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Pinch-off of a viscous suspension thread
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The pinch-off of a capillary thread is studied at large Ohnesorge number for
non-Brownian, neutrally buoyant, mono-disperse, rigid, spherical particles suspended
in a Newtonian liquid with viscosity η0 and surface tension σ . Reproducible pinch-off
dynamics is obtained by letting a drop coalesce with a bath. The bridge shape and
time evolution of the neck diameter, hmin, are studied for varied particle size d, volume
fraction φ and liquid contact angle θ . Two successive regimes are identified: (i) a
first effective-viscous-fluid regime which only depends upon φ and (ii) a subsequent
discrete regime, depending both on d and φ, in which the thinning localises at the
neck and accelerates continuously. In the first regime, the suspension behaves as
an effective viscous fluid and the dynamics is solely characterised by the effective
viscosity of the suspension, ηe∼−σ/ḣmin, which agrees closely with the steady shear
viscosity measured in a conventional rheometer and diverges as (φc − φ)

−2 at the
same critical particle volume fraction, φc. For φ & 35 %, the thinning rate is found
to increase by a factor of order one when the flow becomes purely extensional,
suggesting non-Newtonian effects. The discrete regime is observed from a transition
neck diameter, hmin ≡ h∗ ∼ d (φc − φ)

−1/3, down to hmin ≈ d, where the thinning rate
recovers the value obtained for the pure interstitial fluid, σ/η0, and lasts t∗ ∼ ηeh∗/σ .

Key words: breakup/coalescence, capillary flows, suspensions

1. Introduction
The fragmentation of particulate suspensions, i.e. the separation of liquids

containing particles into disjoined droplets, is a generic phenomenon which is
encountered in nature, e.g. vegetal spore dissemination (Ingold & Hadland 1959), as
well as in engineering applications, e.g. ink-jet printing (Hoath et al. 2014), electro-
hydrodynamic printing (Korkut, Saville & Aksay 2008) and particle encapsulation
(He 2008). As for any regular liquid, drop separation ultimately proceeds through the
pinch-off of a thread of material. A physical description of complex fragmentation
processes of suspensions (as, e.g. exhibited in figure 1) thus requires the understanding
of the dynamics of a single pinch-off event. This is precisely the motivation for the
present work.

For a single-phase Newtonian liquid, while gravity may initiate the motion, the
pinch-off is ultimately controlled by the liquid surface tension σ . Close to the break-
up singularity, the initial and boundary conditions become inconsequential and the
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FIGURE 1. (Colour online) (a) An elongated thread of a viscous suspension of beads
corrugates before it eventually fragments in disjoined drops. (b) Each break-up proceeds
through the localised thinning of a neck connecting bulkier portions of the thread. The
beads affect the flow in the pinching neck and distort the thread interface at their own
scale d.

only length scale is the thinning neck diameter of the thread, hmin. The dynamics is
then self-similar with respect to the time remaining until break-up, t0 − t. Depending
on the values of the Ohnesorge number that compares the viscous and inertial break-
up time scales, Oh = η0/

√
ρσh0 (where η0, ρ and h0 are respectively the viscosity

and density of the liquid and the initial diameter of the thread), different self-similar
regimes emerge. For low Oh, the dynamics is governed by inertia and continuously
accelerates, according to hmin ∝ [σ(t0 − t)2/ρ]1/3 (Day, Hinch & Lister 1998), until
viscosity eventually regularises the velocity (Eggers 1993). For large Oh, the dynamics
is limited by viscosity. The minimum diameter, hmin∝ σ(t0− t)/η0, thins at a constant
rate typically equal to the capillary velocity (Papageorgiou 1995). This self-similar
dynamics proceeds until inertia eventually comes into play. This latter stage, which has
been referred to as the inertial–viscous regime, also exhibits a constant-rate thinning,
typically twice as slow as that of the viscous regime, and is expected to occur at
a typical neck diameter hmin ∝ h0Oh−3 (Eggers & Villermaux 2008). For practical
purposes, a millimetre-sized thread with Oh & 10 thus remains in the viscous regime
over the whole observable range.

The situation is profoundly altered when particles are suspended in a liquid, i.e.
in the case of a two-phase particulate suspension. As figure 1 illustrates, the solid
particles introduce a new length scale, their diameter d. They are also expected
to affect the rheological properties such as the viscosity as well as the capillary
pressure through respectively two new parameters, the particle volume fraction of
the suspension, φ, and the wetting angle between the particles and the suspending
fluid, θ . The pinch-off problem has been first addressed by Furbank & Morris (2004,
2007) who examined the detachment of a drop of density-matched non-Brownian
suspensions from a nozzle up to moderate concentrations (0 6 φ 6 40 %). They
identified an early stage ‘effective-fluid’ regime, where the suspension behaves as an
effective Newtonian fluid, followed by an acceleration of the detachment dominated by
discrete particle effects when the pinching localises. Bonnoit et al. (2012) continued
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with this approach by studying drop detachment at the transition between the viscous
and inertial–viscous regimes. They recovered the initial ‘effective-fluid’ regime but
found that it was followed by an intermediate ‘interstitial-fluid’ regime where the
pinch-off dynamics became independent of φ (0 6 φ 6 55 %) and was similar to that
of the pure suspending liquid even though particles were present in the neck. Closer
to the pinch-off, they reported a subsequent ‘accelerated’ regime where the thinning
was faster than that of the pure interstitial fluid. Attention has also been drawn
to the opposite limits of extremely dilute and extremely concentrated suspensions.
van Deen et al. (2013) documented dilute suspensions (φ . 5 %) where isolated
particles hastened the detachment. Conversely, Miskin & Jaeger (2012) reported the
continuously accelerated pinch-off of an initially jammed suspension (φ ≈ 60 %)
which was attributed to an inertial effect despite the fact that Oh could reach values
larger than 10.

Besides pendant drops, the capillary break-up of an unstable liquid bridge
has been considered by Mathues et al. (2015) as more amenable to detailed
experimental investigations. The underlying assumption was that the final stage
of break-up would not significantly differ from that of a pendant drop. Mathues
et al. (2015) systematically studied the transition from the ‘effective-fluid’ to
the ‘discrete-accelerated’ regimes (2 % 6 φ 6 40 %) and did not observe the
‘interstitial-fluid regime’ reported by Bonnoit et al. (2012) for pendant drops. They
attributed the acceleration of the thinning to an average decrease in the viscosity
owing to the stochastic fluctuations of the actual particle volume fraction in the
small neck volume (McIlroy & Harlen 2014). Their mechanism relies on the relative
dependence of the bulk viscosity to small changes in φ, which is known to diverge
at the maximum volume fraction of a flowing suspension, φc(≈ 0.58). Interestingly, it
suggests that discrete effects would dominate the whole pinch-off dynamics at large
φ. However the stochastic fluctuations in φ invoked by McIlroy & Harlen (2014)
neglected particle interactions. They are therefore irrelevant to most suspensions
(φ & 10 %), where these interactions dominate the flow. More than anything else, the
fate of large concentration suspensions is thus unclear.

