 cases, highlighting the suitability of the scaling of the computational grids
with the Re0 value. The thermal resolution requirements are shown to be here slightly
more demanding than the dynamic requirements (〈Preff 〉 being larger than unity),
with (1x/ηθ)max . 1.3. The computational grids are thus slightly finer compared
to the atmospheric-p temporal mixing layer simulations of Almagro et al. (2017)
((1x/ηK)max < 1.8) and Pantano & Sarkar (2002) ((1x/ηK)max ≈ 3–4), so as to satisfy
the more stringent thermal- and mass-diffusion requirements.

Further, the excellent resolution of all simulations is highlighted in figure 2
illustrating the spanwise and streamwise spectra, E(k), of the three velocity
components ui, and of the scalars YC7H16 and T at t∗tr, as a function of the
wavenumber k. Because, as explained above, the relationship ηB = ηK Sc−0.5 is only
valid for a binary-species mixture, examining the Yα-values resolution through the
spectra is just as important as assessing the resolution of the dynamic scales; the T
spectra re-ascertain the resolution of the thermal scales. The results show the spectra
smoothness associated with turbulent characteristics (except for the small peak at the
perturbation frequency in the spanwise direction), and the appropriate filter behaviour
manifested by the lack of energy accumulation at the smallest scales. As expected,
the simulations at the larger Re0 values have spectra which extend over a wider range
of scales and have more energy in the smallest scales than at the smaller Re0 values.
Increasing p0 from 60 atm to 80 atm has no visible influence on the spectra, as well
as the number of species and the different initial density ratio.

As an additional test, the streamwise and spanwise correlation coefficients of
the three velocity components and of the temperature were computed at t∗tr. The
coefficients decrease rapidly to zero in both homogeneous directions (not shown),
thereby ensuring that the domain lengths L1 and L3 are sufficiently large to enable
the unconstrained evolution of the largest turbulent scales in the computational box.
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FIGURE 2. (Colour online) One-dimensional spectra at t∗tr for several simulations:
streamwise spectra of (a) u1, (b) u2, (c) u3, (g) T and (h) YC7H16 ; and spanwise spectra of
(d) u1, (e) u2, ( f ) u3, (i) T and ( j) YC7H16 . Dashed, solid and dashed-dotted lines represent
cases R1, R2 and R3, respectively. Same colour legend as in figure 1.

5.2. Evolution of the global quantities
The parameter typically considered to understand and measure the growth of the
mixing layer is the momentum thickness, computed as

δm =

∫ x2,max

x2,min
[〈ρu1〉x2,max − 〈ρu1〉][〈ρu1〉 − 〈ρu1〉x2,min] dx2

(〈ρu1〉x2,max − 〈ρu1〉x2,min)2
, (5.2)
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FIGURE 3. (Colour online) Time-wise evolution of the normalized momentum thickness
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FIGURE 4. (Colour online) Time-wise evolution of integral quantities: (a) normalized posi-
tive spanwise vorticity 〈〈ω+3 〉〉δω,0/1U0, and (b) normalized enstrophy 〈〈ωiωi〉〉(δω,0/1U0)

2.
Legend as in figure 3.

where x2,min = −0.4L2 and x2,max = 0.6L2, the values being consistent with the
asymmetric extent of the mixing layer, as stated in § 4. Figure 3 displays δm/δω,0 as a
function of t∗ for the runs listed in table 3. The analytical perturbation ensures a fast
transition to a state close to self-similarity, in which the layer grows at a constant
rate. The time history of δm/δω,0 exhibits a similar behaviour in each realization;
namely, the initial constant growth rate is slightly reduced after the enstrophy
peak (discussed below), but increases monotonically. The change of the slope is
more evident for Re = 2000 cases because of the stronger dampening of vortical
structures. Simultaneously with layer growth, the vorticity content of the mixing layer
rapidly grows as shown in figure 4, where the domain-averaged positive spanwise
vorticity 〈〈ω+3 〉〉δω,0/1U0 and the domain-averaged enstrophy 〈〈ωiωi〉〉(δω,0/1U0)

2

are illustrated (where 〈〈 〉〉 denotes entire domain averaging). The amount of positive
spanwise vorticity is representative of the small-scale formation (the initial value being
negative), whereas the total enstrophy acts as an indicator of the turbulence activity,
i.e. the balance between vorticity production by stretching and tilting mechanisms
and its destruction by dissipation effects.
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The spanwise vorticity and enstrophy exhibit similar time-wise evolution for the
same Reynolds number, regardless of the number of species. For the Re = 2000
cases, a peak is observed at t∗ ≈ 45, after which viscosity effects tend to emerge.
The higher velocity gradients lead to a faster enstrophy decay due to the stronger
dissipation with respect to Re = 1000 cases that show less pronounced and delayed
peaks (reflecting also in delayed transition as shown by t∗tr in table 3). Similarly, case
s2R3p60Y exhibits higher vorticity content, peaks around t∗ ≈ 40 and experiences
faster enstrophy decay with respect to R1 and R2 cases.

The difference among 〈〈ωiωi〉〉(δω,0/1U0)
2 values for realizations with equal Re0

and different number of species is related to (ρL/ρU): a larger (ρL/ρU) value reduces
the vorticity content, as already shown for both variable-density (Almagro et al.
2017) and compressible flows (Pantano & Sarkar 2002). Moreover, here enstrophy
increases with the number of species because, if species other than n-heptane must
be accommodated in the lower stream, the YC7H16 value must be reduced; since
mC7H16 has the largest value among all species by a substantial margin, through
this YC7H16 reduction process (ρL/ρU) decreases. This vortical behaviour is further
confirmed by inspection of cases s2R2p60Ya and s7R2p60X, both of which have
(ρL/ρU)0 ≈ 9: the time history of the global vortical quantities is essentially the
same. Similar considerations hold for the p0 dependence; the value of (ρL/ρU) has
more impact than the number of species as shown by the vortical evolution of case
s7R2p80X being closer to s5R2p60Y than to s7R2p60X (ρL/ρU = 9.492, 9.8 and
9.015, respectively).

As an indication of turbulence level achieved, the value of the momentum-thickness-
based Reynolds number, Rem ≡ Re0δm/δω,0, corresponding to the δm/δω,0 value at
transition, is provided in table 3. Clearly, similar growth rates of different mixing
layers translate into approximately equal Rem,tr, which in turn explain the similarities
in the vortical aspects of the mixing layers: for Re0 = 1000, Rem,tr ' 1800; for
Re0 = 2000, Rem,tr ' 3200. Table 3 also shows the Reynolds number based on the
Taylor microscale, defined as Reλ,tr = q2√5ρ/(µε), q2 being twice the turbulent
kinetic energy. The Reλ,tr value displays slight variations for the Re= 2000 cases and
larger variations for the Re= 1000 cases; this finding is consistent with the different
t∗tr at which transition is achieved for the lower-Reynolds-number simulations. For
case s2R3p60Y, values as high as Rem,tr ≈ 5000 and Reλ,tr ≈ 450 are achieved at
transition.

Thus, the analysis of the global quantities indicates that Re0 and ρL/ρU are the main
parameters governing the dynamics of the layer evolution.

5.3. Uphill diffusion
Considering the large number of species and the wide range of their initial mass
fractions in the free streams, it is useful to introduce a normalized mass fraction
variable

Ξα =
Yα − Ymin

α,ref

Ymax
α,ref − Ymin

α,ref
, (5.3)

where Ymax
α,ref = max(YU

α , YL
α ) and Ymin

α,ref = min(YU
α , YL

α ). In this manner, Ξα = 0 and
Ξα = 1 represent the initial species’ mass fraction of the upper and lower streams
or vice versa, depending on the free-stream location of the species. For example, in
the s7R2p60X case, a local value of ΞC7H16 = 0 means that YC7H16 = Ymin

C7H16,ref = YU
C7H16

;
similarly, ΞH2O = 1 implies YH2O = Ymax

H2O,ref = YU
H2O. This allows the evaluation of the

degree of mixing for species inside the mixing layer compared to the relative reference
stream values.
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FIGURE 5. (Colour online) P.d.f. of Ξα for all species of case s7R2p60X at t∗tr.

Since in the present situation each case of tables 2 and 3 has a different initial
composition, the mixing layer region is identified by using a variable threshold. The
bounds of the mixing layer are chosen as

YU
C7H16
+ k1YC7H16,ref 6 YC7H16 6 YL

C7H16
− k1YC7H16,ref , (5.4)

where k= 0.05 and 1YC7H16,ref = YL
C7H16
− YU

C7H16
. A sensitivity analysis to the value of

k is shown in appendix C and the conclusion is that the choice of the bounding value
does not affect the physics derived from the analysis.

The advantage of the Ξα definition is immediately apparent when examining the
probability density functions (p.d.f.s) of Ξα illustrated in figure 5: the probability of
the most likely value is the same for all species, although the most likely value is
not the same for all species ('0.65 for ΞC7H16,'0.35 for ΞO2 and '0.4 for all minor
species Ξα). However, although for n-heptane and oxygen the p.d.f.s only extend over
the [0, 1] interval, meaning that all the corresponding Yα values are between those
specified in the free streams, for all minor species the p.d.f.s extend outside of the
[0, 1] interval, hence Yα values outside the range bounded by the free-stream values
occur. This situation for the minor species is the first evidence that uphill diffusion
occurs (Taylor & Krishna 1993) wherein due to strong coupling among fluxes, species
mass diffusion may occur against a species’ gradient. Comparing the p.d.f.s of all
minor species, it appears that H2 has the broadest p.d.f. (i.e. it exhibits the largest
standard deviation corresponding to heaviest tails of the p.d.f.).

