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ITP, ISP, AND SCH

SHERWOODHACHTMANANDDIMA SINAPOVA

Abstract. ISP cannot hold at the first or second successor of a singular strong limit of countable
cofinality; on the other hand, we force a failure of “strong SCH” across a cardinal where ITP holds. We
also show that ITP does not imply that there are stationary many internally unbounded models.

§1. Introduction and background. The tree property at κ holds if every tree of
height κ with levels of size less than κ has a cofinal branch. For an inaccessible
cardinal, the tree property is equivalent to weak compactness. On the other hand,
the tree property can consistently hold at successor cardinals. Mitchell [6] showed
that starting from a weakly compact cardinal, there is a generic extension in which
the tree property holds at ℵ2. Silver showed that the large cardinal hypothesis is
necessary. Thus, the tree property captures the combinatorial essence of weakly
compact cardinals.
In his thesis (also see [16]), Weiß isolated strengthenings of the tree property,
called TP and ITP, which in turn can be viewed as capturing the combinatorics
of strongly compact and supercompact cardinals. ITP was originally (implicitly)
defined by Magidor [7].

Definition 1.1. Let κ ≤ � be cardinals. We say that 〈da | a ∈ Pκ(�)〉 is a Pκ(�)-
list if each da ⊂ a. A Pκ(�)-list 〈da | a ∈ Pκ(�)〉 is thin if for club many c ∈ Pκ(�),
|{da ∩ c | c ⊂ a}| < κ.
For example, note that if κ is inaccessible, every Pκ(�)-list is thin.
Definition 1.2. Suppose 〈da | a ∈ Pκ(�)〉 is a Pκ(�)-list and b ⊂ �. Then,
• b is a cofinal branch if for all a ∈ Pκ(�), there is c ⊃ a in Pκ(�), such that
dc ∩ a = b ∩ a,

• b is an ineffable branch if {a | da = b ∩ a} is stationary in Pκ(�).
TP(κ, �) holds if every thin Pκ(�)-list has a cofinal branch. Note that TP(κ, κ) is
equivalent to the tree property at κ. We say that κ has the strong tree property if for
all � > κ, TP(κ, �) holds.
The super tree property at κ, ITP(κ), holds if for all � > κ, every thin Pκ(�)-list
has an ineffable branch.
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The following is originally due to Jech and Magidor; but for an explicit proof
with the above terminology, see Weiß’s thesis.

Fact 1.3. Suppose that κ is an inaccessible cardinal. Then κ is strongly compact
if and only if the strong tree property at κ holds; and κ is supercompact if and only if
ITP(κ) holds.

Like in the case of the tree property, starting from a strongly compact (or super-
compact) cardinal and forcing with the Mitchell poset, one can obtain the strong
tree property at �2 (or ITP(�2), respectively). Moreover, Spencer Unger [12] and
Laura Fontanella [2] independently showed that in the Cummings-Foreman model
[1], ITP holds at ℵn for all n > 1.
An old project in set theory is to obtain the tree property at every regular cardinal
greater than �1. The larger motivation is to obtain via forcing models of set theory
with asmuch compactness as can consistently exist in the universe. The construction
of such models would require large cardinals and many violations of the singular
cardinals hypothesis (SCH). An even more ambitious question is whether we can
obtain either the strong tree property or ITPat every (or at least atmany consecutive)
regular cardinals above �1. The results in this paper are motivated by the following
question:

Question 1.4. Does ITP(κ) imply SCH above κ?

The motivation is two-fold. On one hand is Solovay’s theorem that SCH holds
above a strongly compact cardinal. On the other hand, by a theoremof Specker [11],
obtaining ITP at the double successor of a singular strong limit cardinal requires
violating SCH.
Viale andWeiß [15] have also asked whether a further strengthening of ITP called

ISP implies SCH. This is related to Viale’s theorem that PFA implies SCH.

Definition 1.5. A list 〈da | a ∈ Pκ(�)〉 is slender if for all sufficiently large �, for
club manyM ∈ Pκ(H�), for all b ∈ M ∩ Pℵ1 (�), dM∩� ∩ b ∈ M . ISP(κ) holds if
for every � ≥ κ, every slender Pκ(�) list has an ineffable branch.

We have that ISP implies ITP. Viale and Weiß showed that PFA implies ISP(ℵ2).
A useful characterization from [15] of ISP uses guessing models:

Definition 1.6. Let M ≺ H� . M is an ℵ1-guessing model if whenever z ∈ M
and a ⊆ z, if a is ℵ1-approximated byM in the sense that

{a ∩ x | x ∈ Pℵ1 (z) ∩M} ⊆M,
then a isM -guessed, i.e., for some b ∈M , b ∩M = a ∩M .

Theorem 1.7 ([15]). ISP(κ) holds if and only if for all sufficiently large �, there
are stationary many ℵ1-guessing models in Pκ(H�).
Viale also showed [14] that ISP(ℵ2) together with stationary many internally
unbounded models imply that SCH holds; here we sayM is internally unbounded if
the countable sets inM are ⊆-cofinal in Pℵ1 (M ).
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This leads to the following questions:
(1) At what other small cardinals can ISP hold?
(2) Does ISP(κ) imply SCH above κ?
(3) Is ISP or ITP consistent with the set of internally unbounded models being
nonstationary?