It is also interesting to note the striking similarities of the accelerated and localised
thinning of filaments of solid particulate suspensions with that of other non-Newtonian
fluids. The pinching of shear-thinning liquids continuously accelerates and converges
toward a double-cone shape at detachment (Doshi et al. 2003). A similar behaviour is
also observed for emulsions and foams (Huisman, Friedman & Taborek 2012). This
localisation of the stretching has the dramatic consequence that the global tension
in the thread (e.g. the weight of the pendant drop) eventually overcomes capillary
stresses and prescribes the last instants of the pinch-off, as realised by Coussot &
Gaulard (2005) using yield-stress liquids. Such effects might also be significant for
solid particulate suspensions.

To conclude on the existing literature regarding the pinch-off of suspension threads,
while there is some evidence of an initial regime that can be described solely by
effective-fluid arguments, the later stages of thinning and break-up are still elusive.
The aim of the present work is to carry out extensive experiments to investigate the
entire dynamics of the capillary thinning of non-Brownian suspensions consisting of
neutrally buoyant and mono-disperse spherical particles suspended in a Newtonian
liquid. We give special attention to the transition between the initial ‘effective-fluid
regime’ and the final thinning regime. We also focus on the viscosity-controlled
regime of break-up, i.e. the case of large Oh. This viscous limit is practically relevant
not only to viscous suspending fluids but also to most concentrated suspension threads
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owing to the significant increase in viscosity with increasing particle volume fraction.
Indeed, at φ ' 50 %, even such a low viscosity suspending liquid as water yields
Oh≈ 1.

From dimensional analysis, the evolution of the neck diameter (normalised by the
initial diameter h0) at given boundary conditions is found to be a function H of the
dimensionless time and of four extra dimensionless parameters

hmin

h0
=H

(
σ(t0 − t)
η0h0

, Bo, φ,
d
h0
, θ

)
, (1.1)

where the Bond number, Bo = ρgh2
0/σ (where g is the gravity), that measures the

relative importance of surface tension and gravity forces, is the only relevant parameter
for a single-phase viscous liquid. Our present goal is to determine the time scale
of the pinch-off, the onset of its acceleration (relative to the effective-viscous-fluid
regime), and its dependence on the suspension parameters d, φ and θ (i.e. to determine
the function H). We thus conduct experiments on an isolated pinch-off event while
maintaining a fixed Bond number to observe the sole influence of φ, d and θ . To
that extent, we choose the configuration of an unstable capillary bridge formed by
letting a pendant drop coalesce with a bath. This configuration which is detailed in
§ 2.2 is particularly interesting owing to its experimental amenability but also because
it does not introduce any additional velocity in the problem unlike the pendant drop
configuration. Together with choosing a sufficiently viscous suspending liquid, this
ensures that, besides its time scale ∼η0h0/σ , the overall dynamics does not depend
upon the liquid viscosity. We also conduct additional investigations using a pendant
drop in order to examine the influence of initial and boundary conditions on the pinch-
off event. We focus on the semi-dilute to concentrated suspension range (10 % 6
φ 6 52 %) for which particles are significantly interacting with each other but the
suspension still flows.

The presentation of the study is as follows. Details of the experimental apparatus
and procedure are given in § 2. The experimental results are presented in § 3. General
observations and the two pinch-off regimes are first introduced in § 3.1. The detailed
analysis of these successive regimes is then provided in §§ 3.2 and 3.3. Conclusions
are drawn in § 4.

2. Experimental set-up
2.1. Particles and fluids

Different batches of smooth, mono-disperse, spherical, polystyrene particles (Dynoseeds
TS manufactured by Microbeads) with density ρ = 1050 kg m−3 and diameters, d,
ranging from 10 to 550 µm were used in the experiments (the relative standard
deviation in d ranged from 1 to 8 % (see table 1) and visual analysis of the particle
surface indicated that the roughness was much smaller than the particle size).

The suspending fluids were chosen (i) to be sufficiently viscous to ensure a large
Oh over the whole range of φ and (ii) to match the density of the polystyrene
spheres to avoid the sedimentation effect and to maintain a fixed Bo, see table 2. In
order to vary the wetting contact angle θ , two different Newtonian fluids were used
(i) poly(ethylene glycol-ran-propylene glycol)-monobutyl-ether (PEG), a polymer
melt with an average molecular weight of 3900 g mol−1, with surface tension
σ = 36 mN m−1 and viscosity η0 = 2.4 Pa s and (ii) a 30.5 wt. % aqueous solution
of Ucon oil, a commercial lubricant (Ucon 75-H, 90 000) composed of Polyalkylene
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d (µm) 10.1± 0.3 40± 1 80± 4 80± 4 135± 11 218± 3 550± 24
Surface bare bare bare coated bare bare bare

θa (deg.) — — 29± 2 100± 2 32± 3 23± 2 61± 2
θr (deg.) — — 13± 2 64± 2 12± 2 18± 2 27± 2
θ (deg.) — — 21± 8 82± 27 22± 10 21± 2 44± 17

TABLE 1. Particle characteristics.

Fluid ρ (kg m−3) σ (mN m−1) η0 (Pa s)

PEG 1050± 1 36.0± 0.1 2.4± 0.1
Ucon (30.5 %wt) 1050± 1 50.5± 0.3 0.130± 0.002

TABLE 2. Fluid characteristics.

glycol, with surface tension σ = 50.5 mN m−1 and viscosity η0 = 130 mPa s. The
surface tensions and viscosities were measured by fitting the shape of static pendant
drops and by using a rheometer (Anton Paar MCR 501) with a cone–plate geometry
at the temperature of the experiments (23 ◦C), respectively. The fluid viscosities were
found to be constant over the whole range of applied shear rates (10−2–102 s−1)
which covered the typical macroscopic shear rates −ḣmin/hmin of the pinch-offs with
two additional higher decades. This insured that the suspending liquid could be
considered as Newtonian, even in the case of concentrated suspensions where the
local shear rate between the particle largely exceeds the applied macroscopic shear
rate (Souzy et al. 2017).

