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Large internal solitary waves with subsurface cores have recently been observed in
the South China Sea. Here fully nonlinear solutions of the Dubreil–Jacotin–Long
equation are used to study the conditions under which such cores exist. We find
that the location of the cores, either at the surface or below the surface, is largely
determined by the sign of the vorticity of the near-surface background current. The
results of a numerical simulation of a two-dimensional shoaling internal solitary wave
are presented which illustrate the formation of a subsurface core.
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1. Introduction
Lien et al. (2014) reported on observations of large shoaling internal solitary waves

(ISW) in the South China Sea with subsurfaces cores, but did not successfully model
them nor did they explain their existence. Here we elucidate conditions under which
such waves may exist, based on solutions of the Dubreil–Jacotin–Long (DJL) equation,
using background conditions motivated by the field observations.

Figure 1(b,e) shows two mode-one ISW with cores computed by solving the DJL
equation (Stastna & Lamb 2002; Lamb 2003). The cores are the regions of closed
density contours. The upper panel shows a wave whose core is below the surface,
while the wave depicted in the lower panel has a core that is at the surface. These
two waves were computed using the same background stratification but with different
background currents (dash-dot curves in figure 1c, f ): the wave with a subsurface core
(SSC) has near-surface vorticity of the opposite sign to the wave induced vorticity,
while the wave with the surface core (SC) has background surface vorticity of the
same sign. While the DJL equation is not strictly valid in the region of closed
streamlines, these solutions are suggestive of the potential presence of core-like
structures in ISW in the ocean, or in laboratory experiments, in which case these
cores are dynamic, continually entraining and detraining fluid, and are expected to be
highly turbulent particularly during the early stages of their life cycle. This dynamic
nature is indicated by the presence of dense fluid overlying lighter fluid inside the
DJL cores – such waves used as an initial condition in a time stepping model being
convectively unstable. In this paper we use the occurrence of subsurface cores in DJL
solutions to investigate conditions under which subsurface cores may exist in nature
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-9470-2550
https://orcid.org/0000-0003-3804-6525
mailto:y67he@uwaterloo.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2019.407&domain=pdf
https://doi.org/10.1017/jfm.2019.407


2 Y. He, K. G. Lamb and R.-C. Lien

0

-0.1

-0.2

-0.3

-0.4

-0.5

0

-0.1

-0.2

-0.3

-0.4

-0.5

z

z

0.05 0.10 0.15

0

-0.1

-0.2

0

-0.1

-0.2
0.055 0.056 0.057

Density Velocity
0.058

x

0

-0.2

-0.4

-0.6

-0.8

-1.0
-2

-2.34

-1 0 1 2

0

-0.2

-0.4

-0.6

-0.8

-1.0
-2

-2.34 2.34

2.34

-1 0 1 2 0 0.5 1.0

0 0.5 1.0 1.5

(a) (b) (c)

(d) (e) (f)

FIGURE 1. (Colour online) Dimensionless mode-one internal solitary waves with cores
(DJL solutions). Water depth is 1. (a–c) ISW with SSC. (d–f ) ISW with SC. The base
stratification shown in figure 2(a) was used. (b,e) Horizontal currents (colours) and evenly
spaced density contours (black). The white contour lines are the u= c contour. It passes
through the centre of the core. The solid coloured contour lines are density contours
chosen to indicate the core boundary, with closed contours being inside the core. (a,d)
Density profiles down the centre of the wave. The horizontal dashed lines indicate the
top and bottom of the core. In (d) the top boundary of the surface core is at the surface.
(c, f ) Horizontal current down the centre of the wave (solid) and the background current
(dash-dot). The vertical dotted line indicates the wave propagation speed c. Horizontal
dashed lines indicated depths where u= c.

but we do not use them to make claims about the structure, stability or longevity
of such cores. We confirm their existence in one example via a two-dimensional
numerical simulation of a shoaling ISW.