In this paper we show that ISP cannot hold at the first or second successor of a
singular strong limit of countable cofinality. On the other hand, we give two different
constructions where ITP holds at the double successor of a singular strong limit
cardinal. Using the first construction, we prove a failure of “strong SCH” across
a cardinal where ITP holds. The second construction uses extender-based forcing,
and can be brought down to ℵ� . We also show that in both constructions there are
club many models in Pκ++(H�) that are not internally unbounded, where κ is the
singular cardinal. In particular, it follows that ITP(�) does not imply that there are
stationary many internally unbounded models in P�(H�).

§2. Failure of ISP at first and second successor, and internally unbounded models.

Theorem 2.1. Let κ < � be cardinals with 2ℵ0 < κ, cf κ = �, � regular, and
κ� ≥ �. Then ISP(�) fails.
Corollary 2.2. If κ is strong limit and cf(κ) = �, then ISP(κ+) and ISP(κ++)
both fail.
Proof. For the second claim, suppose ISP(κ++) holds; this implies the tree
property at κ++, and by a result of Specker, we must have (κ+)<κ

+ ≥ κ++.
Since (κ+)<κ

+
= 2κ, we have 2κ ≥ κ++, but this contradicts the theorem with

� = κ++. 

Proof of Theorem 2.1. Letting κ, � be as in the theorem, we show ISP(�)
must fail. Suppose not. By Theorem 1.7, ISP(�) implies there is some M ≺ H�
with |M | < �, � ∈ M , κ + 1 ⊆ M , and M ∩ � an ordinal, such that M is
ℵ1-guessing.
So suppose x ⊂ κ is countable. For each countable y ∈M , we have y ∩ x ∈M ,
since 2ℵ0 < κ ⊆M . So x is ℵ1-approximated, and sinceM is ℵ1-guessing, we have
x ∈M . Thus Pℵ1 (κ) ⊆M . But |Pℵ1 (κ)| = κ� ≥ �, contradicting |M | < �. 

Next we show a key abstract lemma on the existence of club many noninternally
unbounded models.
Lemma 2.3. Suppose that 2� < κ and κ� ≥ κ++. Then there are club manymodels
of size < κ++ that are not internally unbounded.
Proof. Suppose that M is a model of size less that κ++ with κ ⊂ M . Then

|Pℵ1 (M )| ≥ κ++. On the other hand for any countable c ∈ M can cover at most
2� many countable sets x. So, there are at most 2� · |M | < κ++ many x ∈ Pℵ1 (M ),
such that there is a countable y ∈ M with x ⊂ y. So, M is not ℵ1-internally
unbounded. 

Applying Specker’s theorem, we immediately get the following corollary:
Corollary 2.4. If κ is a singular strong limit cardinal with cf(κ) = �, then

ITP(κ++) implies that there are club many not internally unbounded models of size
< κ++.
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§3. A failure of strong SCH across a cardinal where ITP holds. The general
strategy of obtaining tree properties at successor cardinals is by starting with some
large cardinal embedding j in the ground model, and forcing in such a way that the
embedding j can be extended to V [G ]. The embedding is used to define a branch
in V [j(G)], and usually the hardest part of the argument is pulling this branch
back to V [G ]. This amounts to proving an approximation property of the quotient
poset.

Definition 3.1. Let P ∈ V be a poset and G be P-generic over V . We say a set
of ordinals a ∈ V [G ] is �-approximated if for all x ∈ V with |x|V < �, x ∩ a ∈ V .
P has the �-approximation property if every �-approximated set of ordinals a ∈
V [P] belongs to V .
P has the thin �-approximation property if whenever a ∈ V [P] is �-approximated,
and furthermore for all x ∈ V with |x|V < �, |{b ∈ V | p � b = x ∩ ȧ for some
p ∈ P}|V < �, we have a ∈ V .

We say strong SCH holds if for all singular cardinals κ, if 2cf κ < κ, then 2κ = κ+.

Theorem 3.2. Let κ < � be supercompact cardinals. Then there is a poset R so
that if G is generic for R, then the following holds in V [G ]:

• ITP(�).
• κ is a singular strong limit cardinal with cf(κ) = � and κ++ = �.
• 2κ = �+�+2.
In particular, strong SCH fails at κ+� .

Proof. By forcing with the Laver preparation if necessary, we may assume that
in V , the supercompactness of κ is indestructible by κ-directed closed forcing.
We will haveR =M∗ Ṗ, whereM is Mitchell’s poset to force κ++ = � and TP(�),
modified to first blow up 2κ to �+�+2; in particular, conditions are (a,f), where:

• a ∈ A := Add(κ, �+�+2);
• dom(f) ⊂ � \ κ+, | dom(f)| < κ+ and for all α ∈ dom(f), �A�α f(α) ∈
˙Add(κ+, 1).

