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Propulsion of a foil undergoing a flapping
undulatory motion from the impulse theory in

the linear potential limit
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(Received 25 June 2019; revised 2 September 2019; accepted 19 October 2019)

We derive general analytical expressions for the aerodynamic force and moment
on a flapping flexible foil undergoing a prescribed undulatory motion in a two-
dimensional, incompressible and linearized potential flow from the vortical impulse
theory. We consider a fairly broad class of foil motion, characterized by nine
non-dimensional parameters in addition to the reduced frequency. Quite simple
analytical expressions are obtained in the particular case when just a chordwise
flexure mode is superimposed to a pitching or heaving motion of the foil, for
which the optimal conditions generating a maximum thrust force and a maximum
propulsion efficiency are mapped in terms of the reduced frequency and the relative
amplitude and phase shift of the deflection of the foil. These results are discussed
in relation to the optimal conditions for a pitching or heaving rigid foil. The present
theoretical results are compared with available numerical data for some particular
undulatory motions of the flexible foil, with good agreement for small amplitudes of
the oscillations and sufficiently high Reynolds number.

Key words: swimming/flying

1. Introduction
Unsteady aerodynamics of flapping foils is an area of active research in part due to

the recent interest in the development of small unmanned aerial and aquatic vehicles,
bioinspired by flying and swimming animals. It is well known that flexible structures
can enhance the propulsive performance of flapping flight and swimming (Wu 1971b;
Katz & Weihs 1978; Prempraneerach, Hoover & Triantafyllou 2003; Pederzani &
Haj-Hariri 2006; Heathcote & Gursul 2007; Zhu 2007; Alben 2008; Kang et al.
2011; Ramananarivo, Godoy-Diana & Thiria 2011; Dewey et al. 2013; Moore 2014;
Huera-Huarte 2018), which is supported by the fact that most flying and swimming
animals take advantage of the flexibility of their flapping appendages to increase
lift, thrust and/or propulsive efficiency depending on the particular circumstances of
their locomotion (Lighthill 1975; Wu, Brokaw & Brennen 1975; Vogel 1994; Shyy
et al. 2013). Although rigid-wing aerodynamics has been explored in more detail
than flexible-wing aerodynamics (see e.g. Platzer et al. 2008), numerous experimental

† Email address for correspondence: ramon.fernandez@uma.es

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-9873-1933
mailto:ramon.fernandez@uma.es
https://doi.org/10.1017/jfm.2019.870


883 A19-2 J. Alaminos-Quesada and R. Fernandez-Feria

and numerical studies have appeared recently concerned with flexible flapping foils
(see e.g. Shyy et al. 2010; Wu 2011; Wang & Zhang 2016).

Avoiding the interesting and more complex issue of the fluid–structure interaction
(Michelin & Llewellyn Smith 2009; Dewey et al. 2013; Moore 2014; Paraz,
Schouvelier & Eloy 2016; Tzezana & Breuer 2019), one of the most interesting
problems is the characterization of the aerodynamic performance for prescribed
kinematics of a flexible foil, which allows a search for the foil motion that maximizes
thrust and/or propulsive efficiency. As in the case of a rigid flapping foil, despite
the great advances in numerical simulations and experimental studies, linear unsteady
potential theory still constitutes a powerful analytical tool for understanding, and
estimating, the aerodynamic performance of flexible flapping foils. The theory was
originally developed for two-dimensional foils undergoing an arbitrary harmonic
motion by Wu and Lighthill (Wu 1961; Lighthill 1970; Wu 1971a,b), containing the
pitching and heaving motion of a rigid foil as a particular case, which was previously
studied by Theodorsen (1935) for lift and moment, and by Garrick (1936) for thrust
and propulsion efficiency. Using this classical linear potential theory, the optimization
problem of the propulsive performance has been addressed for the pitching and
heaving oscillating motion of a rigid foil and for the more complex undulatory
motion of a flexible foil by several authors (Lighthill 1970; Wu 1971a; Alben 2008;
Eloy & Schouveiler 2011; Eloy 2013; Moore 2015; Floryan & Rowley 2018).

Of particular relevance for addressing the problem of the unsteady aerodynamics
of slender bodies at high Reynolds number is the vortical impulse theory in the
limit of linearized inviscid flows, because of the insight that it provides on the effect
of unsteadiness on the physics behind the aerodynamic force and moment. This
approach was first utilized by von Kármán & Sears (1938) to obtain the lift force
and moment on a rigid foil undergoing an arbitrary motion, and recently extended to
include the thrust force and the propulsive efficiency of a pitching and heaving rigid
foil (Fernandez-Feria 2016). This latter formulation corrects, for moderate and high
reduced frequencies, Garrick’s (1936) result for the thrust force produced by a rigid
oscillating foil, which was assumed to be primarily generated by the leading-edge
suction. Thus, the impulse formulation substantially modifies the prediction of the
kinematic conditions that optimize the propulsion efficiency of a heaving and pitching
rigid foil (Fernandez-Feria 2017), especially for high reduced frequencies. In the
present paper we generalize this vortical impulse theory to a flexible foil undergoing
a quite general undulatory motion, of interest for the locomotion of a great variety
of swimming and flying animals, to obtain analytical expressions for the lift, thrust,
moment and propulsive efficiency. These general analytical expressions, which contain
as a limit those previously obtained for a pitching and heaving rigid foil, are validated
against available numerical results for some particular undulatory kinematics of the
flexible foil. The analytical expressions are quite useful for characterizing the foil’s
kinematics that generate an optimal propulsion. In particular, we include results for
the case when a chordwise flexure mode is added to the motion of a heaving and of
a pitching foil, characterizing the kinematic parameters that optimize both the thrust
force and the propulsion efficiency in relation to the rigid heaving and the rigid
pitching counterparts, respectively.

2. Formulation of the problem. Kinematics

We consider a two-dimensional, incompressible and nearly inviscid flow over a
flexible thin foil of chord length c that moves with constant speed U along the
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FIGURE 1. Schematic of the oscillating foil for heaving and pitching rigid motion (a)
and for heaving and flexural motion (b), both in the absence of undulatory motion (i.e.
for b= 0). See (2.1)–(2.4) for the meaning of the various non-dimensional quantities.

negative x-axis. Superimposed to heaving and pitching motions (see figure 1a), the
plate undergoes an undulating motion with a given wavelength (defined below), and a
quadratic flexure (or deflection) motion of trailing-edge amplitude δm (see figure 1b).
All the amplitudes are small compared with the chord c, so that the airfoil, and every
point of the trail of vortices that it leaves behind, may be considered to be on the
horizontal plane z= 0 to a first approximation.