To examine the effect of uphill diffusion on the species’ spatial distribution and
assess how it relates to T and the compressibility factor Z = p/(ρTRu/m) which
indicates the deviation from the perfect-gas behaviour, in figure 6 are displayed the
spatial distributions of all Ξα (except for N2), T and Z in the braid plane for case
s7R2p60X. Regions having Ξα < 0 and Ξα > 1 are highlighted in white and black,
respectively. The values of Ξα for the first five species display similar values, except
for the peripheral regions of the mixing layer: here, the minor species experience
uphill diffusion (hydrogen being the most affected species) whereas oxygen is only
subjected to regular diffusion, as shown by the p.d.f. As expected, ΞC7H16 shows the
opposite distribution, with small fuel-rich pockets (red zones in figure 6h) penetrating
in the upper stream. As apparent in figure 6, uphill diffusion is not dependent on
the value of either T or Z, that is, it occurs over a wide range of T values and,
according to the Z values, does not depend on whether the fluid behaves as a perfect
gas (Z' 1) or a real gas (e.g. here it occurs at Z< 0.65). The functional relationship
between T and Ξα is analysed in § 5.7.
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FIGURE 6. (Colour online) Braid plane (x3/L3 = 1/16) distribution of different quantities
at t∗tr for s7R2p60X: (a) temperature T (K), (b) local compressibility factor Z, and
normalized mass fractions (c) ΞH2O, (d) ΞH2 , (e) ΞCO, ( f ) ΞCO2, (g) ΞO2 and (h) ΞC7H16 .
In panels (c–h), white and black denote regions having Ξα < 0 and Ξα > 1, respectively.

5.4. Density gradients
The Navier–Stokes equations rely on the hypothesis that all dependent variables
are infinitely differentiable, and thus no discontinuities can be accommodated. The
definition of a discontinuity depends on the scale of interest. For example, whereas
material surfaces separating two phases were considered to be discontinuities prior
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to the studies of van der Waals, he showed that by magnifying the linear extent of
the interface it is possible to study the density change from one phase to another as
manifested by large density gradients. It has been experimentally shown that, in flows,
large density gradients act as material surfaces do, and modify the vortical character
of the flow (Hannoun et al. 1988). Korteweg (1901) proposed an elegant way to
modify the momentum equation should there be large density gradients, and thus to
account for the additional vorticity created by these density gradients. Since uphill
diffusion results in the formation of density gradients, it is pertinent to examine the
∇ρ field, and correspondingly whether modifications are necessary to (2.2) due to
possible significant influence of the Korteweg stresses, before focusing on the other
effects of uphill diffusion in § 5.5. Effectively, the magnitude of the Korteweg stresses
provides here the criterion enabling one to determine whether the magnitude of the
density gradients is sufficiently large to warrant modification of the Navier–Stokes
equations.

Figure 7 shows visualizations of |∇ρ| at t∗tr for several realizations; | · | denotes
here the L2 norm. Clearly, higher turbulence levels (i.e. larger values of Re0) enhance
the complexity of the morphological features of |∇ρ| because of an increase in
stirring; this aspect is seen by comparing figure 7(a), 7(b) and 7(c) representing cases
s2R1p60Y, s2R2p60Y and s2R3p60Y, respectively. At the same conditions otherwise,
an increase in p0 does not significantly change the morphological complexity of the
HDGM regions, but it clearly results in an increase of |∇ρ| values. This increase
of the |∇ρ| value occurs because both the molecular mass diffusion and effective
mass diffusion decrease with larger p0, these phenomena governing the composition at
relatively low and relatively high turbulence levels, respectively. Changing the number
of species does not seem to influence the distribution or complexity of the HDGM
regions, except for the indirect effect due to change in ρL/ρU. Further, the p.d.f.s
of |∇ρ| for some of the runs listed in table 3 are displayed in figure 8. For clarity,
only the R2 category of cases, which contains the largest number of realizations, is
completely shown; all R1 cases have p.d.f.s in the vicinity of the illustrated case
s2R1p60Y and there is a single run in the R3 category. Inspection of these p.d.f.s
in figure 8(a) shows that there is a quantifiable difference among the realizations:
the right tails of the p.d.f.s clearly become heavier with increasing Re0 and p0 (the
maximum values being obtained for case s2R3p60Y and, among R2 simulations, for
s7R2p80X). The influence of ρL/ρU is highlighted by comparing the R2p60 cases;
namely, the heavier tails are obtained for s2R2p60Y and s3R2p60Y (for which ρL/ρU
is in the range [12.5–13]), and the lighter tails for s2R2p60Ya and s7R2p60X (having
ρL/ρU≈9). Of note, cases s2R2p60Ya and s7R2p60X show that the number of species
is unimportant as far as the HDGM regions are concerned, provided that the initial
composition does not change ρL/ρU. Normalization of |∇ρ| by 1ρ (1ρ has similar
variation to ρL/ρU as a function of the runs listed in table 3) in figure 8(b) shows that
indeed |∇ρ| scales with ρL/ρU to a great extent. Furthermore, it is also clear that the
maximum values attained by |∇ρ|/1ρ increase with increasing Re0. The explanation
is that turbulence acts only on the continuum scales and thus cannot influence
diffusion, which occurs at molecular scales. Since |∇ρ| represents the manifestation
of diffusion at the continuum scales, the present results confirm the competition at
the continuum scales of mass-diffusion manifestation with turbulence in creating the
HDGM regions. Essentially, as turbulence is higher, its characteristic time is smaller,
a fact which only permits limited diffusion, thus maintaining larger density gradients.

The composition of the HDGM regions is examined in figure 9, depicting the
conditional averages of Yα on |∇ρ| for case s7R2p60X at t∗tr. For low |∇ρ| values,
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FIGURE 7. (Colour online) Braid plane (x3/L3 = 1/16) distribution of the local |∇ρ|
in logarithmic scale log10|∇ρ| at t∗tr for (a) s2R1p60Y, (b) s2R2p60Y, (c) s2R3p60Y,
(d) s3R2p60Y, (e) s5R2p60Y, ( f ) s5R2p60X, (g) s7R2p60X and (h) s7R2p80X. Units are
kg m−4.

YC7H16 increases rapidly with |∇ρ|, reaching YC7H16 ≈ 0.8 already at |∇ρ| ≈
5 × 104 kg m−4 and asymptotically reaching 0.875. Thus, the composition of the
regions of largest |∇ρ| values is dominated by n-heptane. The other species exhibit
the opposite behaviour, with a decreased presence in higher-|∇ρ| regions. This is
distinctly shown in figure 9(b) where all Yα values are normalized with respect
to Yα,max = max(YL

α , YU
α ). This variation confirms the observation of Bellan (2017a)

stating that the HDGM regions appear to initiate in regions of relatively small (with
respect to the maximum) amount of fuel. Similarly, figure 10 displays the values of
〈YC7H16〉 and 〈YC7H16/Y

max
C7H16
〉 conditioned on |∇ρ| for different realizations. The trend
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FIGURE 8. (Colour online) P.d.f.s at t∗tr of (a) |∇ρ| (units are kg m−4), and
(b) |∇ρ|/1ρ (units are m−1). Legend as in figure 3.
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FIGURE 9. (Colour online) Conditional average of species mass fraction conditioned
on local density-gradient magnitude for case s7R2p60X at t∗tr: (a) 〈Yα | |∇ρ|〉, and
(b) 〈Yα/Ymax

α | |∇ρ|〉, where Ymax
α =max(YL

α , YU
α ). Units for |∇ρ| are kg m−4.

is similar for all simulations, and the normalization with respect to Ymax
C7H16

(different
value for each case in order to accommodate the minor species) narrows the range of
variation of the R2p60 profiles. For s7R2p80X, the n-heptane contribution to HDGM
regions is slightly smaller and is here attributed to the larger difficulty of entraining
a denser fluid.

The large |∇ρ| values encountered in the mixing region motivate an inspection of
whether sufficiently large Korteweg stresses are created, thus potentially necessitating
a revision of (2.2) to accommodate the effect of interfaces. The second-gradient
theory (van der Waals 1893; Korteweg 1901) naturally allows one to account for the
contribution of large density gradients in the Navier–Stokes equations. This theory
represents the theoretical basis for the formulation of the well-known diffuse interface
models (Anderson, McFadden & Wheeler 1998; Jamet et al. 2001), widely employed
to describe gas–liquid interfaces in multiphase flows. The changes to the momentum,
species and energy equations originating from the second-gradient theory are derived
in appendix D for a multi-species situation in concert with the mixing rules of Harstad
& Bellan (2004a). To summarize these derivations, including these second-gradient
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FIGURE 10. (Colour online) Average value of the n-heptane mass fraction conditioned on
local density-gradient magnitude at t∗tr: (a) 〈YC7H16 | |∇ρ|〉, and (b) 〈YC7H16/Y

max
C7H16
| |∇ρ|〉,

where Ymax
C7H16
=max(YL

C7H16
, YU

C7H16
). Units for |∇ρ| are kg m−4. Legend as in figure 3.

terms in the momentum equation yields (in compact notation)

∂

∂t
(ρu)+∇ · (ρu⊗ u)=−∇ ·W =−∇ · (P + T ), (5.5)

where

P =

[
p−

N∑
α,β=1

καβ

(
∇ρα∇ρβ

2
+ ρα∇

2ρβ

)]
I +

N∑
α,β=1

καβ∇ρβ ⊗∇ρα, (5.6)

T = (µ̂− 2
3µ)(∇ · u)I +µ[∇u+ (∇u)T] (5.7)

are the reversible and irreversible components of the momentum flux, respectively,
u is the velocity vector, καβ is the species-dependent influence parameter, I is the
identity matrix, and µ̂ and µ are the bulk and shear viscosities. The term multiplying
the identity matrix in (5.6) can be interpreted as an equivalent pressure incorporating
capillarity effects; whereas the last term is commonly known as the Korteweg tensor.
Compared to the typical single-phase flow momentum equation, the additional terms
in P do not produce entropy because they are associated with reversible processes.
The irreversible component T of (5.7) is not modified by the gradient energy, and
represents the classical irreversible processes related to viscous dissipation.