M is ordered by letting (a′, f′) ≤ (a,f) iff a′ ≤ a and for all α ∈ dom(f) ⊂
dom(f′), a′ � α � f′(α) ≤ f(α).
We have in the extension by M that 2κ = �+�+2 and κ++ = �. Also M is
the projection of a poset A × Q, where as above A = Add(κ, �+�+2), and Q is
κ+-directed closed. Note that M is κ-directed closed. It follows that κ remains
measurable (indeed, fully supercompact) in V [M]. So let Ṗ be an M-name for
Prikry forcing to singularize κ using any normal measure in the extension byM.
Now by standard arguments, forcing with Ṗ in V [M] preserves cardinals and
singularizes κ to cofinality �, and adds no bounded subsets of κ. So κ is strong
limit and has cofinality �, and so κ� = 2κ = (�+�)� = �+�+2.
It only remains to show that ITP(�) holds. Let � ≥ �+�+2 be a cardinal. Working
in V , let j : V →M be an elementary embedding witnessing �-supercompactness
of �. Fix anM-generic filter G over V and a P-generic H over V [G ]. Since M ∗ Ṗ
has the �-c.c., by standard arguments we can lift j to j : V [G ][H ] → M [G∗][H ∗]
in V [G∗][H ∗], where G∗ ∗H ∗ is generic for j(M ∗ Ṗ)/G ∗H .
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In V [G ], let U be the normal measure on κ used to define P. Then j(U ) extends
U and j(P) is Prikry forcing singularizing κ with respect to the measure j(U ).
Conditions in j(P) have the same stems as conditions in P, but there are more
measure one sets.
Let d ∈ V [G ][H ] be a thin P�(�)-list. j(d ) is then a thin Pj(�)(j(�))-list. We
define

B = j−1[j(d )(j[�])].

Claim 3.3. B is an ineffable branch through d .

Proof of Claim. We need to show that the set

{x ∈ P�(�) | d (x) = B ∩ x}
is stationary. So supposeC ⊆ P�(�) is a club in V [G ][H ]. Then j[�] ∈ j(C ). Also,
by definition of B, j(d )(j[�]) = j(B) ∩ j[�]. So, by elementarity, {x ∈ C | dx =
B ∩ x} is nonempty. 

Claim 3.4. B is �-approximated byV [G ][H ], that is, x ∩B ∈ V [G ][H ] whenever
x ∈ (P�(�))V [G ][H ].
Proof. Let x ∈ (P�(�))V [G ][H ]. Then |Levx(d )| < � by thinness of d , and
since crit(j) = � we have j(Levx(d )) = j[Levx(d )]. Since j(d )j[�] ∩ j(x) ∈
j(Levx(d )) = Levj(x)(j(d )), there must be z ⊂ x in V [G ][H ] such that
j(z) = j(d )j[�] ∩ j(x). Then z = B ∩ x ∈ V [G ][H ], as needed. 

ClearlyB ∈ V [G∗][H ∗]; we needB ∈ V [G ][H ], that is,B is not added by forcing
with the quotient j(R)/R.
Sinapova andUnger [10] show that forcings of this type have the �-approximation
property. For completeness, below we outline the argument.

Lemma 3.5. N := j(R)/G ∗H has the �-approximation property.
Proof. Suppose that � : � → 2 in the extension by N, such that for all x ∈
V [G ][H ] ∩ P�(�), � � x ∈ V [G ][H ]. Suppose for contradiction that � is not in
V [G ][H ]. We will denote conditions in N by (p,f, ṙ), where p ∈ j(A), f ∈ j(Q), r
is forced to be in j(P)/P. For a Prikry condition r (in P or j(P)), we use the notation
r = (s(r), A(r)).
Note that j(Q) is κ+-closed in V [G ].

Claim 3.6. There is a condition (p,f, ṙ) ∈ N, such that for each x ∈ P�(�)
and function 	 : x → 2 in V [G ][H ], and for every (p′, f′, ṙ′) ≤N (p,f, ṙ), if
f′ ≤j(Q) f and (p′, f′, ṙ′) � �̇ � x = 	, then there is some f′′ ≤j(Q) f′ such that
(p,f′′, ṙ) � �̇ � x = 	.
Proof. Otherwise, in V [G ], let r̄ ∈ P force the negation of the conclusion. Then
whenever r̄ � (p,f, ṙ) ∈ Ṅ, densely often below r̄, there are conditions r̄′ ∈ P,
such that there are p0, p1 ∈ j(A), f∗ ≤j(Q) f, j(M)/G-names for elements in j(P),
ṙ0, ṙ1, x ∈ V [G ][H ] ∩ P�(�), and P-names 	0, 	1 such that
• for i ∈ {0, 1}, r̄′ � (pi , f∗, ṙi ) ≤N (p,f, ṙ),
• for i ∈ {0, 1}, r̄′ � “(pi , f∗, ṙi) �N �̇ � x = 	i”
• 	0, 	1 are forced to be distinct.
Moreover we can choose the above, so that if g ≤j(Q) f∗, then a direct extension of
r̄′ forces that (pi , g, ṙi ) ∈ N.
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By induction construct piα, 	
i
α, 	α, fα, ṙ

i
α, r̄α and ẋα for α < κ

+, i ∈ 2, such that
〈fα | α < κ+〉 is ≤j(Q)-decreasing, and for each α, i , r̄α ∈ P forces that:

• 〈ẋα | 
 < α〉 is a ⊂- increasing sequence of elements in V [G ][Ḣ ] ∩ P�(�),
• (piα, fα, ṙiα) ∈ N, (piα, fα, ṙ

i
α) � �̇ �

⋃

<α ẋ
 = 	α ,

• (piα, fα, ṙiα) � �̇ � xα = 	iα , where 	0α �= 	1α , and
• (piα, fα) decides s(ṙiα), and s(r̄α) extends it.
Since there are only κ many possible stems and A× A has the κ+-c.c., there are

 < 
 ′ < κ+, such that s(r̄
 ) = s(r̄
′), and for i ∈ 2, s(ṙi
 ) = s(ṙi
′), and pi
 is
compatible with pi
′ . Then for i ∈ 2, let pi be the weakest lower bound for pi
 and
pi
′ and let ṙ

i be a name for a common extension of ṙi
 and ṙ
i

′ with the same stem.

The following sufficient condition for forcing conditions into the quotient appears
in [1].

Lemma 3.7. Working in V [G ], let r̄ ∈ P, m ∈ j(M)/G and let ṙ be a j(M)/G-
name for a condition in j(P) such that

(1) m decides the value of s(ṙ),
(2) s(r̄) extends s(ṙ) and
(3) m forces that points in s(r̄) above s(ṙ) are in A(ṙ).

Then there is a direct extension of r̄ which forces (m, ṙ) ∈ j(R)/(G ∗H ).
Now by Lemma 3.7, there is a direct extension r of r̄
 and r̄
′ which forces that
each (pi , f
′ , ṙi ) is in N. Force with P below r to get a contradiction. 

Work in V [G ]. Let r∗ ∈ P force that (p,f, ṙ) is as in Claim 3.6. Using the
claim, inductively construct splitting sequences 〈〈fs, αhs 〉 | s ∈ 2<κ, h is a stem〉,
such that:

(1) if s ′ ⊃ s , then fs′ ≤j(Q) fs ,
(2) for all s ∈ 2<κ, stems h, and i ∈ 2, there is some Prikry condition with stem
h forcing that (p,fs�i , ṙ) � �̇(αhs ) = i.

Note in particular that if s ⊥ t, thenfs,ft are forced to be incompatible: Otherwise
we would have a Prikry condition, say with some stem h, forcing compatibility, and
taking a strong enough direct extension contradicts (2).
Let a∗ = {αhs | h a stem, s ∈ 2<κ}; note |a∗| < �.
Still working in V [G ], note that j(M)/G is forced to add an Add(κ, 1)-generic
set; let ġ be a name for this. Then in the extension by Add(κ, 1), 〈fġ�� | � < κ〉 is
forced to be ≤j(Q)-decreasing.
We claim there is an element f∗ of j(Q) that is forced to be a lower bound of

〈fġ�� | � < κ〉. This is done by, for each 
 that can be forced in Add(κ, 1) to belong
to some dom(fġ��), defining a name for a lower bound of 〈fġ��(
)〉�<κ . By the
κ+-c.c. of Add(κ, 1), we may cover the union of possible domains

{
 < � | p′ � 
 ∈ dom(fġ��) for some p′ ∈ Add(κ, 1) and � < κ}
by a set Y in V [G ] with |Y | = κ. We define f∗ so that for all 
 ∈ Y , f∗(
) is a
A � 
-name such that if p′ ∈ Add(κ, 1) forces 
 ∈ dom(fġ��) for any �, then p′
forces f∗(
) to be a lower bound for 〈fġ��(
) | � < κ〉. Finally, (p,f∗, ṙ) may be
forced into the quotient N.
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Now working in V [G ][H ], by the fact that � is �-approximated, we can (using
Claim 3.6 to extend f∗, if necessary) assume (p,f∗, ṙ) decides �̇ � a∗; say � � a∗ =
	. Let h be the stem of a Prikry condition below r∗ forcing this to hold over V [G ].
Define g : κ → 2 by inductively letting g(�) = 	(αhg��). We have g is unique such
that f∗ ≤ fg�� for all �; by construction, g is Add(κ, 1)-generic over V [G ]. But
g ∈ V [G ][H ] was added by forcing with P, a contradiction. 

This completes the proof of Theorem 3.2. 

Note by Theorem 2.1, ISP(�) must fail in this model. This is related to the
following remark on the extent of approximation in j(R)/R.
Proposition 3.8. j(R)/R does not have the ℵ1-approximation property.
Proof. Let x be any subset of κ inV [j(R)]. For any countable a ⊆ κ inV [R], we
trivially have a∩x ∈ V [R], since no reals are added by the quotient j(R)/R. So any
subset of κ added by the quotient is a witness to the failure of ℵ1-approximation. 

Applying corollary 2.4, the above models yields:
Theorem 3.9. Froma supercompact, it is consistent to have ITP(�), for � the double
successor of a singular strong limit cardinal, together with club many non ℵ1-internally
unbounded models of size less than �.

