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SUMMARY
This paper extends the model developed previously by the
authors,1 for studying dynamic stability of mobile
manipulators. The extended model not only takes into
account the dynamics of the base that can potentially rock
back-and-forth, but also accounts for the flexibility of the
contact between the base and the ground. A novel method of
virtual links is used to reformulate the problem of modeling
the non-fixed base manipulator in terms of a fixed-base
manipulator with one degree of freedom joints. The
resulting model is then used to simulate planar movements
of a Caterpillar excavator-based log-loader. The results
clearly demonstrate the relationship between movement of
the implement and the stability of the machine. The flexible
contact between the base and the ground is also shown to
influence the stability. The results are also compared with
those obtained by the previous model, which assumed rigid
contact between the base and the ground. It is demonstrated
that the assumption of rigid contact tends to overestimate
the stability. Consequently, flexibility in the contact bet-
ween the base and the ground must be considered to more
accurately predict the stability of mobile manipulators.

1. INTRODUCTION
The development of automated systems for the operation of
heavy-duty manipulator-like machines, such as log-loaders,
has recently received much attention. The environments in
which these machines operate are unstructured and
potentially hazardous. The operator must remain alert, at all
time, in order to accomplish the work efficiently and, at the
same time, protect his/her safety and that of others. Current
research effort has been to develop means for converting
these machines into teleoperated control systems.2,3 One
issue in the computer control of such machines, however, is
the ability to maintain stability. A heavy-duty mobile
manipulator while carrying a load, experiencing a force, or
operating on uneven terrain needs to maintain its balance.

Early work on stability of mobile vehicles was only
concerned with the static stability and gait generation of
slow moving legged machines. The most comprehensive
method belongs to Messuri and Klein4 who introduced a
measure of stability termed energy stability margin. This
method, however, could only deal with cases where the only
destabilizing load is due to the gravitational force. In a

moving-base manipulator a large portion of destabilizing
forces and moments could be due to the inertial or external
loads arising from maneuvering the end-effector. Nagy
et al.5 extended the energy stability method to take into
account the effect of known walker terrain compliance on
the stability of the walker. The method is still confined to the
stability analysis of vehicles that are subject to only weight
forces. Dubowsky and Vance6 proposed a time optimal
motion planning strategy for manipulators that are mounted
on mobile platforms. The goal was to allow the manip-
ulators to perform tasks quickly without generating dynamic
forces and moments that cause the system to overturn. The
method, however, did not attempt to study the tip-over
case or to develop a measure of stability. Sugano et al.7

and Huang et al.8–10 employed the ZMP (Zero Moment
Point) concept to construct a quantitative criterion for
manipulators mounted on a vehicle. In their work, the
manipulator, including the vehicle and the payload, was
considered to be a system of particles moving on only rigid
horizontal floors. ZMP concept is a moment-based approach
and therefore does not include the effect of the walking
height in the stability analysis. Papadopoulos and Rey11,12

proposed a Force-Angle measure of tip-over stability
margin. The Force-Angle stability measure has a simple
graphical interpretation and is easy to compute, it, however,
does not give any information about the state of base, i.e.
whether the base is going to tipover completely or just rock
back-and-forth. Iagnemma et al.13 introduced a kinematic
reconfiguration method to enhance system’s tip-over
stability. The method was built upon the Force-Angle
measure method and was intended for quasi-static systems.
Ghasempoor and Sepehri14 extended the energy stability
method by Messuri and Klein4 to quantitatively reflect the
effect of forces and moments arising from the manipulation
of the implement. The significance of this extension is that
it can be used as an off-line tool to provide the designers
with an inexpensive and fast method of maintaining the
stability of mobile manipulators. The extension, however,
does not predict how the base responds to the movement of
manipulator links. Recently, Abo-Shanab and Sepehri1

developed, for the first time, a tipping-over model of mobile
manipulators. The model takes into account the dynamics
of the base that can rock back-and-forth and includes
the impact between the base and the ground. Although the
model is capable of producing detailed response of
the manipulator including the movement of the base, it
relies on the assumption of rigid contact between the base* Corresponding author, E-mail: nariman@cc.umanitoba.ca
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and the ground. This assumption is not realistic. It also
results in a non-smooth mathematical model. Dealing with
equations of motion for non-smooth systems is more
complicated than solving those of smooth systems, since the
classical solution theories to ordinary differential equations
require vector field to be at least Lipschitz-continuous15 and
non-smooth systems fail this requirement. Thus, Filippov’s
solution theory16,17 must be used first, to ensure the
existence, continuation, and uniqueness of the solution. This
is not easy especially for systems with more than one
discontinuity surface, which is the case in their study.

