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In applied work economists often seek to relate a given response variable y to
some causal parameter m* associated with it+ This parameter usually represents a
summarization based on some explanatory variables of the distribution of y, such
as a regression function, and treating it as a conditional expectation is central to
its identification and estimation+ However, the interpretation of m* as a condi-
tional expectation breaks down if some or all of the explanatory variables are
endogenous+ This is not a problem when m* is modeled as a parametric function
of explanatory variables because it is well known how instrumental variables tech-
niques can be used to identify and estimate m*+ In contrast, handling endogenous
regressors in nonparametric models, where m* is regarded as fully unknown,
presents difficult theoretical and practical challenges+ In this paper we consider
an endogenous nonparametric model based on a conditional moment restriction+
We investigate identification-related properties of this model when the unknown
function m* belongs to a linear space+ We also investigate underidentification of
m* along with the identification of its linear functionals+ Several examples are
provided to develop intuition about identification and estimation for endogenous
nonparametric regression and related models+

1. INTRODUCTION

Models with endogenous regressors arise frequently in microeconometrics+ For
example, suppose we want to estimate the cost function of a competitive firm;
i+e+, we want to estimate the model y � m*~ p,q! � «, where y is the observed
cost of production, m* the firm’s cost function, ~ p,q! the vector of factor prices
and output, and « an unobserved error term+ Because the firm is assumed to be
a price taker in its input markets, it is reasonable to assume that the factor prices
are exogenously set and are uncorrelated with «+ On the other hand, because an
inefficient or high-cost firm will, ceteris paribus, tend to produce less output
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than an efficient firm, q may be correlated with «+ Hence, q is endogenous+
Similarly, endogenous regressors may also arise in production function estima-
tion+ For instance, suppose we want to estimate the model y � m*~l, k! � «,
where y is the firm’s output, m* the production function, and ~l, k! the vector of
labor and capital factor inputs+ In some cases it may be reasonable to believe
that the firm’s usage of certain inputs ~say, labor! may depend upon the unob-
served quality of management+ In that case, such factors will be endogenous+
Endogeneity can also be encountered in estimating wage equations of the form
y � m*~s, c!� «, where y is log of wage rate, s is the years of schooling, and c
denotes agent characteristics such as experience and ethnicity+ Because years
of schooling are correlated with unobservable factors such as ability and fam-
ily background, s is endogenous+ Another classic example of endogeneity is
due to simultaneity+ For instance, suppose we want to estimate the market
demand for a certain good given by y � m*~ p,d ! � «, where y is the quantity
demanded in equilibrium, p the equilibrium price, d a vector of demand shift-
ers, and m* the market demand function+ Because prices and quantities are deter-
mined simultaneously in equilibrium, p is endogenous+ Several additional
examples of regression models with endogenous regressors can be found in
econometrics texts; see, e+g+, Wooldridge ~2002!+

These models can be written generically as follows+ Let y denote a response
variable and x a vector of explanatory variables+ Suppose that, corresponding
to y, there exist an unknown function m*~x! ~we temporarily suppress the depen-
dence of m* on y for pedagogical convenience! and an unobservable random
variable « such that y � m*~x! � «+ The parameter of interest in this model is
m*, and its interpretation in terms of the distribution of ~ y, x! depends upon the
assumptions regarding the joint distribution of x and «; e+g+, if E~« 6x!� 0 w+p+1
then m*~x! � E~ y 6x! w+p+1+ In this paper we investigate models defined by
more general conditions on the distribution of ~x,«!+ In particular, we allow
some or all of the explanatory variables to be endogenous, i+e+, correlated with
«, so that the mean independence of « and x does not hold+

In the parametric case, i+e+, when m* is known up to a finite-dimensional
parameter, it is well known how to handle endogeneity+ Basically, if we have
instrumental variables w that suffice to identify m*, then we can use two-stage
least squares ~2SLS!, if m* is linear, or the more efficient generalized method
of moments ~GMM! to estimate m*+ For instance, in the cost function example
described previously, the size of the market served by the firm can serve as an
instrument for q; in the production function example we could take the wage
paid by the firm as an instrument for l if the former is exogenously set; when
estimating the wage equation, mother’s education can be used to instrument for
years of schooling; and, in the market demand example, variables that shift the
market supply function but are uncorrelated with «, such as weather or other
exogenous supply shocks, can serve as instruments for p in the demand equation+

Recently there has been a surge of interest in studying nonparametric ~i+e+,
where the functional form of m* is completely unknown! models with endog-
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enous regressors; see, e+g+, Darolles, Florens, and Renault ~2002!, Ai and Chen
~2003!, Blundell and Powell ~2003!, Newey and Powell ~2003!, and the refer-
ences therein+ In endogenous nonparametric regression models it is typically
assumed that m* lies in L2~x!, the set of functions of x that are square integra-
ble with respect to the distribution of x, and the instruments w satisfy the con-
ditional moment restriction E~« 6w!� 0 w+p+1+ However, in this paper we allow
the parameter space for m* to be different from L2~x! ~see Section 2 for the
motivation!+ Hence, our results are applicable to any endogenous nonparamet-
ric linear model and not just to the regression models described earlier+ Apart
from this, the main contributions of our paper are as follows+ ~i! We develop
the properties of the function that maps the reduced form into the structural
form in a very general setting under minimal assumptions+ For instance, we
show that it is a closed map ~i+e+, its graph is closed! although it may not be
continuous+ Although lack of continuity of this mapping has been noted in ear-
lier papers, the result that it is closed and further characterization of its conti-
nuity properties as done in Lemma 2+4 seem to be new to the literature+ ~ii!
Newey and Powell ~2003! characterize identification of m* in terms of the com-
pleteness of the conditional distribution of x given w+ But, in the absence of
any parametric assumptions on the conditional distribution of x given w, it is
not clear how completeness can be verified in practice+ In fact, as Blundell and
Powell ~2003! point out, the existing literature in this area basically assumes
that m* is identified and focuses on estimating it+ Because failure of identifica-
tion is not easily detected in nonparametric models ~in Section 3 we provide
some interesting examples showing that m* can be unidentified in relatively
simple designs!, we investigate what happens if the identification condition for
m* fails to hold or cannot be easily checked by showing how to determine the
“identifiable part” of m* by projecting onto an appropriately defined subspace
of the parameter space, something that does not seem to have been done earlier
in the literature+ ~iii! In Section 4 we examine the identification of linear func-
tionals of m* when m* itself may not be identified+ We relate identification of
m* to the identification of its linear functionals by showing that m* is identified
if and only if all bounded linear functionals of m* are identified+ To the best of
our knowledge, the results in this section are also new to the literature+

We do not focus on estimation in this paper+ In addition to the papers men-
tioned earlier, readers interested in estimating endogenous nonparametric mod-
els should see, e+g+, Pinkse ~2000!, Das ~2001!, Linton, Mammen, Nielsen,
and Tanggaard ~2001!, Carrasco, Florens, and Renault ~2002!, Florens ~2003!,
Hall and Horowitz ~2003!, Newey, Powell, and Vella ~2003!, and the refer-
ences therein+ Additional works related to this literature include Li ~1984! and
Roehrig ~1988!+ Note that our identification analysis is global in nature because
the nonparametric models we consider are linear in m*+ We hope our results
will motivate other researchers to study local properties of nonlinear models
of the kind considered by Blundell and Powell ~2003! and Newey and Powell
~2003!+
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2. IDENTIFICATION IN A GENERAL SETTING