By comparing the magnitudes of the gradient of the capillarity terms and the
pressure gradient, an order-of-magnitude analysis can be performed in order to
estimate the influence of the Korteweg stresses in the momentum equation. Since
at t∗tr the density-gradient p.d.f. scales with |∇ρ|/1ρ practically independent of the
number of species, and since additionally the highest-|∇ρ| regions primarily contain
n-heptane, a representative magnitude of the Korteweg tensor can be computed for
all cases by reducing the complexity of the Korteweg tensor to the situation of a
single species: n-heptane. This procedure furthermore avoids confronting the issue
of uncertainty in some values of καβ . Thus, the influence parameter is chosen to
be καα ≈ 10−5 cm7 g−1 s−2

= 10−16 m7 kg−1 s−2, a value slightly larger than that
reported in the literature (Cornelisse 1997) so as to provide an upper bound of the
Korteweg effects. Figure 11 displays a comparison between the magnitude of the
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FIGURE 11. (Colour online) Values of (a) |∇p| and (b) |κ∇[(∇ρ)2]| for case s2R3p60Y.
Units are kg m−2 s−2.

pressure gradient, |∇p|, and the term |κ∇[(∇ρ)2]|. The case considered is s2R3p60Y,
for which density gradients reach values as high as |∇ρ| ≈ 8 × 105 kg m−4 and for
which there are only two species. The gradient term is shown to be almost nine
orders of magnitude smaller than the pressure gradient, yielding thus a negligible
contribution to P. Even in the regions of the largest |κ∇[(∇ρ)2]| values, figure 11
shows that the value of |∇p| at those locations is orders of magnitude larger than
the values of |κ∇[(∇ρ)2]|. A grid convergence analysis, presented in appendix E,
shows that the criteria used in § 5.1 for the grid resolution are very stringent because,
when the grid is refined by a factor of 50 % in each direction, the quantitative results
obtained with the coarser grid are recovered. The conclusion is that the modification
to the actual thermodynamic pressure is also negligible, and thus that the present
DNS database is appropriate for the purpose of this study, enabling one to pursue
the examination of the specific features bringing a deeper understanding of uphill
diffusion.

5.5. Effective transport properties
In fluid mechanics, non-dimensional numbers are useful in providing a single length
scale, or equivalently a single time scale, associated with a process; comparison of
these length (or time) scales related to various phenomena yields crucial information
on the physics governing a situation. However, unlike for a binary-species mixture,
in a situation involving several species equation (2.6) shows that it is not possible to
define a single diffusion length scale. To overcome this difficulty Masi et al. (2013)
derived a methodology to express the species diffusive fluxes and heat flux as a
function of single effective coefficients. Under the assumption of non-null gradients,
valid for mixing layers and in turbulent flows, equation (2.4) can be rewritten as

∂(ρYα)
∂t
+
∂(ρujYα)
∂xj

=
∂

∂xj

(
ρDα,eff

∂Yα
∂xj

)
, (5.8)

where

Dα,eff ≡ Yα
DT,α

T
δT
δYα
+ Yα

Dp,α

p
δp
δYα
+

N−1∑
β=1

Dαβ

δYβ
δYα

(5.9)
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represents a single species diffusion coefficient accounting for the entire flux matrix
and δ signifies functional derivatives. Then Dα,eff can be used to define a species-
effective Schmidt number

Scα,eff ≡
µ

ρDα,eff
. (5.10)

Similarly, equation (2.3) can be recast in the form

∂(ρet)

∂t
+
∂[(ρet + p)uj − uiσij]

∂xj
=

∂

∂xj

(
Λeff

∂T
∂xj

)
, (5.11)

where

Λeff ≡ λ+ ρ

N−1∑
α=1

[(
hα
mα

−
hN

mN

)
− RuT

(
ᾱb

T,α

mα

−
ᾱb

T,N

mN

)]
Dα,eff

δYα
δT
. (5.12)

Thus Λeff represents an effective thermal conductivity accounting for the entire heat
flux pertaining to all species. Therefore, an effective Prandtl number can be defined
as

Preff ≡
Cpµ

Λeff
, (5.13)

along with a species-effective Lewis number,

Leα,eff ≡
Λeff

ρDα,eff Cp
≡

Scα,eff

Preff
. (5.14)

The functional derivatives δYβ/δYα, δYβ/δT , δT/δYα, δp/δYα and δp/δT are modelled
as in Masi et al. (2013). For example, defining coefficients of type CpT ≡ δp/δT
which exactly satisfy the relation CpT∂T/∂xi= ∂p/∂xi, the model employing contracted
products

Cβα =

(
∂Yβ
∂xi

∂Yα
∂xi

)/(
∂Yα
∂xi

∂Yα
∂xi

)
, CβT =

(
∂Yβ
∂xi

∂T
∂xi

)/(
∂T
∂xi

∂T
∂xi

)
, (5.15a,b)

CTα =

(
∂T
∂xi

∂Yα
∂xi

)/(
∂Yα
∂xi

∂Yα
∂xi

)
, Cpα =

(
∂p
∂xi

∂Yα
∂xi

)/(
∂Yα
∂xi

∂Yα
∂xi

)
, (5.16a,b)

CpT =

(
∂p
∂xi

∂T
∂xi

)/(
∂T
∂xi

∂T
∂xi

)
(5.17)

eliminates directional variations and has a finite value everywhere in the mixing layer.
The model accuracy was validated by comparing the modelled fluxes with those
computed from the DNS database, showing excellent agreement.

We proceed by first investigating statistical aspects and further scrutinizing details
not available through the statistical analysis. Figures 12(a) and 12(b) exhibit the p.d.f.s
of the effective diffusion coefficients and of the species-effective Schmidt number.
Oxygen and n-heptane have relatively narrow Dα,eff distributions (figure 12a) with a
mean DC7H16,eff ≈DO2,eff ≈ 4.5× 10−7 m2 s−1 (a value which is approximately midway
between the range of O(10−5) m2 s−1 for gases and O(10−9) m2 s−1 for liquids) and
the p.d.f.s are located in the Dα,eff >0 range. Conversely, the Dα,eff of all minor species
exhibit much broader symmetric bell-shaped p.d.f.s in a range encompassing both
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FIGURE 12. (Colour online) P.d.f.s for case s7R2p60X at t∗tr: (a) Dα,eff (10−7 m2 s−1,
not F-scaled), (b) Scα,eff , and (c) Leα,eff .

positive and negative Dα,eff with mean values Dα,eff ≈ 3× 10−7 m2 s−1; the Dα,eff < 0
region corresponds to the locations experiencing uphill diffusion. All minor species’
p.d.f.s are similar except for that of H2, which is the widest, and correspondingly has
the heaviest tails. We attribute the peculiar H2 behaviour compared to all other minor
species to H2 being a much smaller (i.e. 0.74 × 10−10 m diameter) and lighter (i.e.
2.016 kg kmol−1 molar mass) molecule which makes it very mobile, thus enhancing
its diffusional interaction with other molecules, compared to species of larger and
heavier molecules. This interaction manifests in the H2 flux being more strongly
coupled to those of the other species, thereby inducing enhanced uphill diffusion. For
all minor species, their Gaussian-like p.d.f. shape is representative of tracer diffusion.

According to the p.d.f.s of figure 12(b), the most probable value of ScC7H16,eff and
ScO2,eff is approximately 1.2. In contrast to n-heptane and oxygen, the minor species
exhibit a much broader distribution having symmetric bell-shaped p.d.f.s similar in
concept to those of Dα,eff and extending to Scα,eff < 0 values. Correspondingly, the
p.d.f.s of Scα,eff for the minor species span a much wider range than those of the
major species; the most probable values of Scα,eff are between 1.5 and 2 for CO, CO2
and H2O, whereas it is approximately 0.7 for H2, for which heavier tails are observed
than those of all other minor species. These mean values, more representative for the
major species than the minor species, indicate that the constant Sc= 0.7 value, widely
employed in modelling species mass transfer, is not appropriate for either the major
or the minor species, but it would especially fail in describing the diffusion behaviour
of minor species, except for H2 for which however the mean is not very representative
considering its wide ScH2,eff p.d.f.
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FIGURE 13. (Colour online) Braid plane (x3/L3= 1/16) distribution of the local effective
Schmidt number Scα,eff for different species at t∗tr for s7R2p60X: (a) O2, (b) C7H16 (c) CO,
(d) CO2, (e) H2O, and ( f ) H2.