We use non-dimensional variables scaled with the half-chord length c/2 and the
velocity U, so that the plate extends from x = −1 to x = 1 in a reference frame
translating with it at speed U along the x-axis (see figure 1), and the non-dimensional
time t is scaled with c/(2U). In this reference frame, the vertical motion of the foil,
given by the vertical displacement of its mean-chamber line zs, can be written as

zs(x, t)= h(x, t)− (x− a)α(x, t)+ (x− p)2δ(x, t), −1 6 x 6 1, (2.1)

with

h(x, t)=Re[h0eikt+b(x+1)
], α(x, t)=Re[α0eikt+b(x+1)

], δ(x, t)=Re[δ0eikt+b(x+1)
],

(2.2a−c)

b= b1 − ib2, k=
ωc
2U
. (2.3a,b)

In these expressions Re means real part and k is the reduced frequency associated
with the frequency ω of the harmonic motion, with non-dimensional period T = 2π/k,
which consists of a heaving displacement h(x, t), a pitching rotation α(x, t) pivoting
at x = a and a quadratic deflection motion δ(x, t) pivoting at x = p. Superimposed
to each of these three displacements, we have included an undulatory motion of the
foil with non-dimensional wavenumber b2 whose amplitude grows exponentially to
the trailing edge with a non-dimensional factor b1, both quantities grouped together
in the complex number b. This form, motivated by the analysis of the carangiform
fish dynamics by Lighthill (1970), produces a travelling wave of growing amplitude
that propagates from the leading edge to the trailing edge with non-dimensional phase
speed k/b2. Figure 2 shows some examples when the pitching and flexure motions are
absent.

The amplitudes h0, α0 and δ0 are, in general, complex constants satisfying |h0|� 1,
|α0| � 1 and |δ0| � 1. For simplicity we select h0 real and

α0 = a0eiφ, δ0 =
δm

(1− p)2
eiψ , (2.4a,b)
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FIGURE 2. Non-dimensional vertical displacement zs(x, t) for an undulatory heaving
motion (α0 = δ0 = 0) at different instants of the period’s oscillation T for h0 = 0.05 and
b1 = 0.8, with b2 = 1 (a) and with b2 = π (b) (see (2.1)–(2.4) for the non-dimensional
notation).

with φ the phase shift between the heaving and pitching motions of the foil, ψ
the phase shift between the heaving and deflection motions, a0 the maximum pitch
amplitude of the plate and δm the maximum amplitude of the flexure component
of the motion at the trailing edge (x = 1). In what follows we shall work with
the complex expressions knowing that we have to take the real part of the results.
Equations (2.1)–(2.4) describe a fairly broad class of the flapping undulatory motion
of a flexible or compliant foil, with nine non-dimensional kinematic parameters (plus
the reduced frequency), for which we shall derive analytical expressions for the force
and moment using the impulse theory in the linear potential limit. General undulatory
kinematics, with infinitely many wavenumbers, have been considered numerically by
several authors both in the present small-amplitude inviscid limit (e.g. Alben 2008;
Moore 2017; Tzezana & Breuer 2019) and using direct numerical simulation of the
Navier–Stokes equations (e.g. Hoover et al. 2018).

To facilitate the computations, the vertical displacement of the foil will be written
as

zs(x, t)= [F(t)+ E(t)x+D(t)x2
]ebx, −1 6 x 6 1, (2.5)

where F(t), E(t) and D(t) are given by

F(t)≡ (h0 + aα0 + p2δ0)eikt+b
≡F0eikt+b, (2.6)

E(t)≡−(α0 + 2pδ0)eikt+b
≡ E0eikt+b, (2.7)

D(t)≡ δ0eikt+b. (2.8)

The corresponding non-dimensional vertical velocity of the foil’s mean-chamber line
can be written as

v0(x, t)=
∂zs

∂t
+
∂zs

∂x
= [A(t)+B(t)x+ C(t)x2

]ebx, −1 6 x 6 1, (2.9)

where A(t),B(t) and C(t) are given by

A(t)≡ {(ik+ b)F0 + E0}eikt+b
≡A0eikt+b, (2.10)

B(t)≡ {(ik+ b)E0 + 2δ0}eikt+b
≡B0eikt+b, (2.11)

C(t)≡ (ik+ b)δ0eikt+b
≡ C0eikt+b. (2.12)
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3. General expressions for the lift, thrust, moment and input power
The vortical impulse theory for an incompressible and unbounded flow (Wu 1981)

is used to obtain the force and moment on the airfoil. Neglecting the volume (section)
of the airfoil, the total force F can be written as

F≡Dex + Lez =−ρ
dI
dt
, (3.1)

where the x-component D is the drag (or minus the thrust), the z-component L is the
lift, ρ is the fluid density and the vortical impulse (or vorticity moment) I is defined
as

I=
∫
V

x∧ω dV, (3.2)

where ω = ∇ ∧ v is the vorticity field and V is the entire volume (plane surface in
this case) occupied by the fluid plus the airfoil. In writing (3.1) it is assumed that V
is unbounded and that the flow is irrotational far from the airfoil. In fact, we shall
assume that the vorticity, which is directed along the normal ey to the plane of the
fluid motion, is concentrated on the airfoil surface and in its trailing wake, both of
them considered as planar (bound and free, respectively) vortex sheets. Thus,

I'
∫ 1

−1
(−zs$sex + x$sez) dx+

∫
∞

1
(−ze$eex + x$eez) dx, (3.3)

where $s(x, t) is the vorticity density distribution on the airfoil, $e(x, t) is the vorticity
density distribution in the trailing wake and ze(x, t) is the vertical position of each
point in this vortex wake (see figure 1). We consider the large-time behaviour in which
the vortex wake sheet extends many chord lengths downstream of the airfoil, so that,
to a first approximation, 1 6 x 6∞ for both $e(x, t) and ze(x, t), with |ze| � 1 in
the present linear approximation. Consequently, under the assumptions made, the total
drag and lift force components can be written as

D= ρ
d
dt

[∫ 1

−1
zs$s dx+

∫
∞

1
ze$e dx

]
, (3.4)

L=−ρ
d
dt

[∫ 1

−1
x$s dx+

∫
∞

1
x$e dx

]
. (3.5)

Similarly, the vortical impulse theory also provides the total moment on the airfoil
(Wu 1981):

M=−Mey =−ρ
dA
dt
, (3.6)

where
A=−

1
2

∫
V
|x− aex|

2 dV (3.7)

is the angular impulse in relation to the pitching axis x = a moving with speed U
along the x-axis (note that the distance Ut is also scaled with c/2). Thus, on using
the same approximations made in (3.3),

M '
1
2
ρ

d
dt

[∫ 1

−1
(x− a)2$s dx+

∫
∞

1
(x− a)2$e dx

]
. (3.8)
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Finally, the input power is given by