The introduction was motivated by looking at endogenous nonparametric regres-
sion models of the form y � m*~x! � «, where m* � L2~x! and E~« 6w! � 0
w+p+1+ But in many cases the parameter space for m* can be a linear function
space different than L2~x!+ For instance, suppose that x � ~x1, x2! and m* is
additive in the components1 of x; i+e+, m*~x! � m1

*~x1! � m2
*~x2 !, where m j

*

lies in L2~xj ! for j � 1,2+ Notice that once m* is identified, we can recover
the components up to an additive constant by marginal integration; i+e+,
*supp~x2 !

m*~x1, x2 ! pdf ~x2 ! dx2 � m1
*~x1! � Em2

*~x2 ! and a similar operation
can be carried out to recover m2

*+ An alternative model may be based on the
assumption that m*~x! � x1

' u* � m2
*~x2 !, where u* is a finite-dimensional

parameter and m2
* � L2~x2!+ This leads to an endogenous version of the par-

tially linear model proposed by Engle, Granger, Rice, and Weiss ~1986! and
Robinson ~1988!+ Sometimes we may have information regarding the differen-
tiability of m* that we want to incorporate into the model; in this case, we might
assume that m* is an element of a Sobolev space+ We could also allow for m*

to have certain shape restrictions+ In particular, because we assume that m*

belongs to a linear space, shape restrictions such as homogeneity and symme-
try are permissible for m*+ These variations clearly illustrate the advantage of
framing our problem in a general setting+ So we now frame our problem in a
general Hilbert space setting+ The geometric nature of Hilbert spaces allows us
to derive a lot of mileage from a few relatively simple concepts+

Let y denote the response variable that is assumed to be an element of U, a
separable Hilbert space with inner product ^{,{& and induced norm 7{7+ Also,
let M denote a known linear subspace of U ~note that M is not assumed to be
closed!+ Assume that, corresponding to y, there exists an element my

* � M+
The vector my

* is a summarization of the distribution of y and may be viewed as
the parameter of interest+ If y � my

* is orthogonal to M, then my
* is simply the

orthogonal projection of y onto M+ Here we assume instead that there exists a
known linear subspace of U, denoted by W, such that ^ y � my

*,w& � 0 for all
w � W; i+e+, y � my

* is orthogonal to W, which we write as

y �my
* � W+ (2.1)

We call M the “model space” and W the “instrument space+” The symbol Y
denotes the set of all y � U for which the model holds; i+e+, for each y � Y
there exists a my

* � M such that ~2+1! holds+ Because there is a one-to-one
correspondence between random variables and distribution functions, Y can also
be interpreted as the set of all distributions for which ~2+1! holds+ Note that
because Y always includes M, it is nonempty+ Also, continuity of the inner
product implies that whenever ~2+1! holds, y � my

* is orthogonal to the closure
of W+ Therefore, W can be assumed to be closed without loss of generality+

Clearly, the endogenous nonparametric regression models described in the
introduction are a special case of ~2+1! by letting M � L2~x!, W � L2~w!, and
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Y be the set of random variables of the form y � my
*~x! � «, where my

* � M
and E~« 6w! � 0 w+p+1+

It is easy to see that my
* is identified, i+e+, uniquely defined, if and only if the

following condition holds+

Condition ~I!+ If m � M satisfies m � W, then m � 0+

Henceforth, we refer to Condition ~I! as the “identification condition+” Let
PW denote orthogonal projection from U onto W using the inner product ^{,{&+
Then the identification condition can be alternatively stated as follows: if
m � M satisfies PW m � 0, then m � 0+

Example 2.1 (Linear regression)

Let U be the familiar Hilbert space of random variables with finite second
moments equipped with the usual inner product ^u, v& � E$uv% + Also, x ~the
s � 1 vector of explanatory variables! and w ~the d � 1 vector of instrumental
variables! are random vectors whose coordinates are elements of U+ Moreover,
M ~resp+ W ! is the linear space spanned by the coordinates of x ~resp+ w!+
Note that in this example M and W are both finite-dimensional subspaces of
U+ By ~2+1!, for a given y � U there exists a linear function my

*~x!� x 'uy
* such

that ^ y � x 'uy
*,w 'a& � 0 for all a � R

d ; i+e+, E$w~ y � x 'uy
*!% � 0+ Condition

~I! states that if ^x 'uy
*,w 'a& � 0 for all a � R

d , then uy
* � 0+ Hence, my

* or,
equivalently, uy* are uniquely defined if and only if Ewx ' has full column rank+
Obviously, the order condition d � s is necessary for Ewx ' to have full column
rank+

Example 2.2 (Nonparametric regression)

Again, U is the Hilbert space of random variables with finite second moments
equipped with the usual inner product and ~x,w! are random vectors whose
components are elements of U+ But, unlike the previous example, M � L2~x!
and W � L2~w! are now infinite-dimensional linear subspaces of U consisting
of square integrable functions+ By ~2+1!, for a given y in U there exists a func-
tion my

* in L2~x! such that E$@ y � my
*~x!#g~w!% � 0 holds for all g � L2~w!+

Condition ~I! states that if a function f � L2~x! satisfies E$ f ~x!g~w!% � 0 for
all g � L2~w!, then f � 0 w+p+1;2 i+e+, if E$ f ~x!6w% � 0 w+p+1 for any f in
L2~x!, then f � 0 w+p+1+ But this corresponds to the completeness of pdf ~x 6w!+
Therefore, my

* is uniquely defined if and only if the conditional distribution of
x 6w is complete, a result obtained earlier by Florens,Mouchart, and Rolin ~1990,
Ch+ 5! and Newey and Powell ~2003!+ To get some intuition behind the notion
of completeness, observe that if x and w are independent, then completeness
fails ~of course, if w is independent of the regressors then it is not a good instru-
ment and cannot be expected to help identify my

*!+ On the other extreme, if x is
fully predictable by w then completeness is satisfied trivially, and the endo-
geneity and identification problems disappear altogether+ In fact, we can show
the following result+
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LEMMA 2+1+ The conditional distribution of x 6w is complete if and only if
for each function f ~x! such that E f ~x! � 0 and var f ~x! � 0, there exists a
function g~w! such that f ~x! and g~w! are correlated.

Hence, in the context of nonparametric regression we can think of complete-
ness as a measure of the correlation between the model space L2~x! and the
instrument space L2~w!+

Let us assume that Condition (I) holds for the remainder of Section 2+ Hence,
for each y � Y there exists a unique my

* � M such that y � my
* � W+ It follows

that Y is a linear subspace of U and the map y � my
* is a linear transformation

on Y+ Therefore, from now on we write Vy for my
* so that V :YrM denotes a

linear map such that my
* � Vy+ Employing well-known terminology, V is just

the function that maps the reduced form into the structural form+ Hence, a clear
description of the properties of V is central to understanding the identification
and estimation problems in nonparametric linear models with endogenous
regressors+

We now study the properties of V+ Define W0 � $w � W :w � PW m for
some m � M%+ Because it is straightforward to show that W0 is the smallest
linear subspace of W satisfying Condition ~I!, we may view W0 as the “mini-
mal” instrument space+ Let y � Y+ Because Vy � M, by definition of W0 we
know that PWVy � W0+ But, letting I denote the identity operator, we can write
y � Vy � ~I � V !y, where Vy � M and ~I � V !y � W+ Hence, PW y � PWVy �
W0+ Furthermore, because y � PW y � W and W0 � W, we have y � PW y �

W0+ This shows that when applied to elements of Y, the projection PW has the
same properties as orthogonal projection on W0+ Next, let OPW :MrW0 denote
the restriction of PW to M+ Then OPW is a continuous linear mapping from M
to W0 with inverse3 OPW

�1+ Clearly, OPW
�1 is also a linear map+ Therefore, we can

characterize V as

V � OPW
�1 PW + (2.2)

The next example describes how V looks in some familiar settings+

Example 2.3

In Example 2+1,W is the linear space spanned by the coordinates of w+ Hence,
PW corresponds to the best linear predictor given w; i+e+, ~PW y!~w! � ~Eyw '!
~Eww '!�1w+ It is easy to show that ~ OPW

�1 w!~x! � ~Ewx '!$~Exw '!~Eww '!�1

~Ewx '!%�1x+ Therefore, the map V :Y rM is given by ~Vy!~x! � ~ OPW
�1 PW y!