Mode-one ISW are ubiquitous features in the world’s coastal oceans and large
waves have occasionally been observed to have recirculating trapped cores (Lamb
2002, 2003; Klymak & Moum 2003; Scotti & Pineda 2004; Lien et al. 2014).
Together they provide an effective means of transporting fluid and particles, including
plankton and suspended sediment. Previous numerical and theoretical work has
considered waves with surface or bottom trapped cores in waves of depression and
elevation, respectively. These cores are adjacent to the upper or lower boundaries.
This paper reports on the conditions under which subsurface cores, lying well below
the surface in internal solitary waves of depression, may exist.

The first theoretical study of mode-one ISW with trapped cores dates back to the
theoretical work by Derzho & Grimshaw (1997) who investigated the formation of
cores in a nearly linear density (i.e., nearly constant buoyancy frequency) assuming
a weakly nonlinear regime and a constant density, non-circulating core which is
stagnant to leading order. In an investigation of shoaling waves of depression, Lamb
(2002) considered stratifications which increased monotonically towards the surface
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FIGURE 2. Background stratification and current profiles. (a) Stratification. The black
dashed line is the observed stratification from 2 June and the black solid line is our base
stratification. (b) Model current.

and found that waves with SCs always formed for large enough waves. This type of
stratification profile is not common in the ocean and no background currents were
included. Subsequently, Lamb (2003) focused on a two-layer (hyperbolic-tangent)
stratification and included a background current with shear confined to a surface
layer. He only considered cases with waves of depression and background vorticity
of the same sign as the wave induced vorticity and demonstrated the existence of
waves with SCs if the background current shear at the surface was strong enough.
Later Lamb & Wilkie (2004) derived a theoretical model for conjugate flows (the
horizontally homogeneous flow on the middle of long flat-crested solitary waves)
with SCs. Choi (2006) was the first to study the existence of the stationary SSCs
in ISW using a fully nonlinear model under the long wave approximation. He
assumed a two-layer stratification with constant density and vorticity in each layer,
and found that when the vorticity in the upper layer had the opposite sign to that of
the wave-induced vorticity, a subsurface core could form. Work on ISW with cores
was further extended by Helfrich & White (2010), where a theoretical model for
large ISW with stagnant bottom cores, which included a density jump across the
core boundary, was presented. Recently King, Carr & Dritschel (2011) presented a
new numerical scheme for calculating the steady state form of ISW with cores in
which the density is close to being constant inside the core. They did not include
background currents.

Davis & Acrivos (1967) conducted the first experimental study of ISW with
trapped cores. They considered mode-two solitary waves in a continuous two-layer
stratification. It is fairly easy to generate cores in mode-two waves and most of the
experimental work done since has focused on this situation (Kamachi & Honji 1982;
Stamp & Jacka 1995; Sutherland & Nault 2007). These waves have also been the
subject of numerical investigations (Deepwell & Stastna 2016). Akylas & Grimshaw
(1992) pointed out that stationary, theoretical mode-two ISW, regardless of the
existence of cores, cannot generally be found due to resonance with short, trailing
mode-one waves which drain energy from the leading wave. However, depending
on the strength of the resonance, the model-two solitary-like waves can possibly
be long-lived in a practical sense and have been observed in the ocean (Shroyer,
Moum & Nash 2010). Grue et al. (2000) and Carr et al. (2008) experimentally
generated mode-one ISW with trapped cores in a continuously stratified fluid. Recently
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Luzzatto-Fegiz & Helfrich (2014) generated SCs with nearly uniform density and
small circulation through dam break initial conditions. The experimental results are
in good agreement with their viscous numerical simulations.

Observations of ISW with trapped cores are limited in the ocean, in part, because
of difficulties in predicting their location and making measurements of sufficient
accuracy to show that the maximum horizontal current exceeds the wave propagation
speed (Lamb & Farmer 2011; Lien et al. 2014; Zhang & Alford 2015). Klymak
& Moum (2003) and Scotti & Pineda (2004) made the first oceanic observation
of trapped cores where large ISW of elevation with cores were found propagating
along the ocean bottom. Recent observations of shoaling ISW of depression with
a SSC were made in the South China Sea by Lien et al. (2012, 2014). These are
the first detailed observations of oceanic waves of depression with trapped cores,
where the wave properties, including amplitude, width and propagation speed were
recorded. Waves of depression with cores have also been observed on the Washington
continental shelf (Zhang & Alford 2015).