§4. Extender based forcing and ITP. In this section we describe another model
where ITP at the double successor of a singular strong limit. We use it to show
that it is consistent to have ITP at the double successor of a singular together with
the set of internally unbounded models being nonstationary. This is a partial result
towards showing that ITP does not imply SCH.
Theorem 4.1. Suppose that 〈κn | n < �〉 are strong cardinals, κ = supn κn and
� is a supercompact cardinal above κ. Then there is a forcing extension in which
|∏n κn | = � = κ++ and ITP holds at �.
We take P to be the long extender forcing from Section 2 of [4]. This is almost the
same poset from Section 2 of Gitik’s Handbook chapter [3] with one modification:
the Cohen parts of conditions are allowed to be Prikry names. For completeness,
we briefly describe the poset. Let En = 〈En,α | α < �〉 be an extender on κn of
length �. We have that Lemmas 2.1–2.4 from Section 2 of [3] hold.
As in [3], defineQn1 to be the poset of partial functionsf : � ⇀ κn , with |f| ≤ κ
(equivalently, Add(κ+, �)). Also, for α < �, the Prikry forcing at α refers to the
diagonal forcing with respect to the measures 〈En,α | n < �〉 to add a sequence
〈�n | n < �〉 in

∏
n κn.

The extender based forcing from [3] adds an unbounded F ⊂ � (in the notation
below, ap :=

⋃
n≥lh(p) a

p
n and let F =

⋃
p∈G a

p and for every α ∈ F , �-sequences
tα ∈ ∏

n κn (in the notation below tα(n) = f
p
n (α) for some (equivalently all) p ∈ G ,

such that α ∈ dom(fpn )). Each such tα is generic for the the Prikry forcing at α. In
particular, below a condition forcing that α ∈ Ḟ , P projects to this forcing, and we
denote the projection map by �α .
Conditions are of the form p = 〈pn | n < �〉, where for n < lh(p), pn = fn ∈

Qn1, and n ≥ lh(p), pn = (an,An, fn), such that:
• for n ≥ lh(p), an ∈ [�]<κn , An ∈ En,max(an), an ⊂ an+1, fn is a Prikry name for
a condition in Qn1 with domain disjoint from an.
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• for n ≥ lh(p), for α ∈ an, form < n fm � �\ (α+1) is forced to be a condition
in Qm1 by the Prikry forcing at α.

We also require that 〈dom(fn) | n < �〉 ∈ V and 〈fn(α) | n < �〉 ∈ V whenever
α ∈ dom(fn) for all large n.
For p as above, we use the notationpn = f

p
n for n < lh(p) and pn = (a

p
n ,A

p
n , f

p
n )

for n ≥ lh(p).
The order q ≤ p is as in [3] with the natural modification corresponding to the
last item of the definition: if α ∈ aqn , then �α(q) forces that fqn � � \ (α + 1) is
stronger than fpn � � \ (α + 1).

Remark 4.2. The last item in the definition above is the difference between P and
the usual long extender based forcing. The point of this modification is to collapse
cardinals between κ+ and �. More formally, we can define the fpn ’s to be functions
from finite sequences (i.e., Prikry stems) from

∏
max(n,lh(p))≤i<lh(p)+k A

p
i , so that each

fn(��) ∈ Qn1. A similar construction was first done inAssaf Sharon’s thesis, Chapter
IV, [8], and is also described in [9]. Then, given P-generic filter G , for any α ∈ F ,
{fpn0(tα � k) | p ∈ G, k > �} will collapse α to κ+.

We say that q is a direct extension of p, q ≤∗ p, if q ≤ p and they have the same
length. We say that q is an n-step extension of p if q ≤ p and lh(q) = lh(p) + n.
Also, as usual, given p and �� ∈ ∏

lh(p)≤i<lh(p)+n A
p
i , we write p

��� to denote the
weakest n-step extension of p obtained from ��. I.e., if r ≤ p is with length at least
lh(p) + n and for lh(p) ≤ i < lh(p) + n, fri (max(api )) = �i , then r ≤ p���.
P has the Prikry property, and more generally:

Lemma 4.3 (Prikry lemma). Suppose thatD is a dense open set andp is a condition.
Then there is q ≤∗ p and n, such that every n-step extension of q is in D.

For the proof, see [3]. When the dense set above is of the form {r | r ‖ φ} for some
formulaφ, then n = 0. In particular there is a direct extension ofp deciding φ. Then,
since ≤∗ restricted to conditions of length n is κn-closed, the forcing does not add
bounded subsets of κ and preserves κ+. It also has the �-chain condition. Forcing
with this poset adds �-many Prikry sequences in