P=
∫ 1

−1
1p

∂zs

∂t
dx, (3.9)

where 1p(x, t) ≡ p+(x, t) − p−(x, t) is the local pressure difference between both
sides of the foil, with subscripts + and − denoting its upper and lower surfaces,
respectively. Pressure difference 1p can be obtained from the unsteady Bernoulli
equation on the foil surface as

1p=−ρ
∂

∂t
(1Φ)−

1
2
ρ(u2

+
− u2

−
), (3.10)

where Φ is the velocity potential and u the tangential velocity component. Taking into
account that

1Φ =

∫ x

−1
(u+ − u−) dx, $s = u+ − u−, U = 1

2(u+ + u−), (3.11a−c)

and substituting into (3.9), the input power can be written in terms of the vorticity
distribution as

P=−ρU
∫ 1

−1
$s
∂zs

∂t
dx− ρ

∫ 1

−1

(∫ x

−1

∂$s

∂t
dξ
)
∂zs

∂t
dx, (3.12)

which, after integrating by parts the double integral, can be more conveniently written
as

P=−ρU
∫ 1

−1
$s
∂zs

∂t
dx− ρ

∫ 1

−1

(∫ 1

x

∂zs

∂t
dξ
)
∂$s

∂t
dx. (3.13)

3.1. Vorticity distribution
Following von Kármán & Sears (1938), who used the above linearized version of the
impulse theory in the inviscid limit for the lift and for the moment on a rigid airfoil
(but not for the thrust) much earlier than Wu’s (1981) general impulse formulation
was derived, and invoking the linearity of the problem, we separate the different
contributions to the vorticity on the airfoil as

$s(x, t)=$0(x, t)+$se(x, t), (3.14)

where the first term $0, with associated circulation

Γ0(t)=
∫ 1

−1
$0(x, t) dx, (3.15)

is the quasi-steady contribution, i.e. that for an airfoil without considering the effect
of its unsteady wake, such that the corresponding lift would be ρUΓ0. The last term
in (3.14), $se, is the contribution to $s induced by its wake vortex sheet, of strength
$e (remember from (3.3) that subscript s stands for the surface of the foil and e for
the trailing wake).
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Kelvin’s total-circulation conservation theorem requires that

Γ0 + Γse +

∫
∞

1
$e(ξ , t) dξ = 0, (3.16)

with

Γse(t)=
∫ 1

−1
$se(x, t) dx. (3.17)

To obtain $0 and $se one has to apply the boundary condition of the vertical velocity
(2.9) at z = 0, for −1 6 x 6 1, which is induced by the whole vorticity distribution.
From the linearity of the problem, one may separate the two different sources (see e.g.
Newman 1977; Fernandez-Feria & Alaminos-Quesada 2018) to obtain the following
two integral equations for $0 and $se:

v0(x, t)=
1

2π
−

∫ 1

−1

$0(ξ , t)
ξ − x

dξ, (3.18)

−
1

2π

∫
∞

1

$e(ξ , t)
ξ − x

dξ =
1

2π
−

∫ 1

−1

$se(ξ , t)
ξ − x

dξ, (3.19)

where −
∫

denotes Cauchy’s principal value of the integral (e.g. Butkov 1968, chap. 2)
and v0 is given by (2.9). The solutions of these singular, linear integral equations of
the first kind with constant integration limits are given by (Polyanin & Manzhirov
1998)

$0(x, t)=
1

√
1− x2

{
Γ0(t)

π
−

2
π
−

∫ 1

−1

√
1− ξ 2

ξ − x

[
A(t)+B(t)ξ + C(t)ξ 2

]
ebξ dξ

}
, (3.20)

$se(x, t)=
1
π

√
1− x
1+ x

∫
∞

1

√
ξ + 1
ξ − 1

$e(ξ , t)
ξ − x

dξ, (3.21)

where the regularity of $s at its corresponding trailing edge x= 1, or Kutta condition,
has been applied. In addition, substituting into (3.15) and (3.17) one obtains

Γ0(t) = −2π

{
A(t)I0(b)+

[
A(t)+

(
1+

1
b

)
(B(t)+ C(t))

]
I1(b)

+

[
B(t)+ C(t)

(
1−

1
b

)]
I2(b)

}
, (3.22)

Γse(t)=
∫
∞

1

(√
ξ + 1
ξ − 1

− 1

)
$e(ξ , t) dξ, (3.23)

where In(b), n= 0, 1, 2, is the modified Bessel function of the first kind and order n
(Olver & Maximon 2010) applied to the complex number b.

Finally, from Kelvin’s theorem (3.16), and considering that the vorticity in the wake
is convected downstream with velocity U, so it remains constant in a reference frame
moving with the fluid,

$e(ξ , t)=$e(X), ze(ξ , t)= ze(X), X = ξ −Ut, (3.24a−c)
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the wake vorticity distribution $e is given by the well-known solution in terms of Γ0
(Theodorsen 1935; von Kármán & Sears 1938)

$e(ξ , t)=
2Γ0(t)

π

e−ikξ

iH(2)
0 (k)+H(2)

1 (k)
, (3.25)

where H(2)
n (z)= Jn(z)− iYn(z), n= 0, 1, is the Hankel function of the second kind and

order n, related to the Bessel functions of the first and second kind Jn(z) and Yn(z)
(Olver & Maximon 2010).

3.2. Lift, thrust, moment and input power
Taking into account (3.24), the temporal derivatives of $e and ze in the general
expressions for D, L and M can be easily computed using Leibniz’ rule. For the lift
one obtains, in non-dimensional form,

CL =
L

1
2ρU2c

=CL0 +CL1 +CL2, (3.26)

where

CL0 = Γ0, CL1 =−
d
dt

∫ 1

−1
x$0(x, t) dx, CL2 =

∫
∞

1

$e(ξ , t)√
ξ 2 − 1

dξ (3.27a−c)

are the quasi-steady lift, the apparent-mass lift and the lift induced by its own unsteady
wake. Solving the integrals,

CL =−2π
ik
b

[
(A+ C)I1(b)+

(
B−

3
b
C
)

I2(b)

]
+ Γ0C(k), (3.28)

where C(k) is the Theodorsen function given by

C(k)=
H(2)

1 (k)

iH(2)
0 (k)+H(2)

1 (k)
= F(k)+ iG(k). (3.29)

To compute D from (3.4) one assumes that the vertical displacement of the wake
coincides with the trailing-edge location at the time t′ = t + (1 − ξ)/U when it was
shed from the airfoil, zs(1, t′); i.e.

ze(X)= h
(

1− X
U

)
− (1− a)α

(
1− X

U

)
+ (1− p)2δ

(
1− X

U

)
. (3.30)

Thus,
d
dt

∫
∞

1
ze$e dξ = zs(1, t)$e(1, t). (3.31)