The presence of a background shear is well known to affect the generation and
properties of ISW (Lamb 2010; Stastna & Walter 2014). Da Silva, New & Magalhaes
(2011) described the propagation characteristics of ISW with background shear
by analysing a comprehensive set of SAR images in the western Indian Ocean.
Bourgault, Galbraith & Chavanne (2016) reported an unexpected generation of ISW
by frontally forced intrusions into a vertically sheared background environment and
Walter et al. (2016) reported on high-resolution observations of nonlinear internal
waves at a coastal upwelling front. They found that theoretical solutions from the
DJL equation did not accurately describe large ISW in strong shears possibly due
to time varying background conditions. Hamann, Alford & Mickett (2018) examined
the generation, propagation and dissipation of ISW in sheared currents over the
Washington continental shelf. The three-dimensionality of the background current
may have changed the propagation direction of the ISW inshore.

This paper is motivated by the observations made by Lien et al. (2014). In their
observations, large ISW with recirculating cores were found shoaling along the
Dongsha slope, where the water depth was approximately 450 m. The amplitudes
of the ISW were about 150 m and the heights of the cores, centred up to 100 m
below the surface, occasionally exeeded 40 m. We will focus on the conditions under
which SSCs can be formed in ISW of depression. Fully nonlinear ISW solutions
of the DJL equation (Stastna & Lamb 2002) are analysed, in which either SCs or
SSCs can be formed depending on the background conditions. We find that the sign
of the background current vorticity largely determines the location of the core, with
near-surface vorticity of the same sign as the wave-induced vorticity leading to the
formation of SCs while near-surface vorticity of the opposite sign is needed to form
SSCs. Results from a two-dimensional numerical simulation of a shoaling ISW are
also presented using background fields based on observations (Lien et al. 2014). The
simulation results support the trapped core observation made by Lien et al. (2014).
Comparisons between these idealized numerical model results and the observations
are made.

This paper is organized as follows. The equations of motion and numerical models
are presented in § 2. The criteria for core formation in ISW calculated from the DJL
solutions are described in § 3. Results of numerical simulations on shoaling waves are
discussed in § 4. Our results are summarized and discussed in § 5.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.407


Internal wave subsurface cores 5

2. Numerical models
We consider an incompressible, inviscid and non-rotating fluid under the Boussinesq

approximation in two dimensions. The governing equations are

DU
Dt
=−∇p− ρgk, (2.1)

∇ ·U = 0, (2.2)
Dρ
Dt
= 0, (2.3)

where U(x, z, t)= (u, w) is the velocity vector with u the horizontal velocity and w
the vertical velocity positive upwards, (x, z) are the corresponding spatial coordinates,
t is time, D/Dt is the material derivative, and ρ and p are the density and pressure
perturbations which have been scaled by the constant reference density ρ0 making
ρ dimensionless. For the numerical simulations considered in § 4 we solve the
governing equations (2.1)–(2.3) using a second-order projection method (Lamb 2007).
The model adopts terrain-following coordinates. A vertically varying resolution is
used with higher vertical resolution near the surface where large density and current
gradients are located. The rigid lid approximation is imposed on the water surface at
z= 0.