∏
n κn, making κ

� = � = κ++ (see
[3], [4]). In [4], it is also shown that in the generic extension by P, � has the tree
property. Here we show that ITP� holds.
Let G be P-generic. Suppose that for some � ≥ �, in V [G ], 〈dx | x ∈ P�(�)〉 is a
thinP�(�)-list. I.e., eachdx ⊂ x and for clubmany c ∈ P�(�), |{dx∩c | c ⊂ x}| < �.
Let j : V →M be a �-supercompact embeddingwith critical point �. By standard
arguments, we have that j(P) projects to P. So, we can extend j to j : V [G ]→M∗.
Then d := j−1[j(d )j[�]] is an ineffable branch in the extension by j(P) for the
list.
We have to show that d cannot have been added by j(P)/G , i.e., that this
poset has the thin �-approximation property. Suppose for contradiction that
d /∈ V [G ].
Work in V . Let � : j(P)→ P be the projection. Fix a j(P)-name for this branch
ḋ , so that 1j(P) � “∀x ∈ P�(�)ḋ ∩ x ∈ V [ĠP]”. Note that for every x ∈ P�(�), in
V [G ], there is y ∈ P�(�) in V , such that x ⊂ y. That is by the � chain condition of
P. So we can restrict our attention to elements of PV� (�).
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Below we will say that a condition p ∈ j(P) decides a value for ḋ ∩ x (or simply
decides ḋ ∩ x), if for some P-name a, p �j(P) ḋ ∩ x = aĠ .
Lemma 4.4. For any x ∈ P�(�) and p ∈ j(P), there is q ≤∗ p and n, such that
every n-step extension of q decides a value for ḋ ∩ x. Moreover, for any k ≥ lh(p),
we can obtain q as above so that for all lh(p) ≤ i ≤ k, aqi = api .
Proof. We apply the Prikry lemma for j(P) to the dense set D = {q |
(∃ P-name a)q � ḋ ∩x = aĠ} to obtain q. The statement in the ‘moreover’ follows
by the proof of the Prikry lemma. See for example Section 2 of [4]. 

Lemma 4.5. There is n̄ < � and a condition p′ ∈ j(P), such that for all p ≤∗ p′,
there is x ∈ P�(�), such that for all y ∈ P�(�) with x ⊂ y, there is q ≤∗ p, such that
each n̄-step extension of q decides a value for ḋ ∩ y.
Proof. Suppose otherwise.Then inductively build a≤∗-decreasing sequence 〈pn |
n < �〉, an increasing 〈kn | n < �〉 and a ⊂-increasing sequence 〈yn | n < �〉 in
P�(�), such that for all n, there is no q ≤∗ pn, such that every kn-step extension of
q decides a value for ḋ ∩ yn. Now let y = ∪nyn and p ≤∗ pn for all n. Let q ≤∗ p
and k < � be such that every k-step extension of q decides a value for ḋ ∩ y.
Pick n, such that k ≤ kn . But then any kn-step extension of q decides a value for
ḋ ∩ yn . Contradiction. 

Remark 4.6. In the above lemma, for any k < �, we can get such a q, so that
the aqi = a

p
i for all lh(q) ≤ i ≤ k

Fix n̄ and p′ as in the conclusion of the lemma. From now on work below p′. The
following lemma is an adaptation of Lemma 2.7 of Gitik’s paper [4].

Lemma 4.7. Let p ∈ j(P) and let � be regular, such that 2κk < � < κk+1, where
k ≥ n̄ + lh(p). Then there is x ∈ P�(�), q̄ ∈ P and a sequence 〈p� | � < �〉 of direct
extensions of p, such that:

(1) For all lh(p) ≤ i ≤ k, for all �, ap�i = api , Ap�i = Api ;
(2) q̄ = �(p�) for all �;
(3) every n̄-step extension of p� decides ḋ ∩ x;
(4) for � �= �′, if r, r′ are two n̄-step extensions of p� and p�′ , respectively, then q̄
forces that the values decided by r and r′ are different.

Proof. This is a modification of Lemma 2.7 in [4], so we only focus on the main
points.
Using the above lemma, construct 〈q�,M� | � ≤ �〉, with each |M� | < �, such
that:

(1) 〈q� | � ≤ �〉 is≤∗-decreasing sequence in j(P), such that for all lh(p) ≤ i ≤ k,
for all �, aq�i = a

p
i , A

q�
i = A

p
i ;

(2) 〈M� | � ≤ �〉 is a ∈-increasing continuous chain of elementary submodels,
such thatMκk0 ⊂M0 and for each �,Mκk�+1 ⊂M�+1;

(3) for all �, q� ∈M�+1;
(4) for all �, y� := M� ∩ � and each n̄-step extension of q� decides a value of
ḋ ∩ y� ;

To obtain Aq�i = A
p
i for every � < �, we use that 2

κk < � and pass through an
unbounded subset of � if necessary.
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Set q := q� , y := y� =
⋃
�<� y� .

Let X� be the set of all values of ḋ ∩ y� decided by an n̄-step extension of q�. I.e.,
X� is a set of P-names and is of size at most κlh(p)+n̄−1 < �. Denote X := X� . For
t ∈ X , we identify t ∩y� with the P-name a, such that�P a = t ∩y� . For simplicity
of notation, we identify elements in X� as equal or distinct whenever �(q�) forces
them to be so. Similarly if �(q�) forces s = s ′ for some s ∈ X�, we will identify s
with s ′ and simply write s ′ ∈ X� .
We have the following:

(1) (Coherence) If t ∈ X , then for all � < �, t ∩ y� ∈ X�.
(2) (Splitting) If t, s are incompatible elements of X , then there is � < �, such
that t ∩ y� �= s ∩ y� .

