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An identity based on the generalised negative binomial
distribution with applications in ruin theory
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Abstract
In this study, we show how expressions for the probability of ultimate ruin can be obtained from the
probability function of the time of ruin in a particular compound binomial risk model, and from the
density of the time of ruin in a particular Sparre Andersen risk model. In each case evaluation of
generalised binomial series is required, and the argument of each series has a common form. We
evaluate these series by creating an identity based on the generalised negative binomial distribution.
We also show how the same ideas apply to the probability function of the number of claims in a
particular Sparre Andersen model.
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1. Introduction

Certain identities in ruin theory are trivially obvious in general, but are more difficult to obtain in
specific cases. For example, in a Sparre Andersen risk model, if ψ(u) denotes the probability of
ultimate ruin from initial surplus u, and w(u, t) for t>0 denotes the defective density of the time of
ruin given initial surplus u, then it is true that ψðuÞ= Ð10 wðu; tÞdt. What is perhaps less obvious is
how to obtain an expression for ψ(u) given an expression for w(u, t). This is the type of question we
consider in this note. Our objective is not to derive new results in ruin theory. Rather, we aim to
show how a particular identity, discussed in section 3, allows us to obtain identities that we know
must hold from general considerations.

Recent papers by the author, for example Dickson & Li (2010) and Dickson (2012), make use of
generalised binomial series in solving finite time ruin problems, and these will be central in what
follows. A generalised binomial series is defined by Graham et al. (1994) as

BτðzÞ=
X1
k=0

τk + 1

k

 !
zk

τk + 1
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and this series has the extremely useful property that

BτðzÞr =
X1
k=0

τk + r

k

 !
r zk

τk + r

Unfortunately, for most values of τ a simple form of BτðzÞ does not exist, a notable exception being
the case τ= 2 (see Graham et al., 1994), with

B2ðzÞ= 1� ffiffiffiffiffiffiffiffiffiffiffiffi
1�4z

p

2z
(1.1)

Equation (1.1) has been used in relation to problems involving the number of claims until ruin in the
classical risk model and variations thereof (see Dickson, 2012 and Dickson & Qazvini, 2016).
Generalised binomial series with integer values of τ> 2 appear in other ruin problems, and in this
note we show how such series can be evaluated. Evaluation hinges on the fact that if we can write z
in a particular way that occurs in ruin problems, then we can obtain a simple expression for BτðzÞ.

2. Preliminaries

In this section we describe the risk models discussed in this note, and as the models are well-known,
the descriptions are brief. The first is the compound binomial model introduced by Gerber (1988).

This is a discrete time model where the surplus process fUdðnÞg1n=0 is given by UdðnÞ= u + n�Pn
i=1

Xi

with Ud(0)=u, where u is a non-negative integer. The premium income per unit time is 1 and
fXig1i=1 is a sequence of independent and identically distributed (i.i.d.) random variables, distributed
on the non-negative integers, and representing aggregate claims per unit time. The ultimate ruin
probability for this model can be defined in two different ways. The definition used in this note is that
used by Li & Sendova (2013), namely

ψdðuÞ= PrðUdðnÞ< 0 for some n; n= 1; 2; 3; ¼ Þ
but we could have equally used the definition given by Gerber (1988) and reworked the results we
use below from Li & Sendova (2013). The net profit condition for this model is E½X1�< 1. When this
condition holds, ψdðuÞ< 1, and when it does not, ψd(u)= 1. The time of ruin is defined as
Td;u =minfn≥ 1 : UdðnÞ< 0g, and the probability function of the time of ruin is

wd u; nð Þ=Pr Td;u = n
� �

for n= 1; 2; 3; ¼ .

The second model we consider is the model introduced by Sparre Andersen (1957). Let fWig1i=1 be a
sequence of i.i.d. random variables representing the times between claims (with W1 being the time to
the first claim), and let fYig1i=1 be a sequence of i.i.d. random variables representing the amounts of the
individual claims. The premium income per unit time is c>0 and the surplus immediately following

payment of the nth claim, n=1, 2, 3, … , is UðnÞ=u +
Pn
i=1

ðcWi�YiÞ where u≥0 is the initial surplus.