We explore the conditions under which ISW with a SSC may exist through solutions
of the DJL equation extended to include background currents (Stastna & Lamb 2002;
Lamb 2003) with a flat bottom at z=−H. Let η(x, z) denote the vertical displacement
of the isopycnal (or streamline) passing through (x, z) from its upstream position
in a reference frame moving with the wave in which the flow is steady. Under the
Boussinesq approximation the DJL equation is

∇
2η−

Ū′(z− η)
Ū(z− η)− c

[η2
x + (ηz − 2)ηz] +

N2(z− η)
(Ū(z− η)− c)2

η= 0, (2.4)

η= 0 at z= 0,−H, (2.5)
η→ 0 as |x|→∞. (2.6)

Here c is the unknown wave propagation speed, N2 is the square of the Brunt–Väisälä
frequency of the background state, and Ū is the background current with a prime
denoting its derivative. The DJL equation is derived by following streamlines to the
far-field flow and hence is uniquely determined only along open streamlines. Wave
solutions with closed streamlines, or recirculating cores, can also be computed from
the DJL equation, however the structure inside the cores are indeterminate (Tung,
Chan & Kubota 1982; Brown & Christie 1998). As a result, the DJL equation can
predict the existence of a core, the presence of which is indicated by Umax > c where
Umax is the maximum current in the wave, but the flow inside the core, and hence
the detailed structure of the solitary waves with a core, are not physically correct. We
solve the DJL equations (2.4)–(2.6) following the approach of Stastna & Lamb (2002),
which is based on the method of Turkington, Eydeland & Wang (1991).

3. DJL solutions
We investigate what background conditions allow for the formation of SSCs in

DJL solutions, using this as a proxy for conditions under which unsteady SSCs
may exist in nature. In particular, we focus on waves of depression with trapped
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cores using a sech2 shaped background current profile and a simple stratification
fitted to the observations made by Lien et al. (2014) on the 2 June (note Lien
et al. (2014) based their DJL solution from their 3 June observations which had a
slightly lower pycnocline). The observed stratification and currents are characterized
by a thin pycnocline close to the surface and a subsurface current, or jet, in the
direction of wave propagation. The primary significance of the latter feature is that
the near-surface vorticity has the opposite sign to that induced by the ISW, although
current observations did not go all the way to the surface. Our background fields are
based on these characterizations of the observations.

We consider five parameters which are indicated in figure 2: ZN , the vertical location
of the maximum buoyancy frequency; d, the width of the background current; Us, the
current at the surface; Um > 0, the maximum velocity of the subsurface jet; and Zm,
the location of Um. Our model current goes to zero well above the bottom.

The problem is non-dimensionalized using the water depth H as the length scale,
c̄ = N̄H/π =

√
gδρH/π, where N̄ is the square root of the average of N2, as the

velocity scale (c̄ would be the linear long wave propagation speed for a uniform
stratification) and H/c̄ as the time scale. Here, δρ is the dimensionless density change
over the water column and g is the gravitational acceleration. The stratification and the
background current profiles are given by

ρ̄(z) = 0.37
(

1.0− tanh
(

z− ZN + 0.01
0.06

))
− 0.11

(
1.0− tanh

(
z

−0.022− ZN

))
+ 0.23

(
1.0− tanh

(
z+ 0.16− ZN

0.11

))
− 0.0002(z− ZN − 0.05), (3.1)

U(z) = Um

(
sech2

(
z− Zm

d

)
− sech2

(
Zm

d

)
sech2

( z
0.01

))
+ 1.14Us sech2

(
z− 0.007

0.02

)
. (3.2)

To investigate the influence of these five parameters, a base case is set up using
(ZN, d,Us,Um, Zm)= (−0.05, 0.055,−0.24, 0.35,−0.06) (see figure 2). We computed
DJL solutions for 10 sets of waves to examine how the five parameters affect the
existence of a core. In each of the 10 sets, two parameters are varied. Two values
of ZN are used, −0.05 and −0.067. Ranges for the other four parameters are: Um ∈

[0.0,0.35], Zm ∈ [−0.2,−0.038], Us ∈ [−1.5,0.18] and d∈ [0.024,0.18]. Figure 3 gives
examples of different background currents.