Using that � is greater than the possible instances of splitting, we fix some �̄ < �,
after which there is no more splitting. I.e., for distinct t, s in X , there � < �̄ with
t ∩ y� �= s ∩ y� .
Claim 4.8. For all � < �, for all r̄ ≤ �(q�), there is z ∈M�+1 with y� ⊂ z ⊂ y�+1
and r ≤ q� , such that �(r) ≤ r̄ and r decides a value for ḋ ∩ z incompatible with every
value in X�+1. More precisely, setting r � ḋ ∩ z = s , we have that for all t ∈ X�+1,
t ∩ z �= s .
Proof. By elementarity of themodels and since we have assumed that the branch
is new. Namely, if we suppose otherwise, we get that M�+1 |= q� forces that the
branch is in V [ĠP]. 

Let � < �. Apply the above claim inductively to all n̄-step extensions q�� �� of q� .
Then we get r��� ≤∗ q�� �� that decides ḋ ∩ y�+1 in a way that is incompatible with all
the values in X�+1.
As in the proof of the Prikry lemma, diagonalize r��� for each such �� to obtain a
condition r� ≤∗ q� , with a

r�
i = a

q�
i = a

p
i for i ≤ k, such that every n̄-step extension

of r� is stronger that some r��� . By passing to an unbounded subset of �, we may
assume that for all � and i ≤ k, Ar�i = Aq�i = Api .
Also, doing this by induction on � < �, we can shrink the q� ’s and then the r� ’s,
so that for each � < �, �(q) = �(r�). Finally, let p� ≤∗ r� , so that �(p�) = �(q), for
i ≤ k, ap�i = ar�i , and p� decides a value of ḋ ∩ y. Then 〈p� | � < �〉, �(q) and y
are as desired. 

Let 〈�n | n < �〉 be a cofinal sequence of measurable cardinals in κ, such that
2κn < �n < κn+1 for each n. For each n, let Un be a measure on �n.
Build a ⊂-increasing sequence 〈xn | n < �〉 in P�(�), a ≤∗-decreasing sequence
of conditions 〈qn | n < �〉 in P, and 〈p	 | 	 ∈ ∏

n≤k Yn, k < �〉 in j(P), where
each Yn ∈ Un , such that:
(1) For all n, for all lh(p) ≤ i ≤ n, aqni = aqn+1i ;
(2) For all 	, �(p	) = q|	|;
(3) If 	 ′ extends 	, then p	′ ≤∗ p	 ;
(4) For all n, for all 	 ∈ ∏

m<n Ym and � ∈ Yn, for all lh(p) ≤ i ≤ n, ap	i = ap	
��

i

and Ap	i = A
p	��
i ;

(5) All n̄-stem extensions of each p	 decide ḋ ∩ x|	|;
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(6) If 	1 and 	2 are incompatible, then any two n̄-step extensions of p	1 and p	2
decide incompatible values for ḋ ∩ x|	1| and ḋ ∩ x|	2| (as forced by q|	1∩	2|).

We do this by induction on |	|. For simplicity, all conditions will have length 0.
First let 〈p� | � < �0〉, x0, q0 be given by the above lemma applied to �0. Then for
each � < �0, inductively apply Lemma 4.7 to p�, �1 to obtain sequences 〈p′�,� | � <
�1〉, q� , and x� . Let x1 =

⋃
� x� . Then let p

′′
�,� ≤∗ p′�,� be such that a

p′′�,�
i = a

p′�,�
i for

i = 0, 1 and every n̄-step extension of p′′�,� decides ḋ ∩ x1.
Note that, by construction we have that for i = 0, 1, a

p′′�,�
i are constant for all

〈�, �〉.
Next we use the measurability of �1 to fix the measure one sets in the first two
coordinates, in order to be able to define q1.

For each � < �0, consider the map φ� : � �→ 〈Ap
′′
�,�

0 , A
p′′�,�
1 〉. Since 2κ1 < �1, let B� ∈

U1 be such φ� is constant on B� , say with value 〈A�0 , A�1〉. Let B1 =
⋂
�<�0
B� ∈ U1,

and let A1 =
⋂
�<�0
A�1. For the latter we use that �0 < κ1. Now consider the map

� �→ A�0. Since 2κ0 < �0, fix B0 ∈ U0, on which this map is constant, say with value
A0.
Then, for � ∈ B0, � ∈ B1, let p〈�,�〉 be obtained from p′′�,�, so that �(p〈�,�〉) is
constant. (in particular, each A

p〈�,�〉
1 = A1). Then we can define q1 = �(p〈�,�〉) for

some (equivalently all) 〈�, �〉 ∈ B0 × B1.
Continue in the same way for the rest of the construction. At the end each Yn will
be the intersection of countably many measure one sets in Un.
Let q be a lower bound for the qn’s. Let G be P generic containing q and work
in V [G ]. For each f ∈ ∏

n Yn, let pf ≤∗ pf�n for all n. Let c ⊃ ∪nxn in P�(�) be
such that |{dx ∩ c | c ⊂ x}| < �. Now let rf be an n̄-step extension of pf , of the
form p�f ��, where each �i ∈ Yi . Then rf � ḋ ∩ c = xf for some xf .
By the construction, if f �= g, then xf �= xg . But there are �-many such f’s in
V [G ] and only < � possibilities of ḋ ∩ c. Contradiction.
This concludes the proof of Theorem 4.1.