To assess the commonly used assumption Le = 1, the Leα,eff p.d.f.s are displayed
in figure 12(c) (the corresponding Preff is discussed in the following). For all species,
the most likely values Leα,eff are in the range [0, 1], but they can locally be as large
as 3 or as small as −1, the negative values being due to Λeff < 0, according to (5.13)
and (5.14). The Le= 1 assumption appears inaccurate, the most probable Leα,eff values
being ≈0.45 for n-C7H16 and O2, ≈0.75 for CO, CO2 and H2O, and ≈0.35 for H2.
The narrower p.d.f.s for the major species indicate that the mean values for these
species are more representative than for the minor species.

The above analysis highlights the range of values of effective non-dimensional
numbers but does not provide an indication of their local distribution in the mixing
layer. Such local distribution of Scα,eff is illustrated in figure 13 for species involved in
case s7R2p60X. The major species, namely O2 and n-C7H16, display small variations
of Scα,eff , with the larger values occurring at the upper bound of the mixing layer.
This small increase from the lower to the upper mixing layer domain results from the
opposite variation of, for example, DC7H16,eff in (x1, x3) planes and the local value of ρ:
the former increases as a consequence of the larger T , whereas the latter decreases.
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FIGURE 14. (Colour online) P.d.f.s computed over the three-dimensional mixing layer at
t∗tr: (a) DC7H16,eff (10−7 m2 s−1, not F-scaled), (b) ScC7H16,eff , (c) DH2O,eff (10−7 m2 s−1, not
F-scaled), and (d) ScH2O,eff .

The minor species CO, CO2 and H2O display a common behaviour; they exhibit
higher variations compared to the major species, and negative local values indicate
that these species undergo uphill diffusion primarily, but not exclusively, in the
lower stream. Lastly, a specific behaviour is observed for H2 for which ScH2,eff > 0
and ScH2,eff < 0 regions occur over the entire mixing layer. We attribute this H2

prevalence of uphill diffusion over the entire mixing layer to a combination of the
aforementioned properties of H2, conferring to it greater mobility, and to the fact that
Ymax

H2,ref < 0.01 in both free streams, making it strongly influenced by turbulent stirring.
Having analysed the different behaviour of the species in a single realization,

the focus is now on two species – n-heptane and water – and their behaviour in
realizations obtained with different number of species and Re0 = 2000 is assessed.
Case s7R1p60X is also considered in order to address the influence of the Re value.
Figures 14(a) and 14(b) show the p.d.f.s of DC7H16,eff and ScC7H16,eff for different
realizations. Compared to the effect of p0, the initial composition only has a relatively
small influence on DC7H16,eff . Indeed, as the number of species increases, the n-heptane
molecules encounter a greater variety of molecules, both size-wise and mass-wise, a
fact which increases the irregularity of the possible molecular pathways and slightly
widens the p.d.f., resulting in a modest reduction of the mean value of DC7H16,eff .
In contrast, pressure plays a greater role since an increase in p0 causes a decrease
of the molecular diffusivity and of the DC7H16,eff values (Masi et al. 2013). As a
consequence, the most likely value of ScC7H16,eff is similar for all the p0= 60 atm cases
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(ScC7H16,eff ≈ 1.15), whereas it is shifted to ScC7H16,eff ≈ 1.45 for p0 = 80 atm due the
smaller DC7H16,eff values. Although DC7H16,eff is smaller for p0 = 80 atm, the maximum
ScC7H16,eff values are ≈1.85 for all cases, this behaviour being attributed to ρ increasing
with p0. The R1 case is mostly indistinguishable from the equivalent R2 case except
for the most probable value of DC7H16,eff which slightly decreases, indicating that the
most probable value of DC7H16,eff is susceptible to stirring. Figures 14(c) and 14(d)
show the p.d.f.s of DH2O,eff and ScH2O,eff for realizations in which water is present
in the initial composition. Case s5R2p60Y has a uniform initial distribution of H2O,
meaning small YH2O gradients, leading to uphill diffusion; on the contrary, s5R2p60X
has substantial initial gradients in YH2O, explaining why uphill diffusion is small
despite this being a minor species. The value of Re is seen to make a smaller impact
on DH2O,eff than on the equivalent for C7H16, this being attributed to the smaller
initial gradients than those of YC7H16, leading to more subdued diffusion. Pressure has
a definite effect in that it makes the most probable value more statistically significant,
just as for C7H16, but unlike for C7H16, the most probable value only decreases very
slightly. The result of this behaviour is seen in the ScH2O,eff : all simulations having the
same initial composition exhibit similar p.d.f.s, independent of the number of species,
and only slightly dependent on pressure (the most probable value increasing slightly
with pressure). However, the initial composition has a major impact, as indeed it
should, by substantially increasing the values of ScH2O,eff in the negative range.

The p.d.f.s of Λeff and Preff are displayed in figures 15(a) and 15(b), respectively.
That for Λeff exhibits small variations from the most likely value (Λeff ≈ 0.02–0.03
W m−1 K−1). Although λ > 0 as molecular transport theory states, Λeff is primarily
positive, but negative values also occur in the mixing layer due to transport of enthalpy
caused by the species-mass flux, as clearly shown by (5.12). The significance of Λeff <

0 regions is that heat is transported against ∇T . However, negative Λeff values have
small probabilities, leading to statistically insignificant Preff < 0 regions. To verify the
fact that uphill conduction is statistically insignificant, p.d.f.s of a normalized T ,

θ =
T − TL

TU − TL
, (5.18)

were computed (not shown) for all cases shown in figure 15(a). All p.d.f.s have
most probable values in the θ ∈ [0.1, 0.2] range, the most probable value becomes
less statistically significant with increased number of species, and uphill conduction
is confined to regions where θ < 0 and |θ | < 0.05, thus being negligible; also, the
region θ < 0 becomes reduced with increasing number of species. Of note, θ < 0
values are mainly found along the lower limit of the mixing layer region, whereas
negative values for the effective thermal diffusivity are registered across the entire
mixing layer: this fact highlights that uphill thermal conduction is not limited to the
peripheral zones, but its occurrence is widespread across the layer. Independent of
the case, the p.d.f. assumes null values past θ > 0.9; this fact is a manifestation of
the definition of the mixing layer that is based on the (x1, x3)-averaged mass fraction
of heptane (initially present only in the lower colder stream), thus resulting in the
temperature of the mixture at the upper limit of the mixing layer being slightly lower
than the reference temperature in the upper, unperturbed stream.

Globally, there is no direct clear influence of the initial composition on the Λeff
values, whereas an increase of p0 seems to slightly shift the distribution towards
positive values. As a consequence of both positive and negative values of Λeff , the
same variation holds for Preff having generally values in the range [0, 7], with most
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FIGURE 15. (Colour online) P.d.f.s computed over the three-dimensional mixing layer at
t∗tr: (a) Λeff (W m−1 K−1), and (b) Preff . J.p.d.f.s of Λeff and Dα,eff (×10−7 m2 s−1) for
cases (c,d) s5R2p60Y and (e, f ) s7R2p60X. All the coefficients are not F-scaled.

probable values as small as ≈2.5 and as large as ≈3. These values are representative
of dense gases; typically Preff ≈ 4–5 for liquid refrigerants and ≈7 for liquid H2O.
As the number of species increases, the most probable value of the p.d.f. shifts
towards lower values, being ≈3 for case s3R2p60Y to ≈2 for case s7R2p60X.
The p.d.f.s for the seven-species cases exhibit lower dispersion, and higher Preff
values are less probable. An increase of the free-stream pressure p0 results in a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.992


Mixing in high-pressure turbulent flows 321

0 10 20 0 10 20

10

5

0

-5

10

5

0

-5

10

5

0

-5

10

5

0

-5

10

5

0

-5

10

5

0

-5

x1/∂ø,0 x1/∂ø,0

x 2
/∂

ø,
0

x 2
/∂

ø,
0

x 2
/∂

ø,
0

(a) (b)

(c) (d)

(e) (f)

-6 -4 -2 0 2 4 6 8 10 -6 -4 -2 0 2 4 6 8 10

FIGURE 16. (Colour online) Braid plane (x3/L3= 1/16) distribution of the local effective
Prandtl number Preff at t∗tr: (a) 2pR260Y, (b) s3R2p60Y, (c) s5R2p60Y, (d) s5R2p60X,
(e) s7R2p60X and ( f ) s7R2p80X.

slightly lower dispersion, whereas the most likely value remains unchanged. To
examine the influence of the Λeff < 0 values on the corresponding Leα,eff for C7H16
and H2O, figures 15(c–f ) display joint probability density functions (j.p.d.f.s) of
Λeff and Dα,eff for cases s5R2p60Y and s7R2p60X. According to (5.14), Leα,eff < 0
only if Λeff and Dα,eff have different signs. The j.p.d.f.s show that Λeff has much
more extensive domain correlation with DC7H16,eff (which is always positive) than
with DH2O,eff (which can also become negative). Moreover, that larger correlation is
increasingly in the Λeff > 0 region as the number of species increases. Additionally,
figures 15(c) and 15( f ) also show the presence (even if statistically small) of LeH2O>0
regions given by simultaneous negative values of Λeff and DH2O,eff . Thus, uphill
diffusion may occur for species α, yet Leα,eff > 0.