Therefore, the thrust, or minus the drag (3.4), in non-dimensional form can be written
as

CT =
T

1
2ρU2c

=−
d
dt
{Re[Γ0] ×Re[Q(F , E,D)] +Re[A] ×Re[Ω0(F , E,D)]
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+Re[B] ×Re[Ω1(F , E,D)] +Re[C] ×Re[Ω2(F , E,D)]}

−
2k
π

Re[Γ0C1(k)] ×Re{[F + E +D]eb
}, (3.32)

where the functions Q, Ωn and C1(k) are defined as

Q(ã, b̃, c̃)= ã(I0(b)+J0)+ b̃(I1(b)+J1)+ c̃
(

I1(b)

b
+ I2(b)+J2

)
, (3.33)

Ωn(ã, b̃, c̃)= ãI0,n + b̃I1,n + c̃I2,n, n= 0, 1, 2, (3.34)

C1(k)=
1
k e−ik

iH(2)
0 (k)+H(2)

1 (k)
= F1(k)+ iG1(k), (3.35)

and the functions Jn and In,m are given by

Jn(b, k) ≡
2/π2

iH(2)
0 (k)+H(2)

1 (k)

∫ 1

−1
xnebx

√
1− x
1+ x

×

(∫
∞

1

√
ξ + 1
ξ − 1

e−ikξ

ξ − x
dξ

)
dx=J R

n + iJ I
n , (3.36)

In,m(b) ≡ −
2
π

∫ 1

−1

xnebx

√
1− x2

(∫ 1

−1

√
1− ξ 2

ξ − x
ξmebξ dξ

)
dx

= IR
n,m + iI I

n,m, n,m= 0, 1, 2, (3.37)

where, in general, these last integrals have to be solved numerically. It should be
noted that I1,1 = I2,2 = 0 and I0,0 = I2,0. In addition, when the growth factor of the
undulatory motion vanishes (b1 = 0) then

IR
0,0 = I I

0,1 = IR
0,2 = 0, I I

1,0 = I1,1 = I I
1,2 = 0, IR

2,0 = I I
2,1 = I2,2 = 0, (3.38a−c)

where the superscripts R and I denote real and imaginary parts, respectively. As
discussed in Fernandez-Feria (2016) for a rigid foil, this impulse formulation includes
the leading-edge suction force together with all the other contributions to the thrust
force coming from the vorticity distributions on the airfoil and the vortex wake.

The moment (3.8) can be written, in non-dimensional form, as

CM =
M

1
2ρU2c2

=CM0 +CM1 +CM2 +
a
2

CL, (3.39)

where

CM0 =−
1
2

∫ 1

−1
x$0(x, t) dx, CM1 =

1
4

d
dt

∫ 1

−1

(
x2
−

1
2

)
$0(x, t) dx, CM2 =

CL2

4
.

(3.40a−c)
Solving the integrals,

CM =
Γ0

2

[
C(k)

(
1
2
+ a
)
− 1
]
−

π

b
(ika+ 1)

[
(A+ C)I1(b)+

(
B−

3
b
C
)

I2(b)

]
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+
πik
2b2 {[B+ b(A+ C)]I2(b)+ [bB− 3C]I3(b)}. (3.41)

Finally, the input power in non-dimensional form is given by

CP =
P

1
2ρU3c

=−Re[Γ0] ×Re[Q(Ḟ , Ė, Ḋ)] −Re[H] ×Re[Γ0C1(k)]

+Re[Γ̇0] ×Re[Q(g1, g2, g3)] −Re[A] ×Re[Ω0(Ḟ , Ė, Ḋ)]
−Re[B] ×Re[Ω1(Ḟ , Ė, Ḋ)] −Re[C] ×Re[Ω2(Ḟ , Ė, Ḋ)]
+Re[Ȧ] ×Re[Ω0(g1, g2, g3)] +Re[Ḃ] ×Re[Ω1(g1, g2, g3)]

+Re[Ċ] ×Re[Ω2(g1, g2, g3)], (3.42)

where a dot denotes the time derivative, and the functions H, g1, g2 and g3 are defined
as

H=
eb

b2

{[
2
(

1−
1
b

)
− b

]
D+ (1− b)E − bF

}
, (3.43)

g1 =
1
b3 (2D+ b(bF − E)) , g2 =

1
b2 (bE − 2D), g3 =

D
b
. (3.44a−c)

3.3. Propulsive efficiency
Propulsive efficiency is defined as the ratio between the time-averaged power output
of the airfoil (thrust force multiplied by the forward speed U) and the time-averaged
input power required to drive the airfoil:

η=
C̄T

C̄P
, (3.45)

where the time-averaged quantities are defined as

C̄T ≡
1
T

∫ t+T

t
CT(t) dt, C̄P ≡

1
T

∫ t+T

t
CP(t) dt, (3.46a,b)

with T = 2π/k being the non-dimensional period of the oscillation. This quantity will
be computed explicitly for the particular case discussed below.

4. First oscillation mode of a flexible plate
The special case with b= 0 corresponds to a quadratic flexural motion of a heaving

and pitching foil, which is of particular interest because it is equivalent to the first
oscillation mode of a flexible foil. The corresponding expressions for the lift, thrust,
moment and input power are obtained by making the limit b → 0 in the above
expressions.

For the lift one obtains

CL =π
[
α̇ + 2pδ̇ − ḧ− aα̈ −

(
p2
+

1
4

)
δ̈
]
+ Γ0C(k). (4.1)

When δm=0 this expression coincides with the lift coefficient obtained by von Kármán
& Sears (1938) using the present impulse theory, and previously by Theodorsen (1935)
from a more standard potential flow approach.
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For the thrust, the functions Q and Ωn become

lim
b→0

Q(ã, b̃, c̃)=
ib̃
k

C(k)+
[(

1+ ik
k

)
b̃+ iã+

(
2+ ik

k
−

2i
k2

)
c̃
]

2
π

C1(k)+
c̃
k

C2(k),

(4.2)

lim
b→0

Ω0(ã, b̃, c̃)= b̃π, lim
b→0

Ω1(ã, b̃, c̃)= c̃
π

4
, lim

b→0
Ω2(ã, b̃, c̃)= b̃

π

4
, (4.3a−c)

where C2(k) is given by

C2(k)≡
H(2)

2 (k)

iH(2)
0 (k)+H(2)

1 (k)
= F2(k)+ iG2(k). (4.4)

Consequently, the thrust coefficient can be written as

CT = −Re
[
α + 2pδ

]
×CL +

π

2

{
Re[δ] ×Re

[
α̈

2
+ pδ̈ − δ̇

]
+ Re[δ̇] ×Re

[
α̇

2
+ pδ̇ − δ

]}
+Re

[
α̇ + 2pδ̇

]
×Re

{
π

[
ḣ+ aα̇ +

(
p2
+

1
4

)
δ̇ − (α + 2pδ)

]
+ Γ0

[
i
k

C+
(

1+ ik
k

)
2
π

C1

]}
+Re

[
ḣ+ aα̇ − (α + 2pδ)+ p2δ̇

]
×Re

[
Γ0
−2i
π

C1

]
+Re[δ] ×Re

[
Γ0

(
−iC2 − 2

1+ ik
k

2
π

C1

)]
+Re[δ̇] ×Re

{
Γ0

[(
2i
k2
−

2+ ik
k

)
2
π

C1 −
C2

k

]}
. (4.5)

The complex form of this expression coincides with the thrust obtained by Fernandez-
Feria (2016) when δm = 0, though here the real part of the nonlinear expression is
separated in a slightly different form.