The ultimate ruin probability is defined as ψðuÞ= PrðUðnÞ< 0 for some n; n= 1; 2; 3; ¼ Þ. The net
profit condition for this model is c>E[Y1]/E[W1], and when this condition holds ψ(u)<1. If the net
profit condition does not hold, we have ψ(u)=1. The time of ruin is defined as Tu = infft : UðtÞ<0g,
and the defective density of the time of ruin is denoted as w(u, t) for t>0, where
wðu; tÞ= d½PrðTu ≤ tÞ� =dt.

The simplest version of the Sparre Andersen model is the classical risk model in which the dis-
tribution of W1 is exponential, meaning that claim arrivals are modelled as a Poisson process.
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We now state two results that feature later in this note. First, in a Sparre Andersen model for which
the net profit condition holds and the individual claim amount distribution is exponential with mean
1/α

ψðuÞ= ð1�R = αÞe�Ru (2.1)

where R is the adjustment coefficient, and is the unique positive number satisfying
E½e�cRW1 �E½eRY1 �=1 (see, e.g., Grandell, 1991). When the distribution of W1 is exponential with
parameter λ, R= α − λ/c. Second, in the case when the distribution of W1 is exponential with para-
meter λ and the net profit condition holds, ψð0Þ= λE½Y1� = c (see, e.g., Grandell, 1991).

Most of this note involves Erlang distributions. That is because few explicit results exist for finite
time ruin problems, and most of these for Sparre Andersen models involve Erlang distributions,
either as the distribution for inter-claim times or for individual claim amounts (see Landriault et al.,
2011, and references therein).

3. A Useful Identity

The generalised negative binomial distribution was introduced by Jain & Consul (1971). A gen-
eralised negative binomial random variable, N, has a probability function defined in terms of
parameters k, p and β as

PrðN = nÞ=
βn + k

n

 !
k

βn + k
pnð1�pÞnðβ�1Þ +k for n= 0; 1; 2; ¼

where k>0, 0< p< 1 and j βp j < 1. As the sum over n of this probability function is 1, it follows
that

ð1�pÞ�k =
X1
n=0

βn + k

n

 !
k

βn + k
pnð1�pÞnðβ�1Þ = Bβ pð1�pÞβ�1

� �� �k

giving the useful identity

Bβ pð1�pÞβ�1
� �

= ð1�pÞ�1 (3.1)

In everything that follows, β is a positive integer at least equal to 2, and equation (3.1) offers a means
of evaluating generalised binomial series. However, we need to be careful with the application of
(3.1). Consider the function f(p)= p(1 −p)β −1 over the interval [0, 1]. We have f(0)= f(1)=0, and the
function has a unique maximum at p=1/β. So, if we can actually write z=p(1− p)β −1 in equation
(3.1), then there will be two solutions for p unless we are writing z in terms of the value of p that
maximises f(p).

In sections 4–6, we can make use of each solution. Only one solution is really of interest, and that
solution corresponds to the case when the net profit condition holds for the risk model we consider.
We will see that the condition

j βp j < 1 (3.2)

on the parameters of the generalised negative binomial distribution tells us which of the two solu-
tions to select.
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When p=1/β then (3.1) still holds, even though the condition (3.2) does not, with

Bβ
ðβ�1Þβ�1

ββ

 !
=

β

β�1

This follows from the first identity in (5.59) of Graham et al. (1994). This is not a particularly
significant result in the context of ruin problems, but we state it because in all the applications of
(3.1) that follow, the case p= 1/β corresponds to the premium equalling expected claims. In the case
of two solutions, one solution corresponds to the premium exceeding expected claims, the other to
the premium being less than expected claims.