In this paper, we improve the model developed
previously,1 to include the flexibility of the contact between
the base and the ground. Inclusion of the flexibility, which
is due to the suspension and the tires, results in a more
realistic model of the entire system. The approach taken is
to first consider the contact between the base and the ground
as a multidegree of freedom joint. Next, the novel method of
virtual links is employed to cast the resulting problem into
a fixed base serial link manipulator with single degree of
freedom at each joint. This process further facilitates the
derivation of the final dynamic equations. The model is
applied to a Caterpillar log-loader machine. These machines
incorporate many aspects of typical robotic systems and are
the basis for most heavy-duty hydraulic machines. Thus, the
analysis and development reported in this paper can be
applied to other similar mobile robotic systems or heavy-
duty mobile manipulators.

The organization of this paper is as follows. Section 2
describes the method of virtual links. Modelling of the
system including the contact flexibility is discussed in
Section 3. Section 4 presents the simulation results
pertaining the application of the model to a Caterpillar log-
loader. Conclusions are given in Section 5.

2. METHOD OF VIRTUAL LINKS
Consider an n-link serial manipulator with (n + m) degrees
of freedom. This means that some of the manipulator joints
have more then one degree of freedom. To model the
manipulator, m virtual links, each with one degree of
freedom are added. The original n-link system now becomes
an (n + m)-link system. Vector q = {q1, q2, . . . , qn + m}T

denotes the generalized coordinates and � = {�1, �2, . . . ,
�m + n}

T is the generalized force vector for the new system.
The dynamic equations are then derived using Lagrange-
Euler (LE) method in the augmented state space.18,19

M̃(q)q̈+ C̃(q, q̇)+G̃(q)=� (1)

where M̃(q) is the symmetric, positive definite inertial
accelerationrelated matrix, C̃(q, q̇) is the vector of centri-
petal and Coriolis torques and G̃(q) is the vector of
gravitational torques. To obtain the final equations for the
original system, all the kinematic and dynamic parameters
of the virtual links, such as the masses, moments of inertia
or lengths, are set to zero. The final equation for the original
multi-link system is then:

M(q)q̈+C(q, q̇)+G(q)=� (2)

where M(q), C(q, q̇), and G(q) are simplified forms of
M̃(q), C̃(q, q̇), and G̃(q), respectively, since the dynamic

and kinematic parameters of the virtual links are set to zero.
The detailed description of method with many illustrative
examples is given in reference [20].

3. DEVELOPMENT OF THE MODEL
The schematic of a planar mobile manipulator is shown in
Figure 1. The base is considered as a rigid body, resting on
two wheels that are longitudinally aligned and are modelled
using the half car representation with Kelvin-Voigt spring
damping system.21 The system damping is viscous, below
the critical value and invariant with respect to changes of the
kinematics configuration. In the present model, the base is
considered to undergo a heave and a pitch motion. With
reference to Figure 1, the manipulator is characterized to
operate within two distinct phases:

Phase 1: The base is either resting on both edges Ā and
B̄ or turning over the rear edge Ā. In this phase, the base
remains in contact with the ground on edge Ā, at all-time.
Thus, in order to model the system, the connection
between the point Ā on the ground and point A located on
the base, is modelled as a three degree of freedom joint
subject to a suspension force Fsusp1 (see Figure 2a). Two
virtual links with prismatic joints are therefore added to
represent the horizontal and the vertical motions (q1 and
q2) at this point. Point B is subject to force Fsusp2

originated from the suspension between B̄ and B. The
mobile robot is then considered as a 5-link serial
manipulator subject to two external forces Fsusp1 and
Fsusp2.
Phase 2: The base is either resting on both edges Ā and
B̄ or turning over the front edge B̄. In this phase, the base
remains in contact with the ground on edge B̄, at all-time.
As in the first phase, the connection between the point B̄
on the ground and point B located on the base is modelled
as a three degree of freedom joint subject to suspension
force Fsusp2 (see Figure 2b). Two virtual links with
prismatic joints are therefore added to represent the
horizontal and the vertical motions (q1 and q2) at this
point. Point A is subject to suspension force Fsusp1.

Fig. 1. Schematic of a planar mobile manipulator.
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Switching between the two phases is based on calculating
the height of the rear and front edges above the ground, i.e.
yr and yƒ in Figure 1. As far as yr is less then the undeformed
length of the spring, x0, the first phase is considered. Once
yr becomes greater than x0 the second phase is applied.