To inquire about the variation of the local distribution of Preff with the number of
species, portrayed in figure 16 are visualizations of these fields at t∗tr for realizations
initiated with Re0 = 2000. The general observation is that high Preff values are
intermingled over the entire mixing layer with low and negative values for all initial
compositions. However, with increasing number of species, large values as well as
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negative values (i.e. uphill heat conduction) occur at a smaller number of locations,
rendering the Preff field more uniform. That is, the transport of enthalpy by the
species has a thermal-transport homogenizing effect on the mixture with increasing
mixture complexity, whereas it has the opposite effect for a smaller number of species
in the mixture.

5.6. Dissipation
The above analysis addressed both the generation of density gradients (and therefore
of ∇T , ∇p and ∇Yα) and the difference in transport properties when the complexity of
a mixture was increased by adding species to a baseline mixture. Since the dissipation
is the combined result of gradients and molecular transport properties, it is natural to
inquire about the effect of species complexity on the dissipation.

Considering the entropy conservation equation (e.g. de Groot & Mazur 1984) and
using the transport coefficient calculation through the mixing rules (Masi et al. 2013),
a generalized formulation for the dissipation g, i.e. the irreversible entropy production,
which is the source term in the entropy equation, has been derived (Masi et al. 2013).
The dissipation is written as the sum of three terms accounting for viscous, thermal
and species-mass contributions, gvisc, gtemp and gmass,

g=
µ

T

(
2SijSij −

2
3 SkkSll

)
︸ ︷︷ ︸

gvisc

+ λ
1

T2

∂T
∂xj

∂T
∂xj︸ ︷︷ ︸

gtemp

+
1
2

N∑
β=1

N∑
α=1

Ru

(−Dαβ)

ρ

mαYβ
ΠαβjΠαβj︸ ︷︷ ︸

gmass

, (5.19)

where (−Dαβm)/(Yαmβ) is a symmetric positive semidefinite matrix (Keizer 1987;
Giovangigli, Matuszewsky & Dupoirieux 2011) and

Παβj = −XβDαβ

[(mα

m
ᾱb

T,β −
mβ

m
ᾱb

T,α

) 1
T
∂T
∂xj
+

mαmβ

mRuT

(
vα

mα

−
vβ

mβ

)
∂p
∂xj

]
−

N−1∑
γ=1

(
mβ

mγ

DβααDαγ −
mα

mγ

DαβαDβγ

)[
∂Yγ
∂xj
− Yγ

N−1∑
δ=1

(
m
mδ

−
m

mN

)
∂Yδ
∂xj

]
,

(5.20)

with Πααj = 0 and Παβj =−Πβαj. The g form of (5.19) has been previously used by
Masi et al. (2013).

The gvisc, gtemp and gmass (x1, x3) planar averages are here computed for the
realizations presented in figure 1, and are separately illustrated as a function of x2/δω,0
in figure 17(a), (b) and (c), respectively. The values of the transport coefficients are
not F -scaled and units are W m−3 K−1. Comparing the magnitude of these terms,
〈gvisc〉 is the smallest by approximately a factor of 5 with respect to 〈gtemp〉 and
〈gmass〉; this ordering is attributed to the relatively modest values of Rem,tr compared
to fully turbulent flows. The (x1, x3) planar average 〈gvisc〉 profiles are not symmetric
with respect to x2/δω,0= 0 but are rather heavily skewed to the upper free-stream side
where the fluid is lighter and is thus more amenable to experiencing larger velocities
and perhaps larger velocity gradients. While the values of all p60 simulations nearly
coincide, a larger p0 value (case s7R2p80X) induces a slightly larger 〈gvisc〉 with
respect to p60 cases on the lighter free-stream side, primarily caused by the more
elevated values of the dynamic viscosity in the core of the mixing layer (not shown).
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FIGURE 17. (Colour online) Planar averages in (x1, x3) planes of the three modes,
(a) 〈gvisc〉, (b) 〈gtemp〉 and (c) 〈gmass〉, and of (d) g at the respective t∗tr. Units are
W m−3 K−1. Same colour legend as in figure 1.

Even though the single-species viscosity of the minor species can be largely different
from that of the major species, the mixture viscosity (computed using the Wilke
method, equation (A 1)) is strongly dependent on the molar fractions, explaining the
small influence of the minor species for the p60 cases.

The cross-stream profiles of 〈gtemp〉 exhibit similar values for all realizations, a fact
which is conjectured to reflect the dominance of Xα, and thus of the major species’
contribution in the computation of λ (see (A 4)). The 〈gtemp〉 profiles are very heavily
skewed towards the hotter upper free stream where according to figure 6 is the region
of the larger ∇T , and unlike 〈gvisc〉, 〈gtemp〉 is unaffected by p0.

Among all dissipation modes, 〈gmass〉 has the largest values; it also exhibits a slight
increase with the number of species as a result of the larger interdiffusion in the
seven- and five-species cases with respect to the two- and three-species realizations.
The 〈gmass〉 profile is less skewed towards the upper stream than those of 〈gvisc〉 and
〈gtemp〉, and unlike the latter shows a substantial contribution from the lower-stream
side. While all 〈gmass〉 profiles nearly coincide on the upper-stream side of the 〈gmass〉

peak, there is substantial variability among realizations on the lower-stream side that
is indicative of the changes in mass-diffusion characteristics as the number of species
varies. Compared to s7R2p60X, case s7R2p80X exhibits relatively lower 〈gmass〉 values
because of the reduced values of the diffusion coefficients in higher-p environments.

Of note, 〈gvisc〉, 〈g〉 and 〈gmass〉 all culminate at x2/δω,0 ≈ 5, suggesting that most
mixing layer activity occurs at this location. As a result, 〈g〉, portrayed in figure 17(d),
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FIGURE 18. (Colour online) J.p.d.f. of θ and Ξα for heptane at t∗tr, in logarithmic scale:
(a) s2R2p60Y, (b) s5R2p60X and (c) s7R2p60X. The p.d.f. is computed inside the mixing
layer, defined according to (5.4).

also culminates at the x2/δω,0≈ 5 location and, while it retains the near-coincidence of
all profiles on the upper-stream side of the layer, it also shows the number-of-species
variability effect on the lower-stream side of x2/δω,0≈ 5. Thus, while the effect of the
number of species on g is modest, it is not negligible.

5.7. Relationship between species and temperature
In simulations of reacting flows using reduced kinetic mechanisms, one of the
important considerations is maintaining the relationship between θ and Ξα (Bellan
2017b). The DNS database generated here provides a unique opportunity to inquire
about the possible deviations in this relationship as the mixture composition is
considered in coarser detail. For example, possible causes of deviation would be the
observed uphill diffusion of neglected minor species as the composition is simplified.
To determine the relationship between Ξα and θ , we compute j.p.d.f.s which, being
pointwise functions, provide very detailed information. A less stringent test of this
relationship is obtained by computing conditional averages of θ given Ξα. These
investigations are performed at t∗tr and they address the relationship for both major
and minor species.

Figure 18 illustrates the j.p.d.f.s for n-heptane in cases s2R2p60Y, s5R2p60X and
s7R2p60X; discussing the j.p.d.f. for n-heptane does not imply that n-heptane will
preserve its chemical structure at the higher T values in the domain rather than
pyrolysing. Upon careful scrutiny, the j.p.d.f. for s2R2p60Y extends perceptibly
to θ < 0 regions; however, these θ < 0 regions are negligible for s5R2p60X and
s7R2p60X, consistent with the discussion of § 5.5. Examination of figure 18 shows
that, as expected given the initial conditions wherein n-heptane resides in the lower
T stream, the j.p.d.f. exhibits a decreasing relationship between ΞC7H16 and θ ; the
width of the j.p.d.f. becomes larger with decreasing ΞC7H16 and increasing θ , this
being a manifestation of the mixing and heat transfer occurring between the two
streams. The j.p.d.f. values corresponding to the smallest ΞC7H16 values and largest θ
values correspond to the largest values of x2/δω,0 > 0 at which n-heptane is present
in the upper stream (see figure 6a,h). The j.p.d.f.s do not show much visual variation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.992


Mixing in high-pressure turbulent flows 325

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

œ œ œ

1.0

0.8

0.6

0.4

0.2

0

ą̊

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

ą̊

-4.0 -2.5 -1.0 0.5 2.0 -4.0 -2.5 -1.0 0.5 2.0 -4.0 -2.5 -1.0 0.5 2.0
(a) (b) (c)

(d) (e) (f)

FIGURE 19. (Colour online) J.p.d.f. in logarithmic scale of θ and Ξα for cases s7R2p60X
(top line) and s5R2p60X (bottom line): (a,d) O2, (b,e) CO2 and (c, f ) H2O. The p.d.f. is
computed inside the mixing layer, according to (5.4), at t∗tr.

from s2R2p60Y to s5R2p60X, but it is visually apparent that the width of the
j.p.d.f. increases from s5R2p60X to s7R2p60X. However, comparison of figures 18(b)
and 18(c) indicates that regions with large j.p.d.f. values are less susceptible to change
by the addition of species if these species are minor, and the width increase seems
to affect only the tails of the j.p.d.f.; that is, the presence of the additional species
decreases the preponderance of n-heptane as θ increases, this situation representing
regions at larger x2/δω,0 > 0 locations within the mixing layer (see figure 6a,h). To
show that the findings for n-heptane are not an isolated conclusion, the j.p.d.f.s
for O2, CO2 and H2O are displayed in figure 19. Since their corresponding Yα is
initially larger in the upper stream compared to the lower stream, the j.p.d.f.s exhibit
an increasing relationship between Ξα and θ . These j.p.d.f.s visually confirm the
findings of figure 18: minor species addition widens the tails of the j.p.d.f.s but does
not substantially affect the j.p.d.f.s large value region. Finally, figure 20 presents for
information the j.p.d.f.s of CO and H2 computed for s7R2p60X, the single simulation
in which these species are present. Despite their initial Yα value being smaller than
those of CO2 and H2O, the j.p.d.f.s of CO and H2 are the widest, this being due to
uphill diffusion, which for CO and H2 enlarged the range of Ξα values more than
for CO2 and H2O (see figure 5).