4. The Compound Binomial Model

In this section we give a simple illustration of the usefulness of equation (3.1). Li & Sendova (2013)
show that the probability function of the time of ruin when aggregate claims are geometrically
distributed with probability function (1− q)qx for x=0, 1, 2, … is

wdðu; nÞ= qn +u +1ð1�qÞn�1 u + 2
2n + u

2n + u

n�1

 !
; for n= 1; 2; 3; ¼

They also show that when the net profit condition holds, that is q<1/2,
ψdðuÞ= ðq = ð1�qÞÞu +2 for u= 0; 1; 2; ¼ . We can obtain this result from their expression
for wd(u, n) as

ψdðuÞ=
X1
n= 1

wdðu; nÞ=
X1
m=0

qm + u+ 2ð1�qÞm u + 2
2m + u + 2

2m + u + 2

m

 !

= qu+ 2B2ðqð1�qÞÞu +2

When q< 1/2, the net profit condition holds, and condition (3.2) is satisfied (with β= 2 and p= q), so
B2ðqð1�qÞÞu +2 = ð1�qÞ�ðu+ 2Þ and hence ψdðuÞ= ðq = ð1�qÞÞu+ 2.

When q> 1/2, the net profit condition does not hold, nor is condition (3.2) satisfied, so
B2ðqð1�qÞÞu +2 = q�ðu+2Þ and hence ψd(u)=1. The same conclusion holds when q= 1/2.

Although formula (1.1) gives an expression for B2ðzÞ, we did not need it. Our approach gives the
solution in the case of interest, that is the net profit condition holds, as well as giving the solution
when it does not.

5. Erlang (n) Risk Model with Exponential Claims

In this section, we consider an Erlang risk model with exponential claims. Specifically, we assume
thatW1 ~ Erl(n, λ) so that E(W1)=n/λ and Y1 ~ Erl(1, α). We consider two formulae for the density of
the time of ruin and explain how the ultimate ruin probability can be derived from each of them.
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5.1. The density of the time of ruin

We consider first a formula which is implicit in the literature, namely

wðu; tÞ= e�αu�ðλ + αcÞtX1
j=1

ðαuÞj�1ðλtÞnjðnjÞ
ðj�1Þ !

X1
m=0

ðαcλnÞmtmðn+ 1Þ�1

m ! ½nðm + jÞ� ! (5.1)

The above formula is obtained from results stated in Nie et al. (2015). Special cases of this formula
have been derived previously by Drekic & Willmot (2003) in the case n=1, and by Dickson & Li
(2010) in the case n=2. We start with this formula for w(u, t) as the manipulations are more
straightforward than those in the next subsection. We now give the main result of this subsection.

Theorem 5.1 The ultimate ruin probability is

ψðuÞ= λBn+ 1ðQnÞ
λ + αc

� �n

exp �αu 1� λBn+ 1ðQnÞ
λ + αc

� �n� �	 

(5.2)

where Qn =αcλn = ðλ + αcÞn+ 1.

Proof 5.1. Integrating expression (5.1) with respect to t over (0, ∞) gives ψ(u), and thus

ψðuÞ= e�αu
X1
j=1

ðαuÞj�1λnjðnjÞ
ðj�1Þ !

X1
m=0

ðαcλnÞmΓðnj +mðn + 1ÞÞ
m ! ½nðm + jÞ� ! ðλ + αcÞnj +mðn+ 1Þ

= e�αu
X1
j=1

ðαuÞj�1λnj

ðj�1Þ ! ðλ + αcÞnj
X1
m=0

ðn + 1Þm + nj

m

 !
njQm

n

ðn + 1Þm + nj

As

X1
m=0

ðn + 1Þm + nj

m

 !
njQm

n

ðn + 1Þm + nj
=Bn +1ðQnÞnj

it follows that

ψðuÞ= e�αu
X1
j=1

ðαuÞj�1λnjBn+ 1ðQnÞnj
ðj�1Þ ! ðλ + αcÞnj ð5:3Þ

=
λBn+1ðQnÞ

λ + αc

� �n

exp �αu 1� λBn +1ðQnÞ
λ + αc

� �n� �	 


Before we explain how equation (3.1) can be used to evaluate the generalised binomial series in (5.2),
we remark that from formula (2.1), when the net profit condition holds, the adjustment coefficient is
given by

R= α 1� λBn+ 1ðQnÞ
λ + αc

� �n� �
(5.4)