Figure 3 shows the Denavit-Hartenberg (D-H) coordinate
systems applied to both phases. Note that a3 = ar when
modelling the first phase and a3 = �aƒ for modelling the
second phase.

Utilizing the D-H coordinates as described in Figure 3, the
dynamic equations describing both phases are then derived as
follows:20

� = M(q) q̈+C(q, q̇)+G(q)+�susp (3)

where q = {q1, q2, . . . , q5}
T, q̇ and q̈ are vectors of the joint

variables, velocities and accelerations, � (t) = {�l, �2, . . , �5}
T is

the generalized force vector applied at joints i = 1, 2, . . . , 5,
and �susp = {�susp1, �susp2, �susp3, �susp4, �susp5}

T is the external force
vector due to suspension forces Fsuspl and Fsusp2.

The elements of the 5�5 inertial acceleration-related
symmetric matrix, M(q), are derived using the following
relations:

Mij = Trace ��i��5

p=j

Tp Jp TT
p��T

j � (j ≥ i )

Mji = Mij (i < j )
(4)

The elements of the Coriolis and centrifugal force vector
C(q, q̇) = {cl, c2, . . . , c5}

T are determined as follows:

ci =�5

j=1
�5

i=1

cijk q̇j q̇k

where

cijk =Trace ��i��5

p=j

Tp Jp TT
p��T

j �T
k� (j ≤ i, j ≤ k)

cikj = cijk (5)

ckji = �cijk (j < i, j < k)

The elements of the gravitational force vector G(q) = {G1,
G2, . . . , G5}

T are:

Gi =� (gT; 0) �i��5

p=i

mp Tp (r p
p; 1)� (6)Fig. 2. Schematics of the mobile manipulator including the virtual

links.

Fig. 3. Link coordinate systems pertaining to Figure 2.
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where g is the gravitational acceleration vector in base
coordinate frame, r i

i is the position vector of mass center of
link i in coordinate frame i. In Equations (4), (5), and (6), Ti is
the homogeneous transformation matrix from coordinate frame
i to the base coordinate frame. Ji is defined as:

Ji = �Ji
i + mi ri

i ri T
i

mi riT
i

mi ri
i

mi
�

where J i
i is a 3 � 3 inertial matrix of link i about its mass center

in coordinate frame i and mi is the mass of link i. �i is a
differential operator; it is defined as:20

�i = ��i z̃i�1

0
[�i p̃i�1 + (1��i) I ] zi�1

0 � (7)

where zi is z-axis of coordinate frame i, and pi is the position
vector of the origin of coordinate frame i with respect to the
base coordinate. �i = 1 for revolute joints; �i = 0 for prismatic
joints. I is the identity matrix. The symbol ‘~ ’ in (7) denotes a
skew symmetric matrix with zero diagonal values. For
example, given a vector u = {ux, uy, uz}

T, ũ is defined as:

ũ =

0
uz

�uy

�uz

0
ux

uy

�ux

0

The elements of the external forces due to the suspension are
derived from general equation,

�suspi
=

∂R
∂q̇i

+
∂Vsp

∂qi

,

where R is Rayleigh’s dissipation function and Vsp is potential
energy function due to the springs.

For phase 1, we have (refer to Fig. 2a):

R =
1
2

[B1 q̇2
2 + B2 (q̇2 + l3 q̇3)

2 ]

and

Vsp =
1
2

[k1 (q2 �x0)
2 + k2 (q2 + l3 q3 �x0)

2 ]

Thus

�susp = {0, Fsusp1 + Fsusp2, � l3 Fsusp2, 0, 0}T

For phase 2, we have (refer to Fig. 2b):

R =
1
2

[B2 q̇2
2 + B1 (q̇2 � l3 q̇3)

2 ]

and

Vsp =
1
2

[k2 (q2 �x0)
2 + k1(q2 � l3 q3 �x0)

2 ]

�susp = {0, Fsusp1 + Fsusp2, l3 Fsusp1, 0, 0}T

In the above equations, B1, B2 are the damping coefficients, k1,
k2 are the spring constants, l3 is the distance between the front
and rear edges, and x0 is the natural (undeformed) length of the
springs.