3.1. Criteria for core formation
All DJL solutions have similar features regarding the presence of cores. For
sufficiently small amplitude/energy waves, the maximum horizontal fluid velocity
Umax is smaller than the propagation speed c. As the wave amplitude/energy increases,
both c and Umax increase. If the fluid velocity surpasses the wave propagation speed,
i.e., the curves of c and Umax intersect (figure 4a), a core is present. The size of
the core and the difference between Umax and c increase as the wave amplitude
continues to increase. The ISW generally have a limiting amplitude. For example, for
a two-layer stratification with an interface, in the absence of a background current
the amplitude is limited by the distance of the interface from the mid-depth. If the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.407


Internal wave subsurface cores 7

z

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30
-0.2 0 0.2 0.4

U(z)
-0.2 0 0.2 0.4

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30
-1.5 -1.0 -0.5 0

U(z) U(z)

(a) (b) (c)

FIGURE 3. Example background current profiles. The black solid line is the base case.
The dashed and dotted lines are for (a) Zm =−0.2 and −0.038, (b) d = 0.024 and 0.18,
(c) Us =−1.5 and 0.18.
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FIGURE 4. Maximum horizontal current Umax and wave propagation speed c. (a) The base
case. (b) Case with Us= 0.18 and all other parameters as for the base case (see figure 3c).
For this case the maximum wave amplitude of about 0.37 is reached without the formation
of a core.

limiting amplitude is reached with Umax < c (figure 4b) a core is not formed. It is
important to note that while the structure of the flow inside the core is not accurately
modelled by the DJL equation (in particular the flow inside an ISW core is not
steady), ISW with open streamlines cannot exist with amplitudes exceeding that at
which Umax = c.

In addition to the aforementioned general features, we find that cores are easier
to form if the magnitude of the background near-surface vorticity is increased. We
denote the minimum wave amplitude necessary for core formation as A∗ (i.e., the
wave amplitude at which Umax = c). The surface vorticity can be approximated by
ζa = (Um − Us)/Zm. As ζa increases, A∗ decreases and it is easier to form a core.
In figure 5, we plot the data from all cases using the base stratification, where A∗

is plotted as a function of ζa. The formation of a core is not very sensitive to the
thickness d of the subsurface jet (see table 1).
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FIGURE 5. Plot of (Um −Us)/Zm versus A∗ using the base stratification. The black solid
line is a fitted curve.

d A∗

0.024 0.20
0.047 0.24
0.055 0.24
0.064 0.24
0.078 0.24
0.104 0.24
0.131 0.24
0.184 0.24

TABLE 1. Base stratification is used and Um −Us is fixed at 0.6. d is varied and A∗ is
the corresponding minimum wave amplitude required to generate a core.

3.2. Um = 0
We now consider the simpler case where Um = 0 in (3.2). In these cases the
background shear is single-signed and non-zero only in a surface layer (figure 6).
This current is of a similar structure to that in Lamb (2003) however both negative
and positive near-surface vorticity are now considered. The other difference is that
Lamb used a much lower pycnocline centred at about z = −0.32 with a buoyancy
frequency near the surface close to zero. As a result, all the cores generated in Lamb
(2003) were SCs. The DJL solutions with a SC and a SSC shown in figure 1 used
Um = 0 and positive and negative values of Us, respectively.

We find that the sign of the near-surface vorticity of the current determines the
core location. SCs are formed when the vorticity of the background current and that
generated by the ISW are of the same sign. SSCs are formed when the signs differ.
Two sets of simulations were conducted which confirmed this hypothesis. The first
set used the base stratification and the second used a stratification with a much lower
pycnocline (at z=−0.17). Currents with positive or negative vorticity were used for
both sets. We also found that generally the generation of the SSC is more sensitive to
the magnitude of the vorticity of the current and the location of the pycnocline than
the generation of the SC. As the pycnocline is lowered, for waves of fixed amplitudes,
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cc

FIGURE 7. A schematic plot of a wave of depression propagating to the right. The
reference frame is moving with the wave with its phase speed c. The background current
here has a negative near-surface vorticity. The ellipses indicate how the vorticity is
changing in the front and back halves of the wave.

the near-surface isopycnals have smaller displacements and a thin near-surface layer
of vorticity has less influence on the wave. Since SSCs are lower in the water column
than SCs, lowering the pycnocline affects the SSCs more.