~x! � ~Eyw ' !~Eww ' !�1~Ewx ' !$~Exw ' !~Eww ' !�1~Ewx ' !%�1x+ But because
~Vy!~x! can be written as x 'uy

*, it follows that uy
* here is just the population

version of the usual 2SLS estimator+ By contrast, W in Example 2+2 is the
infinite-dimensional space L2~w!+ Hence, PW is the best prediction operator
~PW y!~w! � E~ y 6w!+ Therefore, in Example 2+2 we have Vy � OPW

�1
E~ y 6w!+
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Before describing additional properties of V, in Lemma 2+2 we propose a
series-based approach for determining V+ As illustrated by the examples given
subsequently, this approach may also be useful as the basis of a practical com-
putational method for estimating V+ However, as noted earlier, a full consider-
ation of estimation issues is beyond the scope of the current paper+ Instead, the
reader is referred to Pinkse ~2000!, Darolles et al+ ~2002!, Ai and Chen ~2003!,
Hall and Horowitz ~2003!, and Newey and Powell ~2003! for series estimation
of endogenous nonparametric models+

LEMMA 2+2+ Let m0,m1,m2, + + + be a basis for M such that ^mi ,PW mj &� 0
for i � j. Then,

OPW
�1 w � (

j�0

` ^mj ,w&

^mj ,PW mj &
mj for any w � W0 and

Vy � (
j�0

` ^mj ,PW y&

^mj ,PW mj &
mj for any y � Y+

This result is similar in spirit to the eigenvector-based decomposition of
Darolles et al+ ~2002! although we use a different basis in our representation+ It
demonstrates that if my

* is identified then it can be explicitly characterized in
the population by a series representation using a special set of basis vectors ~if
M � W so that endogeneity disappears, then Vy is just the projection onto M
as expected!+ The basis functions needed in Lemma 2+2 can be constructed from
an arbitrary basis by using the well-known Gram–Schmidt procedure as fol-
lows+ Let d0,d1,d2, + + + be a basis for M+ Define m0 � d0 and let

mj � dj � (
k�0

j�1 ^dj ,PW mk &

^mk ,PW mk &
mk for j � 1,2,3, + + + + (2.3)

Then m0,m1,m2, + + + is a basis for M satisfying ^mi ,PW mj & � 0 for i � j+
The following example illustrates the usefulness of Lemma 2+2+

Example 2.4

Let x, w, and « be real-valued random variables such that x and « are corre-
lated, E~« 6w!� 0 w+p+1, and ~x,w! has a bivariate normal distribution with mean
zero and variance �1 r

r 1
� where r � ~�1,1!�$0% + Suppose y � my

*~x! � «,
where my

* is unknown and Emy
*2~x! � `+ Because x 6w ;d N~wr,1 � r2!, the

conditional distribution of x given w is complete+ Hence, my
* is identified+ Now

let f be the standard normal probability density function ~p+d+f+! and

H0~x! � 1, H1~x!� x, H2~x!� x 2 � 1, + + + ,

Hj ~x! � ~�1! j�2
f~ j ! ~x!

f~x!
, + + +

264 THOMAS A. SEVERINI AND GAUTAM TRIPATHI

https://doi.org/10.1017/S0266466606060117 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060117


denote Hermite polynomials that are orthogonal with respect to the usual inner
product on L2~x!+ From Granger and Newbold ~1976, p+ 202! we know that if
� x

w
� ;d N��0

0
� ,�1 r

r 1
�� , then E$Hj~x!6w% � r jHj~w!+ This result ensures

that the Hermite basis satisfies the requirement in Lemma 2+2+4 It, plus the facts
that EHj

2~x! � j! and E$Hj~x!E@Hj~x!6w#% � r2jj! , shows that we can write
my
* explicitly as

my
*~x! � (

j�0

` E$ yHj ~w!%

j!r j
Hj ~x!+ (2.4)

There are some interesting consequences of ~2+4!+ For instance, if E~ y 6w!
happens to be a polynomial of degree p, then my

* will also be a polynomial of
degree p because E$w pHj~w!% � 0 for all j � p+ As a particular example, sup-
pose that E~ y 6w! � a � bw � cw 2 + Then it is easily seen that my

*~x! � a �
c0r2 � bx0r � cx 20r2 + It is also clear from ~2+4! that an estimator for my

* can
be based on the truncated series for Vy+ This is discussed in the next example+

Example 2.5 (Example 2.4 cont.)

As mentioned earlier, an estimator for my
* can be obtained by truncating the

series in ~2+4!+ Suppose we have a random sample ~ y1, x1,w1!, + + + , ~ yn, xn,wn!
from the distribution of ~ y, x,w!+ Let [gj denote the sample analog of gj �
E$ yHj~w!% based on these observations; i+e+, [gj � (i�1

n yi Hj ~wi !0n+ By ~2+4!,
an estimator of my

* is given by

[mn~x! � (
j�0

kn [gj Hj ~x!

j!r j
,

where kn is a function of the sample size such that kn F ` as n F `+ In this
example we show that [mn is mean-square consistent and derive its rate of con-
vergence+ Suppose for convenience that w � E~ y 6w! and w � var~ y 6w! are
bounded+ Then, as shown in the Appendix, for some a � 0 the mean integrated
squared error ~MISE! of [mn is given by

E�
R

$ [mn~x!�my
*~x!%2f~x! dx � O�r�2knkn

n
� kn

�a�+ (2.5)

Although ~2+5! holds for a stylized setup, it is very informative; e+g+, it is
clear that the MISE is asymptotically negligible if kn F ` sufficiently slowly+
Hence, [mn is mean-square consistent for my

*, though its rate of convergence is
slow+ It converges even more slowly if the instrument is “weak,” i+e+, if 6r6 is
small+ In fact, because the MISE converges to zero if and only if kn log r�2 �
log kn � log n f �`, it follows that kn must be O~ log n! or smaller+ Therefore,
even in this simple setting where the joint normality of regressors and instru-
ments is known and imposed in constructing an estimator, the best attainable
rate of decrease for the MISE is only O~$log n%�a!+ This suggests that rates of
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convergence that are powers of 10log n, rather than 10n, are relevant for en-
dogenous nonparametric regression models when the distribution of ~x,w! is
unknown+ Rates better than O~$log n%�a! can be obtained by imposing addi-
tional restrictions on my

*; e+g+, Darolles et al+ ~2002, Thm+ 4+2! and Hall and
Horowitz ~2003, Thm+ 4+1! achieve faster rates by making the eigenvalues of
certain integral operators decay to zero at a fast enough rate, thereby further
restricting my

* implicitly+

Example 2.6 (Endogenous nonparametric additive regression)