Most of the experiments were conducted with wetted particles, i.e. typically θ . 20◦
as can be seen in table 1, using bare (i.e. as delivered) polystyrene beads suspended
in PEG. Note that contact-angle measurements were not possible for particles smaller
than d = 80 µm and the values of θ were assumed to be similar to those found for
larger sizes since the beads are made with the same polystyrene material. It should
be stressed that the addition of particles did not affect the surface tension as checked
by measuring the shape of pendant suspension drops. Suspensions of partially non-
wetting particles were also obtained by using polystyrene beads of size d = 80 µm
coated with a silicon-based commercial waterproof spray (Trigano ‘imperméabilisant
incolore’) suspended in the Ucon solution. This resulted in an averaged contact angle
θ = 82◦ as measured at the meniscus of a single bead successively submersed and
withdrawn from a pool of Ucon solution (the advancing and receding contact angles
were 100◦ and 64◦, respectively).

A great care was taken in preparing the suspensions to avoid air entrapment in
the highly viscous suspending fluids. For d 6 40 µm, the desired quantity of spheres
were first mixed to the suspending fluid with a spatula in a beaker. The suspensions
were then centrifuged at 2000g for one to two minutes to remove air bubbles without
any detection of significant particle sedimentation or creaming. For d > 40 µm, the
particles were gently deposited on the fluid interface and let there until they were
completely soaked by the liquid. They were further mixed by slowly rotating the
beaker at an angle. To immerse the partially non-wetting (coated) spheres in the Ucon
solution, a more stringent protocol was designed. The spheres were first immersed
in ethanol which completely wetted them before replacing the ethanol by the Ucon
solution. To avoid any air trapping during the process, the beads together with a
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h0
(a) (c) (d)

(b)

FIGURE 2. (Colour online) The two studied pinch-off configurations. (a,b) Pinch-off of
an unstable capillary bridge formed by letting a pendant drop coalesce with a bath. (c,d)
Pinch-off of a thread that is stretched behind a pending drop. The nozzle outer diameter
is h0 = 4.39 mm in both cases and the suspensions consist of polystyrene spheres having
a diameter d= 80 µm suspended in PEG at φ ≈ 50 %).

magnet were positioned in a syringe body the two openings of which were obstructed
by grids to retain the particles within the syringe tube. Ethanol was first injected
to immerse the spheres and a large quantity of Ucon solution was subsequently and
slowly pushed through the syringe until all the ethanol was washed. The suspension
was finally mixed with the help of the embedded magnet.

The particle concentration was varied with φ ranging between 0 and 52 %. For each
φ, the suspension shear viscosity was measured with a rheometer (Anton Paar MCR
501) in the range of deformation rates −ḣmin/hmin imposed by the pinch-off dynamics.
To avoid shear-induced migration during the measurements (Morris & Boulay 1999),
a plate–plate configuration was chosen with wall roughness of the order of d and gap
size larger than 20 d. For 06φ6 40 %, the shear viscosity was found to be shear rate
independent. For φ> 45 %, a small, systematic, shear thinning was observed and was
found to be independent of the shear history, of the cell geometry (plate–plate or cone–
plate), of the particle size, of the wall roughness, and of whether a curved meniscus of
suspension was let at the plate periphery or not. The magnitude of this shear thinning
was found to increase with increasing φ and to reach a typical twofold decrease in
viscosity over two decades of shear rate at φ= 52 %. Similar shear-thinning behaviour
has been previously reported for concentrated non-colloidal suspensions (Zarraga, Hill
& Leighton 2000) and is not well understood.

2.2. Apparatus and procedure
Most of the pinch-off experiments were performed with an unstable capillary bridge
configuration as shown in figure 2(a,b). They consisted in letting a pendant drop
having a controlled size coalesce with a bath of the same suspension positioned
below. The coalescence stretched the bridge which eventually pinched-off in a
reproducible manner. This bridge configuration was selected because it confines
the whole dynamics to the same region of space, thus facilitating the high-resolution
observation of the late instants of the pinch-off. The coalescence-induced initiation of
the dynamics was chosen because it naturally preserves the axial symmetry and does
not introduce any additional velocity in the problem (for a viscous Newtonian liquid,
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FIGURE 3. (Colour online) (a) Snapshot of a pinching suspension capillary bridge
(h0 = 4.39 mm, φ = 48 % and d = 10 µm), see also the online supplementary movies
available at https://doi.org/10.1017/jfm.2018.530. The bridge appears as black on the bright
background. A red line highlights its contour. (b) Typical time evolution of the minimal
diameter, hmin, in which the break-up time, t0, is used as a temporal reference. The filled
circles correspond to three realisations of the same experiment. The open circles represent
the average over these three realisations. (c) Dimensionless evolution of hmin for pure
liquids (with viscosities η0 ranging from 0.010 to 40 Pa s) showing the reference viscous
dynamics reached in the limit of large Ohnesorge numbers (Ux stands for a x %wt aqueous
solution of Ucon oil).

the time scale of the coalescence evolves together with that of the pinch-off). The
drop was slowly extruded with a syringe through a stainless steel nozzle with an outer
diameter h0 until it reached a static shape with a controlled height. Two different
nozzles with h0 = 4.39 mm and h0 = 1 mm (and inner diameters of respectively
3.95 mm and 0.8 mm) were used. We checked that the volume fraction φ of the
drop was identical to that of the initially mixed suspension within an accuracy
of 1 % by weighting 10 test drops as well as the particles they contained. The
flat horizontal surface of the suspension bath was subsequently approached with a
precision translation stage until it touched the drop tip. To avoid Marangoni flows,
both the bath and the drop were maintained at a constant temperature of 23 ◦C by air
conditioning the laboratory room. This protocol ensured that the initial and boundary
conditions were strictly identical between different realisations of the pinch-off and
independent of φ.