5.1.1. The case n= 1
When n=1, our risk model is the classical risk model. If we first make the usual assumption that the
net profit condition holds, that is c> λ/α, then from (3.1) with β= 2, we see that the condition
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j 2p j < 1 leads to the choice p= λ/(λ + αc). Hence B2ðQ1Þ= ðλ + αcÞ = ðαcÞ, formula (5.2) gives the
familiar result

ψðuÞ= λ

αc
expf�ðα�λ = cÞug

and formula (5.4) gives R= α − λ/c. However, if we make the assumption that 0< c≤ λ = α, then the
net profit condition does not hold, and we see that the correct choice is p= αc/(λ + αc). In this case
B2ðQ1Þ= ðλ + αcÞ = λ, leading to ψ(u)=1.

5.1.2 The case n> 1
When the net profit condition c> λ/(nα) holds, condition (3.1) is satisfied by ~p< 1 = ðn + 1Þ such that

~pð1�~pÞn = αcλn = ðλ + αcÞn +1 (5.5)

Then

λBn +1ðQnÞ
λ + αc

� �n

=
λ

ðλ + αcÞð1�~pÞ
� �n

=
ðλ + αcÞ~p

αc
=ψð0Þ (5.6)

and we see that ψðuÞ=ψð0Þexpf�Rug with R= α�~pðα + λ = cÞ.
In the case when 0< c< λ = ðnαÞ, condition (3.1) is satisfied by p= αc/(λ + αc), resulting
in Bn+ 1(Qn)= (λ + αc)/λ, which gives ψ(u)=1. The same conclusion is reached when c= λ/(nα).

5.2. A second identity

Dickson et al. (2005) obtained a different formula for w(u, t), and they integrate this formula to obtain
an expression for ψ(u). We now show that this expression leads to the same results for ψ(u) as in the
previous subsection. To do this, we make use of identity (5.61) from Graham et al. (1994), namely

X1
k=0

τk + r

k

 !
zk =

BτðzÞr
1�τ + τBτðzÞ�1 (5.7)

Starting from formula (3.12) of Dickson et al. (2005), and with the notation (a)n=Γ(n+ a)/Γ(a)
(Pochhammer’s symbol), we have

ψðuÞ= e�αu
X1
m=0

λ

λ + αc

� �nm +nXm
j=0

ðnm + nÞj
j ! ðm�jÞ !

αc
λ + αc

� �j
ðαuÞm�j

� αcne�αu

λ + αc

X1
m=0

λ

λ + αc

� �nm + 2nXm
j=0

ðnm + 2n + 1Þj
j ! ðm�jÞ !

αc
λ + αc

� �j
ðαuÞm�j

= e�αu
X1
m=0

X1
j=0

λ

λ + αc

� �nðm + jÞ + nðnðm + jÞ + nÞj
j !m !

αc
λ + αc

� �j
ðαuÞm

� αcne�αu

λ + αc

X1
m=0

X1
j=0

λ

λ + αc

� �nðm + jÞ +2nðnðm + jÞ + 2n + 1Þj
j !m !

αc
λ + αc

� �j
ðαuÞm

= e�αu
X1
m=0

λ

λ + αc

� �nm +nðαuÞm
m !

X1
j=0

Γðnðm + jÞ + n + jÞ
j !Γðnðm + jÞ + nÞ Q

j
n ð5:8Þ

� αcne�αu

λ + αc

X1
m=0

λ

λ + αc

� �nm +2n ðαuÞm
m !