Let y � m1
*~x!� m2

*~z!� «, where m1
* and m2

* are unknown functions such that
Em1

*2~x! � Em2
*2~z! � ` and E~« 6w, z! � 0; i+e+, x is the only endogenous

regressor+ In this example, the model space is L2~x! � L2~z!, and the instru-
ment space is L2~w, z!+ Assume that ~x, z,w! is trivariate normal with mean

zero and positive definite variance-covariance matrix V � �
1 rxz rxw

rxz 1 rzw

rxw rzw 1
� +

Because the conditional distribution of x given ~w, z! is normal with mean
depending on ~w, z! and the family of one-dimensional Gaussian distributions
with varying mean is complete, m1

*~x! � m2
*~z! is identified+ We now use the

approach of Lemma 2+2 to recover m1
* and m2

*+ Let m*~x, z! � m1
*~x! � m2

*~z!+
Note that m*~x, z! � (j�0

` aj Hj ~x! � (j�0
` bj Hj ~z! for constants $aj %j�0

`

and $bj %j�0
` + But because E$« 6w% � 0 and E$« 6z% � 0, we have E$ yHj~w!% �

aj rxw
j j! � bj j! and E$ yHj~z!% � aj rxz

j j! � bj j! + Solving these simultaneous
equations for each j, it follows that

m*~x, z! � a0 � b0 �(
j�1

` E$ yHj ~w!%� rzw
j

E$ yHj ~z!%

j!~rxw
j � rxz

j rzw
j !

Hj ~x!

� (
j�1

` rxw
j

E$ yHj ~z!%� rxz
j

E$ yHj ~w!%

j!~rxw
j � rxz

j rzw
j !

Hj ~z!+

Therefore, using the fact that EHj~x! � 0 and EHj~z! � 0 for j � 1,

m1
*~x! � Ey �(

j�1

` E$ yHj ~w!%� rzw
j

E$ yHj ~z!%

j!~rxw
j � rxz

j rzw
j !

Hj ~x!

and

m2
*~z! � Ey �(

j�1

` rxw
j

E$ yHj ~z!%� rxz
j

E$ yHj ~w!%

j!~rxw
j � rxz

j rzw
j !

Hj ~z!+

Hence, m1
* and m2

* are identified+

Next, we consider an iterative scheme for determining V+5 The advantage of
this approach is that we do not have to explicitly calculate the inverse operator
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OPW
�1+We only need PW and PM, where the latter denotes orthogonal projection

onto the closure of M+ In contrast, the series approach of Lemma 2+2 did not
require any knowledge of PM+

LEMMA 2+3+ Fix w � W0 and consider the equation OPW m � w for m � M.
Let m0 denote its solution and define m1 � PMw. If there exist a constant a � 0
and an m* � M such that mn�1 � ~I � aPM OPW!mn � aPMw converges to m*

as n F `, then m* � m0.

This result, which is related to the Landweber–Fridman procedure described
in Kress ~1999, Ch+ 15! and Carrasco et al+ ~2002!, shows that if the se-
quence mn converges, then it converges to m0+ Therefore, given y, we can obtain
Vy by applying this procedure to w � PW y+ Because mn � a(j�0

n ~I �
aPM OPW!

jPMw, convergence in Lemma 2+3 is ensured if there exists a nonzero
constant a such that the partial sum (j�0

n ~I � aPM OPW!
jm converges pointwise

for each m � M+ A well-known sufficient condition for this to happen is that
sup$m�M : 7m7�1%7~I � aPM OPW!m7 � 1+ Of course, if M � W so that there is
no endogeneity, then m1 � PM y, and there are no further adjustments to m1+

Example 2.7

The iterative procedure of Lemma 2+3 also works for Example 2+4+ To see this,
let a � 1 and note that E~ y 6w! � (j�0

` bj Hj ~w!, where bj � E$ yHj~w!%0j! +
Hence, mn~x! � (j�0

` bj r
j$1 � ~1 � r2j! � ~1 � r2j!2 � {{{ � ~1 �

r2j!n�1%Hj~x!, and by ~2+4! it follows that *R$mn~x! � (j�0
` bj Hj ~x!0r j %2

f~x! dx r 0 as n F `; i+e+, mn converges in mean-square to my
*+

Before ending this section, we comment briefly on the pervasiveness of “ill-
posed” endogenous nonparametric models+ Recall that Condition ~I! guaran-
tees that for each y � Y the vector my

* is uniquely defined, i+e+, V : y � my
* is a

function from Y into M+ But Condition ~I! is not strong enough to ensure that
this function is continuous;6 i+e+, the identification condition by itself is not
strong enough to ensure that the problem is well-posed+ However, it can be
shown that V is a closed linear operator+ To see this, let y1, y2, + + + denote a
sequence in Y such that ynr y � U as n F ` and suppose that Vynr m � M
as n F `+ To show that V is closed, it suffices to show that y � Y and m � Vy+
Note that, for each n � 1,2, + + + , yn � Vyn � W and, because yn � Vynr y � m
as n F `, y � m � W+ Hence, by definition of Y and V, y � Y and m � Vy+
The next result characterizes the continuity of V+

LEMMA 2+4+ The following statements are equivalent: (i) V is continu-
ous on Y; (ii) Y is closed; (iii) if m1,m2, + + + is a sequence in M such that
PW mnr 0 as n F `, then mnr 0 as n F `; (iv) W0 is closed; (v) there exists
a closed linear subspace Y0 of Y such that W0 � Y0.
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The restrictive nature of this lemma reveals that well-posed endogenous non-
parametric models are an exception rather than the rule; e+g+, even the simple
Gaussian setting of Example 2+4 is not sufficient to make the problem there
well-posed+ To see this, let fn~x!� Hn~x!��Mn! denote the normalized nth Her-
mite polynomial+ It is then easy to verify that E$ fn~x!6w% converges to zero in
mean-square whereas fn does not+ Therefore, ~iii! does not hold, and, hence, V
is not continuous+ Of course, if M is finite-dimensional ~as in parametric mod-
els, or, in nonparametric models where the regressors are discrete random vari-
ables with finite support!,7 then ~iii! holds and V is continuous+ Similarly, if W
is finite-dimensional then W0 will be finite-dimensional and, hence, closed,
implying that V is continuous+ But these are clearly very special cases+ A prac-
tical consequence of ill-posedness is that some type of “regularization” is needed
in estimation procedures to produce estimators with good asymptotic proper-
ties+ For instance, a truncation-based regularization ensures convergence of the
estimator described in Example 2+5+ For more about the different regularization
schemes used in the literature, see, e+g+, Wahba ~1990, Ch+ 8!, Kress ~1999,
Ch+ 15!, Carrasco et al+ ~2002!, Loubes and Vanhems ~2003!, and the refer-
ences therein+

3. UNDERIDENTIFICATION

In this section, we investigate the case where my
* in ~2+1! fails to be uniquely

defined+ As mentioned earlier in Example 2+2, Newey and Powell ~2003! and
others have characterized identification of the endogenous nonparametric regres-
sion model in terms of completeness of the conditional distribution of x given
w+ They also point out that it is sufficient to restrict pdf ~x 6w! to the class of
full rank exponential densities for it to be complete+ However, Examples 3+2
and 3+3 illustrate that this sufficient condition can fail to hold in relatively sim-
ple cases+ Furthermore, if the distribution of x 6w is not assumed to be paramet-
ric, completeness can be very hard to verify+ Hence, it is important to know
what happens when completeness fails or cannot be checked+We now focus on
this issue+

Let M0 � $m � M :m � W % be the set of all “identification-destroying”
perturbations of my