The pinch-off dynamics was imaged by a high-speed camera coupled to a
macroscopic lens resulting in a spatial resolution up to 3 µm per pixel and a
temporal resolution up to 330 µs. Illumination was provided by a bright background
which shone only during the exposure time of the camera to avoid any heating
of the threads. A typical shadowgraph produced by this imaging system is shown
in figure 3(a). The successive images were analysed by standard image processing
functions (thresholding of the grey level image and contour detection) in order to
determine the contour as well as the minimal apparent diameter of the thread hmin.
For each suspension, experiments were repeated three times. Figure 3(b) shows
typical evolutions of hmin obtained from three realisations of the pinch-off for bare
polystyrene particles of size d= 10 µm suspended in PEG at φ= 48 %. The break-up
time t0 is used as a temporal reference. While the relative variations in hmin for the
three realisations are negligible for pure liquids, they were found to increase slightly
for suspensions with increasing φ but always remained below 10 % for all the particle
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(a) (i) (ii) (iii) (iv) (v)

(b)

FIGURE 4. Comparison of the pinch-off dynamics of a capillary bridge for (a) pure PEG
and (b) a suspension of 80 µm beads dispersed in PEG at φ = 50 %. The bridges in the
two sequences have the same neck diameter in both the first image (i) and the penultimate
image (iv) which immediately precedes break-up. In (a), t0 − t= 600, 100, 25, 0.66 and
−25 ms, from left to right respectively, while in (b), all of the durations are 60 times
longer.

sizes that were used. In the following, we only report the value of hmin obtained by
averaging over three realisations.

In order to determine the influence of the suspension parameters on the dynamics,
a viscous case of reference was needed. This was obtained by a calibration with pure
liquids. Figure 3(c) shows the dimensionless time evolution of hmin using the viscous
scaling η0h0/σ , for different liquids (PEG and from 10 to 100 %wt aqueous solutions
of Ucon oil) with viscosity η0 ranging from 0.010 to 40 Pa s. In the limit of large
Oh, the curves collapse onto a single master curve, that of the Stokes regime, within
an accuracy of typically 10 % due to the small variations in the surface tension, i.e.
in Bond numbers between the different liquids. The curve obtained for pure PEG,
which matches the Bond number of the suspensions, is taken as the reference curve
for direct comparison with the PEG suspension experiments. It is important to stress
that Oh is always larger than 1. For pure PEG, Oh ≈ 10 and therefore is larger
when adding particles. The aqueous solution of Ucon oil has been only used for
concentrated suspensions (φ = 50 %), for which the Ohnesorge number based on the
effective viscosity of the suspension is also of order 10.

Additional experiments were undertaken with a pendant drop configuration as
shown in figures 2(c) and 2(d). These experiments were meant to determine whether
the break-up dynamics differs between the two (dripping or bridge) configurations.
Pendant drops of suspensions were extruded through the same nozzles as those used
in the bridge experiments. Similar imaging and data analysis were used.

3. Results
3.1. General observations and regimes

3.1.1. General observations
To illustrate how particles affect the pinch-off of a bridge, it is first insightful to

compare the reference case of a pure viscous liquid to that of a suspension. Figure 4
shows the pinch-off dynamics for pure PEG and for a suspension of particles having a
diameter d= 80 µm suspended in the same liquid at φ= 50 %. The two bridges have
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the same minimal diameter in both the first (i) and the penultimate (iv) images, but
the time intervals are 60 times larger for the suspension. This directly illustrates the
first consequence of adding a large amount of particles to a viscous thread, which is
simply to increase the time scale of the whole pinch-off process as previously noted
by Furbank & Morris (2004, 2007). In the present case, since the Bond number is
unchanged by the presence of the particles and the particles are mostly wetted by the
liquid, this suggests that the suspension behaves overall as an effective fluid which
is more viscous than the pure liquid by the same factor of 60. However, besides
slowing down the overall dynamics, particles also alter the shape of the bridge as
pinch-off proceeds. Indeed, although both bridges have the same minimal diameter in
the images (iv), the bridge is clearly less slender and the pinching is more localised
for the suspension case. Similarly, it must be noted that the rates of thinning of the
two bridges are not simply proportional to each other over the whole pinching process.
Images (iii) and (iv) clearly evidence that, relatively to the overall time scales of the
pinch-off, the thinning close to break-up is faster for the suspension than for the pure
liquid.

More systematically, figure 5 illustrates how the main alterations to the bridge shape
during the pinch-off depend on the parameters of the suspension, specifically φ and
d. Figure 5(a) compares the pinch-off process for a viscous liquid (φ = 0 %) and for
three suspensions of increasing volume fractions φ = 20, 35 and 50 % but having
the same particle diameter d = 80 µm. For each case, the bridge is shown at the
same three values of the neck diameter, namely hmin = 2, 0.6 and 0.15 mm. Initially,
there is no noticeable difference in the shape of the bridge with respect to that of
a pure viscous liquid. However, as the thinning of the neck proceeds, a systematic
deviation occurs, which becomes stronger with decreasing hmin and manifests earlier as
φ is increased. For instance, at hmin= 0.15 mm, the pure liquid bridge is slender and
almost cylindrical, whereas for φ& 20 % the bridge becomes corrugated owing to the
formation of aggregates of particles, and for φ= 50 % the bridge adopts a double-cone
shape, reminiscent of that reported for foams and emulsions (Huisman et al. 2012).
These alterations of the bridge shape manifest similarly for both smaller and larger
particles, albeit for different values of hmin. Figure 5(b) compares the case of particle
diameters ranging from 10 to 550 µm for the same particle volume fraction φ= 35 %.
At hmin= 0.15 mm, the bridge shape is almost unaltered for d= 10 µm, whereas it is
dramatically modified into a double-cone shape for d= 550 µm. At such moderate φ,
the shape of the bridge is altered only once it has thinned down to a few particle sizes.

3.1.2. The different regimes of pinching
As anticipated in the above description, these conspicuous alterations of the bridge

shape directly impact the rate of thinning of the bridge. All the trends described above
can therefore be quantified by just focusing on the time evolution of the minimal
diameter of the bridge hmin. This is illustrated in figure 6(a) for suspensions having the
same diameter d=10 µm but with φ ranging from 20 to 52 %. As already noticed, the
duration of the pinch-off increases significantly (by two orders of magnitude) between
the pure liquid and φ= 52 %. The precise influence of the particle volume fraction is
thus better appreciated by representing each pinch-off dynamics in its own time scale.
This is performed in figure 6(b) by defining for each φ an effective viscosity,

ηe ≡ η0
ḣmin|φ=0

ḣmin
, (3.1)
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(a) ƒ = 0 %

ƒ = 0 % ƒ = 35 %

ƒ = 20 % ƒ = 35 % ƒ = 50 %

d = 80 µm

d = 10 µm d = 80 µm d = 550 µm

(b)