The moment coefficient becomes

CM =
Γ0

2

(
1
2
+ a
)

C(k)−
π

2

{(
1
2
− a
)
α̇ + aḧ+

(
1
8
+ a2

)
α̈

+

[
p
4
+ a

(
p2
+

1
4

)]
δ̈ +

[(
1
2
− a
)

p− 1
]
δ̇

2
− δ

}
. (4.6)

As in the case of the lift, the above expression coincides with the moment obtained
by von Kármán & Sears (1938) when δm = 0.

Finally, the input power coefficient can be written in the physically relevant form

CP =−ḣ(t)CL − 2α̇(t)CM − δ̇(t)Υ , (4.7)

where

Υ = p(4CMp − pCL)+ Γ0C(k)−
π

4

[
ḧ+ aα̈ +

(
p2
+

1
3

)
δ̈ − 2δ

]
, (4.8)
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and CMp ≡ CM(a = p) is the moment coefficient but in relation to the point x = p,
where the flexure component of the motion vanishes. It must be noted that, to obtain
the above input power coefficient, the limit b→ 0 in the double integral appearing in
(3.13), which now can be written as∫ 1

−1

(∫ 1

x

∂zs

∂t
dξ
)
∂$s

∂t
dx=

∫ 1

−1
[H+ (g1 + g2x+ g3x2)ebx

]
∂$s

∂t
dx, (4.9)

has to be done collectively to all the terms inside the integrand, because the functions
H, g1, g2 and g3 diverge separately as b→ 0, but together

lim
b→0
[H+ (g1 + g2x+ g3x2)ebx

] =F(x− 1)+
E
2
(x2
− 1)+

D
3
(x3
− 1). (4.10)

Thus, the general expression (3.42) is valid when b 6= 0, and one has to use expression
(4.7) when b= 0.

4.1. Time-averaged coefficients and propulsive efficiency
The time-averaged coefficients (3.46) can now be written in simple closed forms.
To that end it is convenient to define the following non-dimensional parameters to
separate the different components of the foil’s motion:

θ =
a0

kh0
, θhd =

δm

kh0
, θpd =

δm

a0
, (4.11a−c)

where the first one, θ , is the well-known feathering parameter (Lighthill 1969) for a
pitching and heaving motion of a rigid foil. Thus, the time-averaged thrust coefficient
can be written either normalized in relation to a pure heaving motion,

ĈTh ≡
C̄T

(kh0)2
= th(k)+ thp(k, a, φ)θ + tp(k, a)θ 2

+ thd(k, p, ψ)θhd + tpd(k, p, a, ψ, φ)θhdθ + td(k, p)θ 2
hd, (4.12)

or in relation to a pure pitching motion,

ĈTp ≡
C̄T

a2
0
= th(k)θ−2

+ thp(k, a, φ)θ−1
+ tp(k, a)

+ thd(k, p, ψ)θpdθ
−1
+ tpd(k, p, a, ψ, φ)θpd + td(k, p)θ 2

pd, (4.13)

where the functions th(k), thp(k, a, φ), tp(k, a), thd(k, p, ψ), tpd(k, a, p, φ, ψ) and
td(k, p) are given by (A 1)–(A 6) in appendix A. Note that for θhd = 0 or θpd = 0,
these expressions do not coincide exactly with those for an oscillating rigid foil
given in Fernandez-Feria (2017) because here the real part of the complex nonlinear
expression for the thrust force is separated in a slightly different way, but the results
are practically indistinguishable.

The time-averaged input power coefficient is given by

C̄P =−ḣ(t)CL − 2α̇(t)CM − δ̇(t)Υ , (4.14)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.870


Propulsion of a flapping undulatory foil 883 A19-13

which, similarly to the mean thrust coefficient, can be written in terms of the
parameters (4.11) either as

ĈPh ≡
C̄P

(kh0)2
= ph(k)+ php(k, a, φ)θ + pp(k, a)θ 2

+ phd(k, p, ψ)θhd + ppd(k, p, a, ψ, φ)θhdθ + pd(k, p)θ 2
hd (4.15)

or as

ĈPp ≡
C̄P

a2
0
= ph(k)θ−2

+ php(k, a, φ)θ−1
+ pp(k, a)

+ phd(k, p, ψ)θpdθ
−1
+ ppd(k, p, a, ψ, φ)θpd + pd(k, p)θ 2

pd, (4.16)

where the functions ph(k), php(k, a, φ), pp(k, a), phd(k, p, ψ), ppd(k, a, p, φ, ψ) and
pd(k, p) are given by (A 7)–(A 12) in appendix A.

Finally, the propulsive efficiency (3.45) can be computed using any of the above
alternative forms of C̄T and C̄P. It is convenient to use a propulsive efficiency relative
to that of a rigid oscillating foil, η0:

η̂≡ η− η0, with η0 =
th(k)+ thp(k, a, φ)θ + tp(k, a)θ 2

ph(k)+ php(k, a, φ)θ + pp(k, a)θ 2
. (4.17)

5. Model validation

Before analysing in detail the results corresponding to the first oscillation mode of
a flexible foil (b= 0) considered in the previous section, it is convenient to validate
the present theoretical results by comparing them with available numerical data for
both b= 0 and b 6= 0.

We first consider the numerical results of Le et al. (2010), who investigated the
performance of a flapping wing with different chord flexures, corresponding, in the
notation of the present model, to b = 0 and a0 = 0 (no pitching motion). Those
authors reported results for different values of the flexure amplitude δm and the
heave amplitude h0, with varying phase shift ψ between the two components of the
foil’s motion. In particular, they considered the case of a plunging NACA0012 foil
clamped at the leading edge (i.e. with p=−1 in our notation and without rotation at
the leading edge) for Re= 3× 104.