*+ From Condition ~I! it follows that my
* is identified if and

only if M0 � $0% + Note that M0 is a closed linear subspace of M+ The prop-
erties of M0 play an important role in the identification of my

*+

Example 3.1 (Underidentification in linear regression)

We maintain the setup of Example 2+1+ For linear instrumental variables regres-
sion it is easily seen that M0 � $x 'u : ~Ewx '!u � 0 for some u � R

s%+ Hence,
the identification condition fails to hold, i+e+, M0 � $0% , if Ewx ' is not of full
column rank+
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Example 3.2 (Underidentification in nonparametric regression)

Let y � my
*~x! � «, where my

* � L2~x! is unknown+ The regressor is endog-
enous, but we have an instrument w satisfying E~« 6w! � 0 w+p+1+ Suppose
that x � w � v, where w, v ;iid Uniform@� 1

2
_ , 12_ # + Hence, M0 � $ f �

L2~x! : E@ f ~x!6w# � 0 for a+a+ w � @� 1
2
_ , 12_ # % + Because E$ f ~x!6w% �

*w�102
w�102 f ~u! du, it is straightforward to show that E$ f ~x!6w% � 0 holds for a+a+

w � @� 1
2
_ , 12_ # if and only if f is periodic in the sense that f ~x!� f ~1 � x! for a+a+

x � @�1,0# and *�1
0 f ~x! dx � 0+ Thus, M0 can be explicitly characterized as

M0 � $ f � L2~x! : f ~x! � f ~1 � x! for a+a+ x � @�1,0# and *�1
0 f ~x! dx � 0% +

Because M0 is clearly not equal to $0% , Condition ~I! does not hold+ Therefore,
my
* is not uniquely defined and, hence, cannot be estimated even for the simple

design given in this example+

Example 3.3 (Underidentification in nonparametric additive regression)

Let y � m1
*~x! � m2

*~z! � «, where m1
* and m2

* are unknown functions L2~x!
and L2~z!, respectively, and E~« 6w!� 0; i+e+, both x and z are endogenous, but
we only have one instrument w+ Obviously, here the model space is L2~x! �
L2~z!, but the instrument space is L2~w!+ As in Example 2+6, assume that
~x, z,w! are jointly normal with mean zero and variance V+ Because the condi-
tional distribution of x, z 6w is not complete, it follows that m1

*~x! � m2
*~z!

is not identified+ In fact, it can be shown that M0 � Q � $0% , where Q �
span$Q0~x, z!,Q1~x, z!, + + + ,Qj~x, z!, + + + % and Qj~x, z! � rzw

j Hj ~x! � rxw
j Hj ~z!+8

Suppose that a my
* satisfying ~2+1! is not uniquely defined+ Loosely speaking,

this means that the model space is “too large”; i+e+, it contains more than one
element satisfying ~2+1!+ Hence, to obtain identifiability, we may choose a smaller
model space+ This approach is analogous to eliminating redundant regressors in
an underidentified linear regression model+ We now formalize this intuition+
For a given y � Y, define My � $m � M : y � m � W % + Identification holds
when My consists of a single element+ Otherwise, My is a collection of ele-
ments that cannot be distinguished based on ~2+1!+ A nice property of My is
that each of its elements has the same projection onto M0

� , the orthogonal
complement of M0+ Hence, M0

� is a natural choice for the reduced model
space;9 i+e+, if my

** is the orthogonal projection of an arbitrarily chosen element
of My onto M0

� , then my
** can be regarded as the “identifiable part” of my

*+ In
technical terms, when Condition ~I! does not hold, the “true parameter” of the
model is, in effect, an equivalence class of elements of M, which we have
denoted by the symbol My+ This class of true parameters may be described in
terms of their common features as follows+ Because M0

� � ~I � PM0
!M, each

my � My may be decomposed into two components PM0
my and PM0

� my + But
because PM0

� my is the same for all my � My, each equivalence class My may
be described by a single element my

**, which we refer to as the identifiable part
of my

*+ We may take this canonical element to be my
** � PM0

� My + It is easy to
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show that my
** is an element of My+10 The remaining elements of My are those

m � M such that PM0
� m � PM0

�my
**; i+e+, all m � M of the form my

** � M0+

Example 3.4 (Example 3.1 cont.)

Suppose that Ewx ' is not of full column rank so the identification condition
fails to hold+ Here,My � $x 'u : ~Ewx '!u � Ewy% + Because PM0

~x 'u! � x 'u �
x 'Au, where A � ~Exx '!�1~Exw '!$~Ewx '!~Exx '!�1~Exw '!%�1~Ewx '!, we have
PM0

�~x 'u! � x 'Au+ Hence, we can only identify linear functions of the form
x 'Au+ Of course, if the identification condition holds, i+e+, Ewx ' is of full col-
umn rank, then A reduces to the identity matrix and My � $x 'u*% with u* as
defined in Example 2+3+

Example 3.5 (Example 3.2 cont.)

The identifiable part of my
* is given by projecting My onto M0

� , where My �
$ f � L2~x! : *w�102

w�102 f ~u! du � E~ y 6w! for a+a+ w � @� 1
2
_ , 12_ #%+ Recall that x has

the triangular distribution on @�1,1# ; i+e+, the p+d+f+ of x is given by h~x! �
1 � x for �1 � x � 0 and h~x! � 1 � x for 0 � x � 1+ It can be shown that
M0

� � B, where11

B � $ f � L2~x! : f ~x!h~x! � �f ~x � 1!h~x � 1!� c

for a+a+ x � @�1,0# and some constant c%+

Hence, the identifiable part of my
* is a function f satisfying f ~x!h~x! �

�f ~x � 1!h~x � 1! � c for a+a+ x � @�1,0# and some constant c+

Example 3.6 (Example 3.3 cont.)

Now let us determine the identifiable part of the underidentified model in
Example 3+3+ It can be shown that M0

� � A, where A � span$1,A1~x, z!, + + + ,
Aj~x, z!, + + + % and Aj~x, z! � ~rxw

j � rxz
j rzw

j !Hj ~x! � ~rzw
j � rxz

j rxw
j !Hj ~z!+12

Hence, we can identify only those additive functions whose Hermite repre-
sentation is of the form c � (j�1

` gj Aj ~x, z!, where c denotes a constant+ For
example, suppose that rxw � rzw; i+e+, the instrument has the same corre-
lation with each regressor+ Then M0

� consists of functions of the form c �

(j�0
` gj Hj ~x!�(j�0

` gj Hj ~z!; i+e+, only elements of L2~x!� L2~z! of the form
c � f ~x! � f ~z! are identified+

As mentioned earlier, underidentification may be viewed as a consequence
of the fact that the model space M is too big+ Hence, to obtain identifiability,
we may choose a smaller model space+ A natural choice for this reduced model
space is M0

�+ But to use M0
� in place of M, we must verify that it satisfies

two conditions+ The first is that for each y � Y there exists a my
** � M0

� such
that y � my

** � W+ The second is that M0
� satisfies Condition ~I!+ It is easy to

see that both these conditions are satisfied: Fix y � Y+ Then by ~2+1!, there
exists my � M such that y � my � W+ Let my

** � ~I � PM0
!my � PM0

�my +
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Then y � my
** � y � my � PM0

my + Because PM0
my is an element of M0 and,

hence, orthogonal to W, it follows that y � my
** � W+ This shows that M0

�

satisfies the first requirement+ Next, let m denote an element of M0
� that

is orthogonal to W+ By definition, there exists m1 � M such that m � ~I �
PM0
!m1 + Because m � W, for any w � W we have 0 � ^~I � PM0