FIGURE 5. Bridge shape as pinch-off proceeds, at the same values of the neck diameter
hmin = 2, 0.6, and 0.15 mm, from top to bottom respectively. (a) Suspensions having the
same particle size (d = 80 µm) but different particle volume fractions φ = 20, 35 and
50 % from left to right respectively. (b) Suspensions having the same particle volume
fraction (φ = 35 %) but different particle sizes d= 10, 80 and 550 µm from left to right
respectively. The leftmost sequences illustrate the pure liquid case.
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FIGURE 6. (Colour online) (a) Evolution of the neck diameter for suspensions of 10 µm
beads dispersed in PEG at volume fractions ranging from 20 to 52 %. (b) Same data
rescaled (and shifted by an arbitrary time t1) to match the reference dynamics of the pure
liquid (φ = 0 %) in the early stage of the pinch-off. For each φ, the rescaling defines the
effective viscosity ηe relative to that of the pure liquid.

and using it to rescale the data (note that the slope ḣmin is obtained by averaging
data over hmin > 0.2h0). This definition simply stems from extending the prediction
of the neck thinning rate of a pure liquid at large Oh (i.e. ḣmin|φ=0 ∝ H(Bo) σ/η0)
to the suspension case (i.e. ḣmin ∝ H(Bo) σ/ηe) while keeping in mind that, in the
present case, both σ and Bo are independent of φ. By rescaling the dynamics for
each φ with this effective viscosity, a good collapse onto the pure liquid curve can be
obtained at the beginning of the pinch-off process (starting at hmin & 2 mm), as shown
in figure 6(b). However, at lower values of hmin, systematic deviations are observed as
the suspension thinning significantly accelerates compared to that of the pure liquid.

Before analysing quantitatively the pinch-off dynamics, it is crucial to characterise
these deviations. Figure 7 shows the evolution of hmin with increasing d for three
particle volume fractions, φ = 20, 35 and 50 %, as well as for the viscous reference
case (φ = 0). The general trend is that, as the particle size increases, the deviation
occurs earlier, i.e. the neck diameter at which the thinning accelerates becomes larger.
This is clearly seen for φ = 20 % and φ = 35 % for which the deviation occurs at a
neck diameter h∗ which increases with increasing d. However, for φ = 50 %, while
a deviation onset which depends on d is recovered for the largest diameter explored
(d = 135 µm), a different behaviour is observed for smaller d. For d < 135 µm, the
suspension dynamics starts to depart from that of the pure viscous liquid at a value
of the neck diameter, noted h′, which is independent of d, before a further deviation
from this latter curve at the neck diameter h∗ which depends on d, as seen in the
inset of figure 7(c). This means that at large φ and smaller d, the departure from
the viscous case first occurs at a neck diameter h′ which differs from the diameter
h∗. This unexpected observation is evidenced in figure 7(d) for φ = 50 %. For d 6
80 µm, the onset of the deviation from the liquid reference case is constant at h′ ≈
0.18h0, whereas the onset of deviation from this already deviated curve, h∗, increases
systematically with d. For d > 80 µm, the d-dependence dominates and h′ and h∗
cannot be distinguished.
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FIGURE 7. (Colour online) (a–c) Time evolution of the neck diameter for different particle
sizes and particle volume fractions: (a) φ = 20 %, (b) φ = 35 % and (c) φ = 50 %. The
insets in (b) and (c) are blow-ups and define (for d = 40 µm) the two deviation onset
diameters, h′ and h∗, at which the thinning deviates from the Newtonian case, and at which
particle size effects are observed, respectively. The open triangles represent the reference
case of a pure viscous liquid. (d) Neck diameter at the onset of the deviations for the
different curves shown in (c). h′ and h∗ only differ from each other for sufficiently small
particle sizes and large volume fractions.

These distinct behaviours in the evolution of hmin yields to the definition of two
successive regimes which will be studied separately in the two next sections:

(i) an effective-viscous-fluid regime in the early stage of the pinch-off, in which the
dynamics is independent of the particle size and the suspension behaves as an
effective viscous fluid, albeit pseudo-Newtonian (see § 3.2),

(ii) a subsequent discrete regime in the late stage of the pinch-off, in which the
dynamics depends on the particle size and the thinning rate significantly increases
(see § 3.3).
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3.2. Effective-viscous-fluid regime
In the effective-viscous-fluid regime, the neck thinning dynamics of the suspension
is similar to that of a pure viscous liquid: the particles do not deform significantly
the interface and, in the present case of neutrally buoyant particles, no sedimentation
or creaming is anticipated. This regime is thus entirely characterised by an effective
viscosity of the suspension, ηe, that can be inferred using (3.1). However, as discussed
above, for large φ, two different rates of thinning are successively measured,
respectively above and below h′ ' 0.18 h0. While the effective regime has been
reported in the literature (Furbank & Morris 2004, 2007), this latter behaviour for a
concentrated suspension has not been documented.

3.2.1. Case hmin > h′

We first focus on the range hmin > h′, since an effective-viscous-fluid regime can be
observed for all the particle volume fractions and all the particle sizes in that case.
The effective viscosity ηe measured over this range and normalised by that of the
suspending liquid η0 is shown in figure 8(a) as a function of φ for different d. The
collapse of the data for 10 µm 6 d 6 550 µm shows that there is no dependence
on particle size and thus assesses that the suspension can be seen as a continuum.
The effective viscosity ηe/η0 increases with increasing φ and seems to diverge at
a critical particle volume fraction φc ' 54 %. This value of φc is somehow smaller
than that (φc ' 58 − 62 %) usually reported for non-Brownian suspensions (see e.g.
Zarraga et al. 2000; Boyer, Guazzelli & Pouliquen 2011a) but happens to be similar
to that observed by Blanc, Peters & Lemaire (2011) for 30 µm particles in a different
Newtonian suspending liquid.

The effective viscosity ηe is not significantly altered when the particles are coated,
i.e. by varying their wetting contact angle θ from typically 0◦ to typically 90◦ (see
table 1). This shows that the effective surface tension which drives the dynamics is
unaffected by the presence of small partially non-wetted particles in the range of φ
examined. This is also consistent with the direct observation that the static shape of
the pending drop used to form the bridge is unaffected by these particles. This means
that, even during the first stage of the pinch-off when the bridge interfacial area begins
to shrink, the mean curvature of the interface is not overall affected by the presence
of small partially non-wetted particles. Same values of ηe are also measured using a
smaller nozzle diameter (h0= 0.8 mm) and a different pinch-off configuration, namely
that of a pending drop detaching from a nozzle. This shows that the early pinch-off
dynamics only depends on the particle volume fraction φ and is independent of the
other parameters investigated (d, θ , h0) and of the pinch-off configuration. This clearly
evidences that, in this regime, the suspension can be seen as a bulk and continuum
medium.