To quantify the differences between the j.p.d.f.s obtained as the composition is
simplified, relative errors were calculated. The relative deviations of the j.p.d.f.s,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.992


326 L. Sciacovelli and J. Bellan

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
œ œ

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

ą̊

-4.0 -2.5 -1.0 0.5 2.0 -4.0 -2.5 -1.0 0.5 2.0
(a) (b)

FIGURE 20. (Colour online) J.p.d.f. in logarithmic scale of θ and Ξα for case s7R2p60X:
(a) CO and (b) H2. The p.d.f. is computed inside the mixing layer, according to (5.4),
at t∗tr.

devα, for the four common species to s5R2p60X and s7R2p60X, is computed using

devα =

√[
(j.p.d.f.)s7R2p60X

α − (j.p.d.f.)s5R2p60X
α

]2

(j.p.d.f.)s7R2p60X
α + ε

, (5.21)

where the small parameter ε = 10−16 is added to the denominator in order to avoid
division by zero. The addition of ε does not affect the devα evaluation in regions of
large j.p.d.f. values representing the significant combustion localities, but does affect
the regions of small j.p.d.f. values in which the relative deviation thus computed may
be inaccurate; however, this range of values has negligible contribution to combustion.
Figure 21 shows that for all species under consideration – n-heptane, O2, CO2 and
H2O – devα is very small in the regions of maximum and large j.p.d.f. values and
is only large on the periphery of the j.p.d.f.s. These peripheral values occur primarily
where the temperature is too low for combustion to occur. The fact that the deviation
is small in the region of larger probability is here interpreted as a confirmation that
conditional averages may be considered as a sufficient test of the change in j.p.d.f.s as
the composition of a mixture of species is refined. The 〈θ |Ξα〉 conditional averages
are depicted in figure 22 and show that, with the exception of the uphill diffusion
regime of CO2 and H2O, where Ξα > 1, the conditional averages are primarily similar.
Thus, we conclude that the simplification of the mixture composition by eliminating
minor species does not affect the relationship between the remaining mass fractions
and temperature, with the exception of the regions of uphill diffusion of those species
that experience it, and in those regions the conditional averages of those species are
different.

6. Summary and conclusions
This study addressed the potential changes in the characteristics of a turbulent

mixture under high-pressure conditions when its composition is simplified by
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FIGURE 21. (Colour online) Estimation of the relative deviation (in logarithmic scale)
between the j.p.d.f.s of θ and Ξα for cases s5R2p60X and s7R2p60X (defined by (5.21)),
for the same species: (a) O2, (b) C7H16, (c) CO2 and (d) H2O.

neglecting some chemical species. To perform this investigation, direct numerical
simulation (DNS) was used to generate a database representing a three-dimensional
temporal mixing layer initially having two streams of different composition that
are promoted to mix when the four initial spanwise vortices hosted by the layer
experience a double pairing thereby creating an ultimate vortex in which small
scales proliferate. Owing to the high-pressure condition, the smallest scale is not
necessarily the Kolmogorov scale, but rather the thermodynamic scale. The database
was obtained by varying the composition (two, three, five and seven species), by
varying the initial Reynolds-number value (1000, 2000 and to 3500) and by varying
the pressure (60 atm and 80 atm); a total of 13 realizations were generated. To
ensure that the initial momentum ratio has essentially the same value for all layers,
only minor composition variations in the mass fraction or mole fractions could be
accommodated; as a result, the initial density ratio also varied in a narrow range. The
resolution requirements were such that the two largest simulations were performed on
6.6× 108 and 1.037× 109 grid nodes, respectively. All layers were initially perturbed
and eventually reached a state which had turbulence characteristics, that is, at that
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FIGURE 22. (Colour online) Conditional average of the normalized temperature θ given
Ξα at t∗tr for cases (a) s7R2p60X and (b) s5R2p60X.

time station the spectra were smooth except for the perturbation frequency. Most, but
not all, of the analysis was performed at this state.

General vortical and enstrophy time-wise evolution results indicated that the values
of these quantities exhibited substantial differences according to the Reynolds-number
value, and increased with the initial Reynolds number. However, within each category
defined by the initial Reynolds-number value, there were smaller but definite variations
with the number of species, and typically the vortical/enstrophy aspects increased with
the density ratio between free streams, indicating the coupling between dynamics and
thermodynamics.

To examine the influence of the mixture composition representation, the species
were partitioned into major species (n-heptane, oxygen and nitrogen) and minor
species (carbon monoxide, carbon dioxide, hydrogen and water). The results first
addressed the behaviour of major and minor species within a single realization, and
then their variation with composition across realizations. Within each realization,
all major species experienced regular mass diffusion, whereas all minor species
experienced uphill mass diffusion whereby diffusion occurs in the opposite direction
to the mass fraction gradient of the species. Most, but not all, uphill mass diffusion
occurred at the periphery of the layer. The species exhibiting most uphill diffusion was
hydrogen, and this occurrence was attributed to it having the smallest mass fraction
in the composition as well as to its molecular size and mass; all these aspects couple
its flux most tightly to those of other species, this being the requirement for obtaining
uphill diffusion.

Since the present flows exhibit strong density-gradient regions which were shown
in the past to affect the vortical characteristics of the flow (Masi et al. 2013), an
examination was conducted focusing on potential scaling of these aspects, on the
composition of these regions and on whether these density gradients affect the flow
through the Korteweg tensor. Considerations of the p.d.f. of the density-gradient
magnitude scaled by the initial density difference between streams revealed that
at the same initial momentum ratio and initial density difference, the realization
displaying the largest scaled density-gradient magnitude was that having the largest
initial Reynolds-number value. This result was attributed to the fact that turbulence
only acts on continuum scales and cannot access the much smaller molecular scales:
at the shorter characteristic time of higher turbulence, diffusion is less effective in
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reducing gradients. For the same initial Reynolds-number value, the scaled |∇ρ|
was observed to be only slightly dependent on the number of the species in the
mixture. Moreover, conditional averages of the mass fractions on the density-gradient
magnitude showed that the overwhelming species in these HDGM regions is n-heptane.
Employing a comprehensive formulation developed here to account for the Korteweg
tensor influence on the conservation equations in the general case of an indefinite
number of species, the |∇ρ| scaling, which is quasi-independent of the number of
species, and the fact that n-heptane is the preponderant species in these HDGM
regions, permitted the a priori estimation of the influence of the Korteweg stresses in
the momentum equation. This computation indicated that, even for the largest density
gradients present (O(106) kg m−4), the Korteweg tensor magnitude is negligible with
respect to the pressure gradient magnitude, which is orders of magnitude larger
than the Korteweg tensor; this situation prevails even in the regions where the
Korteweg tensor has maximum magnitude. Despite the substantial Reynolds-number
value achieved at transition for the case initiated with the largest initial Reynolds
number, in all realizations, the Reynolds numbers at transition is of the same order
of magnitude, with values typically of O(103). Since it has been shown that the
HDGM regions proliferate increasingly with increasing Reynolds number and the
largest density-gradient magnitude rises with the Reynolds number, it is difficult to
assert to what extent conclusions on O(103) Reynolds-number flows can be applied
to O(104)–O(106) Reynolds-number flows. Given the necessity to resolve the smallest
scales in order to extract the correct density gradients, large-eddy simulations are
unable to provide the information for this small-scale analysis. Since DNS is currently
unfeasible at the Reynolds-number values of practical interest, whether or not the
Korteweg stresses are also negligible in very high-Reynolds-number flows remains an
open question that will be addressed in the future.

Probability density functions of the effective Schmidt number and effective Lewis
number of each of these species revealed that the major species have narrow
distributions (and therefore the peak value is statistically significant) whereas the
minor species have wide distributions indicating the tight coupling to the local
conditions experienced by the species. For the major species, the peak effective
Schmidt-number value was a strong function of the pressure, being 1.15 at 60 atm
and 1.5 at 80 atm for n-heptane, but showed much more subdued variation according
to the number of species in the mixture. The peak effective Lewis number was ∼0.45
for n-heptane and varied for the minor species in the range 0.3–0.8. The effective
Prandtl-number p.d.f. displayed large values, in the range of refrigerants, and became
generally (but not always) narrower for more compositionally complex mixtures,
this aspect resulting from the homogenizing effect of the transport of enthalpy by
the species. Thus, it is clear that these mixtures show characteristics unlike perfect
gases and that the mixture composition has an impact, the extent of which must
be determined for each intended application. For example, retaining the relationship
between mass fractions and temperature is one of the requirements when proposing
reduced chemical kinetic mechanisms. To determine whether this relationship is
maintained when simplifying the composition by using reduced chemical kinetic
mechanisms, joint p.d.f.s were examined for several species according to the number
of the species in the mixture. The present results show that reducing the complexity of
the mixture negligibly affects the relationship between mass fractions and temperature
in regions where this relationship is strongest and thus likely to sustain combustion;
however, reduction in the mixture complexity has a larger influence in regions of
uphill diffusion for those remaining species in the mixture that are subject to it,
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and this influence will be felt through mixing and eventual species availability in
combustion regions. Thus, uphill diffusion makes the reduction in the number of
species nonlinear and thus invalidates usage of linearity-based methods in the study
of species reduction for combustion applications.
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Appendix A. Transport properties
Unlike for atmospheric-p flows, where three transport properties are generally

sufficient (viscosity, diffusivity and thermal conductivity), for high-p conditions there
are four relevant transport properties, as follows.