!m1,w& �
^m1, ~I � PM0

!w& � ^m1,w&+ It follows that m1 � W and, hence, that m �
~I � PM0

!m1 � 0+ Therefore, for m � M0
� , m � W implies that m � 0, prov-

ing that M0
� also satisfies the second requirement+

Note that to describe my
**, we can use M0

� in place of M in the theory
developed in Section 2+ Because Condition ~I! is satisfied by M0

� , all of the
previous results hold with respect to this choice and my

**� Vy, where V is now
based on M0

�+

4. IDENTIFICATION OF BOUNDED LINEAR FUNCTIONALS

Economists are often interested in estimating real-valued functions of condi-
tional expectations+ For example, letting y denote the market demand for a cer-
tain good and x the price, Newey and McFadden ~1994! consider estimating
*D E~ y 6x! dx, the approximate change in consumer surplus for a given price
change on interval D+ In this section we consider an endogenous version of
their problem by characterizing the identification of bounded linear functionals
of my

* when the latter itself may not be identified ~obviously, if my
* is uniquely

defined then so is r~my
*!!+ The results of Ai and Chen ~2003! can be used to

estimate linear functionals of my
* when the latter is identified+

Let r :M r R denote a continuous linear functional on M, where a possi-
bly nonunique my

* � M satisfies y � my
* � W ; i+e+, we let ~2+1! hold though we

do not assume that Condition ~I! necessarily holds+We now introduce the con-
dition under which r~my

*! is uniquely defined+

Condition ~I-F!+ If m � M satisfies m � W, then r~m! � 0+

As shown subsequently, Condition ~I-F! is necessary and sufficient for
r~my

*! to be identified+

THEOREM 4+1+ r~my
*! is identified if and only if Condition (I-F) holds.

The next example illustrates the usefulness of this result+

Example 4.1 (Identification of expectation functionals)

Let y � my
*~x! � «, where my

* � L2~x! is unknown+ The regressors are endog-
enous, but we have instruments satisfying E~« 6w! � 0 w+p+1+ Assume that the
conditional distribution of x given w is not complete+ Hence, my

* is not identi-
fied+ Now consider the expectation functional r~my

*! � E$my
*~x!c~x!% , where

c is a known weight function satisfying Ec 2~x! � `+ Theorem 4+1 reveals that
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r~my
*! � E$my

*~x!c~x!% is identified if and only if c � M0
� + (4.1)

The case c~x! � 1 is a special case of ~4+1! because M0
� contains all constant

functions ~in fact, because Emy
*~x! � Ey, it is obvious that my

* � Emy
*~x! is

identified irrespective of whether my
* is identified or not!+ From ~4+1! we can

immediately see that in applications where my
* is not identified certain expec-

tation functionals of my
* may still be identified+ Of course, if my

* is identified
to begin with, then M0 � $0% and M0

� � L2~x!; hence, r~my
*! is identified

for all square integrable weight functions+ We can also use ~4+1! to charac-
terize the identification of bounded linear functionals of the form my

* �
*Rs my

*~x!c~x! dx+ In particular, it is easily seen that my
* � *Rs my

*~x!c~x! dx is
identified if and only if c0h lies in M0

� , where h denotes the unknown
Lebesgue density of x+ Note that for my

* � *Rs my
*~x!c~x! dx to be a bounded

linear functional on L2~x! it is implicitly understood that the random vector x
is continuously distributed and *Rs c 2~x!0h~x! dx � `+ Of course, my

* �
E$my

*~x!c~x!% is bounded on L2~x! even when some components of x are
discrete+

Finally, we show that Condition ~I! holds if and only if Condition ~I-F! holds
for all bounded linear functionals of my

*+ Hence, identification of my
* can also be

characterized as follows+

THEOREM 4+2+ my
* is identified if and only if all bounded linear functionals

of my
* are identified.

For endogenous nonparametric regression, this result provides a direct link
between identification of my

* and its expectation functionals by revealing that
my
* is identified if and only if all its expectation functionals are identified;

i+e+, my
* is identified if and only if E$my

*~x!c~x!% is identified for all c � L2~x!+

5. LINEAR MOMENT CONDITIONS AND INSTRUMENTAL VARIABLES

We now formulate ~2+1! in terms of moment conditions generated by linear
operators and also provide an example to illustrate the usefulness of this char-
acterization+ Although this formulation may seem different from the manner in
which ~2+1! is stated, we show that the two representations are in fact logically
equivalent+ Let y denote an element of U and let M be a known linear sub-
space of U+ Suppose that corresponding to y is an element of M, denoted by
my
*, defined as follows: “There exists a linear subspace of U, denoted by V, and

a continuous linear operator T : Ur V such that T ~ y � my
*!� 0+” Let Y denote

the set of y � U for which this model holds; i+e+, for each y � Y there exists
my
* � M such that T ~ y � my

*!� 0+ Note that because M � Y, the domain of T
may be taken to be Y+
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Condition ~I-M!+ If m � M satisfies Tm � 0, then m � 0+

Condition ~I-M! is necessary and sufficient for my
* to be uniquely defined

~the proof is straightforward and hence is omitted!+ We say that ~Y,M! is a
“moment-condition” model if there is a linear subspace V of U and a continu-
ous linear function T :Y r V such that for each y � Y there exists m � M
satisfying T ~ y � m!� 0 and Condition ~I-M! holds+ We call T the “identifica-
tion function+” Similarly, we say that ~Y,M! is an “instrumental variables” model
if there is a closed linear subspace W of U such that for each y � Y there exists
m � M satisfying y � m � W and Condition ~I! holds+ In fact, it can be easily
shown that ~Y,M! is a moment-condition model if and only if it is an instru-
mental variables model+

The following example illustrates a situation where the nature of the avail-
able information makes it easier to write an endogenous nonparametric regres-
sion model as a moment-condition model+

Example 5.1

Let y � my
*~x! � «, where x � R

s for s � 1 and my
* � L2~x! is unknown+ The

regressors are correlated with the error term such that the conditional distribu-
tion of « given x satisfies the index restriction E$« 6x% � E$« 6h~x!% w+p+1 for
some known function h with dim h~x! � s+ This, e+g+, is related to the exclu-
sion restriction assumption maintained in Florens, Heckman, Meghir, and Vyt-
lacil ~2002!+ Let T«� E$« 6x%� E$« 6h~x!% + Our model has content if the linear
moment condition T ~ y � my

*! � 0 holds for some my
* � L2~x!+ For my

* to be
uniquely defined, by Condition ~I-M! we need that my

*~x! � E$my
*~x!6h~x!%

w+p+1 only for my
*~x! � 0 w+p+1+ This reveals that my

*’s of the form my
*~x! �

f ~h~x!! are not identifiable+ Therefore, letting M denote the set of all functions
in L2~x! that are not functions of h~x!, it follows that ~ y,M! is a moment-
condition model with identification function T+ Next, we show how to write
~ y,M! as an instrumental variables model+ Let T0 be the null space of T; i+e+,
T0 is the set of all random variables « such that E$« 6x% � E$« 6h~x!% w+p+1+
Because ~ y,M! is a moment-condition model with identification function T,
by definition there exists a unique my

* � M such that y � my
* � T0+ It follows

that ~ y,M! is also an instrumental variables model with instrument space T0
� ,

where T0
� � $v � L2~x! : v � L2~h~x!!% +13

6. CONCLUSION

In this paper we investigate some identification issues in nonparametric linear
models with endogenous regressors+ Our results suggest that identification in
such models can fail to hold for even relatively simple designs+ Therefore, if
researchers are not careful, simply assuming identification and then proceeding
to estimation can lead to statistical inference that may be seriously misleading+
Because lack of identification here is not easily detected, we show how to deter-
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mine the identifiable part of the structural function when it is underidentified
by orthogonally projecting onto an appropriately defined subspace of the model
space+ We also examine the connection between identification of the unknown
structural function and identification of its linear functionals and show that the
two are closely related+