Figure 3 compares the numerical results of Le et al. (2010) for the mean values of
the thrust and input power coefficients, and for the propulsive efficiency, as functions
of the phase shift ψ between the heaving and deflection motions, with the present
theoretical results for two values of δm. For reference, the results for a rigid foil are
also included, which are obviously independent of ψ . The agreement is quite good
for the three mean magnitudes represented in all the range of values of ψ . But it
should be noted that, since the computation of the input power is very sensitive to any
temporal shift between the lift coefficient CL(t) obtained numerically and the vertical
motion ḣ(t), to fit C̄P we have included a very small temporal shift 1t in the lift when
computing the mean value of CP from our theoretical formulation as follows:

C̄P =−
1
T

∫ t+T

t
[ḣ(t)CL(t+1t)+ δ̇(t)Υ (t)] dt. (5.1)
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FIGURE 3. Comparison of the present results for the mean thrust, input power and
efficiency with numerical results from Le et al. (2010) for a pure heaving motion with
deflection (b = a0 = 0), with h0 = 0.35, k = 1.82, p = −1, CT0 = −0.055: (a) δm = 0.1,
1t/T =−0.06 for C̄P; (b) δm = 0.4, 1t/T =−0.025 for C̄P.

The values of 1t are given in the caption of figure 3, together with all the kinematic
parameters. In figure 3(b), 1t is taken directly from CL(t) data in Le et al. (2010),
which are not available for the case of figure 3(a), and we take the values that best
fit CP. These 1t are very small compared with the period T , justifying their use to
compensate any small temporal shift in the computation of CL from the numerical
simulations. Note also the excellent agreement between the theoretical results for C̄T
and the numerical results obtained by Le et al. (2010) for any value of ψ , particularly
in figure 3(a) where the non-dimensional flexure amplitude δm is smaller.

Next we consider the numerical results of Zhang et al. (2018) and of Dong & Lu
(2007), who analysed two different undulatory motions, i.e. with b 6= 0 in the present
notation. As commented on in the Introduction, this kind of motion is commonly used
to model fish locomotion. To put them into a biological context, the body or caudal fin
of fishes can be classified into five groups that differ in the fraction of the body that
is displaced laterally (coordinate z in the present notation) (Breder 1926): anguilliform
(e.g. eels), sub-carangiform (e.g. trout), carangiform (e.g. jack mackerels), thunniform
(e.g. tunas) and ostraciiform (e.g. boxfishes). Examples of three of these motions are
plotted in figure 4, with the corresponding values of the parameters in the present
model given in table 1. Also included are the values of the parameters corresponding
to the selected numerical results of Zhang et al. (2018) and Dong & Lu (2007), which
are compared below with the present theoretical results, together with other references
and some additional information about the numerical simulations.

Figure 5 compares the lift coefficient from the numerical results of Zhang et al.
(2018) for several NACA profiles with the present theoretical results. The numerical
results for the different foil thicknesses are all quite close to each other, and with
a good agreement with the present zero-thickness theoretical results, with a slightly
better agreement for the NACA0016 profile, but for no particular reason.

Figure 6 compares the thrust coefficient computed numerically by Dong & Lu
(2007) with the present theoretical results, both the time-averaged values as a function
of the reduced frequency k, and its temporal evolution during one cycle for k= 1.5π.
As discussed in Fernandez-Feria (2017), the mean values are corrected to account
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FIGURE 4. (a) Anguilliform, carangiform and thunniform motion at the mid-line.
(b) Superimposed body outlines separated by 1t/T = 0.25. The corresponding values of
the parameters of the present model and references are given in table 1.

h0 a a0 φ p δm ψ b1 b2 k Re

Anguilliform
0 0 0 0 −3.8243 0.1960 0 0 π [0.5, 2]π 5000

0.6346 4.1730 0.1212 π 0 0 0 0 π [0.3, 1.3]π [50, 2× 105
]

Carangiform
0.01906 0 0 0 −0.4923 0.18094 0 0 π [0.5, 2]π 5000

0.1 0 0 0 0 0 0 0.25 π π and 2.5π 100

Thunniform 0 0 0 0 −1.586 0.5549 0.1317 0 π/1.67 [0.5, 2]π 7.1[103, 105
]

TABLE 1. Values of the kinematic parameters for the different motions considered
in figures 4–6. Anguilliform from Tytell (2004) and Zhang et al. (2018), respectively;
carangiform from Dong & Lu (2007) and Zhang & Eldredge (2009), respectively; and
thunniform from Chang, Zhang & He (2012).

for the viscous drag by adding to the present theoretical results a quasi-static thrust
C̄T0 < 0 (i.e. by subtracting an offset quasi-static drag −C̄T0), corresponding to the
numerical results for k= 0. Since those authors do not provide numerical results for
k= 0, we have selected two values of C̄T0 in figure 6(a), one that yields a better fit
for small values of k and the other one for higher values of k, though both values
of C̄T0 are quite close to each other. Notice that no mean drag correction is needed
in figure 6(b) since we plot the instantaneous thrust coefficient minus its numerical
value at t= 0, CT(t= 0).

6. Results and discussion for b= 0

Results with no undulatory motion (b = 0) are presented and discussed in this
section. The kinematics of the three different cases considered are sketched in
figure 7.

6.1. Pure flexural motion
We consider first the simplest case of a pure flexural motion of the first oscillating
mode, without heaving or pitching motions (h0= 0 and a0= 0). Note from (4.12) and
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FIGURE 5. Anguilliform motion. Time-dependent lift coefficient during one cycle for
k= π. Numerical results from figure 9(d) in Zhang et al. (2018) for Re= 5× 104. Note
that those authors non-dimensionalize the lift as L/(ρU2c2), so that the present CL/4 is
plotted. The corresponding values of the kinematic parameters in the present model are
given in table 1.
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Present with CT0 = -0.075
Dong & Lu (2007)
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(a) (b)

FIGURE 6. Carangiform motion. (a) Time-averaged thrust coefficient, C̄T , as a function
of k, with two different values of the offset drag: C̄T0 =−0.055 and −0.075. (b) Time-
dependent thrust coefficient during one cycle for k= 1.5π. Numerical results from Dong
& Lu (2007). The corresponding values of the kinematic parameters in the present model
are given in table 1.