A.1. Mixture viscosity
To compute the individual species viscosity, µα, the Lucas method (Poling, Prausnitz
& O’Connell 2001) has been selected due to its high-p accuracy capabilities.
Moreover, unlike other widespread methods used for similar configurations (such
as the one provided by Chung et al. (1988)), it contains a correction factor for
quantum effects that ensures accurate predictions also for gases having negative
acentric factors, such as hydrogen. To compute the mixture physical viscosity, µph,
the Wilke method (Poling et al. 2001) is utilized providing

µph =

N∑
α=1

XαωM
α µα, (A 1)

(ωM
α )
−1
=

N∑
β=1

φαβXβ, (A 2)

φαβ =
[1+ (µα/µβ)1/2(mβ/mα)

1/4
]

2

[8(1+mα/mβ)]1/2
, (A 3)

where ωM
α are weighting factors (Poling et al. 2001). We distinguish between the

physical viscosity µph, the reference viscosity µR defined in § 4, and the computational
viscosity µ used to enable resolution to scales of O(ηK), as explained in § 4.

A.2. Mixture thermal conductivity
To compute the physical mixture thermal conductivity, λph, the species conductivities
λα are first calculated using the Stiel–Thodos method. The ideal specific heat at
constant pressure, needed for the computation of the low-pressure thermal conductivity
component, is a temperature-dependent third-order polynomial whose coefficients are
listed in Poling et al. (2001) for each of the fluids considered in this study. Then,
the Wassiljewa–Mason–Saxena method (Poling et al. 2001) is utilized to compute λph
from λα as

λph =

N∑
γ=1

XαωQ
α λα, (A 4)
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where
ωQ
α =ω

M
α . (A 5)

In § 4 we explain how a scaled thermal conductivity, λ, is computed that is used to
perform DNS.

A.3. Binary mass diffusivities

Matrix elements Db
αγ are the building blocks of Dαγ and ultimately of D′αγ . To

compute Db
αγ =Dαγ , we adopt the method of Harstad & Bellan (2004b) which gives

(in cgs units)

nDαγ = 2.81× 10−5 fD,αγ (T)

rDv
2/3
c,αγ

[(
1

mα

+
1

mγ

)
T
]1/2

. (A 6)

Here fD,αγ (T) is generically defined for each matrix element as fD(T) ≡ (Tred)
s, with

ln s =
∑5

ζ=0 as
ζ (ln Tred)

ζ , where the as vector has elements {−0.84211, −0.32643,
−0.10053, 0.07747, 0.0127, −0.00995}; rD is a constant O(1) which provides an
empirical adjustment for the specifics of the collisional interactions of a selected pair
of species; Tred,αγ ≡ T/Tc,αγ , with Tc,αγ defined in appendix B; and vc,αγ is defined
in appendix B as well. Values of rD are listed elsewhere (Harstad & Bellan 2004b)
for species pairs relevant to combustion.

A.4. Binary thermal-diffusion factors
According to Harstad & Bellan (2004a):

αb
T,αγ = ζαγ

(mαω
T
γ −mγω

T
α)

(mα +mγ )Dαγ

, (A 7)

ωT
α =

ωQ
α λα

Run
, ζαγ =

6
5

C∗αγ − 1, (A 8a,b)

where ωQ
α is computed from (A 2) and (A 5), and C∗αγ is given by Hirshfelder, Curtis

& Bird (1964) and is function of a normalized temperature including the characteristic
molecular interaction potential (Harstad & Bellan 2004a).

Appendix B. Relationships for the equation of state
Miscellaneous relationships relevant to the EOS are

amix =
∑
α

∑
γ

XαXγ aαγ (T), bmix =
∑
α

Xαbα, (B 1a,b)

where indices do not follow the Einstein notation, and

aαγ = (1− k′αγ )
√
ααααγ γ , (B 2)

ααα(T)≡ 0.457236(RuTc,α)
2
×
[1+ cα(1−

√
Tred,α)]

2

pc,α
, (B 3)

cα = 0.37464+ 1.54226Ωα − 0.26992Ω2
α, (B 4)
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α n-C7H16 n-C7H16 CO2 O2 CO2 H2O H2O H2 CO CO
γ N2 CO2 H2O N2 N2, O2 N2, O2 CO2 N2 N2 H2

k′ 0.1441 0.1 0.095 −0.0119 −0.017 0.17 0.12 0.103 0.0307 0.0919

TABLE 4. Values of k′ for species pairs.

where Tred,α ≡ T/Tc,α, Tc,α is the critical temperature and Ωα is the acentric factor.
Also,

bα = 0.077796
RuTc,α

pc,α
, (B 5)

Tc,αγ = (1− kαγ )
√

Tc,αTc,γ with kαα = 0, (B 6)

vc,αγ =
1
8(v

1/3
c,α + v

1/3
c,γ )

3, (B 7)

Zc,αγ =
1
2(Zc,α + Zc,γ ), (B 8)

pc,αγ =
RuTc,αγZc,αγ

vc,αγ n
, (B 9)

with Tred,αγ ≡ T/Tc,αγ , Zc,α being the critical compression factor with the compression
factor defined as Z=p/(ρTRu/m), vc,α being the critical volume, pc,α being the critical
pressure, and where kαγ is an empirical mixing parameter. The relationship between
parameters kαγ and k′αγ is

(1− kαγ )= (1− k′αγ )
(vc,αvc,γ )

1/2

vc,αγ
, (B 10)

and for all pairs not in table 4, k′αγ = 0 is used.

Appendix C. Mixing layer bounds
The mixing layer is identified using a threshold, k, for the local YC7H16 value, as

shown from (5.4). The value of k is rather arbitrary, and thus it is useful to inquire
about the sensitivity of the results to it. Four different thresholds are chosen, varying
from 0.01 to 0.1. Figure 23 shows the p.d.f.s of Preff , DC7H16,eff , ScC7H16,eff and ScH2,eff
for case s7R2p60X computed with the four different values of k. It is clearly shown
that (i) the influence on the species-effective Schmidt numbers is unimportant, (ii) a
small bump on the lower bound of the Preff p.d.f. appears for smaller thresholds, and
(iii) the shape of the DC7H16,eff p.d.f. is slightly modified, with cases k= 0.01 and k=
0.02 exhibiting a relative maximum near the lower bound. This behaviour, however,
does not affect the results significantly, since the most probable value of the p.d.f. is
unchanged and the modifications due to the k value are not physically significant. The
value k= 0.05 is thus retained for this study.

Appendix D. Diffuse interface models for a multi-species mixture
Diffuse interface models (DIMs) employ the second-gradient theory to arrive

at formulations used to describe the continuous change of fluid properties across
liquid–gas interfaces in subcritical conditions. Pioneering contributions to DIM are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.992


Mixing in high-pressure turbulent flows 333

0.5 1.0 1.5 2.0 -2 0 2 4 6 8

-2 0 2 4 6 8 0 5 10

4

3

2

1

0

0.5

0.4

0.3

0.2

0.1

0

0.3

0.2

0.1

0

0.6

0.5

0.4

0.3

0.2

0.1

0

k = 0.01
k = 0.02
k = 0.05
k = 0.10

DC7H16, eff

ScC7H16, eff ScH2, eff

Preff

P.
d.

f.
P.

d.
f.

(a) (b)

(c) (d)

FIGURE 23. (Colour online) Influence of the threshold value k used to identify the mixing
layer bounds: (a) Preff , (b) DC7H16,eff , (c) ScC7H16,eff and (d) ScH2,eff .

due to van der Waals (1893), Korteweg (1901), Cahn & Hilliard (1958) and Cahn
(1959). A variety of problems have been successfully described utilizing DIM, e.g.
the dynamics of contact lines (Seppecher 1996), the description of near-critical points
(Rowlinson & Widom 2002), and liquid–gas interfaces with topological changes
(Jamet et al. 2001). A thorough review of DIM applications is available in Anderson
et al. (1998). While the theory is usually initiated by including many chemical
species, it invariably becomes focused on a binary-species system. The goal of the
derivation below is to provide a general formulation that retains the multi-species
aspect up to the end result, and to make this formulation compatible with the mixing
rules of Harstad & Bellan (2004a) used in § 2.1.