The effective viscosity ηe measured during the early stage of pinch-off is also
compared in figure 8(b) to measurements of the shear viscosity ηs of the same
suspensions performed with a plate–plate rheometer. These two viscosities increase
similarly with increasing φ and present the same divergence (within less than 1 %)
at the same critical value φc ≈ 54 %. These experimental data coming from two
different types of measurements are found to be in good agreement with the classical
correlation of Eilers (see e.g. Stickel & Powell 2005) as well as that of Boyer et al.
(2011a). They both present a divergence which scales as ∼(φc−φ)

−2 near the critical
value φc ≈ 54 % above which the suspension is unable to flow.
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FIGURE 8. (Colour online) (a) Relative effective viscosity ηe/η0 versus φ during the early
stage of the pinch-off (hmin > h′ ' 0.18 h0) for different diameter d, nozzle diameter h0,
contact angle θ and for the (PDC) pendant drop configuration. Unless otherwise specified,
d = 80 µm, h0 = 4.39 mm, θ ≈ 0◦ and the configuration is that of a capillary bridge.
(b) Relative effective viscosity ηe/η0 and relative shear viscosity ηs/η0 versus φ for d =
10 µm. The shear viscosity ηs is measured independently with a cone–plate rheometer
at a typical shear rate ≈ −ḣmin/hmin. The three lines represent the correlations of (KD)
Krieger–Dougherty, ηs/η0 = [φc/(φc − φ)]

5φc/2, of (E) Eilers, ηs/η0 = [1+ (5/4)φcφ/(φc −

φ)]2, and of (BGP) Boyer et al., ηs/η0= 1+ (5/2)φcφ/(φc−φ)+µ
c(φ)[φ/(φc−φ)]

2 with
the contact contribution µc(φ) varying in the range 0.3–0.7, and with φc = 54 %.

3.2.2. Case hmin < h′

In the late stage of pinch-off (hmin < h′), a different effective-viscous-fluid regime
can be observed for dense suspensions. This regime is seen when it is not screened
by finite-size effects that dominate the later stage of the pinch-off. This implies
that the particles should be much smaller than the nozzle size h0. The focus in this
section is therefore on the experiments with the smallest particles. In this case, for
φ & 35 %, the dynamics departs from that of the pure liquid at a constant neck
diameter h′ ' 0.18 h0. For hmin < h′, the neck thinning rate adopts a constant value
which differs from that observed for hmin > h′ (discussed in the preceding section)
until finite-size effects eventually dominate for a much thinner neck. As shown in
the inset of figure 7(c), this dynamics observed for hmin < h′ does not depend upon d.
The suspension still behaves as an effective fluid. However, although the shape of the
capillary bridge is essentially not modified in this regime until hmin has reached h∗ (as
evidenced in figures 5 and 9b), it is rather delicate to infer a quantitative measurement
of some effective viscosity from the sole value of hmin once a deviation from the pure
liquid viscous case has occurred. We thus characterise this regime through the ratio
α ≡ ηe|h∗<hmin<h′/ηe|hmin>h′ , with ηe defined as in (3.1), which represents the change in
the pinching rate relative to its value for hmin > h′. If the flow remains uniformly a
Newtonian Stokes flow below h′, the ratio α precisely measures the relative change
in the effective viscosity around h′. More generally, it only qualitatively reflects the
change in the effective viscosity at the neck.

The thinning rate ratio α is shown in figure 9(a) for increasing φ. While it is equal
to 1 for φ. 35 %, it becomes progressively smaller for larger φ until it has decreased
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FIGURE 9. (Colour online) (a) Ratio α of the pinching rates after and before hmin = h′
(see text). (b) Bridge aspect ratio l/hmin versus hmin/h0 for suspensions at φ= 50 % and for
the viscous liquid reference. The inset defines the typical length l over which the bridge
diameter varies. The solid line shows the prediction for the self-similar shape evolution in
a viscous extensional flow, l/hmin∼ (hmin/h0)

β−1 with β ' 0.175 (Papageorgiou 1995). The
vertical lines show the value of h∗ for each particle size (dashed) and of h′ (thin solid).

by typically one half at the largest φ explored (φ = 52 %). This indicates that the
effective viscosity is unchanged around hmin = h′ as long as φ . 35 %, and suggests
that for larger φ the effective viscosity decreases when hmin becomes smaller than h′.

Some insights into this evolution of the effective viscosity can be obtained by
examining the bridge shape around the transition between the two effective-viscous-
fluid regimes. Figure 9(b) shows the evolution of the bridge aspect ratio l/hmin as the
neck is thinning down, i.e. as hmin/h0 decreases. The axial elongation of the bridge l
has been defined as the distance between two bridge cross-sections having a diameter
of 1.25 hmin (the evolution of l is independent of the precise value adopted for the
pre-factor), as depicted in the inset of figure 9(b). For the reference pure liquid, the
aspect ratio, l/hmin, becomes significantly larger than one and follows the prediction
for the self-similar shape evolution in a viscous extensional flow [l/hmin∼ (hmin/h0)

β−1

with β ' 0.175 (Papageorgiou 1995)] when hmin becomes smaller than a value very
close to that of h′('0.18 h0). For the suspensions, this large aspect ratio as well as
its self-similar evolution are recovered for h∗ . hmin . h′.

The value of this aspect ratio has a direct impact on the nature of the flow inside the
bridge. For a large aspect ratio, the flow can be considered as essentially extensional.
For an aspect ratio of order one, it is more complex and contains a significant portion
of pure shear. While the influence of the flow type does not affect the rheological
response of a Newtonian fluid such as the present reference pure fluid (PEG), it may
have an effect on the response of a suspension as the microstructure built by the
particles is flow dependent (see e.g. Morris 2009). The ratio α could therefore reflect
the effective viscosity difference between the two flow types. Figure 9(a) suggests that
the effective viscosity is lower in the late extensional flow stage than in the early
complex flow stage of the pinch-off for φ & 40 %. The fact that the difference in
viscosities becomes significant above φ ≈ 40 % may be an additional indication of
non-Newtonian effects as for these large φ normal stress differences happen to be
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detectable in pure shear flow configurations (Zarraga et al. 2000; Boyer, Pouliquen
& Guazzelli 2011b; Gallier et al. 2014). It should also be stressed that the slight
shear-thinning behaviour mentioned in § 2.2 is also expected to reduce the viscosity
as the pinching proceeds and the rate of deformation increases.