3.3. Vorticity generation mechanism
Here we provide a simple explanation of how the background current profile
determines the location of the core. We consider a wave of depression propagating
to the right using a reference frame moving with the wave (figure 7). The vorticity
equation for our two-dimensional inviscid flow is

Dω
Dt
= ρxg. (3.3)

In the front half of a wave of depression, the sloping isopycnals have positive ρx hence
the vorticity ω = uz − wx of a fluid particle increases as it enters the wave, reaching
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FIGURE 8. Horizontal velocity profiles down wave centres. (a) Case A with negative near-
surface background vorticity (dashed), and case A2 with no background current (solid).
(b) Case B with positive near-surface background vorticity (dashed), and case B2 with no
background current (solid).

a maximum at the wave centre, thereafter decreasing to its original value as it passes
through the rear half of the wave where ρx is negative.

In figure 8, we compare the horizontal velocity profiles down the centre of the
wave for four waves using the base stratification. Waves A and B are the waves
shown in figure 1(b,e) which use background currents with negative and positive near-
surface vorticity, respectively. There is no background current in cases A2 and B2 and,
as a result, no cores are generated. The four waves have similar but not identical
amplitudes.

The waves in cases A and B have negative and positive near-surface vorticity in
their centres while waves A2 and B2 have little near-surface shear. This difference in
near-surface vorticity is a result of the differences in the vorticity of the background
current and the weak near-surface baroclinic generation of vorticity: if the baroclinic
generation is weak in the near-surface layer then the vorticity in this layer in the wave
will be similar to that of the background current outside of the wave.

While this explains the subsurface current maximum when the background current
has negative near-surface vorticity, it does not on its own predict that the subsurface
maximum current can exceed the propagation speed of the wave, a necessary condition
for the formation of a SSC. This occurs because the forward volume flux in the upper
part of the wave (e.g., above the main pycnocline) must be equal and opposite to that
below. As the wave amplitude increases this mean value increases and the subsurface
current maximum increases as well. A simple idealized two-layer model combined
with the Korteweg–de Vries (KdV) equation predicts just this.

Consider two layers of constant density and a continuous background current which
is zero in the lower layer and has constant vorticity in the upper layer. That is,

ρ(z)= 1−H(z+ h1), (3.4)

Ū(z)=Us

(
1+

z
h1

)
H(z+ h1), (3.5)

where H(z) is the Heaviside function, h1 is the depth of the upper layer and Us is
the background current at the surface. KdV theory gives the wave propagation speed
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FIGURE 9. KdV solutions. (a) Umax (dashed), Usur (dash-dotted) and c (solid) predicted
by KdV theory. (b) Velocity down the centre of the wave obtained from the DJL solution
(solid) and the KdV equation (dashed). The wave amplitude is 0.2.

c= c0+ (aα/3) (Ostrovsky & Stepanyants 1989), where a is the interface displacement
and c0 is the linear long wave phase speed given by

c0 =
h2Us ±

√
h2

2U2
s + 4h1h2g′

2
, (3.6)

where h2= 1− h1 is the depth of the lower layer and g′, the reduced gravity, is equal
to one with our non-dimensionalization. The nonlinear coefficient α is

α =
−3h2

2c2
0 + 3h2

2Usc0 − h2
2U2

s + 3h2
1c2

0

(2h2c0 − h2Us + 2h1c0)h1h2
. (3.7)

If we assume the solitary waves are very broad so that the vorticity in the centre of
the wave is well approximated by uz and apply conservation of volume flux, we obtain
the following horizontal velocity profile down the centre of the wave

uc(z)= u2 +

[
u1 − u2 +

Ush1

2(h1 − a)
+

Us

h1

(
z+

h1 − a
2

)]
H(z+ h1 − a), (3.8)

where u1=−ac/h1 − a and u2= ac/h2 + a are the velocities in the centre of the wave
above and below the pycnocline, respectively, when there is no background current.
Here the vorticity in the wave is equal to that of the background current, a result of
each layer having constant density.