4. SIMULATION RESULTS
In this section, the developed model is applied to a
Caterpillar log-loader as shown in Figure 4. The machine is
a mobile three-degree of freedom manipulator with an
additional moveable implement. The implement is a grapple
for holding and handling objects such as trees. The whole
machine can move forward or backward. The upper
structure of the machine rotates on the carriage by a ‘swing’
hydraulic motor through a gear train. ‘Boom’ and ‘stick’ are
the two other links, which together with the ‘swing’, serve
to position the implement. Boom and stick are operated
through hydraulic cylinders. The cylinders and the swing
motor are activated by means of pressure and flow through
the main valves. Modulation of the oil flow in the main
valves is presently controlled by the pilot oil pressure
through manually operated pilot control valves. The

Fig. 4. Typical Caterpillar excavator-based log-loader.
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equations governing the hydraulic actuation system are
given in details in reference [1] and thus are not repeated
here.

Here, the swing is locked. Thus, the movement of the
implement is limited to a planar motion. Also, it is assumed
that the friction between the base and the ground is enough
to allow the base to only rotate around the front or the rear
edges and to prevent the machine from moving forward or
backward. The kinematic and dynamic parameters of the
machine are given in Tables I and II respectively. The
suspension parameters are chosen as kl = k2 = 35 � l05 N/m
and B1 = B2 = 15 � l04 Ns/m. These values provide a static
deflection of approximately 4 cm (chosen arbitrarily) with a
response slightly below critical damped.

The simulated task is to have the machine end-effector to
perform a pick and place operation. In this task, the end-
effector starts from a position close to the base carrying
5000 kg load. The base is initially stable. The manipulator
extends the end-effector to a possible ‘dumping position’ far
from the base. Figure 5 shows the corresponding link
motions.

With reference to Figure 6a, this move causes the
machine to tip-over when the end-effector extends its arm
far enough from the base. Figure 6b shows the movement of
the front edge during the task. After the base rotates about
8 degrees (clockwise) over the front edge, the implement
retracts back to regain the stability. As is seen, the machine
starts to roll back to a stable position. Note that, at time t � 5
seconds, at which the implement starts moving, the base
experiences a slight pitch motion. This is due to the coupled
dynamics between the base and the other links.

The effects of various suspension stiffness and damping, on
the stability, are also studied. The responses are compared with
that obtained using the previous model by the authors in which
no suspension was included.1 Figures 7 and 8 show the results
of using different stiffness and damping coefficients, respec-
tively. Figure 7 clearly shows that the stability of the system
decreases as the flexibility of the suspension increases. On the
other hand, Figure 8 indicates that the stability of the system
decreases by decreasing the damping. It is also seen that

Table I. Kinetic parameters of Caterpillar log-loader.

Link �i di ai �i Variables

1 	/2 q1 0 	/2 q1

2 	/2 q2 0 	/2 q2

3̄ q3 0 a3 = 4 m (or �1 m) �	/2 q3

3 0 d3 = 1.5 m 0 	/2 –
4 q4 0 a4 = 5.2 m 0 q4

5 q5 0 a5 = 1.8 m 0 q5

Table II. Dynamic parameters of Caterpillar log-loader.

mass mass moment of Center of Coordinate frame
(kg) inertia (kg m2) gravity (x, y, z) m (refer to Figure 3)

Base 12,000 90,523 (�2.0, �0.6, 0.0) {x3y3z3}
Boom 1,830 15,500 (�2.9, 0.2, 0.0) {x4y4z4}
Stick 688 610 (�0.9, 0.1, 0.0) {x5y5z5}

Fig. 5. Manipulator movement during a pick and place operation.
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changing the system stiffness has a greater influence on the
stability of the machine than that of the system damping.
Overall, the angular movement of the base during the whole
manipulator motion, in the case of flexible contact, is greater
than the angular movement of the base for the rigid contact
case. This indicates that the compliance between the base of
the manipulator and the ground tends to reduce the machine
stability.

5. CONCLUSIONS
In this paper, a dynamic model for a two-link planar mobile
manipulator was developed. The model takes into account
both the detailed dynamics of the base that can rock back-
and-forth during the movement of the manipulator and the
flexibility between the base and the ground. Sirnulation
results were presented to substantiate the model develop-
ment presented here. In particular, the trend of the results
was found to be consistent with the ones from the model
that previously developed by the authors in which rigid
contact was assumed between the base and the ground.
However, it was shown that the flexibility of the contact
reduces the manipulator’s stability. Therefore, the flexibility
between the base and the ground should be considered in the
dynamic model to accurately investigate the stability of
mobile manipulators. The proposed model therefore, pro-
vides simulation capabilities towards the stability analysis
of manipulators mounted on mobile platforms. It also
facilitates design of suitable tipover prevention schemes.
This is significant, since with the introduction of computer
control, safety, productivity and lifetime of mobile manip-
ulators could be improved by automatic prediction,
prevention and recovering from tip-over.
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