(4.15) that in this case only the last terms of the thrust and power coefficients are
different from zero, which are quadratic in the trailing-edge deflection amplitude δm.
Thus, it is convenient to use the following normalized thrust and power coefficients:

ĈTd ≡
C̄T

δ2
m

= td(k, p), ĈPd ≡
C̄P

δ2
m

= pd(k, p), (6.1a,b)

where the functions td and pd are given in appendix A. The efficiency is η =

td(k, p)/pd(k, p).
Figure 8 shows the contours of the normalized thrust ĈTd and efficiency η as

k and the location of the deflection pivot point p are varied. It is clear from this
figure that no thrust is generated when k . 1 (i.e. ĈTd < 0). For k & 1, the maximum
propulsive efficiency is always reached for a clamped leading edge (p = −1). This
can be justified by the consideration that in this case all the bending of the foil is
useful to generate thrust (see figure 7a). For this reason we only consider the cases
with p = −1 in the results reported below when a heaving or a pitching motion is
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FIGURE 7. Kinematics schemes for pure flexural motion with different values of p (a),
pure heaving motion with chordwise deflection for different values of ψ and p=−1 (b)
and pure pitching motion with chordwise deflection for different values of ψ and p =
−1 (c). In all cases the same three instants of time are plotted, as indicated.
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FIGURE 8. Contours of the normalized thrust ĈTd (a) and efficiency η (b) on the
(p, k)-plane in a pure flexural motion (b= h0 = a0 = 0).

added to the flexural motion. The optimum value of the reduced frequency k in terms
of propulsive efficiency for p=−1 is about 3.

6.2. Pure heaving motion with chordwise deflection
Next in complexity is the case of a pure heaving motion combined with a deflection
motion of the foil, i.e. the first oscillation mode of a flexible airfoil for a pure heaving
motion, for which (4.12) and (4.15) become

ĈTh = th(k)+ thd(k, p, ψ)θhd + td(k, p)θ 2
hd, (6.2)

ĈPh = ph(k)+ phd(k, p, ψ)θhd + pd(k, p)θ 2
hd, (6.3)
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FIGURE 9. Contours of the normalized thrust Ĉ∗Th (a) and efficiency η̂ (b) on the (ψ, k)-
plane for θhd= 0.75 and p=−1 in a pure heaving and deflection motion (b= θ = θpd= 0).

with the ratio θhd between the deflection and heaving amplitudes defined by (4.11) and
the different functions given in appendix A. To compare the thrust of the flexible foil
with the thrust generated by its rigid counterpart, we define a normalized thrust as

Ĉ∗Th =
ĈTh

th(k)
, (6.4)

which only depends on the non-dimensional parameters k, p, ψ and θhd, as does the
normalized efficiency η̂ defined in (4.17). In order to reduce further the number of
parameters we focus on the case of a clamped leading edge, i.e. p=−1, which was
shown in § 6.1 to yield the best propulsion efficiency.

Figure 9 shows the contours of the normalized thrust Ĉ∗Th and efficiency η̂ as k
and ψ are varied with θhd = 0.75. It is observed that, for 1 . k . 4, the flexible foil
generates more thrust than the rigid airfoil (Ĉ∗Th > 1) when 250◦.ψ . 100◦, and less
when 100◦.ψ . 250◦. In fact, a phase shift ψ between 100◦ and 250◦, approximately,
corresponds to a motion of the foil with the trailing edge pointing downwards at
the beginning of the downstroke, and opposite at the beginning of the upstroke (see
figure 7b), generating less thrust than its rigid counterpart. In relation to the efficiency,
figure 9(b) shows that the model yields a singularity for a particular combination of
k and ψ due to the vanishing of the power coefficient in the present model, where
η changes from +∞ to −∞, so that it is expected that close to this curve on the
(ψ, k)-plane the propulsive efficiency reaches a local maximum, greatly enhancing the
propulsive efficiency of a rigid heaving foil. For k of order unity this corresponds,
approximately, to ψ between 250◦ and 270◦.

To see the effect of θhd we plot the curves on the (ψ, k)-plane corresponding
to Ĉ∗Th = 1 in figure 10(a), and both the curves corresponding to η̂ = 0 and η̂ = 1
(i.e. close to the singularity) in figure 10(b), for 0 < θhd 6 1. Figure 10(a) shows
that the regions of enhanced and reduced thrust in relation to a heaving rigid foil
remain almost independent of θhd for k of order unity. For the efficiency (figure 10b)
the situation is somewhat similar, but the singularity moves towards smaller values
of k as θhd increases. Thus, the present model predicts a maximum enhancement
of the propulsive efficiency in relation to a rigid heaving foil when k ≈ 1 for θhd
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FIGURE 10. Curves Ĉ∗Th = 1 (a), and both η̂= 0 and η̂= 1 (b), on the (ψ, k)-plane for
pure heaving and deflection motion (b= θ = θpd = 0) with 0< θhd 6 1 and p=−1.

approaching unity and ψ ≈ 260◦. This result is in qualitative agreement with the
experimental results of Ramananarivo et al. (2011) for a similar foil motion, where
the maximum efficiency is found to be reached when the trailing-edge deflection
angle is approximately equal to the effective angle of attack at the mid-downstroke,
which is the situation for ψ approaching 270◦ in figure 7(b).

6.3. Pure pitching motion with chordwise deflection
As the third simple case, we consider a pure pitching motion combined with a
deflection motion of the foil, i.e. the first oscillation mode of a flexible airfoil for
pure pitching motion, for which (4.13) and (4.16) become

ĈTp = tp(k, a)+ tpd(k, p, a, ψ, φ)θpd + td(k, p)θ 2
pd, (6.5)

ĈPp = pp(k, a)+ ppd(k, p, a, ψ, φ)θpd + pd(k, p)θ 2
pd, (6.6)

with the ratio θpd between the deflection and pitching amplitudes defined in (4.11).
Since the thrust of a rigid plate may change its sign for a pure pitching motion, to
avoid singularities it is convenient to redefine the normalized thrust coefficient in this
case as

Ĉ∗Tp = ĈTp − tp(k, a). (6.7)

Now Ĉ∗Tp= 0 means the same thrust coefficient as that of the equivalent pitching rigid
foil. The definition of the normalized efficiency (4.17) does not change. Both Ĉ∗Tp

and η̂ depend on the non-dimensional parameters k, a, p, ψ and θpd (note that one
may set φ = 0 since there is no heaving motion, and ψ is now the phase shift of
the deflection in relation to the pitch). Similarly to the previous case, to reduce the
number of parameters we focus on a deflection pivoting at the leading edge (p=−1),
which in the present case implies also a pitching motion about the leading edge, i.e.
a= p=−1.

Figure 11 shows the contours of the normalized thrust Ĉ∗Tp and efficiency η̂ on the
(ψ, k)-plane for θpd= 0.75. For the thrust (figure 11a) we can distinguish two regions:
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FIGURE 11. Contours of the normalized thrust Ĉ∗Tp (a) and efficiency η̂ (b) on the (ψ, k)-
plane for θpd = 0.75 and a= p=−1 in a pure pitching and deflection motion (b= θ−1

=

θhd = 0).
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FIGURE 12. Curves Ĉ∗Tp = 0 (a) and η̂= 0 (b) on the (ψ, k)-plane for pure pitching and
deflection motion (b= θ−1

= θhd = 0) with 0< θpd 6 1 and a= p=−1.

one for small k with two maxima of the relative thrust, around ψ = 0◦ and for ψ &
270◦, and another region for k & 1 where the enhanced thrust is for 90◦ . ψ . 270◦.
Figure 11(b) shows that these regions approximately coincide with those of enhanced
efficiency.