The above construction provides a second proof of Theorem 3.9, that it is consis-
tent to have ITP(�), for � the double successor of a singular strong limit cardinal,
together with club many non ℵ1-internally unbounded models of size less than �.

§5. Down to ℵ�+2. In this section we modify the construction from the previous
section to obtain the results for � = ℵ�+2 and prove the following theorem.
Theorem 5.1. Suppose that 〈κn | n < �〉 are strong cardinals with limit κ and � is
super compact cardinal above κ. Then there is a forcing extension where κ = ℵ� , � =
ℵ�+2 and we have ITP(ℵ�+2), together with club many non ℵ1-internally unbounded
models of size less than ℵ�+2.
We will use short extender forcing with interleaved collapses from Section 3 of
[4]. And just as in [4], first we have to prepare the ground model as follows. Fix
measurable cardinals 〈�n | n < �〉, such that for each n, 2κn < �n < κn+1 and
normal measures Un on each �n . Force with the full support iteration of Levy
collapses Col(κ+n+4n ,< �n), and call the resulting model V . Then in V each Un will
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give rise to a precipitous ideal In , such that forcing with its positive sets is κ+n+4n

-strategically closed. We will use this in place of measurability.
Let P be the poset defined in Definition 3.1 in Section 3 of [4].
We list some of the key properties of P:

(1) (P,≤,≤∗) has the Prikry property. In particular, for any p and dense open
set D, there is n < � and q ≤∗ p, such that every n-step extension of p is in
D. As a corollary, for all p, φ, there is q ≤∗ p deciding φ.

(2) From the above it follows that κ and κ+ is preserved and κ remains a strong
limit.

(3) There is a suborder→ on P, such that (P,≤) projects to (P,→), and (P,→)
has the �-chain condition.

(4) Forcing with (P,→) makes � = κ++ = 2κ = ℵ�+2.
For proofs of the above, see Section 4 of [5] and also [13]. A theorem in [4] is that
the tree property holds in this extension at ℵ�+2. Here we show the case for ITP.
Lemma 5.2. j(P;≤)/(P;≤) has the thin �-approximation property.
Proof. We run the same argument as in the previous section. By the Prikry
property we still have Lemma 4.5.We will use the same notation as in [4], Definition
3.1: for a condition p = 〈pn | n < �〉, we denote pn = (�n, h<n, h>n, fn) for
n < lh(p) and pn = (an,An, S<n, h>n, fn) for n ≥ lh(p).
Then we claim that Lemma 4.7 holds for � = κ+k+5k . To prove the lemma, we
construct the ≤∗-decreasing sequence 〈q� | � < �〉 in j(P) as before, so that in
addition to the requirements listed in the proof of Lemma 4.7, we also have:

• for all i < lh(p), for all �, hq�<i = hp<i ,
• for all lh(p) ≤ i ≤ k, for all �, Sq�i = Spi ,
• for all i < k, for all �, hq�>i = hp>i ,
• 〈hq�>k | � < �〉 is decreasing.
We can do the first three items by passing to anunbounded subset of � if necessary.
For the last,weuse that the closure isκ+k+8k > �.Also, since � < κk+1 for coordinates
i > k, we have enough closure to make sure the sequence is decreasing. Also, since
nowwe are using short extenders, for i < k, herewemaintain dom(ap�i ) = dom(a

p
i ).

The rest of the lemma goes as before.
Then in the last section, we construct 〈xn, qn | n < �〉 in P�(�) and 〈p	 | 	 ∈∏
n≤k Yn, k < �〉 in j(P), where eachYn ∈ Un with the additional properties that:
• for all n, for all i ≤ n, dom(aqni ) = dom(aqn+1i ),
• for all n, for all 	 ∈ ∏

m<n Ym and � ∈ Yn,
– for all i ≤ n, dom(ap	i ) = dom(ap	��i ), Sp	i = S

p	��
i ,

– for all i < n, hp	>i = h
p	��
>i .

The Un’s are no longer normal, but all we need is their closure properties to fix the
components of the conditions where we do not have sufficient closure. The rest of
the argument is the same as in the previous section. 

Now suppose that 〈dx | x ∈ P�(�)〉 is a P�(�)-list in V [P;→]. Let j : V → M
be a �-supercompact embedding with critical point �. As in the last section, lift j
to obtain an ineffable branch d for this list with d ∈ V [j(P;→)]. In particular,
d ∈ V [j(P;≤)], and so by the approximation property, we have that d ∈ V [P;≤].
Note that any condition in P can also be viewed as a condition in j(P).
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Now let G be (P;→)-generic. We have to show that d ∈ V [G ]. Consider the
quotient (P;≤)/G and let ḋ ∈ V [G ] be a (P;≤)/G-name for the branch. For two
conditions p, q ∈ (P;≤)/G if p and q decide contradictory information about ḋ ,
then clearly p ⊥(P;≤) q, but also p ⊥j(P;→) q, since the branch is in the extension by
j(P;→). But since the projection j(P) → P is the identity on conditions in P, that
means that p ⊥(P;→) q, which is a contradiction with p, q ∈ G .
It follows that there is no splitting, and so the branch is in V [G ].
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