We use the KdV solution to illustrate some interesting patterns of the velocity
profile down the centre of the wave. In our simple two-layer system, Umax =

uc(−h+1 + a), where the h+1 indicates that it is evaluated above the interface, and
Usur = uc(0). Figure 9(a) plots Umax, Usur and c. As the wave amplitude gets larger,
Umax increases more quickly than Usur, predicting the formation of a core when they
cross. Note, however, that KdV theory is weakly nonlinear and becomes inaccurate
when the wave gets too large. Figure 9(b) plots the horizontal velocity down the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.407


12 Y. He, K. G. Lamb and R.-C. Lien

0 1 2 3 4 -0.2 -0.1 0 0.1 -0.5 0 0.5 1.0

0

-0.25

-0.50

-0.75

-1.00

0

-0.25

-0.50

-0.75

-1.00

0

-0.25

-0.50

-0.75

-1.00

D
ep

th

Buoyance frequency Background current Velocity

0.2
0.16
0.06

(a) (b) (c)

(÷ 10-4)

FIGURE 10. A simple two-layer model. (a) Stratification. (b) Model current.
(c) Horizontal velocity down the centre of the waves with amplitudes of 0.2 (solid), 0.16
(dashed) and 0.06 (dash-dotted), respectively.

centre of the wave. The KdV solution manages to capture the behaviour of the
near-surface vorticity, though it over-predicts the magnitude of the velocity.

DJL solutions were computed to confirm our analytic solutions of the KdV
theory. A more realistic, smoothed version of this two-layer configuration is used.
Figure 10(a,b) shows the background buoyancy frequency and current profiles.
Figure 10(c) shows the horizontal current profile down the centre of three different
waves. In the upper layer with near-negligible baroclinic vorticity generation uz is
approximately constant and negative, approximately equal to the vorticity of the
background current. Across the thin pycnocline there is strong baroclinic vorticity
generation resulting in large positive uz. Below the pycnocline uz is very small. Note
that it is the vorticity uz − wx which is zero in the lower layer and because of the
finite length of the wave, wx, and hence uz, is not exactly zero in the lower layer or
equal to the background vorticity in the upper layer. As the wave amplitude increases
both Usur and Umax increase with the latter increasing more rapidly, which confirms
the pattern we observed in the KdV solutions. Background currents with positive
near-surface vorticity can be analysed in a similar manner.

4. Numerical simulation of shoaling waves: comparison with observations

We now present a numerical simulation of a two-dimensional ISW shoaling over
an idealized two-slope bathymetry (figure 11a). The wave observed in Lien et al.
(2014) propagated from deep water of approximately 3000 m depth onto the slope.
We assume the bathymetry in the deep water region has a minor effect on the
formation of waves with cores via shoaling. The slopes of the bathymetry used in
our simulation was fitted to the upper part of the observed slope. The deep and
shallow water depths are 1500 and 250 m. The Coriolis frequency f = 5.2× 10−5 s−1

is based on the observation location. The stratification profile used here (figure 11b) is
a better fit to the 2 June observation than the base profile in § 3. As the background
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FIGURE 11. Bathymetry, stratification and background current profiles. The black dashed
lines are the observation data from 2 June (Lien et al. 2014). In (a,b), the black solid
lines are the profiles used in the shoaling wave simulations. (c) The two current profiles
Ubneg (solid) and Ub0 (dash-dot) used in the shoaling simulations. (d) Background currents
in the upper 100 m.

current was not measured near the surface the current profile used in this simulation
(figure 11c) has been extrapolated to the surface in two ways, (Ubneg) with negative
and (Ub0) with zero near-surface vorticity. Results for these two background currents
were similar so only results from Ubneg are discussed here. The currents were rapidly
brought to zero below 250 m depth so that it is zero below the top of the shelf. The
initial ISW is a DJL solution with an amplitude of 183 m which is close to forming
a core. The horizontal resolution was 10 m. The vertical resolution was varied from
3 to 0.5 m depending on the water depth.