NOTES

1+ A good discussion of these models, though without any endogeneity, can be found in Hastie
and Tibshirani ~1990!+

2+ Because L2~x! and L2~w! are equivalence classes of functions, equality statements in L2~x!
and L2~w! hold w+p+1+

3+ Because PW is bounded, its restriction to M is also bounded and, hence, continuous+ Now
let m1 and m2 denote elements of M and wj � OPW mj + Suppose w1 � w2+ Then OPW ~m1 � m2!� 0+
Hence, m1 � m2 � W+ It follows from Condition ~I! that m1 � m2 so that OPW is one-to-one and, by
definition, the range of OPW is W0+ Therefore, because OPW :M r W0 is one-to-one and onto, it has
an inverse OPW

�1 :W0 rM+
4+ Basis vectors that satisfy Lemma 2+2 for more general bivariate distributions can be con-

structed by using some of the results discussed in Buja ~1990!+
5+ See Petryshyn ~1963! for a detailed treatment of recursive methods of this type+
6+ Discontinuity of V means that slight perturbations in the response variable can lead to

unbounded changes in my
*, the parameter of interest associated with it+ This lack of stability makes

precise the sense in which some endogenous nonparametric models can be called “ill-posed+” Note
that sometimes a statistical problem is said to be ill-posed because of data issues; e+g+, classic
nonparametric regression itself can be called ill-posed because we cannot estimate the graph of an
unknown function using only a finite amount of data+ However, the notion of ill-posedness described
here has nothing to do with sample information but is inherent to the model+

7+ See, e+g+, Blundell and Powell ~2003! and Florens and Malavolti ~2003!+
8+ Because E$Qj~x, z!6w%� 0, Qj � M0 for each j; i+e+, Q � M0+ Next, let m0 � M0+ Then

m0~x, z! � f ~x! � g~z! for some f � L2~x! and g � L2~z! such that E$ f ~x! � g~z!6w% � 0; i+e+,

E$ f ~x!6w%� �E$g~z!6w% + Hence, writing f ~x!�(j�0

`
aj Hj ~x! and g~z!�(j�0

`
bj Hj ~z!, it fol-

lows that(j�0

`
aj rxw

j Hj ~w!� �(j�0

`
bj rzw

j Hj ~w! if and only if(j�0

`
$aj rxw

j � bj rzw
j %Hj ~w!� 0+

By the completeness of Hermite polynomials in L2~w!, this implies that aj rxw
j � bj rzw

j � 0 for
each j+ Therefore, f ~x! � g~z! � �(j�0

`
bj Qj ~x, z!0rxw

j � Q; i+e+,M0 � Q+
9+ There is an analogy to M0

� in the specification testing literature+ Suppose we want to test
the null hypothesis E~ y 6x! � x 'u against the alternative that it is false+ Consider the alternative
E~ y 6x! � x 'u � d~x!, where d denotes a deviation from the null+ It is obvious that no test will be
able to reject the null if d is a linear function of x+ The only detectable perturbations are those that
are orthogonal to linear functions, i+e+, those satisfying E$xd~x!% � 0+

10+ Let my � My be arbitrary+ Then y � my
**� y � PM0

� my � y � my � PM0
my + But y � my �

W by definition of My, and PM0
my � W because PM0

my � M0+ Therefore, y � my
** � W+

Because my
** � M, it follows that my

** � My+
11+ Showing B � M0

� is easy+ Next, by the projection theorem,

proj~g 6M0 !~x! � 	g~x!h~x!� g~x � 1!h~x � 1!� Eg~x! if �1 � x � 0,

g~x!h~x!� g~x � 1!h~x � 1!� Eg~x! if 0 � x � 1+

Now let g � M0
�+ Because g is an element of M0

� , its projection onto M0 is the zero function+
Hence, using the expression for proj~g 6M0!, it follows that g � B; i+e+, M0

� � B+ Therefore,
M0

� � B+
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12+ Recall that M0 � span$Qj~x, z!% + Now let Ak � A+ Because E$Ak~x, z!Qj~x, z!% � 0 for
all j, Ak � M0

�+ Therefore, A � M0
�+ Next, let m1 � M0

�+ Then m1~x, z! � f ~x! � g~z! for
some f � L2~x! and g � L2~z!+ But because m1 is orthogonal to M0 by definition, E$ f ~x! �

g~z!%Qk~x, z! � 0 for all k+ Hence, writing f ~x! � (j�0

`
aj Hj ~x! and g~z! � (j�0

`
bj Hj ~z!, we

have (j�0

`
aj E$Hj ~x!Qk~x, z!% � (j�0

`
bj E$Hj ~z!Qk~x, z!% � 0 for k � 0,1, + + + + Thus ~rxz

j rxw
j �

rzw
j !aj � bj ~rxw

j � rxz
j rzw

j ! � 0 for j � 1, and f ~x! � g~z! � a0 � b0 � (j�1

`
bj Aj ~x, z!0

~rzw
j � rxz

j rxw
j !+ It follows that m1 � A; i+e+,M0

� � A+
13+ Define W � $v � L2~x! : v � L2~h~x!!% and let v and « denote arbitrary elements of

W and T0, respectively+ Then by the properties of « and v, E$v ~x!«% � E$v ~x!E@« 6x# % �
E$v~x!E@« 6h~x!#% � 0; i+e+, W � T0, implying that W � T0

�+ Next, let u � T0
�+ Because the

random variable a~x!� E$u 6h~x!% satisfies E$a~x!6x%� E$a~x!6h~x!% , we obtain that E$u 6h~x!%
is an element of T0+ Hence, u � E$u 6h~x!% , which implies that E$u 6h~x!% � 0 w+p+1+ Therefore,
u � L2~h~x!!+ Now write u � u1 � u2, where u1 � L2~x! and u2 � L2

�~x!+ Because E$u26x% � 0
w+p+1 and E$u26h~x!% � E$E@u26x#6h~x!% � 0 w+p+1, it follows that E$u26x% � E$u26h~x!% w+p+1;
i+e+, u2 � T0+ But because u � T0

� , 0 � E$uu2% � E$u2
2% implies that u2 � 0 w+p+1+ Hence, u �

u1 � L2~x!+ Thus u � L2~x! and u � L2~h~x!!; i+e+, u � W+ Because u was chosen arbitrarily in
T0

� , we conclude that T0
� � W+
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APPENDIX: Proofs

Proof of (2.5). By the orthogonality of Hermite polynomials,

�
R

$ [mn~x!�my
*~x!%2f~x! dx � (

j�0

kn ~ [gj � gj !
2

j!r2j
� (

j�kn�1

` gj
2

j!r2j
+

Hence,

MISE � E�
R

$ [mn~x!�my
*~x!%2f~x! dx � r�2kn (

j�0

kn E~ [gj � gj !
2

j!
� (

j�kn�1

` gj
2

j!r2j
+

But because var~ yHj~w!! � E$var~ y 6w!Hj
2~w!% � var $E~ y 6w!Hj~w!% and the maps

w � E~ y 6w! and w � var~ y 6w! are bounded by assumption,

var~ yHj ~w!! � E$var~ y 6w!Hj
2~w!%� E$E2~ y 6w!Hj

2~w!%� cEHj
2~w!� cj!,

where c is a generic constant+ Thus, E~ [gj � gj !
2 � var~ yHj~w!!0n � cj!0n+ It follows

that the MISE is majorized by cr�2knkn 0n �(j�kn�1
` gj

20j!r2j + But (j�kn�1
` gj

20j!r2j �
ckn

�a for some a � 0 under some smoothness conditions on my
*; see, e+g+, Milne ~1929,