X1
j=0

Γðnðm + jÞ + 2n + 1 + jÞ
j !Γðnðm + jÞ + 2n + 1Þ Q

j
n (5.9)
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where Qn= αcλn/(λ + αc)n +1 as before. Note that we have used the identityP1
m=0

Pm
j=0

gðm; jÞ= P1
m=0

P1
j=0

gðm + j; jÞ in the first step. Now the sum over j in (5.8) can be written as

X1
j=0

ðn + 1Þj + nðm + 1Þ�1

j

 !
Qj

n

and from (5.7) this can be written as

Bn+ 1ðQnÞnðm +1Þ�1

ðn + 1ÞBn +1ðQnÞ�1�n

and similarly the sum over j in (5.9) is

X1
j=0

ðn + 1Þj + nðm + 2Þ
j

 !
Qj

n =
Bn +1ðQnÞnðm +2Þ

ðn + 1ÞBn +1ðQnÞ�1�n

So we obtain

ψðuÞ= e�αu λ
λ + αc

� �nBn +1ðQnÞn�1

ðn + 1ÞBn +1ðQnÞ�1�n

X1
m=0

αu λ
λ + αc

� �n� �mBn +1ðQnÞnm
m !

� αcn λ
λ + αc

� �2nBn +1ðQnÞ2ne�αu

λ + αc

X1
m=0

αu λ
λ + αc

� �n� �mBn+ 1ðQnÞnm
m !

=
λ

λ + αc

� �nBn +1ðQnÞn�1

ðn + 1ÞBn +1ðQnÞ�1�n
exp �αu 1� λBn +1ðQnÞ

λ + αc

� �n� �	 


� αcn λ
λ + αc

� �2nBn +1ðQnÞ2n
ðλ + αcÞððn + 1ÞBn +1ðQnÞ�1�nÞ exp �αu 1� λBn+ 1ðQnÞ

λ + αc

� �n� �	 


giving

ψðuÞ=ψð0Þexp �αu 1� λBn +1ðQnÞ
λ + αc

� �n� �	 

(5.10)

with

ψð0Þ=
λ

λ + αc

� �nBn +1ðQnÞn�1

ðn + 1ÞBn +1ðQnÞ�1�n
1� αcn λ

λ + αc

� �nBn+ 1ðQnÞn +1
λ + αc

 !

=
λ

λ + αc

� �nBn+ 1ðQnÞn
n + 1�nBn+ 1ðQnÞ 1�nQnBn +1ðQnÞn+ 1

� �

From the first identity in (5.59) of Graham et al. (1994), we know that

QnBn+ 1ðQnÞn +1 =Bn+ 1ðQnÞ�1
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giving

1�nQnBn +1ðQnÞn+ 1 = n + 1�nBn +1ðQnÞ

and so, as before, ψð0Þ= ðλBn +1ðQnÞ = ðλ + αcÞÞn and formula (5.10) for ψ(u) is the same as (5.2).

6. The Number of Claims Until Ruin

In this section, we consider the number of claims until ruin from initial surplus u, denoted by Nu,
with probability function pk(u)=Pr(Nu=k). Our aim here is to illustrate how identity (3.1) allows us

to show that
P1
k= 1

pkðuÞ=ψðuÞ in particular cases. We start by considering the model of the previous

section, then consider an identity under the classical risk model.

6.1. Erlang (n) risk model

For the model considered in section 5, Frostig et al. (2012) show that

pkð0Þ=
λnkðαcÞk�1½ðn + 1Þk�2� !

ðλ + αcÞðn+1Þk�1ðnk�1Þ ! k !
; for k= 1; 2; 3; ¼ (6.1)

See also Landriault et al. (2011) and Zhao & Zhang (2013). We now generalise this result to the case
u> 0, and the key reason for taking the following approach is that our proof also shows whyP1
k=1

pkðuÞ=ψðuÞ. From arguments in Dickson & Qazvini (2016) concerning the classical risk model

with exponential claims, we can easily show that the probability generating function of Nu for this
model is

PNu ðrÞ=E rNuIðTu <1Þ� �
=
X1
m=1

ðαuÞm�1e�αu

ðm�1Þ ! PN0 ðrÞm (6.2)

where I is the indicator function. So, by deriving PN0ðrÞ we can find PNuðrÞ, and we do this in the
next two theorems. Before doing so, we remark that Landriault et al. (2011) obtained an
expression (their formula (23)) for the probability function of the number of claims until ruin in a
Sparre Andersen model where the inter-claim time distribution is an infinite mixture of Erlang
distributions with the same scale parameter and the claim size distribution is exponential. Formula
(6.4) for pm(u) is new, although it can also be obtained by manipulating formula (23) of Landriault
et al. (2011). We do not consider the more general probability function obtained by Landriault
et al. (2011) because, as far as we can tell, summation of it does not lead to generalised binomial
series other than in the special case that a single mixing weight is 1, that is, the case we consider of
the Erlang distribution.