During the early stages of shoaling, the wave propagation speed decreases. The
solitary wave gradually changes shape and a small, dispersive wave train is formed
behind it. These are common features among shoaling waves. The density contours
at depths h = 600, 550, 500 and 450 m are shown in figure 12. Immediately after
the density overturns, the fluid from the back of the wave plunges forward into the
centre of the wave, forming a recirculating trapped core. The density in the core
was denser than the surrounding fluid, which led to the mixing afterwards. The core
structures in figure 12(c,d) are different illustrating the unsteady nature of the trapped
core. The leading wave carried the core for a long distance while propagating onto
the slope. Since the persistence of the core is not the focus of this paper, no plots of
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FIGURE 12. A close look at the formation of the shoaling wave with a trapped core. Here
h in the sub captions is the water depth representing the location of the leading solitary
wave.

later stages are shown. In the ocean or laboratory experiments, the longevity of such
cores would likely depend on three-dimensional effects and the intensity and evolution
of turbulence inside the core. In this context we note that in simulations of internal
wave boluses propagating on a shelf in a linearly stratified fluid (Venayagamoorthy
& Fringer 2007) found that the dynamics of boluses in two-dimensional and three-
dimensional simulations were very similar although their Reynolds numbers were well
below field values.

Comparisons of the vorticity and horizontal velocity in the numerical simulation and
an observed wave are shown in figure 13. Overall the simulation is in good agreement
with the observation. Both waves have a SSC, are nearly symmetric at this water
depth and the horizontal velocities have the same order of magnitude. There are two
major differences. In comparison with the observation, in the numerical simulation
the core is at a greater depth and the rest height of the isopycnal undergoing the
maximum vertical displacement is higher in the water column. The exact reasons for
these differences are unknown but could be due to uncertainties in the near-surface
background currents.

5. Summary
We have explored the conditions under which subsurface cores in ISW may exist

by using solutions of the DJL equation to predict amplitudes at which the maximum
current Umax is equal to the wave propagation speed c. This work was motivated by
observations of ISW with SSCs in the South China Sea (Lien et al. 2014) and we
used a simple stratification fitted to the 2 June observations by Lien et al. (2014) and
a variety of background currents also motivated by these observations. We explored
a simple case with no subsurface jet (Um = 0). We later presented results from a
two-dimensional numerical simulation of a shoaling ISW, using background conditions
based on the observed conditions, which illustrated the formation of an ISW with a
SSC.
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FIGURE 13. (Colour online) Comparisons between the observation (a,c) and the numerical
simulation (b,d) at h = 450 m are plotted. The horizontal velocity and the vorticity
contours are shown in the upper and the lower panels, respectively. The black dashed
lines (observation) and the grey lines (simulation) are isopycnals undergoing the maximum
vertical displacement. The thick white lines in the centre of the wave represent u= c. Here
the wave is propagating at c= 1.5 m s−1.

The sign of the background current near-surface vorticity largely determines the
location of the core. In particular, SC are formed when the near-surface vorticity
of the background current is of the same sign as the wave induced vorticity, while
SSC are formed when the signs are opposite. This difference occurs because, for the
stratification used here, near-surface baroclinic generation of vorticity is weak and
hence the vorticity of the background current is preserved in the centre of the wave
above the pycnocline. If the stratification is strong up to the surface the baroclinic
generation of vorticity could change this result. This criteria for the occurrence of
SSCs is in agreement with the earlier findings of Choi (2006) in a two-layer fluid,
each with constant vorticity, using a fully-nonlinear long wave two-layer model.

In general, it is easier to form a core as the magnitude of the current vorticity
increases. However, since SSC are located lower than the SC, the generation of SSC
is more sensitive to the magnitude of the current vorticity and the location of the
pycnocline than SC are.

Our numerical simulation of a shoaling ISW does predict the formation of a SSC
as observed in the South China Sea with some differences in the detailed structure
of the wave. Possible explanations include differences in the bathymetry, stratification
and background current profiles. A particular problem is the lack of observations of
the background current within a few metres of the surface as the formation of the
core is sensitive to the background conditions in this region.
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