The effect of θpd is plotted in figure 12 as curves corresponding to Ĉ∗Tp=0 and η̂=0
on the (ψ, k)-plane for 0 < θpd 6 1. The regions of enhanced and reduced thrust in
relation to a pitching rigid foil are nearly independent of θpd, with larger variations as
k increases. However, in contrast to the pure heaving motion, the regions of positive
and negative relative efficiency η̂ remain practically unchanged as θpd varies from zero
to unity (figure 12b). Therefore, the above discussed region of maximum enhancement
in the propulsive efficiency of a flexible foil in relation to a pitching rigid foil about its
leading edge remains practically independent of the trailing-edge deflection amplitude
in relation to the pitch amplitude, within the present linearized potential theory valid
for small amplitudes.
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7. Concluding remarks
The closed expressions obtained in the present work for the aerodynamic force

components and moment on a two-dimensional flexible foil undergoing a quite
general undulatory motion, which are validated against available numerical results for
sufficiently high Reynolds numbers and small amplitude of the oscillations, constitute
a convenient tool for predicting and evaluating the optimal conditions for propulsion
in terms of thrust generation and efficiency in a wide range of animal and bioinspired
robotic locomotion.

Relatively simple analytic expressions are obtained for the interesting cases of
pitching and heaving motions superimposed to a chordwise flexibility of the foil,
with the additional force and moment terms in relation to an oscillating rigid foil
neatly separated, and characterized by the ratio between the amplitudes of the
deflection and the rigid motions. When this non-dimensional parameter vanishes one
recovers previous results for a pitching and heaving rigid foil. A detailed evaluation
of the propulsion performance is made for these particular cases, mapping the
regions of thrust and of propulsive efficiency enhancement in relation to the rigid
foil counterpart in the parameter space of the reduced frequency and the relevant
deflection parameters.

The present results are limited to small amplitudes of the oscillations and
sufficiently high Reynolds number for which the linearized potential theory applies.
In addition, no analysis is made of the fluid–structure interaction that may produce
the particular deflection or undulatory motion of the foil. Previous works that have
analysed this fluid–structure interaction have shown that, in some particular pitching
and heaving motions of the foil, the regions of optimal propulsion are related to
structural resonant frequencies of the foil (Michelin & Llewellyn Smith 2009; Dewey
et al. 2013; Moore 2014; Paraz et al. 2016; Moore 2017). The present analytical
results are independent of the material properties of the foil, depending only on the
prescribed kinematics of the flexible foil. Although to analyse the fluid–structure
interaction one needs to model a truly general motion of the deformable foil, with
infinite kinematic parameters, as recently done numerically in this limit of linear
potential theory by Tzezana & Breuer (2019), we believe that with the present fairly
broad class of flapping undulatory motion, with nine non-dimensional parameters, one
may undertake a similar, but more limited, analysis of the fluid–structure interaction to
obtain approximately these kinematic parameters for given properties of the flexible or
compliant material and the boundary conditions at the leading and trailing edges, with
the advantage that now the aerodynamic force and moment are obtained analytically
in terms of these parameters from a general impulse theory. This is left for future
research.
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Appendix A. Functions for the time-averaged coefficients
For easy reference, the functions th(k), thp(k,a,φ), tp(k,a), thd(k,p,ψ), tpd(k,a,p,φ,ψ)

and td(k, p) appearing in the time-averaged thrust coefficient, ĈTh or ĈTp, are repro-
duced here. These functions can be written as

th(k)=−2G1(k), (A 1)
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thp(k, a, φ)= [(3− 4a)G1k− 2F1] cos(φ)+ (2G1 − F1k) sin(φ), (A 2)

tp(k, a)= 2(1− a)k
[

F1 −

(
1
2
− a
)

G1k
]
, (A 3)

td(k, p)=
k

(1− p)2

{
4F1

(
1
2
− p
)
−G1k[1+ 2(p− 1)p]

}
, (A 4)

thd(k, p, ψ) =
4

(1− p)2

(
p−

1
2

)(
G1 −

F1k
2

)
sin(ψ)

+
4

(1− p)2

{
F1

(
1
2
− p
)
−G1k

[(
p−

3
2

)
p+

3
4

]}
cos(ψ), (A 5)

tpd(k, a, p, φ, ψ) =
4k

(1− p)2

{
F1

[
a
(

1
2
− p
)
+ 2

(
1−

p
4

)
p− 1

]
+ G1k

[(
3
4
− a
)

p2
+

3
2

a
(

p−
1
2

)
− p+

1
2

]}
cos(φ −ψ)

k
(1− p)2

[
2a
(

1
2
− p
)
+ p2

]
(2G1 − F1k) sin(φ −ψ). (A 6)

Finally, the functions ph(k), php(k, a, φ), pp(k, a), phd(k, p, ψ), ppd(k, a, p, φ, ψ) and
pd(k, p) appearing in the time-averaged input power coefficient, ĈPh or ĈPp, can be
written as

ph(k)=πF, (A 7)

php(k, a, φ)=−π

{[
2k
(

1
4
− aF

)
+G

]
cos(φ)+ (F−Gk) sin(φ)

}
, (A 8)

pp(k, a)=−πk2

{(
1
4
− a2

)
F+

1
2

(
a−

1
2

)
+

(
a+

1
2

)
G
k

}
, (A 9)

pd(k, p) =
kπ

(1− p)4

{
Fk
2

[
p
(
2p3
+ p− 1

)
+ 1
]
−G

[
p
(
2p2
+ p+ 1

)
− 1
]

+
kp
2

[
p
(

p+
1
2

)
− 1
]}

, (A 10)

phd(k, p, ψ) =
2π

(1− p)2

{[
Fk
(

p2
+

3
4

)
+G

(
1
2
− p
)
−

kp
2

]
cos(ψ)

+

[
F
(

1
2
− p
)
+Gk

(
p+

1
4

)]
sin(ψ)

}
, (A 11)

ppd(k, a, p, φ, ψ) =
kπ

(1− p)2

{
F
[
−2a

(
1
2
− p
)
− p2
−

3
2

]
+ Gk

[
−2a

(
p+

1
4

)
+ p2
+

3
4

]
+ k2p2(a− p)+

1
2

}
sin(φ −ψ)
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−
kπ

(1− p)2

{
Fk
[

1
4
− 2ap2

−
3a
2
+ p
]

+G
[

2a
(

p−
1
2

)
+ p(p+ 2)+

1
2

]
+

kp
2

(
a
2
+ p−

5
4

)
+

k
4

}
cos(φ −ψ). (A 12)
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