Theorem 6.1 The probability generating function of N0 is

PN0ðrÞ=
rλn

ðλ + αcÞn Bn+1
αcrλn

ðλ + αcÞn+ 1
 !n

(6.3)
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Proof 6.1. Using expression (6.1) we have

PN0ðrÞ=
X1
k=1

rkpkð0Þ=
X1
k=1

ðrλnÞkðαcÞk�1½ðn + 1Þk�2� !
ðλ + αcÞðn +1Þk�1ðnk�1Þ ! k !

=
X1
t= 0

ðrλnÞt +1ðαcÞt½ðn + 1Þðt + 1Þ�2� !
ðλ + αcÞðn+ 1Þðt +1Þ�1½nðt + 1Þ�1� ! ðt + 1Þ !

=
rλn

ðλ + αcÞn
X1
t= 0

αcrλn

ðλ + αcÞn +1
 !t ðnt + t + n�1Þ !

½nðt + 1Þ�1� ! ðt + 1Þ !

=
rλn

ðλ + αcÞn
X1
t =0

½ðn + 1Þt + n� !
½nðt + 1Þ�1� ! ðt + 1Þ !

1
ðn + 1Þt + n

αcrλn

ðλ + αcÞn+1
 !t

Now the sum in the previous line is Bn+ 1ðαcrλn = ðλ + αcÞn+ 1Þn if

½ðn + 1Þt + n� !
½nðt + 1Þ�1� ! ðt + 1Þ ! = n

ðn + 1Þt + n
t

 !

and this is easily seen to be an equality, giving (6.3).

Theorem 6.2 For m= 1, 2, 3, … ,

pmðuÞ= e�αu λ

λ + αc

� �nmXm�1

k=0

αc
λ + αc

� �k ðαuÞm�k�1

ðm�k�1Þ !
nm + k

k

 !
nðm�kÞ
nm + k

(6.4)

Proof 6.2. Starting from expression (6.2) and inserting expression (6.3) for PN0ðrÞ, we have

PNuðrÞ=
X1
m=1

ðαuÞm�1e�αu

ðm�1Þ !
rλn

ðλ + αcÞn
� �m

Bn +1
αcrλn

ðλ + αcÞn +1
 !mn

ð6:5Þ

=
X1
m=1

X1
t= 0

ðαuÞm�1e�αu

ðm�1Þ !
rλn

ðλ + αcÞn
� �m ðn + 1Þt +mn

t

 !

´
αcrλn

ðλ + αcÞn +1
 !t

mn
ðn + 1Þt +mn

We now use the identity

X1
m=1

X1
t= 0

gðm; tÞ=
X1
m= 1

Xm�1

t =0

gðt + 1; m�t�1Þ (6.6)
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for some function g to obtain

PNuðrÞ= e�αu
X1
m= 1

rλn

ðλ + αcÞn
� �mXm�1

t=0

αc
λ + αc

� �m�t�1 ðαuÞt
t !

´
ðn + 1Þm�t�1

m�t�1

 !
nðt + 1Þ

ðn + 1Þm�t�1

= e�αu
X1
m= 1

rλn

ðλ + αcÞn
� �mXm�1

k=0

αc
λ + αc

� �k ðαuÞm�k�1

ðm�k�1Þ !

´
nm + k

k

 !
nðm�kÞ
nm + k

ð6:7Þ

As the coefficient of rm in (6.7) is pm(u), we obtain

pmðuÞ= e�αu λ

λ + αc

� �nmXm�1

k=0

αc
λ + αc

� �k ðαuÞm�k�1

ðm�k�1Þ !
nm + k

k

 !
nðm�kÞ
nm + k

It is straightforward to show that
P1
m=1

pmðuÞ=ψðuÞ because all we have to do is set r=1 in (6.7) and

then work backwards through the proof of Theorem 6.2 to (6.5). The only difficult step without
knowing the derivation of the probability function is to apply identity (6.6). The equation we obtain
for ψ(u) is the same as (5.2), because when r=1 expressions (6.5) and (5.3) are identical.