According to the gradient theory, the Helmholtz free energy is

F(T, ρ,∇ρ)= F0(T, ρ)+ F1(∇ρ)= F0(T, ρ)+
1
2

N∑
α,β=1

καβ∇ρα · ∇ρβ, (D 1)

where the superscript (·)0 denotes standard bulk properties that do not involve
gradients. Assuming symmetric binary capillary coefficients (καβ = κβα), one can
reformulate (D 1) as

F(T, ρ,∇ρ)= F0(T, ρ)+
N∑
α=1

φα · ∇ρα with φα =
∂F
∂∇ρα

=

N∑
β=1

καβ∇ρβ . (D 2)
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Moreover, assuming constant capillarity coefficients, the following thermodynamic
relation is obtained:

dF= dF0
+ dF1

=−S0 dT +
N∑
α=1

g0
α dρα +

N∑
α=1

φα · d∇ρα, (D 3)

where S0 is the bulk entropy per unit volume, g0
α the bulk Gibbs function of species

α per unit mass and d represents a differential. Combining (D 3) with standard
thermodynamic relations, one finds that S = S0, G = G0 and H = H0. On the other
hand, p = p0

−
∑N

α,β=1 καβ∇ρα∇ρβ and E = E0
+
∑N

α,β=1 καβ∇ρα∇ρβ . In the main
sections of this paper, i.e. except for this appendix, p ≡ p0 since the gradient terms
are not taken into account in the DNS realizations; thus, in the DNS realizations p
only depends on bulk (e.g. local) quantities. The system of conservation equations
can be written in the following general formulation

Dρ
Dt
=−ρ∇ · u, (D 4)

ρ
Du
Dt
=−∇ ·W , (D 5)

ρ
DYα
Dt
=−∇ · Jα, (D 6)

ρ
Det

Dt
=−∇ · Je, (D 7)

where D(·)/Dt is the material derivative, ρ is the density, u is the velocity, et = e+
(1/2)‖u‖2 is the total energy, e is the internal energy, Yα is the mass fraction of the
species α (with 1 6 α 6 N and

∑
α Yα = 1), T is the stress tensor, Je = q+W · u is

the energy flux, and q and Jα are the heat- and mass-diffusion fluxes, respectively. It
is possible to decompose the stress tensor into the sum of a reversible part P and an
irreversible one, T , i.e. W = P + T . In order to determine the reversible part of the
stress tensor, one may take advantage of the Euler–Lagrange equations and Hamilton’s
principle, and solve a constrained minimization problem for the free energy F through
the method of Lagrange multipliers (Anderson et al. 1998), obtaining

P =

(
p0
−

N∑
α=1

φα · ∇ρα −

N∑
α=1

ρα∇ · φα

)
I +

N∑
α=1

φα ⊗∇ρα (D 8)

=

(
p−

N∑
α=1

ρα∇ · φα

)
I +

N∑
α=1

φα ⊗∇ρα, (D 9)

where p0 is the thermodynamic pressure and I is the identity matrix.
The term

∑
α φα⊗∇ρα is commonly known as the Korteweg tensor. The additional,

interface-related terms in P do not produce entropy and are associated with reversible
processes. The expressions for the dissipative viscous, heat and mass fluxes can be
obtained through application of the thermodynamics of irreversible processes theory
(Keizer 1987), which leads to

T =
(
µ̂− 2

3µ
)
(∇ · u)I +µ(∇u+ (∇u)T), (D 10)
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Jα =−
N∑
β=1

Lαβ∇
(
µβ

T
−
∇ · φβ

T

)
− Lαq∇

(
−

1
T

)
, 1 6 α 6 N, (D 11)

q=−
N∑
β=1

Lqβ∇

(
µβ

T
−
∇ · φβ

T

)
− Lqq∇

(
−

1
T

)
−

∑
α

φα
Dρα
Dt

, (D 12)

where µ̂ is the bulk viscosity, µ is the viscosity, µβ is the chemical potential of the
species β, and Lαβ is the Onsager matrix of positive semidefinite phenomenological
coefficients (de Groot & Mazur 1984). This shows that T is unchanged by the second-
gradient term contribution; in contrast, both the species and heat fluxes contain an
additional term leading to the definition of an equivalent chemical potential, µ̃β=µβ−
∇ · φβ . Moreover, the heat flux contains also a second term which can be written as
a function of Jα. Starting from (D 10) and recalling that the mass-diffusion factors
and the partial molar enthalpies are defined as αDβγ = (∂µβ/∂Xγ )(Xβ/T) and hβ =
T(µβ/T + sβ), respectively, the thermodynamic driving forces can be rewritten as

∇

(
1
T

)
=−
∇T
T2
=−

1
T
∇ ln T, (D 13)

∇

(
µβ

T
−
∇ · φβ

T

)
=

1
T
[pvβ∇ ln p− (hβ−∇ · φβ)∇ ln T−∇2φβ] +

1
Xβ

N∑
γ=1

αDβγ∇Xγ .

(D 14)

The coefficients of the Onsager matrix, assumed to be independent of the second-
gradient defined energy, are calculated as

Lαβ ≡−Dm,αβnYαYβ, α 6= β, (D 15)
1
T

Lα,q ≡ Xα
∑
β 6=α

αIK,αβnYβDm,αβ, (D 16)

where subscript IK labels a quantity associated with the Irwing–Kirkwood (IK) heat-
flux formulation (Sarman & Evans 1992). Since conservation of fluxes and of mass
in the system imply that

∑
α mαJα = 0 and

∑
α Lαβmα = 0, and since Yα/mα = Xα/m,

one obtains

Lαα =−
1

mα

∑
β 6=α

(−Dm,αβnYαYβ)mβ = nXα
∑
β 6=α

(mβ

m

)
YβDm,αβ . (D 17)

Replacing these relations in equation (D 10), one obtains the mass flux as

Jα = n

[
Xα(D̃T,α∇ ln T +Dp,α∇ ln p−Dφα )+

N∑
γ=1

Dαγ∇Xγ

]
, (D 18)

where

D̃T,α =
∑
β 6=α

−Yβ

[
αIK,αβ +

mαmβ

mT

(
hβ −∇ · φβ

mβ

−
hα −∇ · φα

mα

)]
Dm,αβ, (D 19)
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Dp,α =
p
T

∑
β 6=α

Yβ

[
mαmβ

m

(
vβ

mβ

−
vα

mα

)]
Dm,αβ, (D 20)

Dφα =
1
T

∑
β 6=α

Yβ

[
mαmβ

m

(
∇

2φβ

mβ

−
∇

2φα

mα

)]
Dm,αβ, (D 21)

Dαγ =

∑
β 6=α

mβ

m
(YααDβγ − YβαDαγ )Dm,αβ . (D 22)

By comparing the formulations with and without the second-gradient term (Harstad
& Bellan 2000), one finds that Dp,α and Dαγ are unchanged; there is an additional
term depending on the Laplacian of the density potential, Dφα , and the temperature-
dependent coefficient D̃T,α is slightly modified. It is then possible to define a modified
partial enthalpy, h̃α = hα −∇ ·φα, which allows one to recover the classical functional
form for DT,α.

Similar mathematical developments lead to the general form of the heat flux q, here
derived in the IK form (Sarman & Evans 1992):

q=−λ̃′IK∇T − nT

(
Dqp∇ ln p−Dqφ +

N−1∑
δ=1

Dqδ∇Xδ

)
−

∑
α

φα
Dρα
Dt

, (D 23)

with

λ̃′IK = λIK −
ρ

T

∑
γ>β

YβYγ

(
hγ −∇ · φγ

mγ

−
hβ −∇ · φβ

mβ

)
αIK,γβDm,γβ, (D 24)

Dqp =
mp
T

∑
γ>β

YβYγ

(
vγ

mγ

−
vβ

mβ

)
αIK,γβDm,γβ, (D 25)

Dqφ =
m
T

∑
γ>β

YβYγ

(
∇

2φγ

mγ

−
∇

2φβ

mβ

)
αIK,γβDm,γβ, (D 26)

Dqδ =
∑
γ>β

(YβαD,γ δ − YγαD,βδ)αIK,γβDm,γβ, (D 27)

which shows, again, the slight modification in λ̃′IK and the new term Dqφ .

Appendix E. Grid convergence study
A sensitivity study to the grid resolution has been performed in order to check

the numerical quality of the results, particularly those in § 5.4 that could be sensitive
to the selected grid. Given the high computational cost of R2 cases, this study has
been performed for a R1 case, namely s2R1p60Y. The baseline resolution being
approximately the same for all runs (i.e. 1x/ηK ≈ 1 in the core of the mixing layer),
the significance of the results of this grid convergence study can be extended to all
runs. The baseline grid for R1 cases (N1×N2×N3=480×530×288) has been refined
by 50 % for each direction, i.e. N1 × N2 × N3 = 720 × 795 × 432. Consequently, the
total number of grid points increases from 73 million to 247 million, approximately.

Figure 24 shows the comparison of several quantities between the results obtained
with the two computational grids. The time-wise evolutions of normalized enstrophy
are undistinguishable, as well as the streamwise and spanwise spectra of YC7H16 at t∗tr.
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FIGURE 24. (Colour online) Grid convergence study for case s2R1p60Y. (a) Time history
of normalized enstrophy; (b) averaged resolution in terms of local Kolmogorov length
scale 1x/ηK at t∗tr; (c) streamwise and (d) spanwise spectra of YC7H16 at t∗tr; and p.d.f.s
of (e) ScC7H16,eff and ( f ) |∇ρ| at t∗tr.

The spectra for the finer grid span a larger wavenumber range, in concert with the
higher resolution, and do not exhibit energy accumulation at the smallest scales. Lastly,
the differences between the p.d.f.s of ScC7H16,eff and |∇ρ| computed with the two grids
are very subdued and do not modify either qualitatively or quantitatively the analyses
performed in § 5.
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