Nonetheless, the difference between these two viscosities is not large (a factor of
at most two at the largest φ explored), both of them are similar to the steady shear
viscosity measured with a cone–plate rheometer, as evidenced in figure 8(b). This
suggests that, for a suspension, the shear stresses in the complex non-steady and
partly extensional flow in the neck of the bridge do not differ in order of magnitude
from those developing in a steady pure shear flow with the same rate of deformation.
This may indicate that non-Newtonian normal stresses (which never exceed the shear
stress in a purely sheared suspension) do not dominate the extensional rheology
of the suspension (in contrast with e.g. dilute polymer solutions at large Deborah
numbers for which the Trouton ratio can exceed 103, McKinley & Sridhar 2002).
This observation is consistent with numerical results suggesting that different types of
suspensions − contactless Brownian particles (Sami 1996), frictional and frictionless
non-Brownian particles (Seto, Giusteri & Martiniello 2017; Cheal & Ness 2018) −
have a Trouton ratio which is close to that of a Newtonian liquid, except maybe very
close to φc (Cheal & Ness 2018).

3.3. Discrete regime
In the last stage of the pinch-off, the thinning dynamics accelerates significantly
and becomes driven by the discrete nature of the suspension, as previously noted
by Furbank & Morris (2004), Bonnoit et al. (2012) and Mathues et al. (2015).
Figure 10(a) shows this last thinning stage for a suspension with d = 10 µm. In
order to resolve smaller values of hmin, the data were obtained with a larger optical
magnification and a shorter time resolution than in figure 6 (same values are obtained
over the common range of observation). The actual difference with figure 6 is that
the time is now rescaled by αηe instead of ηe. This provides a better presentation
of the finite-size effects, in particular at large φ where the two thinning rates differ
from each other.

The very last instants of the pinch-off are first considered. Figure 10(b) presents the
terminal thinning rate of the bridge, i.e. the value of ḣmin measured at hmin ≈ d. Over
the whole range of φ explored, this value is equal to the thinning rate of the pure
suspending liquid within a factor two. This factor has to be compared with the 103

times slower rate observed prior to this acceleration for the largest φ in the effective-
viscous-fluid regime. We therefore recover that the terminal pinching rate is dictated
by the pure interstitial fluid, as anticipated by Furbank & Morris (2007) and reported
by Bonnoit et al. (2012) and Mathues et al. (2015).

We then turn to the examination of the onset of the thinning acceleration. We
choose to characterise it by the diameter h∗ at which the thinning rate |ḣmin| has
increased by 30 % from its constant value prior to the acceleration (we checked that
the value of h∗ is not sensitive to the precise value of the criterion), see the inset
of figure 10(a). Figure 11(a) presents the variation with φ of the onset diameter h∗
made dimensionless by d, for particle diameters ranging from 10 to 135 µm. The
inset graph of this figure shows that all the data, including those for the coated
particles (θ ' 90◦), collapse approximately on the same curve. Note that the data
of Mathues et al. (2015) for polystyrene particles also collapse on this curve. Their
smallest (3 µm PMMA) particles however deviate from this general behaviour, which
may be due to colloidal forces as suggested by Mathues et al. (2015).
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FIGURE 10. (Colour online) (a) Time evolution of the neck diameter in the last stage of
the pinch-off for a suspension having d= 10 µm. The inset defines the terminal thinning
rate of the neck ḣmin|hmin≈d as well as the time t∗ and the neck diameter h∗ ≡ hmin(t∗) at
the onset of the departure from the effective-viscous-fluid curve. (b) Terminal thinning rate
measured at hmin≈d (filled circles). The horizontal line shows the thinning rate of the pure
suspending liquid. For comparison, the open triangles represent the rate of thinning in the
effective-viscous-fluid regime (hmin > h′).

This collapse indicates that h∗ is linear in d (in this range of d) and increases
monotonically with increasing φ (in the range of φ investigated). The increase
becomes steeper for increasing φ and suggests a weak algebraic divergence at the
jamming point, h∗/d∼ (φc − φ)

−1/3, as evidenced in the main graph of figure10(a).
This weak divergence at jamming does not agree with the stochastic prediction

(=0.65φ−1/3(φc−φ)
−1) of Mathues et al. (2015) who invoked an effective decrease in

the suspension viscosity owing to Poissonian particle concentration fluctuations in the
small volume of the neck (i.e. the local random fluctuations expected in the limit of
low φ). Although weaker, the observed divergence is reminiscent of that predicted for
the particle displacement correlation length ξ in simulations of over-damped shear flow
of hard spheres at the jamming point (ξ/d∼ (φc− φ)

−0.6 for frictionless particles and
ξ/d∼ (φc − φ)

−0.43 for both frictionless and frictional particles in the range φc − φ &
1 %, respectively found by Olsson & Teitel 2007; Trulsson, DeGiuli & Wyart 2017).
This suggests that discrete effects accelerate the pinching when the smallest dimension
of the thread, namely hmin, has reduced down to the scale at which the fluctuating
motion of the particles is correlated. This decreasing resistance to deformation of the
suspension with increasing confinement might be related to the compliance of the
capillary confinement imposed by the liquid interface.

The proportionality between h∗ and d (seen in figure 11(a) for d . 135 µm) does
not hold above d/h0 ≈ 0.03, i.e. when the onset diameter h∗ ∼ 10 d becomes of the
order of the initial bridge diameter h0, see figure 11(b). This may be due to the
qualitative change in the bridge aspect ratio l/hmin (discussed in § 3.2.2). Indeed, the
flow around the neck when hmin≈ h∗ is expected to be similar for the different particle
sizes, only if the bridge is significantly slender in all cases, i.e. if h∗ ∼ 10 d . h′ '
0.18 h0 for all of them, which fails to be true for d/h0 & 0.03.
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FIGURE 11. (Colour online) (a) Neck diameter at the onset of the discrete regime, h∗,
as a function of φc − φ for d ranging from 10 to 135 µm. The green squares (θ = 90◦)
correspond to the coated 80 µm spheres. The line shows h∗/d ∼ (φc − φ)

−1/3. The inset
displays the same data versus φ together with those extracted from figure 8 of Mathues
et al. (2015) (3 µm PMMA particles �, 10 µm polystyrene particles M, 20 µm polystyrene
particles O). (b) Neck diameter h∗ as a function of d up to d= 550 µm for three different
particle volume fractions.