6.2. Classical risk model

For the classical risk model, a case other than that of exponential claims in which we can find an
explicit form for pn(u) is when u= 0 and individual claims are Erl(m, μ) distributed. In this case we
can show from formulae (6) and (7) of Dickson (2012) that

pnð0Þ=
Xm�1

i=0

ðmðn�1Þ + n + i�1Þ ! ði + 1Þ
ðn�1Þ ! ðmðn�1Þ + i + 1Þ !

λnðμcÞmðn�1Þ + i

ðλ + μcÞmðn�1Þ + n+ i

We can use this to obtain ψ(0) since

X1
n= 1

pnð0Þ=
X1
n=1

Xm�1

i=0

ðmðn�1Þ + n + i�1Þ ! ði + 1Þ
ðn�1Þ ! ðmðn�1Þ + i + 1Þ !

λnðμcÞmðn�1Þ + i

ðλ + μcÞmðn�1Þ + n+ i

=
Xm�1

i= 0

ði + 1ÞðμcÞi
ðλ + μcÞi

X1
n= 1

ðmðn�1Þ + n + i�1Þ !
ðn�1Þ ! ðmðn�1Þ + i + 1Þ !

λnðμcÞmðn�1Þ

ðλ + μcÞmðn�1Þ + n

=
Xm�1

i= 0

ði + 1ÞðμcÞi�m

ðλ + μcÞi�m

X1
n=1

ðmðn�1Þ + n + iÞ !
ðn�1Þ ! ðmðn�1Þ + i + 1Þ !

~Qn
m

mðn�1Þ + n + i
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where ~Qm = λðμcÞm = ðλ + μcÞm + 1. Then

X1
n=1

pnð0Þ=
Xm�1

i= 0

ði + 1ÞðμcÞi�m

ðλ + μcÞi�m

X1
r=0

mr + r + i + 1

r

 !
~Qr +1
m

mr + r + i + 1

= ~Qm

Xm�1

i= 0

ðμcÞi�m

ðλ + μcÞi�m

X1
r= 0

rðm + 1Þ + i + 1
r

 !
ði + 1Þ ~Qr

m

rðm + 1Þ + i + 1

= ~Qm

Xm�1

i= 0

ðμcÞi�m

ðλ + μcÞi�m Bm +1ð ~QmÞi + 1

=
λBm +1ð ~QmÞ

λ + μc

Xm�1

i=0

μcBm +1ð ~QmÞ
μc + λ

 !i

ð6:8Þ

The net profit condition is c> λm/μ, and when this holds we see from (3.2) with β=m+ 1
that p= λ/(μc + λ) and so

Bm + 1ð ~QmÞ= ðλ + μcÞ = ðμcÞ:
Then from (6.8) we obtain the expected resultX1

n=1

pnð0Þ= λm
μc

=ψð0Þ

When c< λm/μ, Bm + 1ð ~QmÞ= ð1�~pÞ�1 where ~p> 1 = ðm + 1Þ and
~pð1�~pÞm =

λ

μc + λ
μc

μc + λ

� �m

(6.9)

Then

X1
n=1

pnð0Þ= λ

ðλ + μcÞð1�~pÞ
Xm�1

i= 0

μc
ðλ + μcÞð1�~pÞ
� �i

and straightforward manipulation using (6.9) gives
P1
n=1

pnð0Þ= 1. The same argument applies when
c= λm/μ.

7. Concluding Remarks

As indicated earlier, there is only a small number of explicit formulae for the density function of the
time of ruin or the probability function of the number of claims until ruin in Sparre Andersen
models. Many of these have similar forms to the functions considered in this note. Consequently, we
can apply the ideas in this note to other cases. We have not tried to give an exhaustive list in this
note; rather, we have sought to show how seemingly complicated expressions can easily be simplified
if we can evaluate generalised binomial series.
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