Cor+ I!+ The desired result follows+ �

Proof of Lemma 2.1. Let S denote the statement “For each function f ~x! such that
E f ~x! � 0 and var f ~x! � 0, there exists a function g~w! such that f ~x! and g~w! are
correlated+” First, suppose that S is not true+ Hence, there exists a nonzero function f ~x!
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satisfying E f ~x! � 0 such that E$ f ~x!g~w!% � 0 for all g~w!+ But this implies that
E$ f ~x!6w%� 0 w+p+1; i+e+, pdf ~x 6w! is not complete+ Next, suppose that the conditional
distribution of x 6w is not complete+ Hence, there exists a function f ~x! such that
E$ f ~x!6w% � 0 w+p+1 but f ~x! � 0; i+e+, var f ~x! � 0+ Clearly, this implies that f ~x! is
uncorrelated with all functions of w+ The desired result follows+ �

Proof of Lemma 2.2. We first consider the series expansion for Vy+ Let y � Y+ Hence,
there exists a unique ~because Condition ~I! is assumed to hold! my

* � M such that
y � my

* � W+ This implies that PW y � PWmy
* � 0+ Because my

* � M, we can write
my
* � (j�0

` aj mj for some constants a0,a1, + + + + Hence, PWmy
* � (j�0

` aj PW mj , and
using the fact that ^mi ,PW mj & � 0 for i � j, it follows that ^mi ,PWmy

*& �
ai^mi ,PW mi &+ Hence, ai � ^mi ,PW y&0^mi ,PW mi & because PW y � PWmy

*+ Therefore,
Vy � my

* � (i�0
` $^mi ,PW y&0^mi ,PW mi &%mi + Next, we consider the series for OPW

�1+ Let
Kw be any element of W0 and let Km � OPW

�1 Kw+ Note that PW OPW
�1 Kw � Kw by definition of

OPW
�1+ Because Km � M and M is contained in Y, by the previous result

V Km � (
j�0

` ^mj ,PW Km&

^mj ,PW mj &
mj �(

j�0

` ^mj ,PW OPW
�1 Kw&

^mj ,PW mj &
mj �(

j�0

` ^mj , Kw&

^mj ,PW mj &
mj +

But by ~2+2!, V Km � OPW
�1 PW Km � OPW

�1 PW OPW
�1 Kw � OPW

�1 Kw+ The desired result follows+ �

Proof of Lemma 2.3. Note that mn�1 � mn � aPM OPW~m0 � mn!+ If limnF`mn exists,
then mn�1 � mn r 0 as n F ` so that PM OPW~mn � m0! r 0 as n F `+ Because
PM OPW ~mn � m*!r 0 as n F`, it follows that PM OPW ~m0 � m*!� 0+ Let m � m0 � m*;
then PW m � M+ Hence, ^PW m,m& � ^PW m,PW m& � 0 so that PW m � 0+ It follows
from Condition ~I! that m � 0, i+e+, that m* � m0, proving the result+ �

Proof of Lemma 2.4. We show that ~i! n ~iii! n ~ii! n ~i! and ~i! n ~iv! n
~v! n ~i!+

First, suppose V is continuous+ Let m1,m2 , + + + be a sequence in M such that
limnF`PW mn � 0 and let yn � PW mn+ Note that for each n, yn � mn � PW mn � mn �

W so that yn � Y+ Hence, mn � Vyn+ Because yn r 0 as n F `, it follows that mn r 0+
Therefore, ~iii! holds+

Next, assume that ~iii! holds+ Let y1, y2, + + + denote a sequence in Y such that limnF` yn �
y for some y � U+ We need to show that y � Y+ Observe that because PWV~ yn � y! �
PW~ yn � y! by ~2+2! and PW is continuous, it follows that PW ~ yn � y! r 0 as n F `+
But as Vyn � Vy is in M, by ~iii! we have Vyn � Vyr 0 as n F `+ This shows that yn �
Vyn � ~ y � Vy! r 0 as n F `+ Because yn � Y, we know that yn � Vyn � W for each
n+ Thus, by the continuity of the inner product, ^ y � Vy,w& � 0 for all w � W+ Hence,
y � Y and Y is closed+

Next, suppose that Y is closed+ Then because V is a closed linear operator with domain
Y, continuity of V follows by the closed graph theorem; see, e+g+, Kreyszig ~1978!+

Now, let ~i! hold+ This implies that Y is closed+ Let w1,w2, + + + denote a sequence in
W0 with limit w � W and, for each n � 1,2, + + + , let mn � M satisfy wn � PW mn+
Because wn � mn � PW mn � mn � W, it follows that wn � Y and mn � Vwn+ Thus
w � Y because Y is closed+ Next, limnF`Vwn � Vw by continuity of V+ Hence,
limnF`PW ~mn � Vw!� limnF`wn � PWVw � 0, so that wnr PWVw as n F `+ Because
Vw � M, we know that PWVw � W0+ Hence, W0 is closed+
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Next, assume that W0 is closed+ Because W0 � Y, the result follows by taking
Y0 � W0+

Finally, suppose that ~v! holds+ Then the restriction of V to Y0 is closed, and, because
Y0 is closed, that restriction is continuous by the closed graph theorem+ Let m1,m2, + + +
denote a sequence in M such that PW mn r 0 as n F ` and let wn � PW mn so that
w1,w2, + + + is a sequence in W0 such that wnr 0 as n F `+ Note that wn � mn � PW mn �
mn � W for each n, implying that PW ~wn � mn!� 0; i+e+, PWwn � OPW mn because OPW is
the restriction of PW to M+ Hence, mn � Vwn by ~2+2!+ Because V is continuous on Y0

and W0 � Y0, it follows that limnF`mn � V limnF`wn � 0+ Thus ~iii! holds+ But we
have already shown that ~iii! implies ~i!+ The desired result follows+ �

Proof of Theorem 4.1. r~my
*! is identified if and only if all my

* � M for which y �
my
* � W yield the same value of r~my

*!+ Suppose that Condition ~I-F! holds and that
m1,m2 are elements of M satisfying y � mj � W for j � 1,2+ Then m1 � m2 � W, so,
by Condition ~I-F!, r~m1 � m2! � r~m1! � r~m2! � 0+ Hence, r~my

*! is identified+
Next, suppose that all m for which y � m � W yield the same value of r~m!+ Suppose
y � m1 � W and m � M satisfies m � W+ Then y � ~m1 � m! � W+ Because r~my

*!
is identified, r~m1 � m!� r~m1!� r~m!� r~m1! so that r~m!� 0+ Hence, Condition
~I-F! holds+ �

Proof of Theorem 4.2. Suppose Condition ~I! holds and m � M satisfies m � W+
Then, by Condition ~I!, m � 0 so that r~m! � 0 for any linear functional r+ Next, sup-
pose that Condition ~I-F! holds for any continuous linear functional r and let m � M
satisfy m � W+ Consider the bounded linear functional r~m1! � ^m,m1& , where
m1 � M+ Because Condition ~I-F! holds, it follows that ^m,m& � 0+ But this implies
that m � 0+ Hence, Condition ~I! holds+ �
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