Lastly, we examine the duration of the acceleration, which indicates how much
shorter is the suspension pinch-off compared to that of a pure liquid of the same
viscosity. Figure 12(a) presents this duration t∗, defined by hmin(t∗)≡ h∗ (see inset in
figure 7(a)), for d= 10 µm. The duration t∗ is found to be close to αηeh∗/σ for the
whole range of particle volume fractions. For comparison, figure 12(a) also presents
the time needed to thin down from h∗ at the terminal velocity ∝ σ/η0. Clearly, the
average thinning rate is dominated by that of the pseudo-viscous-fluid regime prior to
the acceleration. Therefore, in the present range of interest of φ6 52 %, the presence
of particles does not modify the order of magnitude of the overall duration but only
shortens the pinch-off by a pre-factor of order one.

With the knowledge of h∗ and t∗, the acceleration of hmin(t) can be plotted in these
natural scales of the discrete regime in figure 12(b) for d = 10 µm and increasing
φ. For low φ, the thinning rate is essentially constant, since αηe = ηe ∼ η0, whereas
for larger φ, the time evolution of hmin becomes increasingly concave. Therefore,
the discrete regime is not unique in the sense that the function hmin([t0 − t]/t∗)/h∗

continuously depends upon the particle volume fraction. An attempt to estimate
this φ-dependence can be undertaken close to the jamming point. If hmin/h∗ is
a power law of (t0 − t)/t∗, the observations h∗/d ∝ (φc − φ)−1/3, t∗ ∝ αηeh∗σ ,
and ḣmin|hmin=d/ḣmin|hmin=h∗ = αηe/η0 together with αηe/η0 ∝ (φc − φ)−2 imply
hmin/h∗ = [(t0 − t)/t∗]1/7 in the limit φ → φc. This particularly steep acceleration
is shown as a dashed line in figure 12. It is found to significantly overestimate the
actual acceleration of hmin for the largest particle volume fraction (φ=50 %) for which
the finite-size acceleration regime could be accurately resolved. Without observations
at larger φ, it is not possible to conclude whether this estimate is relevant for φ
closer to φc ' 54 %.
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FIGURE 12. (Colour online) (a) Normalised duration of the discrete regime as a function
of φ for d= 10 µm (filled circles). The solid line represents the average over the different
φ, t∗' 1.4αηeh∗/σ . For comparison, the dashed line corresponds to the duration expected
for the pure liquid (∼η0h∗/σ ). (b) Time evolution of hmin in the natural scales of the
discrete regime for φ ranging from 10 to 50 % (d= 10 µm). The solid and dashed lines
represent hmin/h∗ = (t0 − t)/t∗ and hmin/h∗ = [(t0 − t)/t∗]1/7, respectively.

4. Conclusion

Adding particles to a viscous liquid thread dramatically influences its break-up. It
both alters the transient bridge shapes and slows down the pinching with respect
to the pure liquid case. We have studied the pinching dynamics of suspensions
of non-Brownian, mono-disperse, neutrally buoyant, hard spheres using a capillary
bridge at large Ohnesorge numbers and have identified the influence of the suspension
parameters (volume fraction φ, diameter d and wetting contact angle θ of the particles)
on the rate of pinching. Two successive regimes of thinning have been distinguished.

First, we observe an effective-viscous-fluid regime in the early stage of the
pinch-off, in which the dynamics only depends on φ and is independent of d.
In this regime, the suspension behaves as an effective viscous fluid and the pinching
is similar to that of a viscous liquid. The neck thinning rate can be written as
ḣmin ∼ −σ/ηe and is solely determined by the effective viscosity of the suspension,
ηe. This effective viscosity is similar to the steady shear viscosity measured using
a conventional rheometer and diverges as (φc − φ)

−2 at the critical volume fraction,
φc≈ 54 %. For φ& 35 %, the precise value inferred for the effective viscosity depends
on whether the thinning flow is still a complex shear flow (ηe for hmin>h′'0.18 h0) or
has already transited to the primarily extensional flow specific of the viscous break-up
(a lower value for hmin < h′). This slight difference in thinning rates depending on the
nature of the flow suggests weak non-Newtonian effects at large φ.

We then identify a subsequent discrete regime in which the dynamics depends
both on d and φ. In this regime, the thinning rate, |ḣmin|, accelerates from the
effective-viscous-fluid thinning rate, ∼σ/αηe, to the interstitial-pure-fluid thinning
rate, ∼σ/η0. An important output of the present study is the determination of the
transition neck diameter, h∗ ∼ d(φc − φ)

−1/3, and of the duration of this acceleration
until break-up, t∗ ∼ αηeh∗/σ . This latter duration, h∗, is that typically expected from
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the effective-viscous-fluid regime thinning rate, αηe/σ . The weak divergence of
the transition neck h∗ at jamming does not agree with the stochastic prediction of
Mathues et al. (2015) and can be compared to the weak divergence found for the
particle displacement correlation length at the jamming transition. However, it must be
stressed that other mechanisms could contribute to the acceleration dynamics of the
suspension thread. The neck may become increasingly diluted owing to shear-induced
migration of particles from the high shear region of the neck to the low shear regions.
In the present rapidly evolving extensional flow, such a migration process is certainly
complex, with particles migrating away from the thin neck region but also across the
neck width until they protrude at the interface. This needs to be further explored.

An important point is that the two regimes are found to be independent of the
wetting contact angle made by the liquid on the particles in the studied range 0 .
θ . 90◦ and 0 < φ . 52 %. This suggests that the effective surface tension of the
suspension is very similar to that of the suspending liquid, indicating that the interface
is not thermodynamically equilibrated, i.e. is not saturated with particles. This situation
is expected to be generic of situations where new interfaces are created, like pending
drops and stretched jets, with large non-Brownian particles.

Last, it is worth mentioning that the present study focuses on the configuration
of a capillary bridge, i.e. a thread with a short imposed length which pinches off
at a single location. If this configuration is relevant for studying the time scale of
the break-up, it does not permit addressing the question of the intrinsic length scale
selected by the fragmentation of a sufficiently long thread, i.e. the size of the thread
fragments. The different regimes discussed above suggests that the fragment size of an
isolated thread with ‘small’ particles (h∗� h0) would be essentially determined by the
effective viscosity of the suspension (dictating the wavelength of the Plateau-Rayleigh
destabilisation) whereas that of concentrated threads with a diameter of a few particle
sizes (h0 ∼ h∗) might be prescribed by discrete effects. The consequences regarding
the length and drop sizes of a falling jet are open questions that need future works.
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